JP5748517B2 - クロマティック共焦点センサ光学ペン - Google Patents

クロマティック共焦点センサ光学ペン Download PDF

Info

Publication number
JP5748517B2
JP5748517B2 JP2011059623A JP2011059623A JP5748517B2 JP 5748517 B2 JP5748517 B2 JP 5748517B2 JP 2011059623 A JP2011059623 A JP 2011059623A JP 2011059623 A JP2011059623 A JP 2011059623A JP 5748517 B2 JP5748517 B2 JP 5748517B2
Authority
JP
Japan
Prior art keywords
lens
lens element
optical pen
thermal
chromatic confocal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011059623A
Other languages
English (en)
Other versions
JP2011197005A (ja
Inventor
ジー ヤン
ジー ヤン
ティー バク ベルナドット
ティー バク ベルナドット
ベンジャミン ケー ジョーンズ
ケー ジョーンズ ベンジャミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of JP2011197005A publication Critical patent/JP2011197005A/ja
Application granted granted Critical
Publication of JP5748517B2 publication Critical patent/JP5748517B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • G02B27/20Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective for imaging minute objects, e.g. light-pointer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本発明は、一般的に精密測定装置に関し、より詳細には、クロマティック共焦範囲感知用の光学ペンに使用され得るものなどのクロマティックセンサレンズ構成に関する。
距離感知計測応用に色収差制御技術が使用され得る。"Pseudocolor Effects of Longitudinal Chromatic Aberration," G. Molesini and S. Quercioli, J. Optics (Paris), 1986, Volume 17, No. 6, pages 279-282で説明されているように、制御された縦色収差を光学的画像化システムに取り込み、画像化システムの焦点距離を波長によって変化させ、それにより、光学計測用手段を提供し得る。特に、後方焦点距離(BFL)が波長の単調関数であるレンズを設計できる。白色光動作では、そのようなレンズは、軸方向にレインボー状に分散した焦点を示し、距離感知用途用のスペクトルプローブとして使用され得る。
クロマティック共焦技術を光学式高さセンサにおいて使用することも知られている。米国特許第7,477,401号で説明されているように、軸方向色収差(軸方向または長手方向の色分散とも称す)を有する光学素子を使用して、焦点を合わせるべき軸方向距離が波長によって変化するように広帯域光源をフォーカスさせ得る。それゆえ、1つの波長のみが正確に表面上に焦点が合わせられ、かつ表面の高さによって、どの波長の焦点が最も合わせられるかが決定される。光が表面から反射すると、ピンホールや光ファイバの端部など小さな検出器アパーチャ上に再びフォーカスされる。表面から反射し、光学系を通過して入出力ファイバまで戻ると、表面に上手く焦点が合わせられている波長のみがファイバ上で上手く焦点が合う。他の波長は全てファイバ上で上手く焦点が合わないため、ファイバにあまりパワーを結合することができない。それゆえ、物体の高さに対応する波長の信号レベルが最大となる。検出器におけるスペクトロメータが各波長の信号レベルを測定し、それが効果的に物体の高さを示す。
一部の製造者は、クロマティック共焦点センサおよび/または「光学ペン」としての産業上の設定においてクロマティック共焦測距に好適な、実用的で小型の光学アセンブリに言及している。Z軸の高さを測定する光学ペン機器の1つの例は、STIL, S.A. of Aix-en-Provence, France (STIL S.A.)で製造されたものである。具体例として、STIL光学ペンモデル番号OP300NLはZ軸の高さを測定し、300ミクロン範囲を有する。
クロマティック共焦点センサ用の別の構成が、同一出願人による米国特許第7,626,705号('705号特許)に記載されている。この特許は、光学的スループットを改善しかつスポットサイズを改善するレンズ構成を開示しており、それにより、種々の市販の構成と比較して測定分解能を改善する。
クロマティック共焦点センサまたは光学ペンでは、温度変化によりレンズ、ハウジングおよび取付要素などの種々の構成部品が膨張または収縮する場合、光学ペンの全屈折力が変化する。この熱感度は、所与の波長の焦点が最も合わせられているZ軸の高さで変化するので、表面高さ測定に誤差をもたらす。種々の適用に対して、精度、スポットサイズなどに関して十分な性能を維持するために、光学ペンの熱感度を改善することが望ましい。
本発明は、温度変化に対してより繰り返し可能で信頼性のある色範囲感知をもたらすために、熱的に補償された光学ペン用のレンズ構成を改良することに関する。
この概要は、下記の詳細な説明でさらに説明されるひと通りの概念を簡易な形態で取り入れるために提供される。この概要は、特許請求される主題の主要な特徴を特定するものでも、また、特許請求される主題の範囲の決定を支援するために使用されるものでもない。
熱補償を含むクロマティックセンサレンズ構成が、熱的に補償されたクロマティック共焦点センサ光学ペンに設けられる。本発明の一態様によれば、熱補償を含む色分散レンズ構成を、ハウジング、入出力光ファイバ、および検出器アパーチャも含むクロマティック共焦点センサ光学ペンの光学素子部分に使用する。入出力光ファイバは検出器アパーチャを通して光源光を出力しかつ反射光を受光する。レンズ構成は光軸に沿って配置される。レンズ構成は、アパーチャから光源光を受光して、それを、ワークピース表面に向けて軸方向に色分散させてフォーカスさせる。レンズ構成はまた、ワークピース表面からの反射光を受光して、検出器アパーチャの近傍に、軸方向に色分散させて反射光をフォーカスさせる。
本発明の別の態様によれば、色分散レンズ構成は、複レンズ素子、およびアパーチャから複レンズ素子よりも遠くに配置された正の屈折力のレンズ部分を含む。複レンズ素子は、アパーチャの近くに配置された第1の部分と、アパーチャから離れて配置された第2の部分とを含む。一実施形態では、正の屈折力のレンズ部分は、複レンズ素子の第2の部分に近接して配置された両凸レンズ素子と、両凸レンズ素子に近接して配置された第1のメニスカスレンズ素子と、第1のメニスカスレンズ素子に近接して配置された第2のメニスカスレンズ素子とを含む。
色分散レンズ構成の各レンズ素子は、温度Tの範囲にわたって(例えば、10℃〜30℃)屈折力φi、熱膨張係数αTi、屈折率niおよび熱焦点ずれ(thermal defocus)係数χiによって特徴づけられ、ここで:
Figure 0005748517
である。
