JP5764728B2 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP5764728B2
JP5764728B2 JP2015094507A JP2015094507A JP5764728B2 JP 5764728 B2 JP5764728 B2 JP 5764728B2 JP 2015094507 A JP2015094507 A JP 2015094507A JP 2015094507 A JP2015094507 A JP 2015094507A JP 5764728 B2 JP5764728 B2 JP 5764728B2
Authority
JP
Japan
Prior art keywords
film
colored layer
layer
region
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2015094507A
Other languages
English (en)
Other versions
JP2015135531A (ja
Inventor
山崎 舜平
舜平 山崎
後藤 裕吾
裕吾 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2015094507A priority Critical patent/JP5764728B2/ja
Publication of JP2015135531A publication Critical patent/JP2015135531A/ja
Application granted granted Critical
Publication of JP5764728B2 publication Critical patent/JP5764728B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は薄膜トランジスタ(以下、TFTという)で構成された回路を有する半導体装
置およびその作製方法に関する。例えば、液晶表示パネルに代表される電気光学装置およ
びその様な電気光学装置を部品として搭載した電子機器に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装
置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用
いて薄膜トランジスタ(以下、TFTと呼ぶ)を構成する技術が注目されている。TFT
はICや電気光学装置のような電子デバイスに広く応用され、特に液晶表示装置のスイッ
チング素子として開発が急がれている。
液晶表示装置において、高品位な画像を得るために、画素電極をマトリクス状に配置し
、画素電極の各々に接続するスイッチング素子としてTFTを用いたアクティブマトリク
ス型液晶表示装置が注目を集めている。
アクティブマトリクス型液晶表示装置には大きく分けて透過型と反射型の二種類のタイ
プが知られている。
特に、反射型の液晶表示装置は、透過型の液晶表示装置と比較して、バックライトを使
用しないため、消費電力が少ないといった長所を有しており、モバイルコンピュータやビ
デオカメラ用の直視型表示ディスプレイとしての需要が高まっている。
なお、反射型の液晶表示装置は、液晶の光学変調作用を利用して、入射光が画素電極で
反射して装置外部に出力される状態と、入射光が装置外部に出力されない状態とを選択し
、明と暗の表示を行わせ、さらにそれらを組み合わせることで、画像表示を行うものであ
る。一般に反射型の液晶表示装置における画素電極は、アルミニウム等の光反射率の高い
金属材料からなり、薄膜トランジスタ(以下、TFTと呼ぶ)等のスイッチング素子に電
気的に接続している。
また、液晶表示装置においては、アモルファスシリコンまたはポリシリコンを半導体と
したTFTをマトリクス状に配置して、各TFTに接続された画素電極とソース線とゲー
ト線とがそれぞれ形成された素子基板と、これに対向配置された対向電極を有する対向基
板との間に液晶材料が挟持されている。また、カラー表示するためのカラーフィルタは対
向基板に貼りつけられている。そして、素子基板と対向基板にそれぞれ光シャッタとして
偏光板を配置し、カラー画像を表示している。
このカラーフィルタは、R(赤)、G(緑)、B(青)の着色層と、画素の間隙だけを
覆う遮光マスクとを有し、光を透過させることによって赤色、緑色、青色の光を抽出する
。また、遮光マスクは、一般的に金属膜(クロム等)または黒色顔料を含有した有機膜で
構成されている。このカラーフィルタは、画素に対応する位置に形成され、これにより画
素ごとに取り出す光の色を変えることができる。なお、画素に対応した位置とは、画素電
極と一致する位置を指す。
カラーフィルタの遮光マスクとして金属膜を用いた従来の液晶表示パネルでは、他の配
線との寄生容量が形成され信号の遅延が生じやすいという問題が生じていた。また、カラ
ーフィルタの遮光マスクとして黒色顔料を含有した有機膜を用いた場合、製造工程が増加
するという問題が生じていた。
本発明は、遮光マスク(ブラックマトリクス)を用いることなく、TFT及び画素間を
遮光する画素構造を特徴としている。遮光する手段の一つとして、対向基板上に遮光部と
して2層の着色層を積層した膜(赤色の着色層と青色の着色層との積層膜、あるいは赤色
の着色層と緑色の着色層との積層膜)を素子基板のTFTと重なるよう形成することを特
徴としている。
本明細書では、「赤色の着色層」とは、着色層に照射された光の一部を吸収し、赤色の
光を抽出するものである。また、同様に「青色の着色層」とは、着色層に照射された光の
一部を吸収し、青色の光を抽出するものであり、「緑色の着色層」とは、着色層に照射さ
れた光の一部を吸収し、緑色の光を抽出するものである。
本明細書で開示する発明の構成は、第1の着色層と第2の着色層の積層からなる第1の
遮光部と、前記第1の着色層と第3の着色層の積層からなる第2の遮光部とを有している
ことを特徴とする電気光学装置である。
また、他の発明の構成は、 TFTと、 第1の着色層と第2の着色層の積層からなる
第1の遮光部と、 前記第1の着色層と第3の着色層の積層からなる第2の遮光部とを有
し、 前記第1の遮光部及び前記第2の遮光部は、少なくとも前記TFTのチャネル形成
領域と重なって形成されていることを特徴とする電気光学装置である。
また、他の発明の構成は、 複数の画素電極と、 第1の着色層と第2の着色層の積層
からなる第1の遮光部と、 前記第1の着色層と第3の着色層の積層からなる第2の遮光
部とを有し、 前記第1の遮光部及び前記第2の遮光部は、任意の画素電極と、該画素電
極と隣り合う画素電極との間に重なって形成されていることを特徴とする電気光学装置で
ある。
また、上記各構成において、前記第1の遮光部の反射光量と前記第2の遮光部の反射光
量は、それぞれ異なることを特徴としている。
また、上記各構成において、前記第1の着色層は赤色であることを特徴としている。ま
た、前記第2の着色層は青色である。また、前記第3の着色層は緑色である。
また、上記各構成において、前記第3の着色層はストライプ状であることを特徴として
いる。
また、上記各構成において、前記第1の遮光部および前記第2の遮光部は、対向基板に
設けられている。
また、上記各構成において、前記電気光学装置は、画素電極がAlまたはAgを主成分
とする膜、またはそれらの積層膜からなる反射型の液晶表示装置であることを特徴として
いる。
本発明では2層の着色層からなる積層膜(R+BあるいはR+G)で遮光部を形成する
。結果として、ブラックマトリクスを形成する工程を省略することができる。
着色層の配置を示す上面図及び断面図。 着色層の断面図。 積層した着色層の反射率を示す図。 配線と着色層の重なりを示す図。 AM−LCDの作製工程を示す図。 AM−LCDの作製工程を示す図。 画素上面図を示す図。 AM−LCDの作製工程を示す図。 画素上面図を示す図。 アクティブマトリクス型液晶表示装置の断面構造図を示す図。 着色層の配置を示す図。 AM−LCDの外観を示す図。 AM−LCDの端子部を示す図。 AM−LCDの作製工程を示す図。 AM−LCDの作製工程を示す図。 AM−LCDの作製工程を示す図。 凸部の上面形状を示す図。 画素上面図を示す図。 アクティブマトリクス型液晶表示装置の断面構造図を示す図。 アクティブマトリクス型液晶表示装置の断面構造図を示す図。 アクティブマトリクス型液晶表示装置の断面構造図を示す図。 アクティブマトリクス基板の画素部と端子部の配置を説明する図。 アクティブマトリクス型液晶表示装置の断面構造図を示す図。 非単結晶珪素膜に対する吸収率を示す図。 着色層の単層での反射率を示す図。 電子機器の一例を示す図。 電子機器の一例を示す図。
本発明の実施形態について、以下に説明する。
図1に本発明の構成を示す。ここでは反射型の液晶表示装置を例にとり、以下に説明す
る。
図1(A)は、適宜、3色の着色層11〜13を形成して、第1の遮光部15、第2の
遮光部16、及び画素開口部17〜19を構成した一例を示している。
一般に、着色層は顔料を分散した有機感光材料からなるカラーレジストを用いて形成され
る。
第1の遮光部15及び第2の遮光部16は、各画素の間隙を遮光するように形成する。
従って、入射光は第1の遮光部15及び第2の遮光部16により吸収され観察者には、ほ
ぼ黒色として認識される。また、第1の遮光部15及び第2の遮光部16は、素子基板の
画素TFT(ここでは図示しない)と重なるよう形成され、画素TFTを外部の光から保
護する役目を果たしている。
第1の遮光部15は、緑色の着色層11と赤色の着色層13とを積層して形成する。赤
色の着色層13は、格子状にパターニングする。なお、緑色の着色層11は、従来と同じ
形状(ストライプ状)にパターニングする。
また、第2の遮光部16は、青色の着色層12と赤色の着色層13とを積層して形成す
る。なお、青色の着色層12は、隣り合う赤色の着色層13と一部重なるような形状にパ
ターニングしている。
なお、図1(B)は、図1(A)中における第1の遮光部及び第2の遮光部を鎖線(A
1−A1’)で切断した断面構造を示している。図1(B)に示すように、対向基板10
上の着色層11、12を覆って着色層13が積層されており、さらに、平坦化膜14で着
色層13を覆っている。
また、緑色の着色層11と赤色の着色層13との積層膜(第1の遮光部15)
、青色の着色層12と赤色の着色層13との積層膜(第2の遮光部16)、緑色の着色層
と青色の着色層との積層膜について、それぞれの反射率をある測定条件(白色光源(D6
5)、反射電極(Al)、視野角2°、対物レンズ5倍)で測定した。その測定結果を表
1に示す。
Figure 0005764728
また、表1をグラフにしたものが図3である。
表1及び図3で示されるように、R+B+Al(第2の遮光部16に相当)は400〜
450nmの波長域で約35%の反射率となり、十分に遮光マスクとして機能する。また
、R+G+Al(第1の遮光部15に相当)は570nm付近で約50%の反射率を有し
ているものの十分に遮光マスクとして機能する。
また、図24には非単結晶珪素膜55nmに対する吸収率と照射される波長との関係を
示した。図24に示したように、TFTの活性層を形成する非単結晶珪素膜は、500n
mの波長域の光を吸収しやすい傾向が見られる。この500nmの波長域において、上記
第1の遮光部15及び第2の遮光部16は、表1及び図3で示されるように、反射率を1
0%以下に抑えることができるため、光によるTFTの劣化を抑えることができる。
また、着色層を3層重ねれば遮光性は上がるが、3層重ねた分、凹凸が大きくなるため
、基板の平坦性が失われ、液晶層に乱れが生じてしまう。しかし、本発明のように着色層
を2層重ねる程度であれば、基板の平坦性に液晶層にもほとんど影響ないレベルである。
このように本発明では2層の着色層からなる積層膜(R+BあるいはR+G)
で遮光マスクを形成することを特徴としている。結果として、ブラックマトリクスを形成
する工程を省略することができ、工程数が低減した。
ただし、図1(B)に示した断面図は一例であって、特に限定されず、例えば、図2(
A)〜図2(C)に示す構造を取ってもよい。図2(A)は最初に着色層(R)23を形
成した後、着色層(B)22と着色層(G)21を積層した例であり、図2(B)は最初
に着色層(G)31を形成した後、着色層(R)33を形成し、次いで着色層(B)32
を積層した例であり、図2(C)は最初に着色層(B)42を形成した後、着色層(R)
43を形成し、次いで着色層(G)
41を積層した例である。
また、画素電極間における配線と画素電極と着色層との位置関係を図4に示す。図4(
A)は、画素電極51と画素電極52との間を遮光するように、ソース配線50上方で着
色層(B)58と着色層(R)59との端面が接しており、その接面がソース配線上に存
在している例を示した。なお、図4(A)中において53、55は配向膜、54は液晶、
56は対向基板、57は平坦化膜である。
なお、図4(A)に示した例に限定されることなく、着色層のパターニング時のずれを
考慮して図4(B)や図4(C)に示すような構造としてもよい。図4(B)は、画素電
極61と画素電極62との間を遮光するように、ソース配線60上方で着色層(B)68
の端部と一部が重なるように着色層(R)69を形成している例である。また、図4(C
)は、画素電極71と画素電極72との間を遮光するように、ソース配線70上方で着色
