WO2017107133A1 - 一种阵列波导光栅 - Google Patents

一种阵列波导光栅 Download PDF

Info

Publication number
WO2017107133A1
WO2017107133A1 PCT/CN2015/098671 CN2015098671W WO2017107133A1 WO 2017107133 A1 WO2017107133 A1 WO 2017107133A1 CN 2015098671 W CN2015098671 W CN 2015098671W WO 2017107133 A1 WO2017107133 A1 WO 2017107133A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
input
arrayed
output
arrayed waveguide
Prior art date
Application number
PCT/CN2015/098671
Other languages
English (en)
French (fr)
Inventor
胡菁
周恩宇
徐之光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/098671 priority Critical patent/WO2017107133A1/zh
Priority to EP15911132.7A priority patent/EP3385763A4/en
Priority to CN201580083822.3A priority patent/CN108139540B/zh
Priority to KR1020187020996A priority patent/KR20180095918A/ko
Publication of WO2017107133A1 publication Critical patent/WO2017107133A1/zh
Priority to US16/016,402 priority patent/US10209444B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12164Multiplexing; Demultiplexing

Definitions

  • the present invention relates to the field of optical fiber communication technologies, and in particular, to an arrayed waveguide grating.
  • Passive Optical Network refers to an optical distribution network between an optical line terminal (OLT) and an optical network unit (ONU).
  • ODN optical network unit
  • typical structures include Dense Wavelength Division Multiplexing PON (DWDM-PON) and wavelength division multiplexed passive light.
  • WDM-PON Wavelength Division Multiplexing PON, abbreviation: WDM-PON).
  • the OLT's transmitter uses a fixed-wavelength laser as the light source, while the ONU's transmitter uses a tunable wavelength laser as the light source. Due to process errors, semiconductor lasers of the same design on the same wafer have operating wavelength differences on the order of a few nanometers. This problem causes the yield of fixed-wavelength lasers used in PON systems to decrease. Therefore, in order to increase the yield of such fixed-wavelength lasers, it is necessary to appropriately increase the wavelength interval of the downstream adjacent channels of the PON, for example, increasing the wavelength interval of adjacent channels from 100 GHz. To 400GHz. For the ONU, the larger the adjustable range of the tunable wavelength laser, the higher the cost.
  • the upstream and downstream adjacent channel wavelength-distance asymmetric systems can achieve lower cost than the upper and lower adjacent channel wavelength-distance symmetric systems.
  • an arrayed wavelength guide grating (Arrayed Waveguide Grating, abbreviated as: AWG) and N TFFs are used on the user side and the network side to implement an upstream and a downlink adjacent channel wavelength interval asymmetric system. 1 is shown.
  • the TFF is used for the splitting and splitting of the optical signals of the upper and lower bands
  • the two AWGs are respectively used for the splitting and combining of the optical signals in the upper and lower bands of the PON system.
  • TFFc first splits the optical signals of the upper and lower bands, and the separated two bands of optical signals enter AWG1 and AWG2 respectively.
  • AWG1 and AWG2 are two optical splitting devices, which have the same working characteristics of adjacent channels with equal wavelength intervals.
  • the optical signals that are split by AWG1 are paired with them.
  • the optical signal that has been split by the AWG 2 is combined by TFF. It can be seen that the existing schemes of the uplink and downlink adjacent channel wavelength interval asymmetric systems use more devices.
  • Embodiments of the present invention provide an arrayed waveguide grating, which can reduce the number of devices used in an asymmetric system of wavelength spacing between adjacent channels.
  • a first aspect of the present invention provides an arrayed waveguide grating including a first input/output waveguide, a second input/output waveguide, a slab waveguide, a first arrayed waveguide, a first reflective region, a second arrayed waveguide, and a second reflective region, wherein :
  • the first input-output waveguide and the second input-output waveguide are located on the same side of the slab waveguide and are connected to the slab waveguide, and the other side of the slab waveguide is connected to one end of the first array waveguide, and the other end of the first array waveguide and the first reflection region One end of the reflector is connected, the other end of the reflector of the first reflection area is connected to one end of the second array waveguide, and the other end of the second array waveguide is connected to the reflector of the second reflection area.
  • the first reflective area is for reflecting the light wave of the first wavelength band and transmitting the light wave of the second wavelength band
  • the second reflective area is for reflecting the light wave of the second wavelength band
  • the first reflective area and the second reflective area have a function of wavelength selection, so that when the light waves of different wavelength bands pass through the arrayed waveguide grating, the difference in length of the array waveguide is different, and the light wave of the first wavelength band is in the first reflection.
  • the region is reflected, the difference in the length of the array waveguide experienced by the light wave of the first wavelength band is determined according to the difference in waveguide length of the first array waveguide, and the light wave of the second wavelength band is reflected in the second reflection region, and the light wave of the second wavelength band is experienced
  • the array waveguide length difference is determined according to the waveguide length difference of the first array waveguide and the second array waveguide.
  • the adjacent channel wavelength interval is inversely proportional to the array waveguide length difference, and therefore, the arrayed waveguide grating output of the embodiment of the present invention is The wavelengths of adjacent channels of the light wave of the first wavelength band and the light waves of the second wavelength band are different.
  • the single arrayed waveguide grating provided by the embodiment of the present invention can output light waves of different adjacent channel wavelength intervals, thereby reducing the number of devices used in the asymmetric channel system of the upper and lower adjacent channels.
  • the arrayed waveguide grating is fabricated by a silicon dioxide material system, that is, a first input/output waveguide, a second input/output waveguide, a slab waveguide, a first array waveguide, and a first reflective region.