本発明の別の態様によれば、正の屈折力のレンズ部分の少なくとも2つのレンズ素子(一実施形態では少なくとも2つの両凸レンズ、第1のメニスカスレンズおよび第2のメニスカスレンズ)が、(例えば、ハウジングの熱膨張、複レンズ部分の熱焦点ずれなどによって生じた)光学ペンの全体的な熱感度を少なくとも部分的に補償するように選択される。例えば、一実施形態では、クロマティック共焦点センサ光学ペンの熱感度を補償する少なくとも2つの両凸レンズ、第1のメニスカスレンズおよび第2のメニスカスレンズは、小さくても10ppm/℃の範囲の熱焦点ずれ係数χiを有する。一部の実施形態では、第1のメニスカスレンズおよび第2のメニスカスレンズは、特に、このように選択されて、ハウジングの熱膨張から生じたクロマティック共焦点センサ光学ペンの熱感度を補償する。
本発明の別の態様によれば、クロマティック共焦センサペンはさらに組立要素および端部要素を含み、正の屈折力のレンズ部分の少なくとも2つのレンズ素子は、ハウジングの熱膨張から生じた熱感度、および追加的に組立要素および端部要素の熱膨張から生じた熱感度を含め、クロマティック共焦点センサ光学ペンの全体的な熱感度を補償する。
本発明の別の態様によれば、クロマティック共焦センサ光学ペンはさらに、入出力光ファイバサブアセンブリを含み、正の屈折力のレンズ部分の少なくとも2つの素子は、ハウジングの熱膨張から生じた熱感度、および追加的に入出力光ファイバサブアセンブリの熱膨張から生じた熱感度を含めて、クロマティック共焦点センサ光学ペンの全体的な熱感度を補償する。
本発明の別の態様によれば、色分散レンズ構成の各レンズ素子はガラス材料製である。
本発明の別の態様によれば、色分散レンズ構成の各レンズ素子は球面を有する。球面レンズを用いることによって、複雑さが低減し、かつレンズ構成費用全体を削減する。
本発明による熱補償を含む色分散レンズ構成を使用するクロマティック共焦点センサ光学ペンは、比較的単純なレンズ構成を使用しながらも、熱感度が低減される一方、所望の光学的スループット、スポットサイズ、測定範囲および離間距離(standoff)を維持するという利点を有する。以前は、そのような単純な光学ペンのレンズ構成(例えば、'705号特許に説明されているような)は、熱感度がかなり高かった。例えば、一実施形態では、'705号特許による光学ペンの熱感度は約210nm/℃となり得る一方、本発明による熱補償を含む色分散レンズ構成を使用する光学ペンの熱感度は、類似のハウジング材料を使用して約70nm/℃となり、または他の材料および設計特徴も変更すると、それよりも小さくなり得る。
上述の態様および本発明に付随する利点の多くは、以下の詳細な説明を添付の図面と併せて参照することでより理解されることにより、より明らかとなるであろう。
本発明による熱補償を含み得る色分散レンズ構成の例示的な実施形態の概略的な側面図である。 図1のレンズ構成のレンズ素子のアッベ数、屈折率、熱焦点ずれ係数および熱膨張係数の例示的な1組のセットの表である。 図1のレンズ構成を含む、例示的なクロマティック共焦点センサ光学ペン構成の選択した部分の分解図である。 図3に示すのと類似の構成部品を含み、さらに入出力光ファイバ部分を含む、組み立てられたクロマティック共焦点センサ光学ペンの断面図である。
図1は、本発明による色分散レンズ構成100の動作の例示的な実施形態の概略的な側面図50である。レンズ構成100は、複レンズ素子101、および正の屈折力のレンズ部分105を含む。当然のことながら、レンズ構成100は例示にすぎず、限定ではない。種々の実施形態では、正の屈折力のレンズ部分は少なくとも2つのレンズ素子を含む。一部の実施形態では、正の屈折力のレンズ部分は最大で4つのレンズ素子を含む。図1に示す特定の実施形態では、正の屈折力のレンズ部分105は両凸レンズ素子102、ならびにメニスカスレンズ素子103および104を含む。複レンズ素子101は第1のレンズ部分101Aおよび第2のレンズ部分101Bから形成される。メニスカスレンズ素子103および104は、図1に概略を示すように、両面が同じ方向に湾曲しており、正の屈折力をもたらしかつレンズ構成100から出射される光をフォーカスさせるように向けられている。図1に示す構成では、フォーカスシングレンズの働きを空気で分離された3つの単レンズ102〜104に分割することによって、正の屈折力のレンズ部分105の球面収差をより簡単に制御しまたは構成し得る。加えて、本発明によれば、空気で分離された3つの単レンズ102〜104は、ハウジングおよび光学ペンの追加的な素子の熱膨張を補償するパラメータを含み、それについては以下詳細に説明する。
図4に関して以下詳細に説明するように、動作中、入出力光ファイバ112からの光が、レンズ構成100に対して固定されている検出器アパーチャ195から出射して光軸に沿って出射光ビームをもたらす。一実施形態では、入出力光ファイバ112のコアの端部がアパーチャ195(例えば、50ミクロンのコア直径、または先細ファイバコアの場合は20ミクロンとほぼ同じアパーチャ)をもたらし得る。各限界光線(limiting ray)LR1およびLR2内にある出射光ビームは任意選択的な開口絞り108によって制限され、かつ、いずれの場合にも、複レンズ素子101を通って、正の屈折力のレンズ部分105によってワークピース表面90上にフォーカスされ続け得る。限界光線LR1およびLR2によって示すように、ワークピース表面90から反射すると、光はレンズ構成100によって再びアパーチャ195にフォーカスされる。距離FRはレンズ構成100の背面とアパーチャ195との間の間隔を表す。レンズ構成100によってもたらされる軸方向の色分散のために、1つの波長の焦点のみが表面90に合い、レンズ構成100から表面90までの距離によって、どの波長の焦点が最も合っているかが決まる。表面90に最も焦点が合わせられる波長はまた、アパーチャ195に最も焦点が合わせられる波長である。それゆえ、アパーチャ195を通って入出力光ファイバ112のコアに入射する光は、ほとんどが最もフォーカスされた波長を有するように空間的にフィルタリングされる。種々の実施形態では、入出力光ファイバ112は、最も高い信号レベルに対応する波長を決定するために使用されるスペクトロメータ(図示せず)に信号光を送り、それゆえワークピース表面90までの距離を判断する。
図1に、収束角/発散角θ1、θ2、および前側合焦距離FF、後側合焦距離FRを示す。後側合焦距離FRは、アパーチャ195からレンズ構成100の後面まで延在し、前側合焦距離FFはレンズ構成100の前面から延在する。一実施形態では、検出器集束開口数(NAdet)は、以下の式:
NAdet=sinθ1 (式1)
によって角度θ1に関係する。
さらに、ワークピース表面における物体開口数(object numerical aperture)(NAobject)は、以下の式:
NAobject=sinθ2 (式2)
によって焦点角(focal angle)θ2に関係する。
アパーチャ195の所与の寸法では、縮小比(demagnification ratio)(NAdet/NAobject)は、ワークピース表面90にフォーカスされた測定点の横方向の距離を決定し得る。それゆえ、本明細書の他の個所で詳細に説明するように、種々の実施形態では、縮小比を、レンズ構成100によって満たされるべき重要な設計パラメータとし得る。
当然のことながら、sinθ2および前側合焦距離FFは、一般的に、レンズ構成100によってもたらされた軸方向の色分散のために光の波長に依存する。所望の軸方向の色分散をもたらすことに関する種々の検討事項を以下詳細に説明する。図1にはまた、レンズ群の、レンズ構成100にわたる軸方向距離を表す長さ距離Lを示す。小型のクロマティック共焦点センサが一般的に好都合であるため、種々の実施形態では、レンズ群の長さ距離Lおよび/または距離(FR+L)を、レンズ構成100によって満たされるべき重要な設計パラメータとし得る。特定の例示的な一実施形態では、距離FRと距離Lの和は約139mmであり、図1をほぼ正確なアスペクト比で示す。しかしながら、種々の他の実施形態では、図1の縮小した(scaled)寸法およびアスペクト比は例示にすぎず、限定ではない。より一般的には、図1に示す特定のレンズ構成100の種々の実施形態を、図1に示すレンズ面形状の合理的な変形例および図2を参照して以下示しかつ説明する材料特性、ならびにそれら変形例を導き出すための公知の分析用のおよび/またはコンピュータ化された光学設計および/またはシミュレーション技術の使用に基づいて、様々な適用に好適なように(例えば、好適なレンズ素子の表面半径および軸方向間隔の選択によって)実装および/または適合し得る。