層(B)78と着色層(R)79とが互いに接しないよう形成している例である。
また、画素開口部17〜19を通過した光は、単層の着色層11〜13によりそれぞれ
対応する色に着色されて観察者に認識される。なお、図1(C)は、図1(A)中におけ
る画素開口部を鎖線(A2−A2’)で切断した断面構造を示している。図1(C)に示
すように、対向基板10上に単層の着色層11〜13が順次形成されており、さらに、こ
れらの着色層11〜13を覆う平坦化膜14が形成されている。
画素開口部においては、図25に示した従来と同様に、青色の着色層は450nm付近
で90%を越える反射率を示している。また、緑色の着色層は530nm付近で90%を
越える反射率を示している。また、赤色の着色層は600〜800nmで90%を越える
反射率を示している。
ここでは反射型液晶表示装置の例であるので、画素開口部17〜19に入射した光は、
単層の着色層11〜13をそれぞれ通過した後、液晶層を通過して画素電極で反射し、再
度、液晶層、単層の着色層11〜13をそれぞれ通過して、それぞれの色の光が抽出され
、観察者に認識される。
また、着色層11〜13には、最も単純なストライプパターンをはじめとして、斜めモ
ザイク配列、三角モザイク配列、RGBG四画素配列、もしくはRGBW四画素配列など
を用いることができる。
また、白色発光の発光素子を用いた自発光表示装置に本発明の着色層の配置を適用して
もよい。
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行う
こととする。
以下、本発明の一実施例をアクティブマトリクス型液晶表示装置に用いる対向基板の製
造を例にとって説明する。図1は本発明に従って形成された着色層を備えた対向基板を模
式的に示す図である。
まず、透光性を有する対向基板10にはコーニング社の#7059ガラスや#1737
ガラスなどに代表されるバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガ
ラス基板を用意する。その他に、石英基板、プラスチック基板などの透光性基板を使用す
ることもできる。
次いで、対向基板10上に有機感光材料(CGY−S705C:富士フィルムオーリン
社製のCOLOR MOSAIC)を塗布して、フォトリソグラフィ法により、この有機感光材料を図
1(A)に示すようにストライプ状にパターニングして緑色の着色層(G)11を所定の
位置に形成する。ここでは幅42μmでパターニングした。
次いで、所定の位置に有機感光材料(CVB−S706C:富士フィルムオーリン社製
のCOLOR MOSAIC)を塗布して、フォトリソグラフィ法により、この有機感光材料を図1(
A)に示した形状にパターニングして青色の着色層(B)12を形成する。なお、この青
色の着色層(B)12と緑色の着色層(G)11とが互いに重ならないように形成する。
次いで、所定の位置に有機感光材料(CRY−S778:富士フィルムオーリン社製の
COLOR MOSAIC)を塗布して、フォトリソグラフィ法により、この有機感光材料を図1(A
)に示すように格子状にパターニングして赤色の着色層(R)
13を形成する。図1(B)及び図1(A)に示すように、この赤色の着色層(R)13
は、緑色の着色層(G)11と一部重なり第1の遮光部15を形成する。一方、図1(C
)に示すように、緑色の着色層(G)11のうち、赤色の着色層(R)13と重なってい
ない領域が緑色の画素開口部17となる。なお、第1の遮光部15は、TFTが設けられ
た素子基板と貼り合わせた時にTFTのチャネル形成領域と重なるように形成する。
また、図1(B)及び図1(A)に示すように、赤色の着色層(R)13は、青色の着
色層(B)12と一部重なり第2の遮光部16を形成する。一方、図1(C)に示すよう
に、青色の着色層(B)12のうち、赤色の着色層(R)13と重なっていない領域が青
色の画素開口部18となる。本実施例では、画素開口部18のサイズは、126μm×4
2μmとなった。なお、第2の遮光部16も、TFTが設けられた素子基板と貼り合わせ
た時にTFTのチャネル形成領域と重なるように形成する。
また、赤色の着色層(R)13のうち、緑色の着色層(G)11と重なっておらず、青
色の着色層(B)12とも重なっていない領域が赤色の画素開口部19となる。
こうして3回のフォトリソグラフィ法で画素開口部17〜19と、第1の遮光部15と
、第2の遮光部16とを形成することができる。
次いで、各着色層を覆う平坦化膜14を形成する。着色層が単層である領域と着色層が
2層重なっている領域とで1〜1.5μm程度の段差が生じるため、この平坦化膜14と
しては1μm以上、好ましくは2μmの膜厚を必要とする。この平坦化膜14としては透
光性を有する有機物、例えば、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、
BCB(ベンゾシクロブテン)等の有機樹脂材料を用いることができる。ただし、平坦性
が問題にならないのであれば、この平坦化膜を設ける必要はない。
なお、本実施例では有機感光材料を塗布して、フォトリソグラフィ法により、所望の形
状にパターニングして各着色層11〜13を形成したが、特に上記作製方法に限定されな
いことは言うまでもない。
この後、図示しないが、平坦化膜上に透明導電膜からなる対向電極を形成し、さらにそ
の上に液晶を配向させるための配向膜を形成し、さらに必要があればラビング処理を施す
こうして得られた対向基板を用いて、アクティブマトリクス型の液晶表示装置を作製す
る。
実施例1では、緑色の着色層(G)11、青色の着色層(B)12、赤色の着色層(R
)13と順次形成した例を示したが、本実施例は実施例1と異なる順序で各着色層を形成
する例を以下に示す。なお、各着色層の形成順序以外は実施例1と同じであるので異なる
点についてのみ説明する。
第1の例として、図2(A)に示す構造を取ってもよい。図2(A)は最初に着色層(
R)23を形成した後、着色層(B)22と着色層(G)21を積層した例である。なお
、図2(A)は図1(A)中の鎖線A1−A1’で切断した断面構造図に対応している。
また、第2の例として、図2(B)に示す構造を取ってもよい。図2(B)は最初に着
色層(G)31を形成した後、着色層(R)33を形成し、次いで着色層(B)32を積
層した例である。なお、図2(B)は図1(A)中の鎖線A1−A1’で切断した断面構
造図に対応している。
また、第3の例として、図2(C)に示す構造を取ってもよい。図2(C)は最初に着
色層(B)42を形成した後、着色層(R)43を形成し、次いで着色層(G)41を積
層した例である。なお、図2(C)は図1(A)中の鎖線A1−A1’で切断した断面構
造図に対応している。
本実施例では実施例1または実施例2で得られた対向基板と貼り合わせる素子基板(ア
クティブマトリクス基板とも言う)を作製する方法について説明する。
ここでは、同一基板上に画素部と、画素部の周辺に設ける駆動回路のTFT(nチャネル
型TFT及びpチャネル型TFT)を同時に作製する方法について詳細に説明する。
まず、本実施例ではコーニング社の#7059ガラスや#1737ガラスなどに代表さ
れるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる
基板100を用いる。なお、基板100としては、石英基板やシリコン基板、金属基板ま
たはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本実施例の処
理温度に耐えうる耐熱性が有するプラスチック基板を用いてもよい。
次いで、図5(A)に示すように、基板100上に酸化シリコン膜、窒化シリコン膜ま
たは酸化窒化シリコン膜などの絶縁膜から成る下地膜101を形成する。本実施例では下
地膜101として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構
造を用いても良い。下地膜101の一層目としては、プラズマCVD法を用い、SiH4
、NH3、及びN2Oを反応ガスとして成膜される酸化窒化シリコン膜102aを10〜2
00nm(好ましくは50〜100nm)形成する。本実施例では、膜厚50nmの酸化窒化
シリコン膜102a(組成比Si=32%、O=27%、N=24%、H=17%)を形
成した。次いで、下地膜101のニ層目としては、プラズマCVD法を用い、SiH4
及びN2Oを反応ガスとして成膜される酸化窒化シリコン膜101bを50〜200nm
(好ましくは100〜150nm)の厚さに積層形成する。本実施例では、膜厚100nm
の酸化窒化シリコン膜101b(組成比Si=32%、O=59%、N=7%、H=2%
)を形成した。
次いで、下地膜上に半導体層102〜106を形成する。半導体層102〜106は、
非晶質構造を有する半導体膜を公知の手段(スパッタ法、LPCVD法、またはプラズマ
CVD法等)により成膜した後、公知の結晶化処理(レーザー結晶化法、熱結晶化法、ま
たはニッケルなどの触媒を用いた熱結晶化法等)を行って得られた結晶質半導体膜を所望
の形状にパターニングして形成する。この半導体層102〜106の厚さは25〜80n
m(好ましくは30〜60nm)の厚さで形成する。結晶質半導体膜の材料に限定はない
が、好ましくはシリコンまたはシリコンゲルマニウム(SiGe)合金などで形成すると
良い。本実施例では、プラズマCVD法を用い、55nmの非晶質シリコン膜を成膜した
後、ニッケルを含む溶液を非晶質シリコン膜上に保持させた。この非晶質シリコン膜に脱
水素化(500℃、1時間)を行った後、熱結晶化(550℃、4時間)を行い、さらに
結晶化を改善するためのレーザーアニ―ル処理を行って結晶質シリコン膜を形成した。そ
して、この結晶質シリコン膜をフォトリソグラフィ法を用いたパターニング処理によって
、半導体層102〜106を形成した。
また、半導体層102〜106を形成した後、TFTのしきい値を制御するために微量
な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。
また、レーザー結晶化法で結晶質半導体膜を作製する場合には、パルス発振型または連
続発光型のエキシマレーザーやYAGレーザー、YVO4レーザーを用いることができる
。これらのレーザーを用いる場合には、レーザー発振器から放射されたレーザー光を光学
系で線状に集光し半導体膜に照射する方法を用いると良い。結晶化の条件は実施者が適宣
選択するものであるが、エキシマレーザーを用いる場合はパルス発振周波数30Hzとし
、レーザーエネルギー密度を100〜400mJ/cm2(代表的には200〜300mJ/cm2)と
する。また、YAGレーザーを用いる場合にはその第2高調波を用いパルス発振周波数1
〜10kHzとし、レーザーエネルギー密度を300〜600mJ/cm2(代表的には350
〜500mJ/cm2)とすると良い。そして幅100〜1000μm、例えば400μmで線
状に集光したレーザー光を基板全面に渡って照射し、この時の線状レーザー光の重ね合わ
せ率(オーバーラップ率)を80〜98%として行えばよい。
次いで、半導体層102〜106を覆うゲート絶縁膜107を形成する。ゲート絶縁膜
107はプラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとしてシリ
コンを含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さ
で酸化窒化シリコン膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成
した。勿論、ゲート絶縁膜は酸化窒化シリコン膜に限定されるものでなく、他のシリコン
を含む絶縁膜を単層または積層構造として用いても良い。
また、酸化シリコン膜を用いる場合には、プラズマCVD法でTEOS(Tetraethyl O
rthosilicate)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高
周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させて形成することができる
。このようにして作製される酸化シリコン膜は、その後400〜500℃の熱アニールに
よりゲート絶縁膜として良好な特性を得ることができる。
次いで、ゲート絶縁膜107上に膜厚20〜100nmの第1の導電膜108と、膜厚
100〜400nmの第2の導電膜109とを積層形成する。本実施例では、膜厚30n
mのTaN膜からなる第1の導電膜108と、膜厚370nmのW膜からなる第2の導電
膜109を積層形成した。TaN膜はスパッタ法で形成し、Taのターゲットを用い、窒
素を含む雰囲気内でスパッタした。また、W膜は、Wのターゲットを用いたスパッタ法で
形成した。その他に6フッ化タングステン(WF6)を用いる熱CVD法で形成すること
もできる。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり
、W膜の抵抗率は20μΩcm以下にすることが望ましい。W膜は結晶粒を大きくするこ
とで低抵抗率化を図ることができるが、W膜中に酸素などの不純物元素が多い場合には結
晶化が阻害され高抵抗化する。従って、本実施例では、高純度のW(純度99.9999
%または純度99.99%)のターゲットを用いたスパッタ法で、さらに成膜時に気相中
