JP5735660B2 - アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システム - Google Patents

アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システム Download PDF

Info

Publication number
JP5735660B2
JP5735660B2 JP2013553258A JP2013553258A JP5735660B2 JP 5735660 B2 JP5735660 B2 JP 5735660B2 JP 2013553258 A JP2013553258 A JP 2013553258A JP 2013553258 A JP2013553258 A JP 2013553258A JP 5735660 B2 JP5735660 B2 JP 5735660B2
Authority
JP
Japan
Prior art keywords
waveguide
slab
input
wavelength
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013553258A
Other languages
English (en)
Other versions
JPWO2013105466A1 (ja
Inventor
浩崇 中村
浩崇 中村
真也 玉置
真也 玉置
木村 俊二
俊二 木村
水野 隆之
隆之 水野
高橋 浩
浩 高橋
井藤 幹隆
幹隆 井藤
鬼頭 勤
勤 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013553258A priority Critical patent/JP5735660B2/ja
Publication of JPWO2013105466A1 publication Critical patent/JPWO2013105466A1/ja
Application granted granted Critical
Publication of JP5735660B2 publication Critical patent/JP5735660B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Description

本発明は、アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システムに関する。さらに詳しくは、波長多重通信用の光合分波に関し、異なる波長帯であってかつ異なる波長間隔を持つ光信号を振り分けることの可能な光合分波回路となるアレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システムに関する。
近年の急速なインターネット普及に伴い、アクセスサービスシステムの大容量化、高度化、経済化が求められている中、それを実現する手段としてPassive Optical Network(PON)の研究が進められている。PONとは、光ファイバ網の途中に分岐装置を挿入して、1本の光ファイバを複数の加入者宅に引き込むシステムのことであり、光受動素子による光合分波器を用いて、1個のセンタ装置および伝送路の一部を複数ユーザで共有することにより経済化を図る光通信システムである。
現在、日本では主として1Gbpsの回線容量を最大32ユーザで時分割多重化(TDM:Time Division Multiplexing)によって共有する経済的な光通信システムや、いわゆるGigabit Ethernet(登録商標) PON(GE−PON)が導入されている。これにより、FTTH(Fiber To The Home)サービスが現実的な料金で提供されるようになっている。
また、より大容量のニーズに対応するため、次世代光アクセスシステムとして、総帯域が10Gbpsレベルである10GE−PONの研究が進められており、2009(平成21)年に国際標準化が完了した。これは、送受信器のビットレートを増大させることにより、光ファイバ等の伝送路部分はGE−PONと同一のものを利用しながら大容量化を実現する光通信システムである。そして、さらなる将来には、超高精細映像サービスやユビキタスサービスなど、10Gレベルを超える大容量が求められることが考えられる一方、単純に送受信器のビットレートを10Gレベルから40/100G級に増大させるだけでは、システムアップグレードにかかるコストの増大により、実用化が難しいという問題があった。
かかる問題を解決する技術としては、帯域要求量に応じてセンタ局装置内の送受信器を段階的に増設することができるように、送受信器に波長可変性を付加し、前記した時分割多重化(TDM)及び波長分割多重化(WDM:Wavelength Division Multiplexing)を効果的に組み合わせた波長可変型WDM/TDM−PONが報告されている(例えば、非特許文献1を参照。)。このような波長可変型WDM/TDM−PONのシステムを実現するにあたり、従来のシステムと共存できるように未使用波長を用いることとし、かつ、これを低コストで実現するためには、ユーザ側装置内には1.3μm帯の広波長間隔の波長可変光送信器を用い、センタ装置側には1.5μm帯の狭波長間隔の波長可変光送信器を用いることが考えられる。一方、これら1.3μm帯の広波長間隔の信号光や、1.5μm帯の狭波長間隔の信号光の波長振り分けを行う際には波長光合分波器が必要であるため、かかる波長光合分波器として、アレイ導波路回折格子を用いることが考えられる。
波長光合分波器であるアレイ導波路回折格子は、入力導波路と、入力側スラブ導波路と、出力導波路と、出力側スラブ導波路と、入力側スラブ導波路と出力側スラブ導波路を接続するチャネル導波路群から構成されており、チャネル導波路群は、所定の経路長差で順次経路長が長くなる複数本のチャネル導波路からなる(例えば、特許文献1、特許文献2または特許文献3を参照。)。かかるアレイ導波路回折格子は、適用するシステムに合わせて波長帯や波長間隔を設定することができ、例えば、1.3μm帯広波長間隔のアレイ導波路回折格子や、1.5μm帯狭波長間隔のアレイ導波路回折格子等が報告されている。しかし、アレイ導波路回折格子の波長間隔は、チャネル導波路群の経路長差に依存するため、1.3μm帯では広波長間隔、1.5μm帯では狭波長間隔の信号光を振り分けすることのできるアレイ導波路回折格子は、これまでの技術では実現不可能であった。
そこで、1.3μm帯では広波長間隔、1.5μm帯では狭波長間隔の信号光を振り分けすることのできるアレイ導波路回折格子として、1.3μm帯(波長帯A)、広波長間隔(波長間隔X)の信号光の波長振り分けを行う機能を有するアレイ導波路回折格子と、1.5μm帯(波長帯B)、狭波長間隔(波長間隔Y)の信号光の波長振り分けを行うアレイ導波路回折格子を組み合わせて用いて、各アレイ導波路回折格子の入出力ポートを、それぞれ、光フィルタを介して接続することが考えられ、検討が進められた。
図22は、2つのアレイ導波路回折格子302、303と、入出力ポートを接続する多数の光フィルタ301、304を組み合わせた従来の波長振り分け器Hの一例を示した概略図である。かかる波長振り分け器Hは、複数の光フィルタ301と、アレイ導波路回折格子302と、アレイ導波路回折格子303と、複数の光フィルタ304と、これら複数の光フィルタ301と304と、アレイ導波路回折格子302、303の入力導波路もしくは出力導波路とを接続するための光ファイバ307とで構成されている。
なお、以下の説明では、波長振り分け器Hにおける入出力口305側から入射されて入出力口306側へ出射される信号光を上り信号、入出力口306側から入射されて入出力口305側へ出射される信号光を下り信号と呼ぶことにする。また、信号光として、入出力口305の数と入出力口306の数がともにNであって、波長帯Aの信号光{λa1、λa2、 ・・・、 λaN;波長間隔X}が波長帯Bの信号光{λb1、λb2、・・・、λbN;波長間隔Y}よりも短波長側であり、波長間隔Xが波長間隔Yより大きい場合を例に挙げ、光フィルタ301と304としては、後記する図2及び図3に示す特性を備えた薄膜フィルタ(光干渉フィルタ))(例えば、特許文献4を参照。)によって構成される場合について説明する。
入出力口305のIから入射された信号光{λb1、λb2、・・・λbn}は、光フィルタ301−1内の薄膜フィルタを透過し、狭波長間隔用のアレイ導波路回折格子302に到達する。アレイ導波路回折格子302によって各信号光は光フィルタ304−1〜光フィルタ304−nへと振り分けられる。振り分けられた各信号光は、光フィルタ304内の薄膜フィルタを透過し、入出力口306のO〜Oに出射される。
入出力口305のIから入射された信号光{λb1、λb2、・・・λbn}は、光フィルタ301−1内の薄膜フィルタを透過し、狭波長間隔用のアレイ導波路回折格子302に到達する。アレイ導波路回折格子302の持つ周回特性によって各信号光は光フィルタ304−2、304−3、・・・、304−n、304−1へと振り分けられる。振り分けられた各信号光は、光フィルタ304内の薄膜フィルタを透過し、入出力口306のO、O、・・・、O、Oに出射される。入出力口305のI〜Iから入射された信号光{λb1、λb2、・・・λbn}についても同様で、後記する図23(b)のように波長振り分けされることとなる。
入出力口305のIから入射された信号光{λa1、λa2、・・・λan}は、光フィルタ301−1内の薄膜フィルタにおいて反射され、広波長間隔用のアレイ導波路回折格子303に到達する。アレイ導波路回折格子303によって各信号光は光フィルタ304−1 〜光フィルタ304−nへと振り分けられる。振り分けられた各信号光は、光フィルタ304内の薄膜フィルタを反射し、入出力口306のO〜Oに出射される。
入出力口305のIから入射された信号光{λa1、λa2、・・・λan}は、光フィルタ301−1内の薄膜フィルタにおいて反射され、広波長間隔用アレイの導波路回折格子303に到達する。アレイ導波路回折格子303の持つ周回特性によって各信号光は光フィルタ304−2、304−3、・・・、304−n、304−1へと振り分けられる。振り分けられた各信号光は、光フィルタ304内の薄膜フィルタを反射し、入出力口306のO、O、・・・、O、Oに出射される。入出力口305のI〜Iから入射された信号光{λa1、λa2、・・・λan}についても同様で、後記する図23(a)のように波長振り分けされることとなる。
なお、前記した波長振り分けについては、光の進行方向の可逆性により、信号光が入出力口306側から入射して入出力口305側から出射する場合も後記する図23(a)及び図23(b)の対応関係を満たすことができる。
このようにして、図22に一例を示した波長振り分け器Hにより、短波長帯かつ広波長間隔の上り信号と長波長帯かつ狭波長間隔の下り信号が、一芯双方向で波長振り分けされることになる。
H.Nakamura、et al.,OFC2011、OThT4、 2011.
特開平9−297228号公報 特開平10−104446号公報 特開2005−148585号公報 特開平8−234029号公報
ところで、このような波長振り分け器Hは、通信事業者局内の限られた空間に設置されることが想定されるため、小型化の実現が強く望まれている。一方、前記した従来の技術による波長振り分け器は、光フィルタと、狭波長間隔のアレイ導波路回折格子及び広波長間隔のアレイ導波路回折格子とを組み合わせるとともに、それぞれを光ファイバで接続して装置化する必要があるため、専有面積が大きくなってしまうといった問題があった。加えて、従来の波長振り分け器は、部品点数が多く、コスト高となってしまうため、改善が望まれていた。
そこで、本発明は、このような事情を鑑みてなされたものであり、異なる波長帯であってかつ異なる波長間隔を持つ光信号を一芯双方向で波長振り分けでき、コンパクトに収まり、低コストなアレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システムを提供することを目的とする。
上記目的を達成するために、アレイ導波路回折格子は、2以上のチャネル導波路群を備えて、合分波することとした。
具体的には、本発明は、基板上に形成された第1のスラブ導波路と、前記基板上に形成された第2のスラブ導波路と、前記第1のスラブ導波路に接続された第1の入出力導波路と、前記第2のスラブ導波路に接続された第2の入出力導波路と、前記第1のスラブ導波路と前記第2のスラブ導波路を接続し、それぞれ所定の経路長差で順次経路長が長くなる複数本のチャネル導波路の集合体からなる2以上のチャネル導波路群と、前記第1のスラブ導波路及び前記第2のスラブ導波路の少なくとも一方に配設された光フィルタと、を備えることを特徴とするアレイ導波路回折格子である。