所与の幾何学的形状では、前側合焦距離FFおよびレンズ構成100によってもたらされる軸方向の色分散量は、一般的にレンズ101〜104の屈折率およびアッベ数に依存する。Warren J. Smith, Modern Optical Engineering, Third Edition, p. 94, McGraw-Hill, 2000で説明されているように、波長によって材料の屈折率が変化することにより、焦点が軸方向に分離し、かつアッベ数が、以下の式:
d=(nd−1)/(nf−nc) (式3)
(式中、vdはアッベ数であり、nd、nf、およびncは、ヘリウムのd線、587.6nm、および水素のF線およびC線(それぞれ486.1nmおよび656.3nm)における材料の屈折率である)
に従って、波長による屈折率変化を定量化する。アッベ数が小さいほど、波長による焦点の変化が大きいことを暗示する。
さらに、Joseph M. Geary, Introduction to Lens Design, p. 176, Willmann-Bell, 2002で説明されているように、F線とC線との間の単レンズに関する焦点距離の変化は:
ΔfFC=fd/vd (式4)
(式中、fdはヘリウムのd線(587.6nm)における焦点距離である)
によって与えられる。ここでも、アッベ数の小さなガラスを使用するレンズは、波長による焦点距離のシフトが大きくなる。
種々の実施形態では、複レンズ素子101および正の屈折力のレンズ部分105を、本発明による特徴の種々の組み合わせによって構成し、光学ペンに種々の所望の特性をもたらすようにし得る。種々の実施形態では、複レンズ素子101は典型的な複レンズではない。概して、アパーチャ195に近い第1のレンズ部分101Aは少なくとも1つの凹面を含み、およびアパーチャ195から離れた第2のレンズ部分101Bは少なくとも1つの凸面を含む。種々の実施形態では、第1のレンズ部分101Aのアッベ数は比較的小さく、一方、第2のレンズ部分101Bのアッベ数は比較的大きい。対照的に、第1の部分および第2の部分に対応する従来の複レンズのアッベ数間の関係は、第1のレンズ部分101Aおよび第2のレンズ部分101Bと比較して逆になっている。
種々の実施形態では、複レンズ素子101を一般的に屈折力の小さいレンズ素子、負の屈折力のレンズ素子、またはそれら双方とし得る。図1に示す特定の実施形態では、屈折力の小さい負の屈折力のレンズ素子であり、一般的にアパーチャ195から受光した出力ビームを拡大させる。一実施形態では、複レンズ素子101は負の屈折力のレンズ素子を提供し、負の屈折力の大きさは、レンズ構成100の総屈折力の最大でも50%である。種々の他の実施形態では、本願明細書で説明する他の設計原理が満たされているという条件で、複レンズ素子101は、屈折力の小さい正のレンズ素子を含み得る。例えば、一部の実施形態では、正の屈折力の大きさは、レンズ構成100の総屈折力の最大でも約20%とし得る。
図1に示す実施形態では、正の屈折力のレンズ部分105の構成は、空気で分離された3つの単レンズ素子102〜104を含む。一実施形態では、各レンズ素子102〜104は球面を含む。球面レンズを利用することによって、レンズ構成費用全体を削減し得る。一実施形態では、レンズ構成100のレンズ素子の全てが球面レンズである。一実施形態では、色分散レンズ構成の各レンズ素子がガラス材料製である。
複レンズ素子101を適切な特徴とすることは、軸方向の色分散および色分散レンズ構成100の屈折力に関して所望の光学的特性をもたらすために重要である。上述のように、複レンズ素子101はアッベ数に関しては、あまり従来の配置を使用しないため、そのレンズの設計に関するオプションの組み合わせセットが比較的限定されている。それにもかかわらず、適切なレンズ選択により、色分散レンズ構成100を使用する光学ペンの光学機械部品の熱感度を補償するためのいくつかの手段を有することが望ましい。本発明によれば、複レンズ素子101の性能を低下させるのではなく、光学ペンの全体的な熱感度を補償するための基本的手段として、正の屈折力のレンズ部分105の素子を選択することが望ましい。当然ながら、熱感度を低下させる一方で色範囲感知に関してレンズ構成100の十分な全体的な光学性能を維持することも非常に重要である。
光学系において熱感度を低下させる種々の手法は当該技術分野において公知である。一部の系では、熱センサーによって示される熱変化に応えてレンズ素子を動かす機械的部分など、熱感度を補償するために能動的な光学素子を使用する。他の系では、受動的なアサーマリゼーション(athermalization)を使用し、その場合多くの系では、光学素子と機械的素子の熱膨張を適合させて系の熱感度が低下するように互いに補償することに依存する。例えば、Thomas H. Jamieson, "Thermal Effects in Optical Systems," Optical Engineering 20(2), 156-160 March/April 1981による論文に、温度変化があっても倍率をより安定的に維持するための、対物レンズ、接眼レンズおよびメタルハウジングを含むGalilieanレーザービーム拡大器における熱感度の補償方法が説明されている。各素子の材料の熱膨張係数を適合させることによって、対物レンズおよび接眼レンズの屈折力を変化させることができ、式:
e=xm(M−1)−Mx0 (式5)
(式中、x0は対物レンズの熱膨張係数であり、xeは接眼レンズの熱膨張係数であり、およびxmはメタルハウジングの熱膨張係数である)
による薄いレンズの関係で近似することによってメタルハウジングの熱膨張を補償する。
複数のレンズ系において熱感度を低下させる別の手法が、Michael Bass et al., Handbook of Optics, Third Edition Volume II, p. 8.13, McGraw-Hill, 2009に記載されている。薄いレンズの関係を近似する、ハウジング要素において互いに接触しているj個のレンズの系の場合、受動的なアサーマリゼーションによって熱感度が補償される系は、式:
Figure 0005748517
によって構成され、式中、Tは温度であり、γiは各レンズの熱焦点ずれ係数であり、φiは各レンズの屈折力であり、φは複数のレンズ系の全屈折力であり、αhはハウジング要素の熱膨張係数であり、かつ:
Figure 0005748517
とし得る。この条件を満たす、レンズおよびハウジングを備える光学系は、熱感度が低い。
より複雑な光学系では、レンズの厚さ、レンズの分離およびハウジング内の取付構造の膨張などの追加的な要因を説明する必要があることが多い。例えば、本発明の範囲内の光学ペンは、意図的な軸方向色収差、ワークピース表面までの典型的な距離における高い物体開口数NAobject、および各レンズ素子間の著しい分離を有し、薄いレンズの近似が、熱感度を特徴付けることに効果的でないようにする。受動的なアサーマリゼーションによる光学ペンのためにレンズ構成100を組み立てるために、ファイバ取付具の膨張などの要因も説明する必要がある。それゆえ、一般的に、各素子の熱感度を望ましく適合させるようにそのような光学系の熱感度をシミュレーションするために、光学的シミュレーションコンピュータプログラムを使用することが、より望ましい。これはまた、図3に関してさらに詳細に説明する種々の代替的な実施形態の光学性能を比較する手段も提供する。