からの不純物の混入がないように十分配慮してW膜を形成することにより、抵抗率9〜2
0μΩcmを実現することができた。
なお、本実施例では、第1の導電膜108をTaN、第2の導電膜109をWとしたが
、特に限定されず、いずれもTa、W、Ti、Mo、Al、Cuから選ばれた元素、また
は前記元素を主成分とする合金材料若しくは化合物材料で形成してもよい。また、リン等
の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜を用いてもよい。
また、第1の導電膜をタンタル(Ta)膜で形成し、第2の導電膜をW膜とする組み合わ
せ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をAl膜とする組
み合わせ、第1の導電膜を窒化タンタル(TaN)膜で形成し、第2の導電膜をCu膜と
する組み合わせとしてもよい。
次に、フォトリソグラフィ法を用いてレジストからなるマスク110〜115を形成し
、電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理で
は第1及び第2のエッチング条件で行う。なお、エッチング用ガスとしては、Cl2、B
Cl3、SiCl4、CCl4などを代表とする塩素系ガスまたはCF4、SF6、NF3など
を代表とするフッ素系ガス、またはO2を適宜用いることができる。本実施例ではICP
(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング
用ガスにCF4とCl2とO2とを用い、それぞれのガス流量比を25/25/10(sc
cm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入して
プラズマを生成してエッチングを行った。基板側(試料ステージ)にも150WのRF(1
3.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第1のエッチ
ング条件によりW膜をエッチングして第1の導電層の端部をテーパー形状とする。
この後、レジストからなるマスク110〜115を除去せずに第2のエッチング条件に
変え、エッチング用ガスにCF4とCl2とを用い、それぞれのガス流量比を30/30(
sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入
してプラズマを生成して約30秒程度のエッチングを行った。基板側(試料ステージ)に
も20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。
CF4とCl2を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチ
ングされる。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10
〜20%程度の割合でエッチング時間を増加させると良い。
上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとするこ
とにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の
端部がテーパー形状となる。このテーパー部の角度は15〜45°となる。こうして、第
1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層11
7〜122(第1の導電層117a〜122aと第2の導電層117b〜122b)を形
成する。116はゲート絶縁膜であり、第1の形状の導電層117〜122で覆われない
領域は20〜50nm程度エッチングされ薄くなった領域が形成される。
そして、レジストからなるマスクを除去せずに第1のドーピング処理を行い、半導体層
にn型を付与する不純物元素を添加する。(図5(B))ドーピング処理はイオンドープ
法、若しくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を1×1013
〜5×1015atoms/cm2とし、加速電圧を60〜100keVとして行う。本実施例では
ドーズ量を1.5×1015atoms/cm2とし、加速電圧を80keVとして行った。n型を
付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As
)を用いるが、ここではリン(P)を用いた。この場合、導電層117〜121がn型を
付与する不純物元素に対するマスクとなり、自己整合的に第1の不純物領域123〜12
7が形成される。第1の不純物領域123〜127には1×1020〜1×1021atoms/cm
3の濃度範囲でn型を付与する不純物元素を添加する。
次に、レジストからなるマスクを除去せずに図5(C)に示すように第2のエッチング
処理を行う。第2のエッチング処理では第3及び第4のエッチング条件で行う。第3のエ
ッチング条件として、同様にICPエッチング法を用い、エッチングガスにCF4とCl2
とを用い、それぞれのガス流量比を30/30(sccm)とし、1Paの圧力でコイル型
の電極に500WのRF電力(13.56MHz)を供給し、プラズマを生成して約60秒程度のエ
ッチングを行った。基板側(試料ステージ)には20WのRF(13.56MHz)電力を投入し
、第1のエッチング処理に比べて低い自己バイアス電圧を印加する。CF4とCl2を混合
した第3のエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。
この後、レジストからなるマスクを除去せずに第4のエッチング条件に変え、エッチン
グ用ガスにCF4とCl2とO2とを用い、それぞれのガス流量比を25/25/10(s
ccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入し
てプラズマを生成して約20秒程度のエッチングを行った。基板側(試料ステージ)には
20WのRF(13.56MHz)電力を投入し、第1のエッチング処理に比べ低い自己バイアス
電圧を印加する。この第4のエッチング条件によりW膜をエッチングする。
こうして、上記第3及び第4のエッチング条件によりW膜を異方性エッチングし、かつ
、W膜より遅いエッチング速度でTaN膜を異方性エッチングして第2の形状の導電層1
29〜134(第1の導電層129a〜134aと第2の導電層129b〜134b)を
形成する。128はゲート絶縁膜であり、第2の形状の導電層129〜134で覆われな
い領域は、エッチングされて、約10〜20nm程度の膜厚にまで薄くなった。
W膜やTaN膜に対するCF4とCl2の混合ガスによるエッチング反応は、生成される
ラジカルまたはイオン種と反応生成物の蒸気圧から推測することができる。WとTaNの
フッ化物と塩化物の蒸気圧を比較すると、Wのフッ化物であるWF6が極端に高く、その
他のWCl5、TaF5、TaCl5は同程度である。従って、CF4とCl2の混合ガスで
はW膜及びTaN膜共にエッチングされる。しかし、この混合ガスに適量のO2を添加す
るとCF4とO2が反応してCOとFになり、FラジカルまたはFイオンが多量に発生する
。その結果、フッ化物の蒸気圧が高いW膜のエッチング速度が増大する。一方、TaNは
Fが増大しても相対的にエッチング速度の増加は少ない。また、TaNはWに比較して酸
化されやすいので、O2を添加することでTaNの表面が多少酸化される。TaNの酸化
物はフッ素や塩素と反応しないため、さらにTaN膜のエッチング速度は低下する。従っ
て、W膜とTaN膜とのエッチング速度に差を作ることが可能となりW膜のエッチング速
度をTaN膜よりも大きくすることが可能となる。
次いで、レジストからなるマスクを除去せずに図6(A)に示すように第2のドーピン
グ処理を行う。この場合、第1のドーピング処理よりもドーズ量を下げて高い加速電圧の
条件としてn型を付与する不純物元素をドーピングする。例えば、加速電圧を70〜12
0keV、本実施例では90keVの加速電圧とし、3.5×1012atoms /cm2のドーズ
量で行い、図5(B)で形成された第1の不純物領域より内側の半導体層に新たな不純物
領域を形成する。ドーピングは、第2の形状の導電層129b〜133bを不純物元素に
対するマスクとして用い、第2の導電層129a〜133aのテーパ―部下方における半
導体層にも不純物元素が添加されるようにドーピングする。
なお、第2のドーピング処理の前に、レジストからなるマスクを除去してもよい。
こうして、第2の導電層129a〜133aと重なる第3の不純物領域140〜144
と、第1の不純物領域145〜149と第3の不純物領域との間の第2の不純物領域13
5〜139とを形成する。n型を付与する不純物元素は、第2の不純物領域で1×1017
〜1×1019atoms/cm3の濃度となるようにし、第3の不純物領域で1×1016〜1×1
18atoms/cm3の濃度となるようにする。なお、この第3の不純物領域140〜144に
おいて、少なくとも第2の形状の導電層129a〜133aと重なった部分に含まれるn
型を付与する不純物元素の濃度変化を有している。即ち、第3の不純物領域140〜14
4へ添加されるリン(P)の濃度は、第2の形状の導電層と重なる領域において、該導電
層の端部から内側に向かって徐々に濃度が低くなる。これはテーパー部の膜厚の差によっ
て、半導体層に達するリン(P)の濃度が変化するためである。
そして、レジストからなるマスクを除去した後、新たにレジストからなるマスク150
〜152を形成して図6(B)に示すように、第3のドーピング処理を行う。この第3の
ドーピング処理により、pチャネル型TFTの活性層となる半導体層に前記一導電型とは
逆の導電型を付与する不純物元素が添加された第4の不純物領域153〜158を形成す
る。第2の形状の導電層130、133を不純物元素に対するマスクとして用い、p型を
付与する不純物元素を添加して自己整合的に第4の不純物領域を形成する。本実施例では
、不純物領域153〜158はジボラン(B26)を用いたイオンドープ法で形成する。
この第3のドーピング処理の際には、nチャネル型TFTを形成する半導体層はレジスト
からなるマスク150〜152で覆われている。第1のドーピング処理及び第2のドーピ
ング処理によって、不純物領域153〜158にはそれぞれ異なる濃度でリンが添加され
ているが、そのいずれの領域においてもp型を付与する不純物元素の濃度を2×1020
2×1021atoms/cm3となるようにドーピング処理することにより、pチャネル型TFT
のソース領域およびドレイン領域として機能するために何ら問題は生じない。
以上までの工程でそれぞれの半導体層に不純物領域が形成される。半導体層と重なる第
2の形状の導電層129〜132がゲート電極として機能する。また、134はソース配
線、133は保持容量を形成するための第2の電極として機能する。
次いで、レジストからなるマスク150〜152を除去し、全面を覆う第1の層間絶縁
膜159を形成する。この第1の層間絶縁膜159としては、プラズマCVD法またはス
パッタ法を用い、厚さを100〜200nmとしてシリコンを含む絶縁膜で形成する。本
実施例では、プラズマCVD法により膜厚150nmの酸化窒化シリコン膜を形成した。
勿論、第1の層間絶縁膜159は酸化窒化シリコン膜に限定されるものでなく、他のシリ
コンを含む絶縁膜を単層または積層構造として用いても良い。
次いで、図6(C)に示すように、それぞれの半導体層に添加された不純物元素を活性
化処理する工程を行う。この活性化工程はファーネスアニール炉を用いる熱アニール法で
行う。熱アニール法としては、酸素濃度が1ppm以下、好ましくは0.1ppm以下の
窒素雰囲気中で400〜700℃、代表的には500〜550℃で行えばよく、本実施例
では550℃、4時間の熱処理で活性化処理を行った。なお、熱アニール法の他に、レー
ザーアニール法、またはラピッドサーマルアニール法(RTA法)を適用することができ
る。
なお、本実施例では、上記活性化処理と同時に、結晶化の際に触媒として使用したニッ
ケルが高濃度のリンを含む不純物領域145〜149、153、156にゲッタリングさ
れ、主にチャネル形成領域となる半導体層中のニッケル濃度が低減される。このようにし
て作製したチャネル形成領域を有するTFTはオフ電流値が下がり、結晶性が良いことか
ら高い電界効果移動度が得られ、良好な特性を達成することができる。
また、第1の層間絶縁膜159を形成する前に活性化処理を行っても良い。ただし、1
29〜134に用いた配線材料が熱に弱い場合には、本実施例のように配線等を保護する
ため層間絶縁膜(シリコンを主成分とする絶縁膜、例えば窒化珪素膜)を形成した後で活
性化処理を行うことが好ましい。
また、上記活性化処理後での画素部における上面図を図7に示す。なお、図5及び図6
に対応する部分には同じ符号を用いている。図6中の鎖線C−C’は図7中の鎖線C―C
’で切断した断面図に対応している。また、図6中の鎖線D−D’は図7中の鎖線D―D
’で切断した断面図に対応している。
さらに、3〜100%の水素を含む雰囲気中で、300〜550℃で1〜12時間の熱
処理を行い、半導体層を水素化する工程を行う。本実施例では水素を約100%の含む雰
囲気中で350℃、1時間の熱処理を行った。この工程は熱的に励起された水素により半
導体層のダングリングボンドを終端する工程である。