本発明によれば、基板上に形成された第1のスラブ導波路及び第2のスラブ導波路の少なくとも一方に光フィルタを配設し、2以上のチャネル導波路群を備える構成により、波長多重された、波長帯及び波長間隔が異なる信号光を、単一の平面光波回路内において波長振り分けすることができるため、コンパクトに収まり、低コストなアレイ導波路回折格子とすることができる。
本発明に係るアレイ導波路回折格子は、前記した本発明において、前記光フィルタが、配設される前記第1のスラブ導波路に接続される前記第1の入力導波路または前記第2のスラブ導波路に接続される前記第2の入力導波路から入力された信号光を波長帯毎に前記2以上のチャネル導波路群へ分波、あるいは波長帯毎に前記2以上のチャネル導波路群から入力された信号光を、配設される第1のスラブ導波路接続される前記第1の入力導波路または前記第2のスラブ導波路に接続される前記第2の入力導波路に合波することを特徴とする。
本発明に係るアレイ導波路回折格子は、前記した本発明において、前記2以上のチャネル導波路群は、それぞれ異なる経路長差を持つことを特徴とする。
本発明に係るアレイ導波路回折格子は、前記した本発明において、前記第1のスラブ導波路及び前記第2のスラブ導波路に、前記チャネル導波路群との接続部が形成され、当該接続部が、前記チャネル導波路群の数と同数であることを特徴とする。
本発明に係るアレイ導波路回折格子は、前記した本発明において、前記第1のスラブ導波路に形成される2本のスラブ中心軸、及び前記第2のスラブ導波路に形成される2本のスラブ中心軸のうち少なくとも一方が直交することを特徴とする。
本発明に係るアレイ導波路回折格子は、前記第1のスラブ導波路に形成される2本のスラブ中心軸のチャネル導波路群で挟まれる側の角度、及び前記第2のスラブ導波路に形成される2本のスラブ中心軸のチャネル導波路群で挟まれる側の角度のうち少なくとも一方が、90度より小さいことを特徴とする。
本発明に係るアレイ導波路回折格子は、前記した本発明において、前記第1のスラブ導波路における2本のスラブ長、及び前記第2のスラブ導波路における2本のスラブ長のうち少なくとも一方が等しいことを特徴とする。
本発明に係るアレイ導波路回折格子は、前記第一のスラブ導波路又は前記第二のスラブ導波路のうち、前記光フィルタの配設されたいずれかで、前記光フィルタを通過する光が前記光フィルタの通過によって生じる光路のずれの分だけ、前記第一の入出力導波路の側の中心軸又は前記第二の入出力導波路の側の中心軸と前記チャネル導波路群の側の中心軸とがずれていることを特徴とする。
本発明に係る光モジュールは、前記した本発明に係るアレイ導波路回折格子と、当該アレイ導波路回折格子を構成する前記第1の入出力導波路と接続される少なくとも1本のファイバが保持された第1のファイバブロックと、前記アレイ導波路回折格子を構成する前記第2の入出力導波路と接続される少なくとも1本の光ファイバが保持された第2のファイバブロックと、前記第1のファイバブロックと繋がる第1の光コネクタと、前記第2のファイバブロックと繋がる第2の光コネクタと、を含むことを特徴とする。
本発明に係る光通信システムは、前記した本発明に係るアレイ導波路回折格子と、加入者装置と、局側装置と、を備え、前記アレイ導波路回折格子と加入者装置及び前記局側装置が光ファイバで接続され、前記アレイ導波路回折格子における一方の前記入出力導波路群から入力される信号光の波長帯及び波長間隔と、他方の前記入出力導波路群から入力される信号光の波長帯及び波長間隔が異なる信号光であることを特徴とする。
本発明に係るアレイ導波路回折格子によれば、基板上に形成された第1のスラブ導波路及び第2のスラブ導波路の少なくとも一方に光フィルタを配設し、2以上のチャネル導波路群を備える構成により、波長多重された、波長帯及び波長間隔が異なる信号光を、単一の平面光波回路内において波長振り分けすることができるため、コンパクトに収まり、低コストなアレイ導波路回折格子とすることができる。
本発明に係る光モジュールは、前記した本発明に係るアレイ導波路回折格子を備えているので、当該アレイ導波路回折格子の奏する効果を享受し、アレイ導波路回折格子に外部からの信号光を入出力することができる光モジュールとして使用することができる。
本発明に係る光通信システムは、前記した本発明に係るアレイ導波路回折格子を備えているので、当該アレイ導波路回折格子の奏する効果を享受し、低コストな波長可変型WDM/TDM−PONとすることができる。
本発明の第1実施形態に係るアレイ導波路回折格子を示した概略図である。 光フィルタ(干渉膜フィルタ)の特性の一例を示した概略図である。 光フィルタ(干渉膜フィルタ)の波長合分波の一例を示した概略図である。 図1に示したアレイ導波路回折格子の動作原理を説明するための説明図である。 図1に示したアレイ導波路回折格子の動作原理を説明するための説明図である。 第1実施形態のアレイ導波路回折格子を構成するスラブ導波路の構造の一例を示した概略図である。 アレイピッチdとスラブ長Lの関係を示した図である。 AWG1のNchを変化させた場合のdとdの関係を示した図である。 AWG2のNchを変化させた場合のdとdの関係を示した図である。 AWG1の中心波長λc1を変化させた時の、AWG1のアレイピッチdとAWG2のアレイピッチdの関係を示した図である。 AWG2の中心波長λc2を変化させた時の、AWG1のアレイピッチdとAWG2のアレイピッチdの関係を示した図である。 本発明の第2実施形態に係るアレイ導波路回折格子を示した概略図である。 図12に示したアレイ導波路回折格子の動作原理を説明するための説明図である。 図12に示したアレイ導波路回折格子の動作原理を説明するための説明図である。 本発明の第1実施形態に係るアレイ導波路回折格子を用いた光通信システムの一態様を示した概略図である。 波長配置の一例を示した概略図である。 本発明の第2実施形態に係るアレイ導波路回折格子を用いた光通信システムの一態様を示した概略図である。 第1実施形態に係るアレイ導波路回折格子の他の態様を示した概略図である。 第1実施形態に係るアレイ導波路回折格子の他の態様を示した概略図である。 第1実施形態に係るアレイ導波路回折格子の他の態様を示した概略図である。 本発明の第1実施形態に係るアレイ導波路回折格子を備えた光モジュールの一態様を示した概略図である。 従来の波長振り分け器の一例を示した概略図である。 波長振り分け特性の例を説明する図である。 波長振り分け特性の例を説明する図である。 波長振り分け特性の例を説明する図である。 第1実施形態に係るアレイ導波路回折格子の他の態様を示した概略図である。 第1実施形態のアレイ導波路回折格子を構成するスラブ導波路の光フィルタ121を光が通過する例を示した概略図である。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。各実施形態は可能な限り組み合わせることができる。
(第1実施形態)
図1は本発明の第1実施形態に係るアレイ導波路回折格子1の一態様を示した概略図である。図1に示すように、本発明の第1実施形態に係るアレイ導波路回折格子1は、両側入出力導波路一体型のアレイ導波路回折格子1となり、シリコン基板やガラス基板等から構成される基板101の上に、第1のスラブ導波路103と、第2のスラブ導波路107と、第1のスラブ導波路103に接続された第1の入出力導波路102と、第2のスラブ導波路107に接続された第2の入出力導波路109と、両端が第1のスラブ導波路103及び第2のスラブ導波路107に接続された第1のチャネル導波路群105と、両端が第1のスラブ導波路103及び第2のスラブ導波路107に接続された第2のチャネル導波路群106が形成されている。
アレイ導波路回折格子1を構成する第1のチャネル導波路群105と、第2のチャネル導波路群106は、それぞれ、所定の経路長差で順次経路長が長くなる複数本のチャネル導波路から形成されている。また、アレイ導波路回折格子1を構成する第1のスラブ導波路103の一部に形成したスリット104に光フィルタである干渉膜フィルタから構成される光フィルタ121が埋め込まれて配設されており、第2のスラブ導波路107の一部に形成したスリット108にも、干渉膜フィルタからなる光フィルタ122が埋め込まれて配設されている。
なお、図1において、第1の入出力導波路102と第1のスラブ導波路103との接続部分を接続部111、第2の入出力導波路109と第2のスラブ導波路107との接続部分を接続部116、第1のスラブ導波路103と第1のチャネル導波路群105との接続部分を接続部112、第1のスラブ導波路103と第2のチャネル導波路群106との接続部分を接続部113、第2のスラブ導波路107と第1のチャネル導波路群105との接続部分を接続部114、第2のスラブ導波路107と第2のチャネル導波路群106との接続部分を接続部115、としている。
また、第1のスラブ導波路103には、2本のスラブ中心軸131、132が形成される。一方のスラブ中心軸131は、第1の入出力導波路102と第1のスラブ導波路103との接続部111における曲率中心141と、第1のチャネル導波路群105と第1のスラブ導波路103との接続部112における曲率中心142を結ぶ軸であり、他方のスラブ中心軸132は、第2のチャネル導波路群106と第1のスラブ導波路103との接続部113における曲率中心143と、前記した一方のスラブ中心軸131と第1のスラブ導波路103に配設される光フィルタ121との交点を結ぶ軸(及びその延長軸)である。
同様に、第2のスラブ導波路107にも、2本のスラブ中心軸133、134が形成される。一方のスラブ中心軸133は、第2の入出力導波路109と第2のスラブ導波路107との接続部116における曲率中心146と、第1のチャネル導波路群105と第2のスラブ導波路107との接続部114における曲率中心144を結ぶ軸であり、他方のスラブ中心軸134は、第2のチャネル導波路群106と第2のスラブ導波路107との接続部115における曲率中心145と、前記した一方のスラブ中心軸133と第2のスラブ導波路107に配設される光フィルタ122との交点を結ぶ軸(及びその延長軸)である。
図1に示すように、本実施形態に係るアレイ導波路回折格子1にあっては、2つのチャネル導波路(第1のチャネル導波路群105及び第2のチャネル導波路群106)が形成されている。また、第1のスラブ導波路103には、第1のチャネル導波路群105との接続部112及び第2のチャネル導波路群106との接続部113というチャネル導波路群と同数の2つの接続部が形成されている。同様に、第2のスラブ導波路107にも、第1のチャネル導波路群105との接続部114及び第2のチャネル導波路群106との接続部115というチャネル導波路群と同数の2つの接続部が形成されている。
本実施形態に係るアレイ導波路回折格子1を構成する第1のチャネル導波路群105は、その長さが所定の導波路経路長差ΔLで順次長くなるように形成され、また、第2のチャネル導波路群106は、その長さが所定の導波路経路長差ΔL´で順次長くなるように形成されている。ここで、導波路経路長差ΔLとΔL’の関係としてΔL>ΔL’の場合を例に挙げると、第1のチャネル導波路群105は、第2のチャネル導波路群106に比べて狭い波長間隔の信号光を透過させる特性を有する。
本実施形態において、アレイ導波路回折格子1に配設される光フィルタ121(干渉膜フィルタ121)は、光フィルタ121と、第1のスラブ導波路103におけるスラブ中心軸131とがなす角度と、スラブ中心軸132と光フィルタ121とがなす角度が一致するように配置されている。同様に、光フィルタ122(干渉膜フィルタ122)は、光フィルタ121と、第1のスラブ導波路103におけるスラブ中心軸133とがなす角度と、スラブ中心軸134と光フィルタ121とがなす角度が一致するように配置されている。
また、光フィルタ(干渉膜フィルタ)121、122は、異なる波長帯域(以下、波長帯A、波長帯Bとする。)の2つの信号光について、波長帯Aの光を反射、波長帯Bの光を透過する。
図2は、光フィルタ(干渉膜フィルタ121、122)の特性の一例を示した概略図を示す。図2中、実線部の波長帯Aにあっては、後記する図3における地点(1)から地点(3)への波長帯と透過率の関係を、また、波線部の波長帯Bにあっては、図3における地点(1)から地点(2)への波長帯と透過率の関係を示すことになる。
図3は、図2に特性を示した光フィルタ(干渉膜フィルタ121、122)の波長合分波の一例を示した概略図を示す。図3に示すように、地点(1)より入射されたλ(波長帯A)の信号光は、光フィルタ121、122により反射され、地点(3)に向かう。一方、地点(1)より入射されたλ(波長帯B)は、光フィルタ121、122を透過し、地点(2)に向かう、同様に、地点(2)より入射されたλは光フィルタを透過し地点(1)に向かい、地点(3)より入射されたλは、光フィルタを反射し、地点(1)に向かうことになる。