レンズ構成100の各レンズ素子の熱感度は、温度T(例えば、10℃〜30℃)の範囲にわたる熱焦点ずれ係数χiに関して特徴づけられることができ、これは:
Figure 0005748517
(式中、αTiは各レンズ素子の熱膨張係数であり、niは各レンズ素子の屈折率であり、およびφiは各レンズ素子の屈折力である)
の関係で定義される。温度Tが変化することによってレンズが熱膨張または熱収縮し、およびその各レンズの屈折率niが温度によって変化すると、その各レンズの焦点距離が変わるので、各屈折力φiを変更させる。レンズ構成の全屈折力が変化すると、所与の照明波長の焦点が表面上に合わせられる、光軸に沿った位置が変わり、これにより、表面高さ測定に誤差がもたらされる。図1に示すように、表面90は光軸に沿った座標Z1に配置されている。温度Tが変化することにより、名目上Z1に最も焦点が合っている光の波長λ1が、座標Z1'に最も焦点が合うようになる。その結果、異なる光の波長λ2の焦点が、座標Z1に最も合わせられる。一般的に光軸に沿った座標Zは波長の関数、すなわち、Z=f(λ)である。異なる光の波長λ2が表面90に最も焦点が合わせられているため、光学ペンは、座標Z2=f(λ2)(式中、Z2=Z1+ΔZであり、およびΔZは、レンズ構成100を使用する光学ペンの熱感度から生じた測定誤差を表す)において表面90を測定する。レンズ構成100を使用する光学ペンの全体的な熱感度は、所与の光の波長またはいくつかの光の波長の平均に対して:
Figure 0005748517
に関して特徴づけられ得る。
本発明による種々の実施形態では、正の屈折力のレンズ部分105のレンズ素子の少なくとも2つが、ハウジング要素の熱膨張から生じる熱感度を含むクロマティック共焦点センサ光学ペンの全体的な熱感度に関して少なくとも部分的に補償し、かつクロマティック共焦点センサ光学ペンの全体的な熱感度を補償する、正の屈折力のレンズ部分105のレンズ素子の熱焦点ずれ係数χiの平均は、最低でも10ppm/℃の範囲にある。種々の実施形態では、第1のメニスカスレンズ素子103および第2のメニスカスレンズ104が、クロマティック共焦点センサ光学ペンの熱感度を補償する。当然のことながら、図1に示す実施形態では、正の屈折力のレンズ部分105は3つのレンズ素子を含む。しかしながら、本発明による種々の代替的な実施形態では、正の屈折力のレンズ部分は、少ない場合には2つのレンズ素子、または多い場合には4つのレンズ素子を含んでもよい。いずれの場合にも、正の屈折力のレンズ部分のレンズ素子の少なくとも2つの熱焦点ずれχiの係数の平均が小さくても10ppm/℃の範囲にあるように正の屈折力のレンズ部分を構成することを条件として、関連の光学ペンの全体的な熱感度は著しく低下または補償され得る。このために、以下詳細に説明するように、正の屈折力のレンズ部分のレンズ素子にいくつかの比較的独特な材料を選択することが必要となる。
図2は、図1のレンズ素子101A、101B、102、103および104に関するアッベ数vi、屈折率ni、熱焦点ずれ係数χi、および熱膨張係数αTiの例示的な1組のセットを示す表200である。表200に示す材料特性を、図1に示すレンズ構成100と組み合わせて使用して、上記で概説した特徴の種々の望ましい組み合わせのいずれかおよび/または全てに対応する実施形態を提供する。具体的には、図2に示す実施形態では、第1のレンズ部分101Aは、比較的小さいアッベ数25.4、屈折率1.8、熱焦点ずれ係数6.4ppm/℃および熱膨張係数8.9ppm/℃を有する。第2のレンズ部分101Bは、比較的大きいアッベ数45.8、屈折率1.5、熱焦点ずれ係数1.5ppm/℃および熱膨張係数8.2ppm/℃を有する。それゆえ、対応する複レンズ素子101の平均アッベ数は35.6である。レンズ素子102は、アッベ数35.3、屈折率1.7、熱焦点ずれ係数−0.5ppm/℃および熱膨張係数7.3ppm/℃を有する。レンズ素子103はアッベ数63.3、屈折率1.6、熱焦点ずれ係数15.7ppm/℃および熱膨張係数10.1ppm/℃を有する。レンズ素子104はアッベ数26.3、屈折率1.8、熱焦点ずれ係数6.1ppm/℃および熱膨張係数8.8ppm/℃を有する。それゆえ、対応する正のレンズ部分105の平均アッベ数は41.6である。一部の実施形態では、複レンズ素子101の平均アッベ数と正のレンズ部分105の平均アッベ数の差が最大でも10であると好都合である。図2に示す例示的な実施形態では、差は6である。
図2に示す例示的な実施形態では、メニスカスレンズ素子103および第2のメニスカスレンズ素子104はクロマティック共焦点センサ光学ペンの熱感度を補償し、また、メニスカスレンズ素子103および第2のメニスカスレンズ素子104の熱焦点ずれ係数χiの平均は10.88ppm/℃である。図2に示す例示的な実施形態では、第1のメニスカスレンズ素子103および第2のメニスカスレンズ素子104は、レンズ構成100に所望の光学性能を維持する一方で熱感度に必要なバランスを与える。代替的な実施形態では、両凸レンズ素子102は、所望の光学性能を維持する一方で熱感度に必要なバランスに寄与するように選択し得る。当然のことながら、ほとんどのガラスタイプのレンズでは、10ppm/℃を超える熱焦点ずれ係数χiは比較的珍しく、これは、レンズ構成100の基準を満たすレンズの可能性を限定する。
当然のことながら、レンズ構成100を使用する光学ペンでは、本発明に従って構成された正の屈折力のレンズ部分105の素子は、その光学ペンの光学機械素子の熱膨張または熱収縮によって生じる各レンズ素子間の間隔の変化を補償する。図3を参照してそのような光学ペンの光学機械部分を詳細に説明する。
図3は、図1のレンズ構成100の素子を含む、例示的なクロマティック共焦点センサ光学ペン300の選択した部分の分解図である。クロマティック共焦点センサ光学ペン300の選択した部分はハウジングアセンブリ320および光学素子部分350を含み、光学素子部分350は、レンズ構成100の素子の他、他の構成要素も含む。具体的には、図3に示す実施形態では、光学素子部分350は、レンズ素子101A、101B、102、103および104、ならびに、位置決め肩部352Aを含む保持要素352と、位置決め肩部354A〜354Cを含む組立要素354と、保持リング356と、位置決め肩部358Aを含む端部要素358とを含む。
レンズ素子102は、組み立てると、位置決め肩部354A、および位置決め肩部352Aの第1の側に当接する一方、レンズ素子101は位置決め肩部352Aの他方の側に当接し得る。レンズ素子103は位置決め肩部354Cおよび保持リング356に当接し得る。レンズ素子104は位置決め肩部358Aに当接し得る。組立要素354は端部要素358およびハウジング320にほぼ当接し得る。圧迫、隣接面、および/または摩擦力によって適所に保持されていないいずれの要素も、接着剤または他の従来の手段によって適所に固定され得る。
図2を参照して説明したように、クロマティック共焦点センサ光学ペン300の熱感度を補償する正の屈折力のレンズ部分105の素子を、クロマティック共焦点センサ光学ペン300の光学機械素子の熱膨張または熱収縮から生じる各レンズ素子の間隔の変化間にバランスをもたらすように選択する必要がある。一実施形態では、正の屈折力のレンズ部分105の少なくとも2つのレンズ素子は、ハウジング要素320の熱膨張から生じた熱感度および追加的に組立要素354および端部要素358の熱膨張から生じた熱感度を含めて、クロマティック共焦点センサ光学ペン300の全体的な熱感度を少なくとも部分的に補償する。概して、光学的シミュレーションコンピュータプログラムを使用して、レンズ構成100の熱感度およびクロマティック共焦点センサ光学ペン300の光学機械部品の熱感度の双方をモデリングし得る。光学的シミュレーションコンピュータプログラムに含まれる要因は、ハウジングアセンブリ320、組立要素354、および端部要素358の熱膨張または熱収縮から生じたレンズ素子の位置の変化、ならびに各レンズ素子の厚さの変化およびレンズ構成100の各レンズ素子の表面曲率の変化を含み得る。