水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を
行っても良い。
また、窒化シリコン膜からなる層間絶縁膜中に含まれる水素を利用して熱処理(300〜
550℃で1〜12時間の熱処理)を行い、半導体層を水素化する工程を行ってもよい。
この場合、窒素雰囲気中で410℃、1時間の熱処理を行えば層間絶縁膜に含まれる水素
により半導体層のダングリングボンドを終端することができる。
また、活性化処理としてレーザーアニール法を用いる場合には、上記水素化を行った後
、エキシマレーザーやYAGレーザー等のレーザー光を照射することが望ましい。
次いで、第1の層間絶縁膜159上に有機絶縁物材料から成る第2の層間絶縁膜160
を形成する。本実施例では膜厚1.6μmのアクリル樹脂膜を形成した。次いで、ソース
配線134に達するコンタクトホールと各不純物領域145、147、148、153、
156に達するコンタクトホールを形成するためのパターニングを行う。
そして、駆動回路406において、第1の不純物領域または第4の不純物領域とそれぞ
れ電気的に接続する配線161〜166を形成する。なお、これらの配線は、膜厚50n
mのTi膜と、膜厚500nmの合金膜(AlとTiとの合金膜)との積層膜をパターニ
ングして形成する。
また、画素部407においては、画素電極169、ゲート配線168、接続電極167
を形成する。(図8)この接続電極167によりソース配線134は、画素TFT404
と電気的な接続が形成される。また、ゲート配線168は、第1の電極(第2の形状の導
電層133)と電気的な接続が形成される。また、画素電極169は、画素TFTのドレ
イン領域と電気的な接続が形成され、さらに保持容量を形成する一方の電極として機能す
る半導体層と電気的な接続が形成される。また、画素電極169としては、AlまたはA
gを主成分とする膜、またはそれらの積層膜等の反射性の優れた材料を用いることが望ま
しい。
以上の様にして、nチャネル型TFT401、pチャネル型TFT402、nチャネル
型TFT403を有する駆動回路406と、画素TFT404、保持容量405とを有す
る画素部407を同一基板上に形成することができる。本明細書中ではこのような基板を
便宜上アクティブマトリクス基板と呼ぶ。
駆動回路406のnチャネル型TFT401はチャネル形成領域170、ゲート電極を
形成する第2の形状の導電層129と重なる第3の不純物領域140(GOLD領域)、
ゲート電極の外側に形成される第2の不純物領域135(LDD領域)とソース領域また
はドレイン領域として機能する第1の不純物領域145を有している。pチャネル型TF
T402にはチャネル形成領域171、ゲート電極を形成する第2の形状の導電層130
と重なる第4の不純物領域155、ゲート電極の外側に形成される第4の不純物領域15
4、ソース領域またはドレイン領域として機能する第4の不純物領域153を有している
。nチャネル型TFT403にはチャネル形成領域172、ゲート電極を形成する第2の
形状の導電層131と重なる第3の不純物領域142(GOLD領域)、ゲート電極の外
側に形成される第2の不純物領域137(LDD領域)とソース領域またはドレイン領域
として機能する第1の不純物領域147を有している。
画素部の画素TFT404にはチャネル形成領域173、ゲート電極を形成する第2の
形状の導電層132と重なる第3の不純物領域143(GOLD領域)
、ゲート電極の外側に形成される第2の不純物領域138(LDD領域)とソース領域ま
たはドレイン領域として機能する第1の不純物領域148を有している。また、保持容量
405の一方の電極として機能する半導体層156〜159には第4の不純物領域と同じ
濃度で、それぞれp型を付与する不純物元素が添加されている。保持容量405は、絶縁
膜(ゲート絶縁膜と同一膜)を誘電体として、第2の電極133と、半導体層156〜1
59とで形成している。
本実施例で作製するアクティブマトリクス基板の画素部の上面図を図9に示す。なお、
図5〜図8に対応する部分には同じ符号を用いている。図9中の鎖線A−A’は図8中の
鎖線A―A’で切断した断面図に対応している。また、図9中の鎖線B−B’は図8中の
鎖線B―B’で切断した断面図に対応している。
このように、本実施例の画素構造を有するアクティブマトリクス基板は、一部がゲート
電極の機能を果たす第1の電極132とゲート配線168とを異なる層に形成し、ゲート
配線168で半導体層を遮光することを特徴としている。
また、本実施例の画素構造は、ブラックマトリクスを用いることなく、画素電極間の隙
間が遮光されるように、画素電極の端部をソース配線と重なるように配置形成する。
また、本実施例の画素電極の表面を公知の方法、例えばサンドブラスト法やエッチング
法等により凹凸化させて、鏡面反射を防ぎ、反射光を散乱させることによって白色度を増
加させることが望ましい。
上述の画素構造とすることにより大きな面積を有する画素電極を配置でき、開口率を向
上させることができる。
また、本実施例で示す工程に従えば、アクティブマトリクス基板の作製に必要なフォト
マスクの数を5枚(半導体層パターンマスク、第1配線パターンマスク(第1の電極13
2、第2の電極133、ソース配線134を含む)、p型TFTのソース領域及びドレイ
ン領域形成のパターンマスク、コンタクトホール形成のパターンマスク、第2配線パター
ンマスク(画素電極169、接続電極167、ゲート配線168を含む))とすることが
できる。その結果、工程を短縮し、製造コストの低減及び歩留まりの向上に寄与すること
ができる。
本実施例では、実施例3で作製したアクティブマトリクス基板から、アクティブマトリ
クス型液晶表示装置を作製する工程を以下に説明する。説明には図10を用いる。
まず、実施例3に従い、図8の状態のアクティブマトリクス基板を得た後、図8のアク
ティブマトリクス基板上に配向膜567を形成しラビング処理を行う。
なお、本実施例では配向膜567を形成する前に、アクリル樹脂膜等の有機樹脂膜をパタ
ーニングすることによって基板間隔を保持するための柱状のスペーサ572を所望の位置
に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよ
い。
次いで、対向基板569を用意する。実施例1に従い、対向基板569上に着色層57
0、571、平坦化膜573を形成する。赤色の着色層570と青色の着色層571とを
一部重ねて、第2遮光部を形成する。なお、図10では図示しないが、赤色の着色層と緑
色の着色層とを一部重ねて、第1遮光部を形成する。
次いで、対向電極576を画素部に形成し、対向基板の全面に配向膜574を形成し、
ラビング処理を施した。
そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシー
ル剤568で貼り合わせる。シール剤568にはフィラーが混入されていて、このフィラ
ーと柱状スペーサ572によって均一な間隔を持って2枚の基板が貼り合わせられる。そ
の後、両基板の間に液晶材料を注入し、封止剤(図示せず)によって完全に封止する。液
晶材料には公知の液晶材料を用いれば良い。
このようにして図10に示すアクティブマトリクス型液晶表示装置が完成する。
本実施例では、実施例3に示す基板を用いている。従って、実施例3の画素部の上面図
を示す図9では、少なくともゲート配線168と画素電極169、177の間隙と、ゲー
ト配線168と接続電極167の間隙と、接続電極167と画素電極169の間隙を遮光
する必要がある。本実施例では、それらの遮光すべき位置に第1遮光部と第2遮光部が重
なるように対向基板を素子基板と貼り合わせた。
なお、図11に完成した液晶表示装置の画素部の一部を示す簡略図を示す。図11では
、鎖線で示した画素電極169上に着色層(B)12が重なるように形成されている。な
お、図11において、図1(A)に対応する部分は同じ符号を用いた。また、画素電極1
69と隣り合う画素電極177との間は、第2遮光部16で遮光されている。この第2遮
光部16は着色層(B)と着色層(R)とを重ねて形成されている。また、この第2遮光
部16は隣りの画素(R)の画素TFTも遮光している。また、点線で示したソース配線
134上には着色層(B)
12の端部と着色層(G)11の端部とが形成されている。また、第1遮光部15は着色
層(G)と着色層(R)とを重ねて形成されている。また、図11では、ソース配線と重
なる着色層(B)の端部と着色層(G)の端部とが接するようにパターニングを行った。
また、同様にソース配線と重なる着色層(R)の端部と着色層(G)の端部とが接するよ
うにパターニングを行った。
このように、ブラックマスクを形成することなく、各画素間の隙間を第1遮光部15も
しくは第2遮光部16で遮光することによって工程数の低減を可能とした。
実施例4を用いて得られたアクティブマトリクス型液晶表示装置(図10)の構成を図1
2の上面図を用いて説明する。なお、図10と対応する部分には同じ符号を用いた。
図12で示す上面図は、画素部、駆動回路、FPC(フレキシブルプリント配線板:Fl
exible Printed Circuit)を貼り付ける外部入力端子203、外部入力端子と各回路の入
力部までを接続する配線204などが形成されたアクティブマトリクス基板201と、着
色層などが形成された対向基板202とがシール材568を介して貼り合わされている。
ゲート配線側駆動回路205とソース配線側駆動回路206の上面には対向基板側に赤
色カラーフィルタまたは赤色と青色の着色層を積層させた遮光部207が形成されている
。また、画素部407上の対向基板側に形成された着色層208は赤色(R)、緑色(G
)、青色(B)の各色の着色層が各画素に対応して設けられている。実際の表示に際して
は、赤色(R)の着色層、緑色(G)の着色層、青色(B)の着色層の3色でカラー表示
を形成するが、これら各色の着色層の配列は任意なものとする。
図13(A)は、図12で示す外部入力端子203のE−E'線に対する断面図を示し
ている。外部入力端子はアクティブマトリクス基板側に形成され、層間容量や配線抵抗を
低減し、断線による不良を防止するために画素電極と同じ層で形成される配線209によ
って層間絶縁膜210を介してゲート配線と同じ層で形成される配線211と接続する。
また、外部入力端子にはベースフィルム212と配線213から成るFPCが異方性導
電性樹脂214で貼り合わされている。さらに補強板215で機械的強度を高めている。
図13(B)はその詳細図を示し、図13(A)で示す外部入力端子の断面図を示して
いる。アクティブマトリクス基板側に設けられる外部入力端子が第1の電極及びソース配
線と同じ層で形成される配線211と、画素電極と同じ層で形成される配線209とから
形成されている。勿論、これは端子部の構成を示す一例であり、どちらか一方の配線のみ
で形成しても良い。例えば、第1の電極及びソース配線と同じ層で形成される配線211
で形成する場合にはその上に形成されている層間絶縁膜を除去する必要がある。画素電極
と同じ層で形成される配線209は、Ti膜209a、合金膜(AlとTiとの合金膜)
209bの2層構造で形成されている。FPCはベースフィルム212と配線213から
形成され、この配線213と画素電極と同じ層で形成される配線209とは、熱硬化型の
接着剤214とその中に分散している導電性粒子216とから成る異方性導電性接着剤で
貼り合わされ、電気的な接続構造を形成している。
以上のようにして作製されるアクティブマトリクス型の液晶表示装置は各種電子機器の
表示部として用いることができる。
本実施例では実施例3とは異なるアクティブマトリクス基板の作製方法について図14
〜16を用いて説明する。実施例3では自己整合的にn型を付与する不純物元素を添加し
て不純物領域を形成したが、本実施例ではマスク数を1枚増やしてnチャネル型TFTの
ソース領域またはドレイン領域を形成することを特徴としている。
なお、その他の構成については実施例3において既に述べているので、詳しい構成につ
いては実施例3を参照し、ここでは説明を省略する。
まず、実施例3に従って図1(A)と同じ状態を得る。図1(A)に対応する図面が図
14(A)であり、同一の符号を用いた。
次いで、フォトリソグラフィ法を用いてレジストからなるマスク601〜607を形成
し、電極及び配線を形成するための第1のエッチング処理を行う。なお、エッチング用ガ
スとしては、Cl2、BCl3、SiCl4、CCl4などを代表とする塩素系ガスまたはC
4、SF6、NF3などを代表とするフッ素系ガス、またはO2を適宜用いることができる
。本実施例ではICPエッチング法を用い、エッチング用ガスにCF4とCl2とを用い、
1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生
成してエッチングを行った。基板側(試料ステージ)にも20WのRF(13.56MHz)電力
を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2を混合したエッチン
グ条件ではW膜及びTaN膜とも同程度にエッチングされる。なお、ゲート絶縁膜上に残
渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を
増加させると良い。
上記第1のエッチング処理により、基板側に印加するバイアス電圧の効果により第1の