以下、光フィルタとして、異なる波長帯域の2つの信号光について、図2に示すような特性を有し、図3に示すような波長合分波を行うことができる光フィルタ(干渉膜フィルタ)121、122を利用し、波長帯Aかつ広波長間隔(波長間隔X)をもつ信号光と、波長帯Bかつ狭波長間隔(波長間隔Y)をもつ信号光を一芯双方向で透過させる波長振り分けの動作原理について、図4及び図5を用いて説明する。ここでは、X>Yとなる。
図4及び図5は、図1に示したアレイ導波路回折格子1の動作原理を説明するための説明図である。図4は、波長帯Bでかつ狭波長間隔の信号光151が、第1の入出力導波路102のうちの1本の導波路から入力され、波長に応じて第2の入出力導波路109の各導波路に振り分けられる態様を示している。
図4において、波長帯Bの信号光151(波長λbx)が、第1の入出力導波路102から第1のスラブ導波路103に入力され、第1のスラブ導波路103を伝搬する。ここで、光フィルタ121は、図2に示したように波長帯Bの光を透過させるので、信号光151はスポットサイズを拡大させながら、第1のスラブ導波路103をさらに伝搬する。このとき、第1のスラブ導波路103と第1のチャネル導波路群105の入力口との接続部112は、第1の入力用導波路102と第1のスラブ導波路103との接続部111に曲率中心141をもつような円弧状に形成された面となっているため、この信号光151は等位相で第1のチャネル導波路群105に入射し、第1のチャネル導波路群105を構成する各チャネル導波路に分配されることになる。
第1のチャネル導波路群105を構成する各チャネル導波路は、前記したように長さがそれぞれ異なるため、第1のチャネル導波路群105の出力口においては、チャネル導波路ごとに位相のずれた信号光が出力される。第1のチャネル導波路群105の導波路経路長差をΔLとすると、隣接するチャネル導波路間での位相差φは式(1)で表され、信号光の波長に依存することが分かる。なお、式(1)中、λは信号光の波長、nはチャネル導波路の実効屈折率を示す。
φ=2πnΔL/λ (1)
また、かかる式(1)式を波長λで微分すると、以下の式(2)を得ることができる。かかる式(2)より、位相差の波長依存性δφは、波長変化であるδλに比例することがわかる。
δφ=−2πnΔLδλ/λ (2)
次に、第1のチャネル導波路群105で位相変化を受けた信号光151は、第1のチャネル導波路群105の接続部114から第2のスラブ導波路107に出力される。このとき、各チャネル導波路間で位相差があるため、等位相面は第2のスラブ導波路107の端面107aに対して傾きを生じる。また、位相差φが波長依存性をもつため、等位相面の傾きも波長依存性をもつ。第1のチャネル導波路群105を構成する各チャネル導波路における円弧上での間隔をsとすると、各波長間(δλ)の位相面の傾きであるδθは式(2)より下記式(3)となる。
δθ=−tan−1{ΔLδλ/(sλ)} (3)
従って、波長間隔δλかつ波長帯Bの信号光151(波長λb1〜λbn)は、角度間隔δθずつ異なった方向に伝搬される。この場合にあって、光フィルタ122は波長帯Bの光に対して透明であるため、波長帯Bの信号光は光フィルタ122を通過することになる。さらに、第1のチャネル導波路群105の端面105aが、円弧状で、その曲率中心146が同スラブ導波路107の端面107b上にあるため、波長多重光λb1〜λbnは、第2のスラブ導波路107の端面107bに集光され、それぞれ、第2の入出力導波路109から出力されることになる。
図5は、図4と同様に、図1に示したアレイ導波路回折格子1の動作原理を説明するための説明図である。図5は、波長帯Aでかつ広波長間隔の信号光152が、入出力導波路102のうちの一つの導波路から入力され、波長に応じて第2の入出力導波路109の各導波路に振り分けられる態様を示している。
図5において、波長帯Aの信号光152(波長λax)が、第1の入出力導波路102から第1のスラブ導波路103に入力され、第1のスラブ導波路103を伝搬する。ここで、光フィルタ121は波長帯Aの光を反射するので、この信号光152は入射角と等しい角度で反射され、第1のスラブ導波路103と第2のチャネル導波路群106との接続部113の方向に伝搬する。このとき、第1のスラブ導波路103は基板101の平面と平行な方向に閉じ込めがなく、信号光152のスポットサイズは伝搬とともに拡大され、加えて光フィルタ121における反射により、信号光152は、第1のスラブ導波路103と第2のチャネル導波路群106の入力口との接続部113に上下反転して分配されることになる。このとき、第1のスラブ導波路103と第2のチャネル導波路群106の入力口との接続部113は、光フィルタ121を鏡面として接続部113側から見たきに、入出力導波路102とスラブ導波路103との接続部111の虚像上に曲率中心141をもつような円弧状に形成されているため、信号光152は等位相で第2のチャネル導波路群106に入射し、各チャネル導波路に分配されることになる。
第2のチャネル導波路群106を構成する各チャネル導波路は長さがそれぞれ異なるため、第2のチャネル導波路群106の出力口においては、チャネル導波路ごとに位相のずれた信号光が出力される。第2のチャネル導波路群106の導波路経路長差をΔL’とすると、隣接するチャネル導波路間での位相差φは前記した式(1)で表され、信号光の波長に依存することが分かる。また、式(1)を波長λ’で微分すると、前記した式(2)となり、位相差の波長依存性δφは、波長変化δλ’に比例することがわかる。
第2のチャネル導波路群106で位相変化を受けた信号光152は、第2のチャネル導波路群106の接続部115から第2のスラブ導波路107に出力される。このとき、各チャネル導波路間で位相差があるため、等位相面は第2のスラブ導波路107の端面107cに対して傾きを生じる。また、位相差φが波長依存性をもつため、等位相面の傾きも波長依存性をもつことになる。第2のチャネル導波路群106を構成する各チャネル導波路の、円弧上での間隔をsとすると、各波長間(δλ’)の位相面の傾きδθは前記した式(2)より、前記した式(3)となる。
従って、波長間隔δλ’かつ波長帯Bの信号光152(波長λa1〜λan)は、角度間隔δθずつ異なった方向に伝搬される。このとき、光フィルタ122は波長帯Aの光を反射するため、波長帯Bの信号光は光フィルタ122において反射し、上下方向に反転して第2のスラブ導波路107の端面107bの方向へ向かう。さらに、第2のチャネル導波路群106の端面106aが円弧状で、光フィルタ122を鏡面として端面106a側から見たときに、端面106aの曲率中心146が第2のスラブ導波路107の端面107bの虚像上にあるため、波長多重光λa1〜λanは、第2のスラブ導波路107の端面107bに集光され、それぞれ、第2の入出力導波路109から出力されることになる。
以上のような動作原理で、図4で示した、第1の入出力導波路102の各ポートI〜Iから入射されたλb1〜λbnの各波長の信号光が、第2の入出力導波路109の各ポートO〜Oに波長振り分けされて出力された際の波長振り分け特性の例を図23(b)に、図5で示した、入出力導波路102の各ポートI〜Iから入射されたλa1〜λanの各波長の信号光が、第2の入出力導波路109の各ポートO〜Oに波長振り分けされて出力された際の波長振り分け特性の例を図23(a)にそれぞれ示す。
なお、前記した図4及び図5の例では、第1の入出力導波路102側から信号光を入射し、第2の入出力用導波路109側から信号光が出射される場合について述べたが、第2の入出力用導波路109側から信号光を入射して第1の入出力導波路102側から信号光が出射される場合についても同様である。
次に、本実施形態に係るアレイ導波路回折格子1の設計方法の一例を説明する。なお、下記の説明では、便宜上、波長帯Aを1.3μm帯、波長間隔20nmとし、波長帯Bを1.5μm帯、周波数間隔100GHzとした場合について説明する。また、広波長間隔用のアレイ導波路回折格子1をAWG1、狭波長間隔用のアレイ導波路回折格子1をAWG2として説明する。
図6は、第1実施形態のアレイ導波路回折格子1を構成するスラブ導波路(第1のスラブ導波路103、第2のスラブ導波路107。以下の説明では総称して「スラブ導波路S」とすることもある。)の構造の一例を示した概略図である。スラブ導波路Sにおいて、波長帯Aと波長帯Bの2つの波長帯の信号光を一芯双方向で振り分けるには、第1の入出力導波路102と、第2の入出力導波路109(図1参照)が、それぞれ波長帯Aと波長帯Bのいずれも同じ入出力導波路が使用されることが好ましい。
また、第1のスラブ導波路103や第2のスラブ導波路107において、波長帯Aと波長帯Bの2つの波長帯の信号光を一芯双方向で振り分けるには、第1のスラブ導波路103であれば、第1の入出力導波路102と第1のスラブ導波路103との接続部111における曲率中心141と、第1のチャネル導波路105と第1のスラブ導波路103との接続部112における曲率中心142を結ぶ軸(スラブ中心軸131)で形成される長さであるスラブ長aと、第1の入出力導波路102と第1のスラブ導波路103との接続部111における曲率中心141から第1のスラブ導波路102に配設される光フィルタ121までのスラブ中心軸131上の長さと、第2のチャネル導波路群106と第1のスラブ導波路103との接続部113における曲率中心143から第1のスラブ導波路103に配設される光フィルタ121までのスラブ中心軸132上の長さの和で形成されるスラブ長bを等しくすることが好ましい。
同様に、第2のスラブ導波路107であれば、第2の入出力導波路109と第2のスラブ導波路107との接続部116における曲率中心146と、第1のチャネル導波路105と第2のスラブ導波路107との接続部114における曲率中心144を結ぶ軸で形成される長さであるスラブ長cと、第2の入出力導波路109と第2のスラブ導波路107との接続部116における曲率中心146から第2のスラブ導波路107に配設される光フィルタ122までのスラブ中心軸133上の長さと、第2のチャネル導波路群106と第2のスラブ導波路107との接続部115における曲率中心145から第2のスラブ導波路107に配設される光フィルタ122までのスラブ中心軸134上の長さの和で形成されるスラブ長dを等しくすることが好ましい。スラブ長aとスラブ長b、スラブ長cとスラブ長dの少なくとも一方を等しく、特に好ましくは両方とも等しくすることにより、スラブ導波路S(第1のスラブ導波路103及び第2のスラブ導波路107)に配設される光フィルタ(干渉膜フィルタ)121、122を透過する波長帯Aの信号光がスラブ導波路Sを伝搬する距離と、光フィルタ(干渉膜フィルタ)121、122において反射される波長帯Bの信号光がスラブ導波路Sを伝搬する距離とが等しくなる。
さらに、第1のスラブ導波路103や第2のスラブ導波路107において、波長帯Aと波長帯Bの2つの波長帯の信号光を一芯双方向で振り分けるには、第1のスラブ導波路103におけるスラブ中心軸131とスラブ中心軸132(ともに図1参照)とが直交することが好ましい。また、第2のスラブ導波路107におけるスラブ中心軸133とスラブ中心軸134(ともに図1参照)とが直交していることが好ましく、スラブ中心軸131とスラブ中心軸132、及びスラブ中心軸133とスラブ中心軸134が両方とも直交するように形成されていることが特に好ましい。
図6に示したスラブ導波路Sは、波長帯Aと波長帯Bが伝搬されるスラブ長がそれぞれ等しくなるように、また、例えば、スラブ導波路Sに配設された光フィルタ121、122の水平方向(図6のx軸方向)に対する挿入角度をθとすると、スラブ中心軸131は角度θ+π/4(rad.)、スラブ中心軸132は角度θ−π/4(rad.)となるよう形成されている。なお、図6にあっては、スラブ導波路として第1のスラブ導波路103の場合のスラブ中心軸131、132を例に挙げたが、スラブ中心軸131をスラブ中心軸133、スラブ中心軸132をスラブ中心軸134とした第2のスラブ導波路107についても同様である。
第1のスラブ導波路103に形成される2本のスラブ中心軸のチャネル導波路群105、106で挟まれる側の角度、及び第2のスラブ導波路107に形成される2本のスラブ中心軸のチャネル導波路群105、106で挟まれる側の角度のうち少なくとも一方が、90度より小さくてもよい。例えば、図6において、スラブ中心軸131は角度θ+α(rad.)、スラブ中心軸132は角度θ−α(rad.)となるよう形成されてもよい。αは<π/4である。αがπ/4より小さいことにより、チャネル導波路群同士を近づけて配置できるため、アレイ導波路回折格子を小型化することができる。ここでは、スラブ導波路として第1のスラブ導波路103の場合のスラブ中心軸131、132を例に挙げたが、スラブ中心軸131をスラブ中心軸133、スラブ中心軸132をスラブ中心軸134に置き換えて、第2のスラブ導波路107についても同様である。