特に、第1のレンズ構成では、第1のシミュレーションした全体的な熱感度の結果と、第1の実験的な全体的な熱感度とを比較することが有用であり得る。このように、シミュレーションで考慮されなかった、クロマティック共焦点センサ光学ペン300の熱感度に寄与する追加的な未知の要因を定量化し得る。同じハウジングアセンブリ320、組立要素354、および端部要素358を備える正のレンズ構成105に関するレンズの単純な変化において、シミュレーションした熱感度と実験的な熱感度との間の差はほぼ一定である、すなわち:
Figure 0005748517
であることが観察された。改良された第2のレンズ構成は、第2のシミュレーションした全体的な熱感度を、第1のシミュレーションした全体的な熱感度と第1の実験的な全体的な熱感度との間の差:
Figure 0005748517
に適合させる正のレンズ構成105の実施形態に対してレンズを選択することによって決定され得る。このように、シミュレーションにおいて低い熱感度となるように第2のレンズ構成を単純に選択するのではなく、第2のレンズ構成を、熱感度に寄与する未知の要因に対して追加的に補償を行うように選択する。
図4は、組み立てられたクロマティック共焦点センサ光学ペン400の断面図である。図4に示すように、クロマティック共焦点センサ光学ペン400は、ハウジングアセンブリ320'および光学素子部分350'を含み、それらは、図3に示す同様の符号(プライム符号が付されていない)が付けられた構成要素と同様または同一とし得る。いずれの場合にも、光学素子部分350'は本発明による色分散レンズ構成を含む。クロマティック共焦点センサ光学ペン400の一般的な動作については、本願明細書で開示した先の図および説明に基づいて理解し得る。
クロマティック共焦点センサ光学ペン400はさらに、取付用ねじ410を使用してハウジング320'の端部に取り付けられ得る取付要素480を含む入出力光ファイバサブアセンブリ405を含む。入出力光ファイバサブアセンブリ405は入出力光ファイバ(図示せず)を、それを包み込む光ファイバケーブル412'および光ファイバコネクタ408によって収容する。図1に記載の入出力光ファイバ112およびアパーチャ195を参照して上述したのと同様の方法で、入出力光ファイバは、アパーチャ495を通して出力ビームを出射させ、かつアパーチャ495を通して測定用反射信号光を受光する。一実施形態では、アパーチャ495は入出力光ファイバのコアの端部に設けられる。しかしながら、種々の他の実施形態では、同時係属の同一出願人による米国特許出願公開第2008/0239323A1号、表題"Chromatic Confocal Sensor Fiber Interface "に詳細に説明されているように、入出力光ファイバサブアセンブリ405は、アパーチャ495をもたらす別個のアパーチャ要素(図示せず)を含み得る。当然のことながら、クロマティック共焦点センサ光学ペン400の熱感度をシミュレーションする光学的シミュレーションコンピュータプログラムはまた、入出力光ファイバサブアセンブリ405の熱膨張または熱収縮を考慮する必要がある。一実施形態では、正の屈折力のレンズ部分105のレンズ素子は、ハウジング要素320の熱膨張から生じた熱感度および追加的に入出力光ファイバサブアセンブリ405の熱膨張から生じた熱感度を含め、クロマティック共焦点センサ光学ペン400の全体的な熱感度を少なくとも部分的に補償する。
当然のことながら、本発明による色分散レンズ構成は、類似のレンズ構成と同等の光学的スループットを維持しながら熱感度が低減されるという利点を有する。本発明の原理によるレンズ構成は、'705号特許で説明されているレンズ構成などの類似の構成と同等のスポットサイズ(約4ミクロン)、同等の測定範囲(約300ミクロン)および同等の離間距離(例えば、類似の構成の約2%以内)をもたらす。類似のレンズ構成を使用するクロマティック共焦点センサ光学ペンは、式9において与えられる約210nm/℃の熱感度を有し得る一方、本発明によるレンズ構成を使用するクロマティック共焦点センサ光学ペンは、約70nm/℃の熱感度を有する。
なお、上記説明した本実施形態におけるレンズ構成は、両凸レンズ、第1のメニスカスレンズおよび前記第2のメニスカスレンズの熱焦点ずれ係数をそれぞれχ3、χ4およびχ5とすると、熱焦点ずれ係数χ4が小さくても15ppm/℃であり、および熱焦点ずれ係数χ5が小さくても5ppm/℃とすることができる。より好ましくは、熱焦点ずれ係数χ3が小さくても−1ppm/℃、および大きくても0ppm/℃であり、熱焦点ずれ係数χ4が小さくても15ppm/℃、および大きくても17ppm/℃であり、熱焦点ずれ係数χ5が小さくても5ppm/℃および大きくても7ppm/℃であり、両凸レンズ、第1のメニスカスレンズおよび第2のメニスカスレンズ熱膨張係数をそれぞれαT3、αT4およびαT5とすると、熱膨張係数αT3が小さくても7.1ppm/℃、および大きくても7.5ppm/℃であり熱膨張係数αT4が小さくても9.9ppm/℃、および大きくても10.2ppm/℃であり、熱膨張係数αT5が小さくても8.6ppm/℃、および大きくても9.0ppm/℃であるとよい。
また、両凸レンズ素子のアッベ数が最小でも32、および最大でも38であり、第1のメニスカスレンズのアッベ数が最小でも57、および最大でも66であり、ならびに第2のメニスカスレンズのアッベ数が最小でも23、および最大でも29であるとすることができる。
また、両凸レンズ素子の屈折率が最小でも1.7、および最大でも1.8であり、第1のメニスカスレンズの屈折率が最小でも1.6、および最大でも1.7であり、ならびに第2のメニスカスレンズの屈折率が最小でも1.7、および最大でも1.8であるとすることができる。
また、複レンズ素子の第1の部分および第2の部分の熱焦点ずれ係数それぞれχ1およびχ2とすると、熱焦点ずれ係数χ1が小さくても6ppm/℃、および大きくても7ppm/℃であり、熱焦点ずれ係数χ2が小さくても1ppm/℃、および大きくても3ppm/℃であるとすることができる。
また、複レンズ素子の第1の部分および第2の部分の熱膨張係数をそれぞれαT1、およびαT2とすると、熱膨張係数αT1が小さくても8.7ppm/℃、および大きくても9.1ppm/℃であり、熱膨張係数αT2が小さくても8.0ppm/℃、および大きくても8.4ppm/℃であるとすることができる。
本発明の好ましい実施形態を図示して説明したが、当業者には、この開示に基づいて、特徴および一連の動作の図示し説明した構成における多くの変形例が明らかであろう。それゆえ、当然のことながら、本発明の趣旨および範囲から逸脱することなく種々の変更をなすことができる。
90 ワークピース表面
100 色分散レンズ構成
101 複レンズ素子
101A 第1のレンズ部分
101B 第2のレンズ部分
102 両凸レンズ素子
103、104 メニスカスレンズ素子
105 正の屈折力のレンズ部分
112 入出力光ファイバ
195 検出器アパーチャ
300 クロマティック共焦点センサ光学ペン
320、320' ハウジングアセンブリ
350、350' 光学素子部分
352 保持要素
352A 位置決め肩部
354 組立要素
354A〜354C 位置決め肩部
356 保持リング
358 端部要素
358A 位置決め肩部
400 クロマティック共焦点センサ光学ペン
405 入出力光ファイバサブアセンブリ
408 光ファイバコネクタ
410 取付用ねじ
412' 光ファイバケーブル
480 取付要素
495 アパーチャ