導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15〜4
5°となる。こうしてW膜及びTaN膜をエッチングして、第1の形状の導電層608〜
613(第1の導電層608a〜613aと第2の導電層608b〜613b)を形成す
る。614はゲート絶縁膜であり、第1の形状の導電層608〜613で覆われない領域
は20〜50nm程度エッチングされ薄くなった領域が形成される。(図14(B))
次いで、レジストからなるマスク601〜607を除去せずに第2のエッチング処理を
行う。エッチング用ガスにCF4とCl2とO2とを用い、1Paの圧力でコイル型の電極に
500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行った。基
板側(試料ステージ)には20WのRF(13.56MHz)
電力を投入し、第1のエッチング処理に比べ低い自己バイアス電圧を印加する。
このエッチング条件によりW膜をエッチングする。
上記第2のエッチング処理によりW膜を異方性エッチングし、かつ、第1の導電層であ
るTaN膜がW膜より遅いエッチング速度でわずかにエッチングされ、第2の形状の導電
層615〜620(第1の導電層615a〜620aと第2の導電層615b〜620b
)を形成する。621はゲート絶縁膜であり、第2の形状の導電層615〜620で覆わ
れない領域は、エッチングされて薄くなった。
次いで、第1のドーピング処理を行う。ドーピング処理はイオンドープ法、若しくはイ
オン注入法で行えば良い。この場合、高い加速電圧の条件としてn型を付与する不純物元
素をドーピングする。n型を付与する不純物元素として15族に属する元素、典型的には
リン(P)または砒素(As)を用いるが、ここではリン(P)を用いた。例えば、加速
電圧を70〜120keVとし、不純物領域(A)622〜626を形成する。(図14
(C))ドーピングは、第2の形状の導電層615b〜619bを不純物元素に対するマ
スクとして用い、第2の導電層615a〜619aのテーパ―部下方における半導体層に
も不純物元素が添加されるようにドーピングする。こうして、自己整合的に形成された不
純物領域(A)622〜626のうち、導電層615〜619と重なる不純物領域が62
2a、623a、624a、625a、626aであり、導電層615〜619と重なら
ない不純物領域が622b、623b、624b、625b、626bである。
次いで、レジストからなるマスクを除去した後、導電層615〜619をマスクとして
用い、ゲート絶縁膜621を選択的に除去して絶縁層627a、627b、627cを形
成する。また、絶縁層627a、627b、627cを形成すると同時に第2の形状の導
電層615〜619の形成に使用したレジストマスクを除去してもよい。(図14(D)
次いで、フォトリソグラフィ法を用いてレジストからなるマスク628、629を形成
した後、第2のドーピング処理を行う。この場合、第1のドーピング処理よりもドーズ量
を上げて低い加速電圧の条件としてn型を付与する不純物元素を半導体層にドーピングす
る。不純物領域(B)630〜634には1×1020〜1×1021atoms/cm3の濃度範囲
でn型を付与する不純物元素を添加する。(図15(A))
こうして、nチャネル型TFTのソース領域またはドレイン領域となる不純物領域(B
)630、632、633を形成することができた。また、画素部において、導電層61
8と重なる不純物領域(A)625bと不純物領域633との間には、導電層618と重
ならない領域636が形成される。この領域636はnチャネル型TFTのLDD領域と
して機能する。また、不純物領域(B)631、634に添加された不純物元素は、後の
ゲッタリング工程で主にチャネル形成領域となる半導体層中のニッケル濃度を低減させる
ために添加する。
そして、実施例3と同様にレジストからなるマスク628、629を除去した後、新た
にレジストからなるマスク637〜639を形成して、第3のドーピング処理を行う。(
図15(B))この第3のドーピング処理により、pチャネル型TFTの活性層となる半
導体層に前記一導電型とは逆の導電型を付与する不純物元素が添加された不純物領域(C
)640〜644を形成する。第2の導電層616、619を不純物元素に対するマスク
として用い、p型を付与する不純物元素を添加して自己整合的に不純物領域(C)を形成
する。本実施例では、不純物領域(C)640〜644はジボラン(B26)を用いたイ
オンドープ法で形成する。また、実施例3と同様に、不純物領域(C)640〜644に
はそれぞれ異なる濃度でリンが添加されているが、そのいずれの領域においてもp型を付
与する不純物元素の濃度を2×1020〜2×1021atoms/cm3となるようにドーピング処
理することにより、pチャネル型TFTのソース領域およびドレイン領域として機能する
ために何ら問題は生じない。
次いで、実施例3と同様にレジストからなるマスク637〜639を除去し、全面を覆
う第1の層間絶縁膜645を形成する。この第1の層間絶縁膜645としては、プラズマ
CVD法またはスパッタ法を用い、厚さを100〜200nmとしてシリコンを含む絶縁
膜で形成する。
次いで、図15(C)に示すように、それぞれの半導体層に添加された不純物元素を活
性化処理する工程を行う。この活性化工程はファーネスアニール炉を用いる熱アニール法
で行う。熱アニール法としては、窒素雰囲気中で400〜700℃、代表的には500〜
550℃で行えばよい。なお、熱アニール法の他に、レーザーアニール法、またはラピッ
ドサーマルアニール法(RTA法)を適用することができる。
なお、本実施例では、上記活性化処理と同時に、結晶化の際に触媒として使用したニッ
ケルが高濃度のリンを含む不純物領域(B)630〜634にゲッタリングされ、主にチ
ャネル形成領域となる半導体層中のニッケル濃度が低減される。このようにして作製した
チャネル形成領域を有するTFTはオフ電流値が下がり、結晶性が良いことから高い電界
効果移動度が得られ、良好な特性を達成することができる。
また、第1の層間絶縁膜635を形成する前に活性化処理を行っても良い。ただし、導
電層615〜619に用いた配線材料が熱に弱い場合には、本実施例のように配線等を保
護するため層間絶縁膜(シリコンを主成分とする絶縁膜、例えば窒化珪素膜)を形成した
後で活性化処理を行うことが好ましい。
以上までの工程でそれぞれの半導体層に不純物領域が形成される。半導体層と重なる第
2の形状の導電層615〜618がゲート電極として機能する。また、620はソース配
線、619は保持容量を形成するための第2の電極として機能する。
さらに、3〜100%の水素を含む雰囲気中で、300〜550℃で1〜12時間の熱
処理を行い、半導体層を水素化する工程を行う。この工程は熱的に励起された水素により
半導体層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズ
マ水素化(プラズマにより励起された水素を用いる)
を行っても良い。
また、窒化シリコン膜からなる層間絶縁膜中に含まれる水素を利用して熱処理(300〜
550℃で1〜12時間の熱処理)を行い、半導体層を水素化する工程を行ってもよい。
この場合、窒素雰囲気中で410℃、1時間の熱処理を行えば層間絶縁膜に含まれる水素
により半導体層のダングリングボンドを終端することができる。
また、活性化処理としてレーザーアニール法を用いる場合には、上記水素化を行った後
、エキシマレーザーやYAGレーザー等のレーザー光を照射することが望ましい。
次いで、第1の層間絶縁膜645上に有機絶縁物材料から成る第2の層間絶縁膜646
を形成する。次いで、ソース配線134に達するコンタクトホールと各不純物領域(B)
及び(C)630、632、633、640、643に達するコンタクトホールを形成す
るためのパターニングを行う。
そして、駆動回路において、不純物領域(B)または不純物領域(C)とそれぞれ電気
的に接続する配線647〜652を形成する。なお、これらの配線は、膜厚50nmのT
i膜と、膜厚500nmの合金膜(AlとTiとの合金膜)との積層膜をパターニングし
て形成する。
また、画素部においては、画素電極656、ゲート配線654、接続電極653を形成
する。(図16)この接続電極653によりソース配線620は、画素TFTと電気的な
接続が形成される。また、ゲート配線654は、第1の電極(第2の形状の導電層618
)と電気的な接続が形成される。また、画素電極656は、画素TFTのドレイン領域と
電気的な接続が形成され、さらに保持容量を形成する一方の電極として機能する半導体層
643と電気的な接続が形成される。
以上の様にして、nチャネル型TFT、pチャネル型TFT、nチャネル型TFTを有
する駆動回路と、画素TFT、保持容量とを有する画素部を同一基板上に形成することが
できる。本明細書中ではこのような基板を便宜上、アクティブマトリクス基板と呼ぶ。
駆動回路のnチャネル型TFTの半導体層はチャネル形成領域、ゲート電極を形成する
第2の形状の導電層615と重なる不純物領域(A)622b(GOLD領域)とソース
領域またはドレイン領域として機能する不純物領域(B)630を有している。また、p
チャネル型TFTの半導体層はチャネル形成領域、ゲート電極を形成する第2の形状の導
電層616と重なる不純物領域(C)642、ソース領域またはドレイン領域として機能
する不純物領域(C)640を有している。また、nチャネル型TFTの半導体層はチャ
ネル形成領域、ゲート電極を形成する第2の形状の導電層617と重なる不純物領域(A
)624b(GOLD領域)、ソース領域またはドレイン領域として機能する不純物領域
(B)632を有している。
画素部の画素TFTの半導体層はチャネル形成領域、ゲート電極を形成する第2の形状
の導電層618と重なる不純物領域(A)625b(GOLD領域)、ゲート電極の外側
に形成される不純物領域636(LDD領域)とソース領域またはドレイン領域として機
能する不純物領域(B)633を有している。また、保持容量の一方の電極として機能す
る半導体層643、644には不純物領域(C)と同じ濃度で、それぞれp型を付与する
不純物元素が添加されている。保持容量は、絶縁層627c(ゲート絶縁膜と同一膜)を
誘電体として、第2の電極619と、半導体層643、644とで形成している。
また、本実施例で作製したアクティブマトリクス基板を用いて実施例4の工程に従えば
液晶表示装置が得られる。
なお、本実施例は実施例1乃至5のいずれとも組み合わせることが可能である。
本実施例では、作製工程数を増やすことなく、表面に凸凹を有する画素電極を形成する
例を示す。なお、簡略化のため、実施例3と異なる点についてのみ以下に説明する。
実施例3においては、表示領域となる画素電極の下方にあたる領域には、基板上に下地
膜101と絶縁膜128と第1層間絶縁膜159と第2層間絶縁膜160とが積層されて
いるだけであったが、本実施例では、TFTを作製すると同時に図19で示される凸部7
01、702を形成し、その上に形成される画素電極を凹凸化させることを特徴としてい
る。なお、図8中の画素TFT404及び保持容量405と図19の画素TFT801及
び保持容量802はそれぞれ同一の製造工程で作製される。
この凸部701、702は、実施例3に示した画素TFT404の製造工程における半
導体層、ゲート電極のパターニングの際に同時に形成する。なお、凸部の配置は、画素部
803の表示領域となる画素電極の下方にあたる領域であれば特に限定されず、凸部の大
きさ(上面から見た面積)も特に限定されないが1μm2〜400μm2の範囲内、好まし
くは25〜100μm2であればよい。なお、凸部の大きさはランダムであるほうが、よ
り反射光を散乱させるため望ましい。
このようにして、凸部701、702は、マスク数を増やすことなくマスクを変更する
ことにより形成することができる。本実施例では実施例3で使用したマスクを変更し、図
17(A)に示す2種類の四角形状の凸部701、702を表示領域に形成し、さらに配
置をランダムなものとした。
なお、図18では四角形状のものを示したが、特にその形状は限定されず、径方向の断
面が多角形であってもよいし、左右対称でない形状であってもよい。例えば、図17(A
)〜(G)で示された形状のうち、いずれのものでもよい。また、凸部を規則的に配置し
ても不規則に配置してもよい。
こうして形成された凸部701、702を覆う絶縁膜804には表面に凸凹が形成され
、その上に形成される画素電極805も凸凹化された。この画素電極805の凸部の高さ
は0.3〜3μm、好ましくは0.5〜1.5μmである。この画素電極805の表面に
形成された凸凹によって、図19に示すように入射光を反射する際に光を散乱させること
ができた。
なお、絶縁膜804としては、無機絶縁膜や有機樹脂膜を用いることができる。この絶
縁膜804の材料によって画素電極の凸凹の曲率を調節することも可能である。また、絶
縁膜804として有機樹脂膜を用いる場合は、粘度が10〜1000cp、好ましくは4
0〜200cpのものを用い、十分に凸部701、702の影響を受けて表面に凸凹が形
成されるものを用いる。ただし、蒸発しにくい溶剤を用いれば、有機樹脂膜の粘度が低く
ても凸凹を形成することができる。
次いで、本実施例では、画素電極を覆う配向膜806を形成し、ラビング処理を行った
次いで、実施例1に示した対向基板を用意する。図19において、808は対向基板で