以下、アレイ導波路回折格子1の設計方法について、数式を用いて、より具体的に説明する。一般的に、アレイ導波路回折格子1のスラブ長Lは式(4)より与えられる。なお、式(4)における各変数の指す意味は図24に定めるとおりである。
=(Nch・n・d・D)/λ (4)
AWG1とAWG2をそれぞれ独立した個々のアレイ導波路回折格子1と考えて、波長数Nchとアレイピッチdを変化させたときの、AWG1およびAWG2それぞれのアレイピッチdとスラブ長Lの関係を図7に示す(なお、図7中、「1.3帯」は1.3μm帯、「1.5帯」は1.5μm帯をそれぞれ示す。以下、図8〜図11について同じ。また、図7中、線の種類が共通するものについては、スラブ長Lが長い方が1.3μm帯、短い方が1.5μm帯を示す。)。図7に示すように、同じスラブ長Lにするにあたっては、AWG1に対して、AWG2のNchやdを大きくする必要があることがわかる。
共通化のため、AWG1(1.3μm帯)とAWG2(1.5μm帯)のスラブ長Lと入出力ピッチDを等しくしたとすると、式(4)を用いて、式(5)のような条件式が得られる。かかる式(5)を満たすよう、波長数Nch、スラブ屈折率n、アレイピッチd、及び中心波長λを決定すればよい。
(Nch、1・ns、1・d1)/λc、1=(Nch、2・ns、2・d2)/λc、2 (5)
具体的な設計例として、λとnを一定にし、Nchを変化させた時の、AWG1のアレイピッチdとAWG2のアレイピッチdの関係を図8及び図9に示す。なお、図8は、AWG1のNchを変化させた場合のdとdの関係を示した図、図9は、AWG2のNchを変化させた場合のdとdの関係を示した図である。
さらに、AWG1とAWG2の波長数を等しくして、N個×N個の入出力ポートを備えた波長振り分け器を実現したい場合(Nch1=Nch2)、式(5)は式(6)のように変形される。
(ns、1・d1)/λc、1=(ns、2・d2)/λc、2 (6)
かかる式(6)を満たすよう、AWG2の中心波長λc2を一定にし、AWG1の中心波長λc1を変化させた時の、AWG1のアレイピッチdとAWG2のアレイピッチdの関係を図10に示す。同様に、AWG1の中心波長λc1を一定にし、AWG2の中心波長λc2を変化させた時の、AWG1のアレイピッチdとAWG2のアレイピッチdの関係を図11に示す。
このように、式(5)の関係を満たすようパラメータを設定すれば、入出力部を一体化したアレイ導波路回折格子1が実現することができる。さらに、式(6)の関係を満たすようにパラメータを設定すれば、図23(a)及び図23(b)に示した波長振り分け特性を満たすようなNポート×Nポートの波長振り分け器が実現できる。
第一のスラブ導波路103又は第二のスラブ導波路107のうち、光フィルタ121、122の配設されたいずれかで、光フィルタ121、122を通過する光が光フィルタ121、122の通過によって生じる光路のずれの分だけ、第一の入出力導波路102の側の中心軸又は第二の入出力導波路109の側の中心軸とチャネル導波路群105の側の中心軸とがずれていることが望ましい。光路のずれとは、光フィルタ121、122が配設されず、第一のスラブ導波路103又は第二のスラブ導波路107が均質な媒質で構成された場合の光路の中心と、光フィルタ121、122が配設された場合の光路の中心との間隔をいう。
図26に示すスラブ導波路S(103、107)は、第一の入出力導波路102の側又は第二の入出力導波路109の側とチャネル導波路群105の側とで、Δxのずれ量だけ中心軸のずれを設けている。光路の中心と中心軸をを整合させることで、全てのチャネル導波路に均等に光が分配され、あるいは全てのチャネル導波路から均等に光が分配されるため、アレイ導波路回折格子の損失を低減することが可能となる。
中心軸のずれ量について説明する。第一の入出力導波路102からの光が第一のスラブ導波路103内の光フィルタ121を通過する例を図27で説明する。第一のスラブ導波路103の屈折率をnsa、光フィルタ121の平均屈折率をnsbとする。入力光は、光フィルタ121に入射角φsaで入射し、第一のスラブ導波路103と光フィルタ121との界面及び光フィルタ121と第一のスラブ導波路103との界面で屈折して、出射角φsaで第一のスラブ導波路103内を進む。このとき、光フィルタ121内の光は屈折角φsbを持つ。光フィルタ121内の光路長をLとすると、光フィルタ121の光路長は、L・cosφsbで表される。第一の入出力導波路102の側の中心軸とチャネル導波路群105の側の中心軸のずれ量Δxは下記で表される。
Δx=L・sin(φsa−φsb) (7)
ただし、φsaとφsbは、下記のスネルの法則の関係がある。
sa・sinφsa=nsb・sinφsb (8)
また、図26におけるスラブ長の関係は以下のように表される。スラブ長Lは、第一の入出力導波路102の側の中心軸のスラブ内光路長をL、光フィルタ121内の光路長をL、チャネル導波路群105側の中心軸のスラブ内光路長Lとしたとき、次式で表される。
=L+(nsb/nsa)L+L (9)
なお、ここで示したパラメータは本発明の一例であり、使用する波長帯(周波数帯)、波長間隔(周波数間隔)、波長数、導波路材料、多層膜フィルタの種類などによって変わりうるものである。
以上説明した本発明の第1実施形態に係るアレイ導波路回折格子1は、基板上に形成された第1のスラブ導波路103及び第2のスラブ導波路107に光フィルタ(干渉膜フィルタ)121、122を配設している構成により、波長多重された、波長帯及び波長間隔が異なる信号光(例えば、波長帯Aかつ広波長間隔の信号光151と、波長帯Bかつ狭波長間隔の信号光152)を、単一の平面光波回路内において一芯双方向で波長振り分けすることができるため、コンパクトに収まり、低コストな両側入出力導波路一体型のアレイ導波路回折格子1となる。
(第2実施形態)
以下、本発明の第2実施形態を添付図面に基づいて詳述する。なお、以下の説明においては、前記した第1実施形態と同様の構造及び同一部材には同一符号を付して、その詳細な説明は省略または簡略化する。
図12は本発明の第2実施形態に係るアレイ導波路回折格子2の一態様を示した概略図である。図12に示すように、本発明の第2実施形態に係るアレイ導波路回折格子2は、片側入出力導波路一体型のアレイ導波路回折格子2となり、シリコン基板やガラス基板等から構成される基板201の上に、第1のスラブ導波路203と、第2のスラブ導波路207と、第1のスラブ導波路203に接続された第1の入出力導波路202と、第2のスラブ導波路207に接続された2つの第2の入出力導波路209、210と、両端が第1のスラブ導波路203及び第2のスラブ導波路207に接続された第1のチャネル導波路群205と、両端が第1のスラブ導波路203及び第2のスラブ導波路207に接続された第2のチャネル導波路群206が形成されている。
アレイ導波路回折格子2を構成する第1のチャネル導波路群205と、第2のチャネル導波路群206は、それぞれ、所定の経路長差で順次経路長が長くなる複数本のチャネル導波路から形成されている。また、アレイ導波路回折格子1を構成する第1のスラブ導波路203の一部に形成したスリット204に光フィルタである干渉膜フィルタ221が埋め込まれて配設されている。
なお、図12において、第1の入出力導波路202と第1のスラブ導波路203との接続部分を接続部211、第2の入出力導波路209と第2のスラブ導波路207との接続部分を接続部216、第2の入出力導波路210と第2のスラブ導波路207との接続部分を218、第1のスラブ導波路203と第1のチャネル導波路群205との接続部分を接続部212、第1のスラブ導波路203と第2のチャネル導波路群206との接続部分を接続部213、第2のスラブ導波路207と第1のチャネル導波路群205との接続部分を接続部214、第2のスラブ導波路207と第2のチャネル導波路群206との接続部分を接続部215、としている。
第1のスラブ導波路203には、2本のスラブ中心軸231、232が形成される。一方のスラブ中心軸231は、第1の入出力導波路202と第1のスラブ導波路203との接続部211における曲率中心241と、第1のチャネル導波路群205と第1のスラブ導波路203との接続部212における曲率中心242を結ぶ軸であり、他方のスラブ中心軸232は、第2のチャネル導波路群206と第1のスラブ導波路203との接続部213における曲率中心243と、前記した一方のスラブ中心軸231と第1のスラブ導波路203に配設される光フィルタ221との交点を結ぶ軸(及びその延長軸)である。
同様に、第2のスラブ導波路207にも、2本のスラブ中心軸233、234が形成される。一方のスラブ中心軸233は、第2の入出力導波路209と第2のスラブ導波路207との接続部216における曲率中心246と、第1のチャネル導波路群205と第2のスラブ導波路207との接続部214における曲率中心244を結ぶ軸であり、他方のスラブ中心軸234は、第2のチャネル導波路群206と第2のスラブ導波路207との接続部215における曲率中心245と、第2の入出力導波路210と第2のスラブ導波路207との接続部218における曲率中心248を結ぶ軸である。
図12に示すように、本実施形態に係るアレイ導波路回折格子2にあっては、2つのチャネル導波路(第1のチャネル導波路群205及び第2のチャネル導波路群206)が形成されている。また、第1のスラブ導波路203には、第1のチャネル導波路群205との接続部212及び第2のチャネル導波路群206との接続部213というチャネル導波路群と同数の2つの接続部が形成されている。同様に、第2のスラブ導波路207にも、第1のチャネル導波路群205との接続部214及び第2のチャネル導波路群206との接続部215というチャネル導波路群と同数の2つの接続部が形成されている。
また、第1実施形態と同様、本実施形態に係るアレイ導波路回折格子2を構成する第1のチャネル導波路群205は、その長さが所定の導波路経路長差ΔLで順次長くなるように形成され、また、第2のチャネル導波路群206は、その長さが所定の導波路経路長差ΔL’で順次長くなるように形成されている。ここで、導波路経路長差ΔLとΔL’の関係としてΔL>ΔL’の場合を例に挙げると、第1のチャネル導波路群205は、第2のチャネル導波路群206に比べて狭い波長間隔の信号光を透過させる特性を有する。
本実施形態において、アレイ導波路回折格子2に配設される光フィルタ221(干渉膜フィルタ221)は、光フィルタ221と、第1のスラブ導波路203におけるスラブ中心軸231とがなす角度と、スラブ中心軸232と光フィルタ221とがなす角度が一致するように配置されている。
以下、光フィルタとして、異なる波長帯域の2つの信号光について、図2に示すような特性を有し、図3に示すような波長合分波を行うことができる光フィルタ(干渉膜フィルタ)221を利用し、波長帯Aかつ広波長間隔(波長間隔X)をもつ信号光と、波長帯Bかつ狭波長間隔(波長間隔Y)をもつ信号光を一芯双方向で透過させる波長振り分けの動作原理について、図13及び図14を用いて説明する。第1実施形態と同様、X>Yの関係がある。
図13及び図14は、図12に示したアレイ導波路回折格子2の動作原理を説明するための説明図である。図13は、波長帯Bでかつ狭波長間隔の信号光153が、第1の入出力導波路202のうちの1本の導波路から入力され、波長に応じて入出力導波路209の各導波路に振り分けられる態様を示している。
図13において、波長帯Bの信号光251(波長λbx)が、第1の入出力導波路202から第1のスラブ導波路203に入力され、第1のスラブ導波路203を伝搬する。ここで、光フィルタ221は、図2に示したように波長帯Bの光を透過させるので、信号光251はスポットサイズを拡大させながら、第1のスラブ導波路203をさらに伝搬する。このとき、第1のスラブ導波路203と第1のチャネル導波路群205の入力口との接続部212は、第1の入力用導波路202と第1のスラブ導波路203との接続部211に曲率中心241をもつような円弧状に形成された面となっているため、この信号光251は等位相で第1のチャネル導波路群205に入射し、第1のチャネル導波路群205を構成する各チャネル導波路に分配されることになる。
第1のチャネル導波路群205を構成する各チャネル導波路は、前記したように長さがそれぞれ異なるため、第1のチャネル導波路群205の出力口においては、チャネル導波路ごとに位相のずれた信号光が出力される。第1のチャネル導波路群205の導波路経路長差をΔLとすると、隣接するチャネル導波路間での位相差φは前記した式(1)で表され、信号光の波長に依存する。
また、かかる式(I)式を波長λで微分すると、前記した式(2)を得ることができる。かかる式(2)より、位相差の波長依存性δφは、波長変化であるδλに比例することがわかる。