Claims (11)

  1. 表面までの距離を測定するのに有用な信号をもたらすように動作可能であり、かつ熱感度が補償されたクロマティック共焦点センサ光学ペンであって、
    ハウジング;
    光源光を出射し、かつ反射光を受光するアパーチャ;および
    前記アパーチャからの前記光源光を受光し、前記光源光をフォーカスさせて、それを前記表面に向かって軸方向に色分散させて出射させ、前記表面からの反射光を受光して、前記アパーチャに近接して、軸方向に色分散させて前記反射光をフォーカスさせるように、前記クロマティック共焦点センサ光学ペンの光軸に沿って配置されたレンズ構成
    を含み、前記レンズ構成が:
    前記アパーチャの近くに配置された第1の部分と、前記アパーチャから離れて配置された第2の部分とを含む複レンズ素子;および
    前記アパーチャから前記複レンズ素子よりも遠くに配置された正の屈折力のレンズ部分であって、少なくとも2つのレンズ素子を含む前記正の屈折力のレンズ部分
    を含み、
    各レンズ素子が、温度Tの範囲にわたって屈折力φ1、熱膨張係数αTi、屈折率niおよび熱焦点ずれ係数χiによって特徴づけられ、ここで
    Figure 0005748517
    であり、
    前記正の屈折力のレンズ部分の前記レンズ素子の少なくとも2つが、前記ハウジングの熱膨張から生じた熱感度を含めて、前記クロマティック共焦点センサ光学ペンを全体的な熱感度を少なくとも部分的に補償するように構成され;および
    前記正の屈折力のレンズ部分の前記レンズ素子の少なくとも2つの前記熱焦点ずれ係数χiの平均が、10ppm/℃以上となる平均熱焦点ずれ係数である、クロマティック共焦点センサ光学ペン。
  2. 前記正の屈折力のレンズ部分の前記レンズ素子が多くても4つのレンズ素子からなる、請求項1に記載のクロマティック共焦点センサ光学ペン。
  3. 前記正の屈折力のレンズ部分の前記レンズ素子が:
    前記複レンズ素子の前記第2の部分に近接して配置された両凸レンズ素子;
    前記両凸レンズ素子に近接して配置された第1のメニスカスレンズ素子;および
    前記第1のメニスカスレンズ素子に近接して配置された第2のメニスカスレンズ素子
    を含む、請求項1に記載のクロマティック共焦点センサ光学ペン。
  4. 前記第1のメニスカスレンズおよび前記第2のメニスカスレンズの前記平均熱焦点ずれ係数が10ppm/℃以上となる、請求項3に記載のクロマティック共焦点センサ光学ペン。
  5. 前記第1のメニスカスレンズ素子および前記第2のメニスカスレンズ素子のそれぞれが正の屈折力をもたらす、請求項3に記載のクロマティック共焦点センサ光学ペン。
  6. 前記両凸レンズ素子が正の屈折力をもたらす、請求項3に記載のクロマティック共焦点センサ光学ペン。
  7. さらに組立要素および端部要素を含み、前記全体的な熱感度が、前記組立要素および前記端部要素の熱膨張から生じた熱感度を含む、請求項1に記載のクロマティック共焦点センサ光学ペン。
  8. さらに入出力光ファイバサブアセンブリを含み、前記全体的な熱感度が、前記入出力光ファイバサブアセンブリの熱膨張から生じた熱感度を含む、請求項7に記載のクロマティック共焦点センサ光学ペン。
  9. 前記レンズ構成の各レンズ素子がガラス材料を含む、請求項1に記載のクロマティック共焦点センサ光学ペン。
  10. 前記レンズ構成の各レンズ素子が球面レンズ素子である、請求項1に記載のクロマティック共焦点センサ光学ペン。
  11. 前記レンズ構成の前記レンズ素子が:
    前記アパーチャの近くに配置された第1の部分と、前記アパーチャから離れて配置された第2の部分とを有する複レンズ素子;
    前記複レンズ素子の前記第2の部分に近接して配置された両凸レンズ素子;
    前記両凸レンズ素子に近接して配置された第1のメニスカスレンズ素子;および
    前記第1のメニスカスレンズ素子に近接して配置された第2のメニスカスレンズ素子
    からなり、
    前記両凸レンズ素子、前記第1のメニスカスレンズ素子および前記第2のメニスカスレンズ素子が前記正の屈折力のレンズ部分を形成し;および
    前記第1のメニスカスレンズおよび前記第2のメニスカスレンズの前記平均熱焦点ずれ係数が10ppm/℃以上となる、請求項1に記載のクロマティック共焦点センサ光学ペン。
JP2011059623A 2010-03-18 2011-03-17 クロマティック共焦点センサ光学ペン Active JP5748517B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/727,161 US8134691B2 (en) 2010-03-18 2010-03-18 Lens configuration for a thermally compensated chromatic confocal point sensor
US12/727,161 2010-03-18