あり、実施例1に従い、対向基板808上に着色層809、810、平坦化膜811を形
成する。赤色の着色層809と青色の着色層810とを一部重ねて、第2遮光部を形成す
る。なお、図19では図示しないが、赤色の着色層と緑色の着色層とを一部重ねて、第1
遮光部を形成する。
次いで、対向電極812を画素部に形成し、対向基板の全面に配向膜813を形成し、
ラビング処理を施した。
また、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール
剤で貼り合わせる。シール剤にはフィラーが混入されていて、このフィラーと柱状スペー
サによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液
晶材料807を注入し、封止剤(図示せず)によって完全に封止する。液晶材料807に
は公知の液晶材料を用いれば良い。このようにして図19に示すアクティブマトリクス型
液晶表示装置が完成する。
なお、本実施例は実施例1乃至5のいずれか一の構成と自由に組み合わせることができ
る。
本実施例では、表面に凸凹を有する画素電極を形成する実施例7とは異なる他の例を示
す。なお、簡略化のため、実施例7と異なる点についてのみ以下に説明する。なお、図2
0において、図19に対応する部分には同じ符号を用いた。
本実施例は、図20に示すように、高さの異なる凸部900、901を形成した例であ
る。
凸部900、901は、マスク数を増やすことなく実施例7のマスクを変更することに
より形成することができる。図20では、半導体層のパターニングの際、凸部901にお
いて半導体層を形成しないマスクを用いたため、凸部901の高さは凸部900よりも半
導体層の膜厚分、低くなっている。本実施例では実施例7で使用した半導体層のパターニ
ングで使用するマスクを変更し、高さの異なる2種類の四角形状の凸部900、901を
表示領域となる箇所にランダムに形成した。
こうすることにより、作製工程数を増やすことなく、画素電極の表面に形成される凹凸
の高低差を大きくすることができ、さらに反射光を散乱させることができる。
なお、本実施例は実施例1乃至5のいずれか一の構成と自由に組み合わせることができ
る。
実施例7及び実施例8ではトップゲート型のTFT作製と同時に形成される凸部を用い
た画素電極の作製例を示したが、本実施例では図21、図22を用いて、逆スタガ型のT
FT作製と同時に形成される凸部を用いた画素電極の作製例について示す。
まず、第1のマスク(フォトマスク1枚目)でゲート配線1000を形成する。この時
、表示領域となる領域にゲート配線と同じ材料で金属層1001を形成する。
次いで、ゲート配線1000及び金属層1001を覆って、絶縁膜(ゲート絶縁膜)1
002、第1の非晶質半導体膜、n型を付与する不純物元素を含む第2の非晶質半導体膜
、及び第1の導電膜を順次、積層形成する。なお、非晶質半導体膜に代えて微結晶半導体
膜を用いてもよいし、n型を付与する不純物元素を含む非晶質半導体膜に代えてn型を付
与する不純物元素を含む微結晶半導体膜を用いてもよい。さらに、これらの膜はスパッタ
法やプラズマCVD法を用いて複数のチャンバー内または同一チャンバー内で連続的に大
気に曝すことなく形成することができる。大気に曝さないようにすることで不純物の混入
を防止できる。
次いで、第2のマスク(フォトマスク2枚目)で上記第1の導電膜をパターニングして
第1の導電膜からなる配線(後にソース配線及び電極(ドレイン電極)
となる)を形成し、上記第2の非晶質半導体膜をパターニングしてn型を付与する不純物
元素を含む第2の非晶質半導体膜を形成し、上記第1の非晶質半導体膜をパターニングし
て第1の非晶質半導体膜を形成する。また、金属層1001上にも同様にして、第1の非
晶質半導体膜とn型を付与する不純物元素を含む第2の非晶質半導体膜と上記第1の導電
膜とを残すようにパターニングする。このパターニングでは、後に形成される第2の導電
膜のカバレッジを良好なものとするため、図21に示すように端部が階段状になるような
エッチングとした。
また、金属層1001及びその上に形成される積層物(凸部)の形状は特に限定されず
、径方向の断面が多角形であってもよいし、左右対称でない形状であってもよい。例えば
、図17(A)〜(G)で示された形状のうち、いずれのものでもよい。また、金属層1
001及びその上に形成される積層物(凸部)を規則的に配置しても不規則に配置しても
よい。また、金属層1001及びその上に形成される積層物(凸部)の高さは0.3〜3
μm、好ましくは0.5〜1.5μmである。
次いで、端子部において、シャドーマスクを用いてレジストマスクを形成し、端子部の
パッド部分を覆っている絶縁膜1002を選択的に除去した後、レジストマスクを除去す
る。また、シャドーマスクに代えてスクリーン印刷法によりレジストマスクを形成してエ
ッチングマスクとしてもよい。
その後、全面に第2の導電膜を成膜する。なお、第2の導電膜としては、反射性を有す
る導電膜、例えばAlまたはAgからなる材料膜を用いる。
次いで、第3のマスク(フォトマスク3枚目)で上記第2の導電膜をパターニングして
第2の導電膜からなる画素電極1004を形成し、上記導電膜をパターニングしてソース
配線1003及び電極(ドレイン電極)1009を形成し、n型を付与する不純物元素を
含む第2の非晶質半導体膜をパターニングしてn型を付与する不純物元素を含む第2の非
晶質半導体膜からなるソース領域1008及びドレイン領域1009を形成し、上記第1
の非晶質半導体膜を一部除去して第1の非晶質半導体膜1006を形成する。
次いで、配向膜1005を形成し、ラビング処理を行った。
このような構成とすることで、画素TFT部を作製する際、フォトリソグラフィー技術
で使用するフォトマスクの数を3枚とすることができる。
加えて、このような構成とすることで、金属層1001上に形成された絶縁膜、第1の
非晶質半導体膜、n型を付与する不純物元素を含む第2の非晶質半導体膜、及び第1の導
電膜からなる積層物(凸部)により凸凹を有し、この凸凹を覆って画素電極1004が形
成されるので、作製工程数を増やすことなく、画素電極1004の表面に凹凸を持たせて
光散乱性を図ることができる。
次いで、実施例1に示した対向基板を用意する。図21において、1010は対向基板
であり、実施例1に従い、対向基板1010上に着色層1011、1012、平坦化膜1
013を形成する。赤色の着色層1011と青色の着色層1012とを一部重ねて、第2
遮光部を形成する。なお、図21では図示しないが、赤色の着色層と緑色の着色層とを一
部重ねて、第1遮光部を形成する。
次いで、対向電極1014を画素部に形成し、対向基板の全面に配向膜1015を形成
し、ラビング処理を施した。
また、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール
剤で貼り合わせる。シール剤にはフィラーが混入されていて、このフィラーと柱状スペー
サによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液
晶材料1016を注入し、封止剤(図示せず)によって完全に封止する。液晶材料101
6には公知の液晶材料を用いれば良い。このようにして図21に示すアクティブマトリク
ス型液晶表示装置が完成する。
図22はアクティブマトリクス基板の画素部と端子部の配置を説明する図である。基板
1110上には画素部1111が設けられ、画素部にはゲート配線1108とソース配線
1107が交差して形成され、これに接続するnチャネル型TFT1101が各画素に対
応して設けられている。nチャネル型TFT1101のドレイン側には画素電極1004
及び保持容量1102が接続し、保持容量1102のもう一方の端子は容量配線1109
に接続している。nチャネル型TFT1101と保持容量1102の構造は図21で示す
nチャネル型TFTまたは保持容量と同じものとする。
基板の一方の端部には、走査信号を入力する入力端子部1105が形成され、接続配線
1106によってゲート配線1108に接続している。また、他の端部には画像信号を入
力する入力端子部1103が形成され、接続配線1104によってソース配線1107に
接続している。ゲート配線1108、ソース配線1107、容量配線1109は画素密度
に応じて複数本設けられるものである。また、画像信号を入力する入力端子部1112と
接続配線1113を設け、入力端子部1103と交互にソース配線と接続させても良い。
入力端子部1103、1105、1112はそれぞれ任意な数で設ければ良いものとし、
実施者が適宣決定すれば良い。
なお、本実施例は実施例1または実施例2と組み合わせることができる。
本実施例では、作製工程数を増やすことなく、表面に凸凹を有する画素電極を形成する
例を示す。なお、簡略化のため、実施例9と異なる点についてのみ以下に説明する。なお
、図21に対応する部分には同じ符号を用いた。
本実施例は、図23に示すように、高さの異なる凸部1201、1202を形成した例
である。
凸部1201、1202は、マスク数を増やすことなく実施例9のマスクを変更するこ
とにより形成することができる。図23では、ゲート電極のパターニングの際、凸部12
02において金属層を形成しないマスクを用いたため、凸部1202の高さは凸部120
1よりも金属層の膜厚分、低くなっている。本実施例では実施例9で使用した金属層のパ
ターニングで使用するマスクを変更し、高さの異なる2種類の凸部1201、1202を
表示領域となる箇所にランダムに形成した。
こうすることにより、作製工程数を増やすことなく、画素電極1200の表面に形成さ
れる凹凸の高低差を大きくすることができ、さらに反射光を散乱させることができる。
なお、本実施例は、実施例1または実施例2と組み合わせることができる。
上記各実施例1乃至10のいずれか一を実施して形成されたTFTは様々な電気光学装
置(アクティブマトリクス型液晶ディスプレイ、アクティブマトリクス型ECディスプレ
イ)に用いることができる。即ち、それら電気光学装置を表示部に組み込んだ電子機器全
てに本発明を実施できる。
その様な電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター(リア型
またはフロント型)、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナ
ビゲーション、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピ
ュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図26及び図2
7に示す。
図26(A)はパーソナルコンピュータであり、本体2001、画像入力部2002、
表示部2003、キーボード2004等を含む。本発明を表示部2003に適用すること
ができる。
図26(B)はビデオカメラであり、本体2101、表示部2102、音声入力部21
03、操作スイッチ2104、バッテリー2105、受像部2106等を含む。本発明を
表示部2102に適用することができる。
図26(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体2201
、カメラ部2202、受像部2203、操作スイッチ2204、表示部2205等を含む
。本発明は表示部2205に適用できる。
図26(D)はゴーグル型ディスプレイであり、本体2301、表示部2302、アー
ム部2303等を含む。本発明は表示部2302に適用することができる。
図26(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレ
ーヤーであり、本体2401、表示部2402、スピーカ部2403、記録媒体2404
、操作スイッチ2405等を含む。なお、このプレーヤーは記録媒体としてDVD(Di
gtial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲ
ームやインターネットを行うことができる。
本発明は表示部2402に適用することができる。
図26(F)はデジタルカメラであり、本体2501、表示部2502、接眼部250
3、操作スイッチ2504、受像部(図示しない)等を含む。本発明を表示部2502に
適用することができる。
図27(A)は携帯電話であり、本体2901、音声出力部2902、音声入力部29
03、表示部2904、操作スイッチ2905、アンテナ2906等を含む。本発明を表
示部2904に適用することができる。
図27(B)は携帯書籍(電子書籍)であり、本体3001、表示部3002、300
3、記憶媒体3004、操作スイッチ3005、アンテナ3006等を含む。本発明は表
示部3002、3003に適用することができる。
図27(C)はディスプレイであり、本体3101、支持台3102、表示部3103
等を含む。本発明は表示部3103に適用することができる。本発明のディスプレイは特
に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)の
ディスプレイには有利である。
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に適用すること
が可能である。また、本実施例の電子機器は実施例1〜10のどのような組み合わせから
なる構成を用いても実現することができる。