次に、第1のチャネル導波路群205で位相変化を受けた信号光251は、第1のチャネル導波路群205の接続部214から第2のスラブ導波路207に出力される。このとき、各チャネル導波路間で位相差があるため、等位相面は第2のスラブ導波路207の端面207aに対して傾きを生じる。また、位相差φが波長依存性をもつため、等位相面の傾きも波長依存性をもつ。第1のチャネル導波路群205を構成する各チャネル導波路における円弧上での間隔をsとすると、各波長間(δλ)の位相面の傾きであるδθは式(2)より、前記した式(3)となり、波長間隔δλかつ波長帯Bの信号光251(波長λb1〜λbn)は、角度間隔δθずつ異なった方向に伝搬される。また、第1のチャネル導波路群205の端面205aが、円弧状で、その曲率中心246が同スラブ導波路207の端面207b上にあるため、波長多重光λb1〜λbnは、第2のスラブ導波路207の端面207bに集光され、それぞれ、第2の入出力導波路209から出力されることになる。
図14は、図13と同様に、図12に示したアレイ導波路回折格子1の動作原理を説明するための説明図である。図14は、波長帯Aでかつ広波長間隔の信号光252が、入出力導波路202のうちの一つの導波路から入力され、波長に応じて第2の入出力導波路210の各導波路に振り分けられる態様を示している。
図14において、波長帯Aの信号光252(波長λax)が、第1の入出力導波路202から第1のスラブ導波路203に入力され、第1のスラブ導波路203を伝搬する。ここで、光フィルタ221は波長帯Aの光を反射するので、この信号光252は入射角と等しい角度で反射され、第1のスラブ導波路203と第2のアレイ導波路206との接続部213の方向に伝搬する。このとき、第1のスラブ導波路203は基板201の平面と平行な方向に閉じ込めがなく、信号光252のスポットサイズは伝搬とともに拡大され、加えて光フィルタ221における反射により、信号光252は、第1のスラブ導波路203と第2のチャネル導波路群206の入力口との接続部213に上下反転して分配されることになる。このとき、第1のスラブ導波路203と第2のチャネル導波路群206の入力口との接続部213は、干渉膜フィルタ221を鏡面として接続部213側から見たきに、入出力導波路202とスラブ導波路203との接続部211の虚像上に曲率中心242をもつような円弧状に形成されているため、信号光252は等位相で第2のチャネル導波路群206に入射し、各チャネル導波路に分配されることになる。
第2のチャネル導波路群206を構成する各チャネル導波路は長さがそれぞれ異なるため、第2のチャネル導波路群206の出力口においては、チャネル導波路ごとに位相のずれた信号光が出力される。第2のチャネル導波路群206の導波路経路長差をΔL’とすると、隣接するチャネル導波路間での位相差φは前記した式(1)で表され、信号光の波長に依存することが分かる。また、式(1)を波長λ’で微分すると、前記した式(2)となり、位相差の波長依存性δφは、波長変化δλ’に比例することがわかる。
第2のチャネル導波路群206で位相変化を受けた信号光252は、第2のチャネル導波路群206の接続部215から第2のスラブ導波路207に出力される。このとき、各チャネル導波路間で位相差があるため、等位相面は第2のスラブ導波路207の端面207cに対して傾きを生じる。また、位相差φが波長依存性をもつため、等位相面の傾きも波長依存性をもつことになる。第2のチャネル導波路群206を構成する各チャネル導波路の、円弧上での間隔をsとすると、各波長間(δλ’)の位相面の傾きδθは前記した式(2)より、前記した式(3)となる。
従って、波長間隔δλ’かつ波長帯Bの信号光252(波長λa1〜λan)は、角度間隔δθずつ異なった方向に伝搬される。
第2のチャネル導波路群206の接続部215から第2のスラブ導波路207に出力された信号光252は、第2のスラブ導波路207の端面207dの方向へ向かう。さらに、第2のチャネル導波路群206の端面206aが円弧状で、その曲率中心248が第2のスラブ導波路207の端面207d上にあるため、波長多重光λa1〜λanは、第2のスラブ導波路207の端面207dに集光され、それぞれ、第2の入出力導波路210から出力されることになる。
以上のような動作原理で、図13で示した、第1の入出力導波路202の各ポートI〜Iから入射されたλb1〜λbnの各波長の信号光が、第2の入出力導波路209の各ポートQ〜Qに波長振り分けされて出力された際の波長振り分け特性の例を図25(b)に、図14で示した、第1の入出力導波路202の各ポートI〜Iから入射されたλa1〜λanの各波長の信号光が、第2の入出力導波路210の各ポートP〜Pに波長振り分けされて出力された際の波長振り分け特性の例を図25(a)にそれぞれ示した。
なお、前記した図14及び図15の例では、第1の入出力導波路202側から信号光を入射し、第2の入出力用導波路209側または第2の入出力導波路210側から信号光が出射される場合について述べたが、第2の入出力用導波路209側または第2の入出力導波路210側から信号光を入射して第1の入出力導波路202側から信号光が出射される場合についても同様である。
また、本実施形態に係るアレイ導波路回折格子2の設計方法は、前記した第1実施形態で説明した設計方法と同様な設計方法を用いればよいので、説明を省略する。
例えば、第1実施形態と同様、第1のスラブ導波路203や第2のスラブ導波路207において、波長帯Aと波長帯Bの2つの波長帯の信号光を一芯双方向で振り分けるには、第1のスラブ導波路203であれば、第1の入出力導波路202と第1のスラブ導波路203との接続部211における曲率中心241と、第1のチャネル導波路205と第1のスラブ導波路203との接続部212における曲率中心242を結ぶ軸(スラブ中心軸231)で形成される長さであるスラブ長aと、第1の入出力導波路202と第1のスラブ導波路203との接続部211における曲率中心241から第1のスラブ導波路203に配設される光フィルタ221までのスラブ中心軸231上の長さと、第2のチャネル導波路群206と第1のスラブ導波路203との接続部213における曲率中心243から第1のスラブ導波路203に配設される光フィルタ221までのスラブ中心軸132上の長さの和で形成されるスラブ長bを等しくすることが好ましい。スラブ長aとスラブ長bを等しくすることにより、第1のスラブ導波路203に配設される光フィルタ(干渉膜フィルタ)221を透過する波長帯Aの信号光が第1のスラブ導波路203を伝搬する距離と、光フィルタ(干渉膜フィルタ)221において反射される波長帯Bの信号光がスラブ導波路Sを伝搬する距離とが等しくなる。
さらに、第1実施形態と同様、第1のスラブ導波路203や第2のスラブ導波路207において、波長帯Aと波長帯Bの2つの波長帯の信号光を一芯双方向で振り分けるには、第1のスラブ導波路203におけるスラブ中心軸231とスラブ中心軸232(ともに図12参照)とが直交することが好ましい。また、第2のスラブ導波路207におけるスラブ中心軸133とスラブ中心軸134(ともに図12参照)とが直交していることが好ましく、スラブ中心軸231とスラブ中心軸232、及びスラブ中心軸233とスラブ中心軸234が両方とも直交するように形成されていることが特に好ましい。
以上説明した本発明の第2実施形態に係るアレイ導波路回折格子2は、基板201上に形成された第1のスラブ導波路203に光フィルタ221を配設している構成により、波長多重された、波長帯及び波長間隔が異なる信号光を、単一の平面光波回路内において一芯双方向で波長振り分けすることができるため、コンパクトに収まり、低コストな片側入出力導波路一体型アレイ導波路回折格子2となる。
(第3実施形態)
以下、本発明に係るアレイ導波路回折格子1を用いた光通信システムZ1の一例を、図を用いて説明する。
図15は、本発明の第1実施形態に係るアレイ導波路回折格子1を用いた光通信システムZ1の一態様を示した概略図である。図16に示す光通信システムZ1は、第1実施形態に係る両側入出力導波路一体型アレイ導波路回折格子1を用いた、上り/下りで波長帯と波長間隔の異なる波長可変型WDM/TDM−PONとなる。
図15に示す光通信システムZ1は、アレイ導波路回折格子1と、加入者装置401と、局側装置501と、それらを接続する光ファイバF1〜F3によって構成されており、また、光パワースプリッタPを介して各ポートに複数の加入者装置401が接続されている。なお、光通信システムZ1としては、光パワースプリッタPを介さずに、アレイ導波路回折格子1の加入者側の各ポートI〜Iに加入者装置401がそれぞれ1台ずつ直接接続されるようにしても問題はない。
以下、局側装置501から加入者装置401へ伝送される信号光を下り信号、加入者装置401から局側装置501へ伝送される信号光を上り信号として説明する。
光通信システムZ1を構成する局側装置501は、1つ以上の光送受信器512と、制御部511を備えており、光送受信器512は、下り信号を送信する光送信器521と、上り信号を受信する光受信器522と、上り信号と下り信号とを合分波する波長フィルタ等からなる光合分波器523を備える。光送信器521は、波長間隔Yの信号光を送信する特性を備え、出力波長をλb1〜λbnに変化させられる機能を備える。
一方、加入者装置401は、上り信号を送信する光送信器411と、下り信号を受信する光受信器412と、上り信号光と下り信号光を合分波する波長フィルタ等からなる光合分波器413と、制御部414を備える。また、光送信器411は、波長間隔Xの信号光を送信する特性を備え、出力波長をλa1〜λanに変化させることができる機能を備える。
図16は、波長配置の一例を示した概略図である。図16に示すように、波長帯A、波長間隔Xの光信号λa1〜λanが上り信号を、波長帯Aとは異なる波長帯の波長帯B、波長間隔Y(X>Y)の光信号λb1〜λbnが下り信号を形成する。
また、アレイ導波路回折格子1は、具体的には前記した第1実施形態のところで説明したとおりであるが、加入者側ポートI〜I及び局側ポートO〜O(nは整数)を備える。局側ポートと加入者側ポートと入出力波長との関係は、前記した前記した図23(a)、図23(b)に示すような周回性を持っている。なお、アレイ導波路回折格子1の加入者各側ポートI〜Iに接続された加入者装置または加入者装置群を、それぞれPON−1〜PON−nとする。
図15に示す光通信システムZ1における信号の流れの一例について、まず、下り信号の流れについて説明する。局側装置501内の送受信器512−i(1≦i≦n、iは整数)の中の光送信器521−iから送信される、波長間隔Yで波長λbx(1≦x≦n、nは整数)の下り信号は、波長合分波器523−i及び光ファイバF3−iを経てアレイ導波路回折格子1の基板101上の局側ポートOに入力される。Oに入力された下り信号は、図23(b)に示す波長とポートの対応表に従って加入者側ポートI(1≦j≦n、jは整数)に受動的に出力される。Iから出力された下り信号は、光ファイバF2−jを経て光パワースプリッタP−jに到達する。光パワースプリッタP−jにおいて、かかる下り信号は等分配され、光パワースプリッタP−jの下流に属する全加入者装置、すなわちPON−jに等しく到達させる。下り信号は、光ファイバF1−jを経て加入者装置401−jに到達することになる。
なお、光通信システムZ1における下り信号にあっては、1つの加入者装置401内の光受信器には、ある時刻において1つの下り信号のみが入力されるように、局側装置501内の光送受信器512の出力波長と出力タイミングが制御される。
次に、光通信システムZ1における上り信号の流れについて説明する。加入者装置401−j(1≦j≦n、jは整数)内の光送信器411−jから送信される、波長間隔Xで波長λay(1≦y≦n、yは整数)の上り信号は、波長合分波器413−jおよび光ファイバF1−j、光パワースプリッタP−j、光ファイバF2−jを経て、アレイ導波路回折格子101の局側ポートIに入力される。Iに入力された上り信号は、図23(a)に示す波長とポートの対応表に従って局側ポートO(1≦i≦n、iは整数)に受動的に出力される。Oから出力された上り信号は、光ファイバF3−iを経て、局側装置501内の送受信器512−iの中の波長合分波器523−iを経て、光受信器522−iに到達することになる。
なお、光通信システムZ1における上り信号にあっても、前記した下り信号と同様、1つの局側装置501内の光受信器522には、ある時刻において1つの上り信号のみが入力されるように加入者装置401内の光送信器411の出力波長と出力タイミングが制御される。
また、図17は、本発明の第2実施形態に係るアレイ導波路回折格子2を用いた光通信システムZ2の一態様を示した概略図である。図18に示す光通信システムZ2は、第1実施形態に係る片側入出力導波路一体型アレイ導波路回折格子2を用いた、上り/下りで波長帯と波長間隔の異なる波長可変型WDM/TDM−PONとなる。