Publications (2)

Publication Number Publication Date
JP2011197005A JP2011197005A (ja) 2011-10-06
JP5748517B2 true JP5748517B2 (ja) 2015-07-15

Family

ID=44201953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059623A Active JP5748517B2 (ja) 2010-03-18 2011-03-17 クロマティック共焦点センサ光学ペン

Country Status (3)

Country Link
US (1) US8134691B2 (ja)
EP (1) EP2369294B1 (ja)
JP (1) JP5748517B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414817B (zh) * 2010-07-23 2013-11-11 Univ Nat Taipei Technology 線型彩色共焦顯微系統
US8860931B2 (en) 2012-02-24 2014-10-14 Mitutoyo Corporation Chromatic range sensor including measurement reliability characterization
US8928874B2 (en) 2012-02-24 2015-01-06 Mitutoyo Corporation Method for identifying abnormal spectral profiles measured by a chromatic confocal range sensor
JP5652423B2 (ja) * 2012-04-02 2015-01-14 コニカミノルタ株式会社 画像形成装置
DE102013008582B4 (de) 2013-05-08 2015-04-30 Technische Universität Ilmenau Verfahren und Vorrichtung zur chromatisch-konfokalen Mehrpunktmessung sowie deren Verwendung
DE102017122689A1 (de) 2017-09-29 2019-04-04 Precitec Optronik Gmbh Verfahren und Vorrichtung zur berührungslosen Messung eines Abstands zu einer Oberfläche oder eines Abstands zwischen zwei Oberflächen
DE102020200214A1 (de) * 2020-01-09 2021-07-15 Hochschule für angewandte Wissenschaften Kempten Körperschaft des öffentlichen Rechts Konfokale Messvorrichtung zur 3D-Vermessung einer Objektoberfläche
CN113029032B (zh) * 2021-03-26 2022-04-01 中南大学 基于光谱共焦的高精度面形测量方法及装置
CN114236761B (zh) * 2021-12-20 2023-07-28 福建福光股份有限公司 一种用于高精度表面形貌检测的准线性色散物镜