Claims (3)

  1. 第1のガラス基板と、
    前記第1のガラス基板上の薄膜トランジスタと、
    前記薄膜トランジスタ上の液晶と、
    前記液晶上の第2のガラス基板と、を有する液晶表示装置であって、
    前記薄膜トランジスタのチャネル形成領域は、多結晶シリコン膜を有し、
    前記第2のガラス基板は、
    前記第1の基板側に赤色の第1の着色層と、緑色の第2の着色層と、
    前記第1着色層及び前記第2の着色層上に平坦化膜と、を有し、
    前記第1の着色層と前記第2の着色層は、重なる第1の領域を有し、
    前記第1の領域と前記チャネル形成領域は、重なる領域を有することを特徴とする液晶表示装置。
  2. 請求項1において、
    前記多結晶シリコン膜は、レーザー結晶化されていることを特徴とする液晶表示装置。
  3. 請求項1または請求項2において、
    前記平坦化膜は、前記第1の着色層と前記第2の着色層との重なりを平坦化するものであることを特徴とする液晶表示装置。
JP2015094507A 2000-04-18 2015-05-05 液晶表示装置 Expired - Lifetime JP5764728B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015094507A JP5764728B2 (ja) 2000-04-18 2015-05-05 液晶表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000115993 2000-04-18
JP2000115993 2000-04-18
JP2015094507A JP5764728B2 (ja) 2000-04-18 2015-05-05 液晶表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014246629A Division JP2015064604A (ja) 2000-04-18 2014-12-05 半導体装置