図17に示す光通信システムZ2は、アレイ導波路回折格子2と、加入者装置401と、局側装置601と、それらを接続する光ファイバFによって構成されている。また、光パワースプリッタPを介して各ポートに複数の加入者装置401が接続されている。なお、光通信システムZ2としては、光パワースプリッタPを介さずに、アレイ導波路回折格子2の加入者側の各ポートI〜Iに加入者装置401がそれぞれ1台ずつ直接接続されるようにしても問題はない。
以下、局側装置601から加入者装置401へ伝送される信号光を下り信号、加入者装置401から局側装置501へ伝送される信号光を上り信号として説明する。
光通信システムZ2を構成する局側装置601は、アレイ導波路回折格子2の基板201上の局側ポートP〜Pに接続された1つ以上の光受信器611と、局側ポートQ〜Qに接続された1つ以上の光送信器612と、制御部613とを備える。光送信器612は、波長間隔Yの信号光を送信する特性を備え、出力波長をλb1〜λbnに変化させられる機能を備える。
一方、加入者装置401は、上り信号を送信する光送信器411と、下り信号を受信する光受信器412と、上り信号光と下り信号光を合分波する波長フィルタ等からなる光合分波器413と、制御部414を備える。光信号送受信器411は、波長間隔Xの信号光を送信する特性を備え、出力波長をλa1〜λanに変化させられる機能を備える。上り信号λa1〜λan及び下り信号λb1〜λbnの波長配置は、前記した図16に示すものであり、図15の光通信システムZ1と共通する。
アレイ導波路回折格子2は、具体的には前記した第2実施形態のところで説明したとおりであるが、加入者側ポートI〜I及び2つの局側ポートP〜P、Q〜Q(ともにnは整数)を備える。局側ポートと加入者側ポートと入出力波長との関係は、前記した図25(a)、図25(b)に示すような周回性を持っている。なお、アレイ導波路回折格子2の加入者各側ポートI〜Iに接続された加入者装置または加入者装置群を、それぞれPON−1〜PON−nとする。
図17に示す光通信システムZ2における信号の流れの一例について、まず、下り信号の流れについて説明する。局側装置601内の送信器612−i(1≦i≦n、iは整数)から送信される、波長間隔Yで波長λbx(1≦x≦n、nは整数)の下り信号は、光ファイバF3−iを経てアレイ導波路回折格子1の基板201上の局側ポートQに入力される。Qに入力された前記下り信号は、図25(b)に示す波長とポートの対応表に従って加入者側ポートI(1≦j≦n、jは整数)に受動的に出力される。Iから出力された下り信号は、光ファイバF2−jを経て光パワースプリッタP−jに到達する。光パワースプリッタP−jにおいて、下り信号は等分配され、光パワースプリッタP−jの下流に属する全加入者装置、すなわちPON−jに等しく到達する。下り信号は、光ファイバF1−jを経て加入者装置401−jに到達する。
なお、光通信システムZ2における下り信号にあっては、1つの加入者装置401内の光受信器には、ある時刻において1つの下り信号のみが入力されるように局側装置601内の光送信器の出力波長と出力タイミングが制御される。
次に、光通信システムZ2における上り信号の流れについて説明する。加入者装置401−j(1≦j≦n、jは整数)内の光送信器411−jから送信される、波長間隔Xで波長λay(1≦y≦n、yは整数)の上り信号は、波長合分波器413−jおよび光ファイバF1−j、光パワースプリッタP−j、光ファイバF2−jを経て、アレイ導波路回折格子1の基板201上の局側ポートIに入力される。Iに入力された上り信号は、図25(a)に示す波長とポートの対応表に従って局側ポートP(1≦i≦n、iは整数)に受動的に出力される。Pから出力された上り信号は、光ファイバF3−iを経て、局側装置601内の光受信器611−iに到達する。
なお、光通信システムZ2における上り信号にあっても、前記した下り信号と同様、1つの局側装置601内の光受信器611には、ある時刻において1つの上り信号のみが入力されるように加入者装置401内の光送信器411の出力波長と出力タイミングが制御される。
以上説明した光通信システムZ2は、前記した本発明に係るアレイ導波路回折格子2を備え、加入者装置内の送信器には安価な広波長間隔の波長可変光源を用いることができ、上り信号と下り信号で波長帯及び波長間隔が異なる波長可変型WDM/TDM−PONが経済的に実現できる。また、局側装置内及びアレイ導波路回折格子2内において信号光が通過する波長合分波器の数を削減することができ、光パワー損失を減らした波長可変型WDM/TDM−PONとなる。
(第4実施形態)
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。本発明は前記した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本発明に含まれるものである。
前記した第1実施形態に係るアレイ導波路回折格子1は、基板101上に、第1のスラブ導波路103と、第2のスラブ導波路107と、第1のスラブ導波路103に接続された第1の入出力導波路102と、第2のスラブ導波路107に接続された第2の入出力導波路109と、両端が第1のスラブ導波路103および第2のスラブ導波路107に接続された第1のチャネル導波路群105と、両端がスラブ導波路103およびスラブ導波路107に接続された第2のチャネル導波路群106とが形成されている。また、第1のチャネル導波路群105と、第2のチャネル導波路群106は、それぞれ、所定の経路長差で順次経路長が長くなる複数本のチャネル導波路からなる。さらに、第1のスラブ導波路103の一部に形成したスリット104に光フィルタ121が挿入され、第2のスラブ導波路107の一部に形成したスリット108に光フィルタ122が挿入される用にして構成される。一方、本発明に係るアレイ導波路回折格子1としては、かかる構成を備えた、下記の図18ないし図20の構成を用いるようにしてもよい。
図18から図20は、本発明の第1実施形態に係るアレイ導波路回折格子1の他の態様を示した概略図である。
図18に示したアレイ導波路回折格子1aは、前記した第1実施形態の構成を備えた上で、スリット104、108の形成としてダイシングソーを用いて、第1のスラブ導波路103におけるスリット104の形成としては、基板101の端面より第1のスラブ導波路103を横切るようにして溝を形成し、スリット104としている。また、第2のスラブ導波路107におけるスリット108の形成も、基板101の端面より第2のスラブ導波路107を横切るよう溝を形成し、スリット108としている。そして、このようにして形成されたスリット104とスリット108に、それぞれ光フィルタ(干渉膜フィルタ)121、122を挿入している。
なお、アレイ導波路回折格子1aを構成する光フィルタ(干渉膜フィルタ)121、122は、45°入射の光フィルタ(干渉膜フィルタ)121、122を用いた。また、第1のスラブ導波路103のスラブ中心軸131とスラブ中心軸132は、それぞれ、基板101に対し角度θ+π/4(rad.)、角度θ−π/4(rad.)で形成されており、スリット104は、基板101に対して角度θで形成されている。第2のスラブ導波路107のスラブ中心軸133とスラブ中心軸1324は、それぞれ、基板101に対し角度θ+π/4(rad.)、角度θ−π/4(rad.)で形成されており、スリット108は、基板101に対して角度θで形成されている。
なお、光フィルタとして挙げた干渉膜フィルタ121、122の種類としては特に制限はなく、例えば、前記した図2の特性や図3の波長分合波を実施することができる任意の構成のものを用いることができる。
また、前記したスラブ中心軸131〜134の関係やスリット104、108の基板101に対する角度は一例であり、光フィルタの特性に応じて、任意の角度に設定してもよい。さらに、スリット104、108の形成方法としても、ダイシングソーのほか、ウェットエッチング、ドライエッチング、サンドブラスト等の任意の手段を用いることができる。
また、図19に示すアレイ導波路回折格子1bは、前記した第1実施形態の構成を備えた上で、基板101と基板101b上に、第1のスラブ導波路103と、第2のスラブ導波路107と、第1のスラブ導波路103に接続された第1の入出力導波路102と、第2のスラブ導波路107に接続された第2の入出力導波路109と、両端が第1のスラブ導波路103および第2のスラブ導波路107に接続された第1のチャネル導波路群105と、両端が第1のスラブ導波路103及び第2のスラブ導波路107に接続された第2のチャネル導波路群106が形成されている。
図19に示すアレイ導波路回折格子1bにおいて、第1のチャネル導波路群105と、第2のチャネル導波路群106は、それぞれ、所定の経路長差で順次経路長が長くなる複数本のチャネル導波路からなる。さらに、光フィルタ(干渉膜フィルタ)121が第1のスラブ導波路103を、光フィルタ(干渉膜フィルタ)122が第2のスラブ導波路107を横切るように基板101と基板101bに挟まれている。
なお、かかる基板101と基板101bは、それぞれ別々に作製しても良いし、あらかじめ1枚の基板を作製し、ダイシング、ウェットエッチング、ドライエッチング、サンドブラスト等の公知の手段により基板101と基板101bに分けてもよい。
さらに、図20に示すアレイ導波路回折格子1cは、前記した第1実施形態の構成を備えた上で、第1の入出力導波路102と第1のスラブ導波路103との接続部分を接続部111、第2の入出力導波路109と第2のスラブ導波路107との接続部分を接続部116、第1のスラブ導波路103と第1のチャネル導波路群105との接続部分を接続部113、第1のスラブ導波路103と第2のチャネル導波路群106との接続部分を接続部112、第2のスラブ導波路107と第1のチャネル導波路群105との接続部分を接続部115、第2のスラブ導波路107と第2のチャネル導波路群106との接続部分を接続部114、として構成される。かかる構成により、第1のスラブ導波路103に配設される光フィルタ(干渉膜フィルタ)104を透過した信号光が第2のチャネル導波路群106を伝搬し、光フィルタ(干渉膜フィルタ)104で反射された信号光が第1のチャネル導波路群105を伝搬することになる。
なお、図21は、本発明の第1実施形態に係るアレイ導波路回折格子1を備えた光モジュールMの実施態様の一例を示した概略図である。図21に示すように、光モジュールMは、筐体701に収められた第1実施形態に係るアレイ導波路回折格子1における基板101の第1の入出力導波路102に図示しない1本もしくは複数本の光ファイバが束ねられた第1のファイバブロックFB1が接続され、また、第2の入出力導波路109に図示しない1本もしくは複数本の光ファイバが束ねられた第1のファイバブロックFB2が接続されている。そして、光モジュールMは、第1のファイバブロックFB1に繋がれた第1の光コネクタOC1と、第2のファイバブロックFB2に繋がれた第1の光コネクタOC2より、本発明のアレイ導波路回折格子1に外部からの信号光を入出力することができることになる。
なお、図21では、光モジュールMとして、アレイ導波路回折格子1を構成する第1のスラブ導波路103及び第2のスラブ導波路107に、モニターポート702、703を接続した態様を示している。
その他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。
本発明は、情報通信産業に利用することができる。
1、1a、1b、1c.2 アレイ導波路回折格子
101、201 基板
102、202 第1の入出力導波路
103、203 第1のスラブ導波路
104、108、204、208 スリット
105、205 第1のチャネル導波路
105a、205a 第1のチャネル導波路の端面
106、206 第2のチャネル導波路
106a、206a 第2のチャネル導波路の端面
107、207 第2のスラブ導波路
107a、107b、107c、207a、207b、207c 第2のスラブ導波路の端部
109、209、210 第2の入出力導波路
121、122、221 光フィルタ(干渉膜フィルタ)
111〜116、211〜216 スラブ中心軸
131〜134、231〜234 スラブ中心軸
141〜146、241〜246、248 曲率中心
401 加入者装置
411 光送信器
412 光受信器
413 光合分波器
414 制御部
501、601 局側装置
511、613 制御部
512 光送受信器
521、612 光送信器
522、611 光受信器
523 光合分波器
701 筐体
702、703 モニターポート
F 光ファイバ
FB1 第1のファイバブロック
FB2 第2のファイバブロック
M 光モジュール
OC1 第1の光コネクタ
OC2 第2の光コネクタ
P 光パワースプリッタ
S スラブ導波路
Z1、Z2 光通信システム
a、b、c、d スラブ長
H 従来の波長振り分け器
302、303 アレイ導波路回折格子
301、304 光フィルタ
305、306 入出力口
307 光ファイバ