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807836A (en) * 1973-01-02 1974-04-30 Polaroid Corp Compact four element objective lenses of plastic and glass
US4505535A (en) * 1982-02-06 1985-03-19 Barr & Stroud Limited Infrared objective lens systems
JPS59211013A (ja) * 1983-05-16 1984-11-29 Fuji Photo Optical Co Ltd 温度補償を施したプラスチツク対物レンズ系
CH663466A5 (fr) * 1983-09-12 1987-12-15 Battelle Memorial Institute Procede et dispositif pour determiner la position d'un objet par rapport a une reference.
JPS63221313A (ja) * 1987-03-11 1988-09-14 Olympus Optical Co Ltd ズ−ムフアインダ−
US5412510A (en) * 1989-05-15 1995-05-02 Asahi Kogaku Kogyo Kabushiki Kaisha Imaging optical system for compensating change of temperature
JPH03163411A (ja) * 1989-07-20 1991-07-15 Ricoh Co Ltd 走査光学系
FR2667695B1 (fr) * 1990-10-09 1993-08-27 Thomson Trt Defense Systeme d'objectifs a athermalisation optique.
US5260828A (en) * 1992-03-27 1993-11-09 Polaroid Corporation Methods and means for reducing temperature-induced variations in lenses and lens devices
US5210650A (en) * 1992-03-31 1993-05-11 Eastman Kodak Company Compact, passively athermalized optical assembly
US5386312A (en) * 1992-08-03 1995-01-31 Hughes Aircraft Company Collimating lens having doublet element between positive-power elements
US5785651A (en) * 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
JP3625923B2 (ja) * 1995-09-28 2005-03-02 フジノン株式会社 レトロフォーカス型レンズ
JPH10133102A (ja) * 1996-10-30 1998-05-22 Fuji Photo Optical Co Ltd 色補正と温度補償のなされたレンズ
JPH1172727A (ja) * 1997-09-01 1999-03-16 Minolta Co Ltd 走査光学系及び走査光学装置
US6108071A (en) * 1997-12-12 2000-08-22 Laser Atlanta Speed and position measurement system
US6731838B1 (en) * 2000-06-02 2004-05-04 Confluent Photonics Corporation Athermalization and pressure desensitization of diffraction grating based WDM devices
WO2002008685A2 (en) 2000-07-26 2002-01-31 Optinav, Inc. Apparatus and method for determining the range of remote objects
JP2003069127A (ja) * 2001-08-28 2003-03-07 Kyocera Corp 光半導体素子収納用パッケージおよび光半導体装置
JP2003202468A (ja) * 2002-01-08 2003-07-18 Kuraray Co Ltd 光ファイバー
US6688783B2 (en) * 2002-03-25 2004-02-10 Princeton Lightwave, Inc. Method of fabricating an optical module including a lens attached to a platform of the optical module
DE10242374A1 (de) * 2002-09-12 2004-04-01 Siemens Ag Konfokaler Abstandssensor
EP1550028A1 (en) 2002-10-10 2005-07-06 Waawoo Technology Inc. Pen-shaped optical mouse
JP2006017830A (ja) * 2004-06-30 2006-01-19 Sony Corp 光学系及び光学ヘッド装置
US7477401B2 (en) * 2004-11-24 2009-01-13 Tamar Technology, Inc. Trench measurement system employing a chromatic confocal height sensor and a microscope
JP2006201604A (ja) * 2005-01-21 2006-08-03 Nikon Corp テレフォト型屈折光学系
DE102005023351A1 (de) * 2005-05-17 2006-11-30 Micro-Epsilon Messtechnik Gmbh & Co Kg Vorrichtung und Verfahren zum Vermessen von Oberflächen
DE102006007170B4 (de) * 2006-02-08 2009-06-10 Sirona Dental Systems Gmbh Verfahren und Anordnung zur schnellen und robusten chromatisch konfokalen 3D-Messtechnik
JP2007271674A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 光デバイス
ITMI20070191A1 (it) * 2007-02-05 2008-08-06 Abb Service Srl Trasmettitore di pressione per il rilevamento di una variabile relativa ad un fluido di processo.
US7791712B2 (en) * 2007-03-27 2010-09-07 Mitutoyo Corporation Chromatic confocal sensor fiber interface
US7626705B2 (en) * 2007-03-30 2009-12-01 Mitutoyo Corporation Chromatic sensor lens configuration
DE102008024598A1 (de) 2007-05-21 2008-12-18 Micro-Epsilon Messtechnik Gmbh & Co. Kg Verfahren zur Kompensation von temperaturbedingten Messfehlern einer optischen Anordnung sowie optische Anordnung
JP2009236653A (ja) * 2008-03-27 2009-10-15 Nikon Corp 変位検出装置、露光装置、およびデバイス製造方法

Also Published As

Publication number Publication date
EP2369294A1 (en) 2011-09-28
US8134691B2 (en) 2012-03-13
US20110228250A1 (en) 2011-09-22
EP2369294B1 (en) 2014-07-30
JP2011197005A (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5748517B2 (ja) クロマティック共焦点センサ光学ペン
JP5011166B2 (ja) クロマティック共焦点センサ
AU2018229081B2 (en) Optical Scanner and Scanned Lens Optical Probe
US8212997B1 (en) Chromatic confocal point sensor optical pen with extended measuring range
JP6185825B2 (ja) 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
ITTO960119A1 (it) Analizzatore ottico
US20080231961A1 (en) Enhanced parfocality
JP2008032991A (ja) 干渉計用基準レンズ
JP2008045891A (ja) 放射温度計
JP6238592B2 (ja) 光学系の偏芯量算出方法及びそれを用いた光学系の調整方法
JP6251982B2 (ja) 光学系、および面形状測定装置
JP2018537708A (ja) 小さな中心遮蔽部を有する広帯域反射屈折顕微鏡対物レンズ
JP6392947B2 (ja) 液浸顕微鏡対物レンズ及びそれを用いた顕微鏡
US6762889B2 (en) Compact telephoto lens for grating scale position measuring system
Mikš et al. Theory of chromatic sensor for topography measurements
JP6135127B2 (ja) 光学系、および面形状測定装置
Peng et al. Design, assembly, and metrology of an oil-immersion microscope objective with long working distance
JP4252810B2 (ja) 干渉計用基準レンズ
JP6131596B2 (ja) 光学系、および面形状測定装置
CN114236761A (zh) 一种用于高精度表面形貌检测的准线性色散物镜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150512

R150 Certificate of patent or registration of utility model

Ref document number: 5748517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250