Publications (2)

Publication Number Publication Date
JP2015135531A JP2015135531A (ja) 2015-07-27
JP5764728B2 true JP5764728B2 (ja) 2015-08-19

Family

ID=18627507

Family Applications (13)

Application Number Title Priority Date Filing Date
JP2011128216A Expired - Lifetime JP5079124B2 (ja) 2000-04-18 2011-06-08 半導体装置及び電子機器
JP2012116115A Expired - Fee Related JP5178934B2 (ja) 2000-04-18 2012-05-22 半導体装置及び電子機器
JP2012265875A Withdrawn JP2013054384A (ja) 2000-04-18 2012-12-05 電気光学装置
JP2013141245A Expired - Lifetime JP5422771B2 (ja) 2000-04-18 2013-07-05 半導体装置及び電子機器
JP2013266291A Expired - Lifetime JP5542267B2 (ja) 2000-04-18 2013-12-25 半導体装置
JP2014009293A Expired - Fee Related JP5679536B2 (ja) 2000-04-18 2014-01-22 液晶表示装置
JP2014090805A Expired - Lifetime JP5593465B2 (ja) 2000-04-18 2014-04-25 液晶表示装置及び電子機器
JP2014246629A Withdrawn JP2015064604A (ja) 2000-04-18 2014-12-05 半導体装置
JP2015094507A Expired - Lifetime JP5764728B2 (ja) 2000-04-18 2015-05-05 液晶表示装置
JP2016008889A Expired - Lifetime JP6401722B2 (ja) 2000-04-18 2016-01-20 液晶表示装置
JP2017003261A Expired - Lifetime JP6353562B2 (ja) 2000-04-18 2017-01-12 半導体装置
JP2017247145A Expired - Lifetime JP6499266B2 (ja) 2000-04-18 2017-12-25 液晶表示装置、携帯電話
JP2019027648A Withdrawn JP2019086797A (ja) 2000-04-18 2019-02-19 半導体装置

Family Applications Before (8)

Application Number Title Priority Date Filing Date
JP2011128216A Expired - Lifetime JP5079124B2 (ja) 2000-04-18 2011-06-08 半導体装置及び電子機器
JP2012116115A Expired - Fee Related JP5178934B2 (ja) 2000-04-18 2012-05-22 半導体装置及び電子機器
JP2012265875A Withdrawn JP2013054384A (ja) 2000-04-18 2012-12-05 電気光学装置
JP2013141245A Expired - Lifetime JP5422771B2 (ja) 2000-04-18 2013-07-05 半導体装置及び電子機器
JP2013266291A Expired - Lifetime JP5542267B2 (ja) 2000-04-18 2013-12-25 半導体装置
JP2014009293A Expired - Fee Related JP5679536B2 (ja) 2000-04-18 2014-01-22 液晶表示装置
JP2014090805A Expired - Lifetime JP5593465B2 (ja) 2000-04-18 2014-04-25 液晶表示装置及び電子機器
JP2014246629A Withdrawn JP2015064604A (ja) 2000-04-18 2014-12-05 半導体装置

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2016008889A Expired - Lifetime JP6401722B2 (ja) 2000-04-18 2016-01-20 液晶表示装置
JP2017003261A Expired - Lifetime JP6353562B2 (ja) 2000-04-18 2017-01-12 半導体装置
JP2017247145A Expired - Lifetime JP6499266B2 (ja) 2000-04-18 2017-12-25 液晶表示装置、携帯電話
JP2019027648A Withdrawn JP2019086797A (ja) 2000-04-18 2019-02-19 半導体装置

Country Status (2)

Country Link
US (1) US6690437B2 (ja)
JP (13) JP5079124B2 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825488B2 (en) * 2000-01-26 2004-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6646692B2 (en) * 2000-01-26 2003-11-11 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal display device and method of fabricating the same
US6690437B2 (en) * 2000-04-18 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6747289B2 (en) 2000-04-27 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating thereof
US6580475B2 (en) * 2000-04-27 2003-06-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
TWI286338B (en) * 2000-05-12 2007-09-01 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
US7804552B2 (en) * 2000-05-12 2010-09-28 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device with light shielding portion comprising laminated colored layers, electrical equipment having the same, portable telephone having the same
US7691333B2 (en) * 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
JP4087620B2 (ja) * 2002-03-01 2008-05-21 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
JP4101533B2 (ja) * 2002-03-01 2008-06-18 株式会社半導体エネルギー研究所 半透過型の液晶表示装置の作製方法
US7081704B2 (en) 2002-08-09 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20050145496A1 (en) * 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
US7604965B2 (en) * 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US7666361B2 (en) * 2003-04-03 2010-02-23 Fluidigm Corporation Microfluidic devices and methods of using same
WO2005038758A1 (en) * 2003-10-21 2005-04-28 Koninklijke Philips Electronics N.V. Display
US7208401B2 (en) * 2004-03-12 2007-04-24 Hewlett-Packard Development Company, L.P. Method for forming a thin film
US7374983B2 (en) * 2004-04-08 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI382455B (zh) * 2004-11-04 2013-01-11 Semiconductor Energy Lab 半導體裝置和其製造方法
KR101078360B1 (ko) * 2004-11-12 2011-10-31 엘지디스플레이 주식회사 폴리형 액정 표시 패널 및 그 제조 방법
US7563658B2 (en) * 2004-12-27 2009-07-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20060197088A1 (en) * 2005-03-07 2006-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US7932972B2 (en) * 2006-10-02 2011-04-26 Lg Display Co., Ltd. Substrate for liquid crystal display device and method of fabricating the same
JP5352081B2 (ja) 2006-12-20 2013-11-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7738050B2 (en) 2007-07-06 2010-06-15 Semiconductor Energy Laboratory Co., Ltd Liquid crystal display device
US8114722B2 (en) * 2007-08-24 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP2009277798A (ja) * 2008-05-13 2009-11-26 Sony Corp 固体撮像装置及び電子機器
KR101549963B1 (ko) * 2008-11-28 2015-09-04 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
JP5553707B2 (ja) 2009-08-21 2014-07-16 株式会社半導体エネルギー研究所 光検出装置
TWI523240B (zh) * 2009-08-24 2016-02-21 半導體能源研究所股份有限公司 光檢測器和顯示裝置
WO2011145537A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2015081940A (ja) * 2013-10-21 2015-04-27 株式会社ジャパンディスプレイ 液晶表示装置及び電子装置
KR20160114510A (ko) * 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 터치 패널
TWI581038B (zh) * 2015-06-29 2017-05-01 友達光電股份有限公司 液晶顯示面板
TWI744383B (zh) * 2016-10-19 2021-11-01 日商索尼股份有限公司 液晶顯示裝置及投射型顯示裝置
WO2024014233A1 (ja) * 2022-07-12 2024-01-18 ソニーセミコンダクタソリューションズ株式会社 表示装置及び電子機器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113041A1 (de) 1980-04-01 1982-01-28 Canon K.K., Tokyo Verfahren und vorrichtung zur anzeige von informationen
JPS59204009A (ja) * 1983-05-06 1984-11-19 Seiko Epson Corp カラ−フイルタ−
JPH0644118B2 (ja) * 1984-11-07 1994-06-08 松下電器産業株式会社 カラ−液晶表示装置
JPH01188801A (ja) * 1988-01-25 1989-07-28 Matsushita Electric Ind Co Ltd カラーフィルタの製造方法
JPH02287303A (ja) * 1989-04-28 1990-11-27 Ube Ind Ltd 多層カラーフィルター
JP2806741B2 (ja) * 1993-05-24 1998-09-30 日本電気株式会社 カラー液晶ディスプレイ
JPH07146481A (ja) * 1993-11-25 1995-06-06 Hitachi Ltd 液晶表示基板
JP2547523B2 (ja) 1994-04-04 1996-10-23 インターナショナル・ビジネス・マシーンズ・コーポレイション 液晶表示装置及びその製造方法
JPH0980447A (ja) 1995-09-08 1997-03-28 Toshiba Electron Eng Corp 液晶表示素子
JP3575135B2 (ja) * 1995-10-18 2004-10-13 セイコーエプソン株式会社 液晶表示装置
JPH1073813A (ja) * 1996-09-02 1998-03-17 Seiko Epson Corp 液晶表示装置及びその製造方法
JP3493117B2 (ja) * 1997-06-11 2004-02-03 株式会社 日立ディスプレイズ 液晶表示装置
JPH11331975A (ja) * 1998-05-18 1999-11-30 Kenwood Corp スピーカの構造
JPH11337961A (ja) * 1998-05-26 1999-12-10 Sharp Corp 反射型液晶表示装置およびその製造方法
JP2000047189A (ja) * 1998-07-28 2000-02-18 Sharp Corp 液晶表示素子
US6690437B2 (en) * 2000-04-18 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
JP4926332B2 (ja) * 2000-04-18 2012-05-09 株式会社半導体エネルギー研究所 半導体装置、電気光学装置及び電子機器

Also Published As

Publication number Publication date
US6690437B2 (en) 2004-02-10
JP2014157362A (ja) 2014-08-28
JP2017111452A (ja) 2017-06-22
JP6401722B2 (ja) 2018-10-10
JP5593465B2 (ja) 2014-09-24
JP2013190833A (ja) 2013-09-26
JP2016053745A (ja) 2016-04-14
JP5079124B2 (ja) 2012-11-21
JP5178934B2 (ja) 2013-04-10
JP6353562B2 (ja) 2018-07-04
JP2011180616A (ja) 2011-09-15
US20010040655A1 (en) 2001-11-15
JP5679536B2 (ja) 2015-03-04
JP2018063444A (ja) 2018-04-19
JP2012190043A (ja) 2012-10-04
JP2013054384A (ja) 2013-03-21
JP2015135531A (ja) 2015-07-27
JP2014067067A (ja) 2014-04-17
JP5542267B2 (ja) 2014-07-09
JP2014115660A (ja) 2014-06-26
JP5422771B2 (ja) 2014-02-19
JP2019086797A (ja) 2019-06-06
JP6499266B2 (ja) 2019-04-10
JP2015064604A (ja) 2015-04-09

Similar Documents

Publication Publication Date Title
JP6499266B2 (ja) 液晶表示装置、携帯電話
JP5132827B2 (ja) 半導体装置及び電子機器
JP5057613B2 (ja) 半導体装置及び電子機器
US9318610B2 (en) Semiconductor device and method of manufacturing the same
JP4916620B2 (ja) 液晶表示装置及び電気光学装置
JP4926332B2 (ja) 半導体装置、電気光学装置及び電子機器
JP2001311964A (ja) 半導体装置
JP2010266869A (ja) 液晶表示装置
JP2016026314A (ja) 半導体装置
JP2018194851A (ja) 表示装置
JP2002116450A (ja) 液晶表示装置およびその作製方法
JP2017198993A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150507

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5764728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term