Claims (8)

  1. 基板上に形成された第1のスラブ導波路と、
    前記基板上に形成された第2のスラブ導波路と、
    前記第1のスラブ導波路に接続された第1の入出力導波路と、
    前記第2のスラブ導波路に接続された第2の入出力導波路と、
    前記第1のスラブ導波路と前記第2のスラブ導波路を接続し、それぞれ所定の経路長差で順次経路長が長くなる複数本のチャネル導波路の集合体からなる2以上のチャネル導波路群と、
    前記第1のスラブ導波路及び前記第2のスラブ導波路の少なくとも一方に配設された光フィルタと、
    を備えるアレイ導波路回折格子であって、
    前記2以上のチャネル導波路群が、それぞれ異なる経路長差を持ち、
    前記光フィルタが、配設される前記第1のスラブ導波路に接続される前記第1の入力導波路または前記第2のスラブ導波路に接続される前記第2の入力導波路から入力された信号光を波長帯毎に前記2以上のチャネル導波路群へ分波、
    あるいは波長帯毎に前記2以上のチャネル導波路群から入力された信号光を、配設される第1のスラブ導波路に接続される前記第1の入力導波路または前記第2のスラブ導波路に接続される前記第2の入力導波路に合波することで、
    波長帯毎に波長間隔が異なる信号光を、対応する前記2以上のチャネル導波路群を経由させることを特徴とするアレイ導波路回折格子。
  2. 前記第1のスラブ導波路及び前記第2のスラブ導波路に、前記チャネル導波路群との接続部が形成され、
    当該接続部が、前記チャネル導波路群の数と同数であることを特徴とする請求項1に記載のアレイ導波路回折格子。
  3. 前記第1のスラブ導波路に形成される2本のスラブ中心軸、及び前記第2のスラブ導波路に形成される2本のスラブ中心軸のうち少なくとも一方が直交することを特徴とする請求項1又は2に記載のアレイ導波路回折格子。
  4. 前記第1のスラブ導波路に形成される2本のスラブ中心軸のチャネル導波路群で挟まれる側の角度、及び前記第2のスラブ導波路に形成される2本のスラブ中心軸のチャネル導波路群で挟まれる側の角度のうち少なくとも一方が、90度より小さいことを特徴とする請求項1からのいずれかに記載のアレイ導波路回折格子。
  5. 前記第1のスラブ導波路における2本のスラブ長、及び前記第2のスラブ導波路における2本のスラブ長のうち少なくとも一方が等しいことを特徴とする請求項1からのいずれかに記載のアレイ導波路回折格子。
  6. 前記第一のスラブ導波路又は前記第二のスラブ導波路のうち、前記光フィルタの配設されたいずれかで、前記光フィルタを通過する光が前記光フィルタの通過によって生じる光路のずれの分だけ、前記第一の入出力導波路の側の中心軸又は前記第二の入出力導波路の側の中心軸と前記チャネル導波路群の側の中心軸とがずれていることを特徴とする請求項1からのいずれかに記載のアレイ導波路回折格子。
  7. 請求項1からのいずれかに記載のアレイ導波路回折格子と、当該アレイ導波路回折格子を構成する前記第1の入出力導波路と接続される少なくとも1本のファイバが保持された第1のファイバブロックと、前記アレイ導波路回折格子を構成する前記第2の入出力導波路と接続される少なくとも1本の光ファイバが保持された第2のファイバブロックと、
    前記第1のファイバブロックと繋がる第1の光コネクタと、
    前記第2のファイバブロックと繋がる第2の光コネクタと、
    を含むことを特徴とする光モジュール。
  8. 請求項1からのいずれかに記載のアレイ導波路回折格子と、加入者装置と、局側装置と、を備え、
    前記アレイ導波路回折格子と加入者装置及び前記局側装置が光ファイバで接続され、
    前記アレイ導波路回折格子における一方の前記入出力導波路群から入力される信号光の波長帯及び波長間隔と、他方の前記入出力導波路群から入力される信号光の波長帯及び波長間隔が異なる信号光であることを特徴とする光通信システム。
JP2013553258A 2012-01-13 2012-12-28 アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システム Active JP5735660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013553258A JP5735660B2 (ja) 2012-01-13 2012-12-28 アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012005071 2012-01-13
JP2012005071 2012-01-13
PCT/JP2012/084104 WO2013105466A1 (ja) 2012-01-13 2012-12-28 アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システム
JP2013553258A JP5735660B2 (ja) 2012-01-13 2012-12-28 アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システム

Publications (2)

Publication Number Publication Date
JPWO2013105466A1 JPWO2013105466A1 (ja) 2015-05-11
JP5735660B2 true JP5735660B2 (ja) 2015-06-17

Family

ID=48781422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013553258A Active JP5735660B2 (ja) 2012-01-13 2012-12-28 アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システム

Country Status (5)

Country Link
US (1) US9116305B2 (ja)
JP (1) JP5735660B2 (ja)
KR (1) KR101629121B1 (ja)
CN (1) CN104350400B (ja)
WO (1) WO2013105466A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807926B (zh) * 2022-05-11 2023-07-01 美商莫仕有限公司 陣列波導光柵裝置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106789750B (zh) * 2017-01-19 2019-07-16 西安电子科技大学 一种高性能计算互连网络系统及通信方法
US10488589B2 (en) * 2017-02-08 2019-11-26 Rockley Photonics Limited T-shaped arrayed waveguide grating
EP3655805B1 (en) 2017-07-17 2022-03-02 Rockley Photonics Limited Athermalized arrayed waveguide grating
KR102505410B1 (ko) * 2019-10-18 2023-03-06 한국과학기술원 파장 변화로 2차원 빔 스티어링이 가능한 광 위상배열 구조 및 빔 스티어링 방법
CN114915340B (zh) * 2021-02-09 2023-08-04 讯芸电子科技(中山)有限公司 光通讯模块
US11686900B2 (en) * 2021-03-11 2023-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package, optical device and method of fabricating the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234029A (ja) 1995-02-23 1996-09-13 Hitachi Cable Ltd 光スターカプラ
JP3112246B2 (ja) 1996-05-01 2000-11-27 日本電信電話株式会社 アレイ導波路格子
JP3222810B2 (ja) 1996-08-06 2001-10-29 日本電信電話株式会社 アレイ導波路格子
JP2000241638A (ja) * 1999-02-19 2000-09-08 Sumitomo Electric Ind Ltd アレイ導波路回折格子部品
JP2000298219A (ja) * 1999-04-14 2000-10-24 Fujikura Ltd Awgモジュール
JP3630085B2 (ja) * 2000-09-14 2005-03-16 日本電気株式会社 アレイ導波路回折格子素子の製造方法およびアレイ導波路回折格子素子
JP3832274B2 (ja) * 2001-05-14 2006-10-11 日本電気株式会社 波長補正方法、波長補正装置、波長検査方法、波長検査装置、アレイ導波路回折格子およびインタリーバ
JP2005003891A (ja) * 2003-06-11 2005-01-06 Central Glass Co Ltd フィルタ付き光導波回路
JP4184931B2 (ja) 2003-11-19 2008-11-19 日本電信電話株式会社 光波長合分波回路
US7630602B2 (en) * 2006-12-04 2009-12-08 Electronics And Telecommunications Research Institute Optical filter module and method of manufacturing the same
WO2009122577A1 (ja) * 2008-04-02 2009-10-08 三菱電機株式会社 光通信システム、親局装置および子局装置
US8538212B2 (en) * 2011-06-03 2013-09-17 Neophotonics Corporation Thermally compensated arrayed waveguide grating assemblies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807926B (zh) * 2022-05-11 2023-07-01 美商莫仕有限公司 陣列波導光柵裝置

Also Published As

Publication number Publication date
KR20140100565A (ko) 2014-08-14
KR101629121B1 (ko) 2016-06-09
CN104350400A (zh) 2015-02-11
JPWO2013105466A1 (ja) 2015-05-11
US20140376861A1 (en) 2014-12-25
CN104350400B (zh) 2018-02-02
WO2013105466A1 (ja) 2013-07-18
US9116305B2 (en) 2015-08-25

Similar Documents

Publication Publication Date Title
JP5735660B2 (ja) アレイ導波路回折格子、当該アレイ導波路回折格子を備えた光モジュール及び光通信システム
US10958339B2 (en) Methods and systems relating to optical networks
US8285144B2 (en) Optical device for rearranging wavelength channels
CA2255386C (en) Temperature compensated insensitive optical multiplexor/demultiplexor
CN102565932B (zh) 色散校正的阵列波导光栅
JP5911592B2 (ja) 受動光ネットワークのための波長ルータ
KR101285766B1 (ko) 양방향 광 송수신 모듈
US6512864B1 (en) Optical multiplexer/demultiplexer arrangement for WDM signals having in-band and out-of-band signal components
US20080089687A1 (en) Wavelength Division Multiplexing Passive Optical Network Having Multiple Branches of Optical Distribution
CN104115047B (zh) 光板
WO2011162269A1 (ja) 合分波器及び合分波方法
US8494369B2 (en) Planar lightwave circuit
JP2014135588A (ja) 波長多重ponシステム
CN106154425A (zh) 带并行通道间距转换功能的波分复用器和解复用器
KR100596408B1 (ko) 파장분할다중 수동 광네트워크에서 오버레이 형태로방송서비스를 제공하는 장치
JP6251206B2 (ja) 光送受信システム
JP5798096B2 (ja) アレイ導波路回折格子型ルータ
WO2009067152A1 (en) Dispersion compensation apparatus
US20060291858A1 (en) Bi-directional compound-WDM fiberoptic system architecture with redundancy protection for transmission of data, voice and video signals
JP2004312630A (ja) アクセス系ネットワーク機器
WO2017107133A1 (zh) 一种阵列波导光栅
KR20150061191A (ko) 파장분할다중화 소자 및 이를 이용한 하이브리드 멀티플렉서
KR20190002233A (ko) 이종 서비스를 결합하기 위한 광모듈

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5735660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150