  • the second array of waveguides and the second reflective region are composed of a silicon dioxide material.
  • the reflector in the first reflective region and the second reflective region is a thin film filter (referred to as: TFF) .
  • the first reflective region and the second reflective region are respectively provided with a thin film filter.
  • a reflection area can reflect or transmit the light waves output by all the array waveguides by using only one TFF.
  • the arrayed waveguide grating is fabricated by a silicon material system, that is, a first input/output waveguide, a second input/output waveguide, a slab waveguide, a first array waveguide, a first reflective region, and a first
  • the two arrayed waveguides and the second reflective region are comprised of a silicon material.
  • the reflectors in the first reflective region and the second reflective region comprise a waveguide-type Bragg grating reflector based on a silicon material system.
  • each of the first array of waveguides and the second array of waveguides is coupled to a waveguide type Bragg grating reflector.
  • the number of waveguide type Bragg grating reflectors disposed in one reflection area is equal to the number of waveguides in the adjacent array waveguide, that is, each of the array waveguides
  • the waveguides are respectively connected to a waveguide type Bragg grating reflector.
  • the arrayed waveguide grating is fabricated from a silicon and silica hybrid material system.
  • the first input-output waveguide and the second input-output waveguide include a silicon-based waveguide portion and a silicon-based waveguide portion, and the silicon-based waveguide portion and the silicon-based waveguide portion are connected by a coupler, wherein the coupler and the flat plate are utilized
  • the waveguide is connected to a silicon-based waveguide.
  • the silicon-based waveguide in the present invention generally refers to a waveguide containing a silicon component of a material component, and is not limited to a waveguide in which the core layer is pure silicon, which is a high refractive index difference waveguide or a "silicon-containing waveguide.”
  • the light wave of the first wavelength band is an upward light wave
  • the light wave of the second wavelength band is Downward light wave
  • the light wave of the first wavelength band is a downward light wave
  • the light wave of the second wavelength band is an upward light wave
  • the light wave of the first wavelength band includes light waves of at least one wavelength
  • the light wave of the second wavelength band includes light waves of at least one wavelength
  • the wavelengths of the light waves of the first wavelength band and the light waves of the second wavelength band are not equal.
  • a second aspect of the present invention provides a passive optical network system including at least one optical network unit, a first arrayed waveguide grating, a second arrayed waveguide grating, and an optical line termination, wherein the first and second arrayed waveguide gratings are An arrayed waveguide grating according to a first aspect of the present invention, wherein:
  • the first arrayed waveguide grating is configured to combine light waves output by each of the optical network units into a long optical fiber, and the second arrayed waveguide grating is used to Optical waves in the optical fiber are separated to the optical line terminal;
  • the second arrayed waveguide grating is configured to merge light waves output by the optical line terminal into the long optical fiber, and the first arrayed waveguide grating is used to The light waves in the long fiber are separated into corresponding optical network units.
  • the passive optical network system only needs one array of waveguide gratings to realize an uplink and downlink adjacent channel wavelength interval asymmetric system, and two array waveguides are compared with the prior art.
  • the number of devices used in asymmetric systems with wavelength spacing between adjacent channels is reduced.
  • the light waves of different adjacent channel wavelengths are output by a single arrayed waveguide grating, which reduces the number of devices used in the asymmetric channel system of the upstream and downstream adjacent channels.
  • FIG. 1 is a schematic diagram showing an asymmetric system of uplink and downlink adjacent channel wavelength spacing using a common AWG;
  • FIG. 2 is a schematic structural diagram of an AWG according to an embodiment of the present invention.
  • FIG. 3 is a detailed schematic view of a slab waveguide in an AWG according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a DWDM-PON system according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of an arrayed waveguide grating slab waveguide Roland circle.
  • FIG. 2 is a schematic structural diagram of an AWG according to an embodiment of the present invention.
  • the arrayed waveguide grating includes an input/output waveguide 1 (ie, the first input/output waveguide described above) and an input/output waveguide.
  • the second input/output waveguide described above is located on the same side of the slab waveguide and is connected to the slab waveguide, and the other side of the slab waveguide is connected to one end of the arrayed waveguide 1 (ie, the first array waveguide described above), and the arrayed waveguide 1
  • the other end is connected to one end of the reflector of the reflection area 1 (ie, the first reflection area described above), and the other end of the reflector of the reflection area 1 is connected to one end of the array waveguide 2 (ie, the second array waveguide described above), the array waveguide
  • the other end of 2 is connected to the reflector of the reflection zone 2 (i.e., the second reflection zone described above).
  • the input-output waveguide 1 shown in FIG. 2 contains only one waveguide, and in other alternative embodiments, the input-output waveguide 1 may include at least two waveguides.
  • the details of the input/output waveguide 1, the input/output waveguide 2, the slab waveguide, and the arrayed waveguide 1 may be as shown in FIG. 3.
  • the output is output from the input/output waveguide 2.
  • the light wave is input from the input/output waveguide 2, it is output from the input/output waveguide 1.
  • the reflective region 1 and the reflective region 2 have a function of wavelength selection, so that when the light waves of different wavelength bands pass through the arrayed waveguide grating, the difference in length of the array waveguide is different, and the light wave of the first wavelength band is reflected in the reflective region 1. Then, the difference in the length of the array waveguide experienced by the light wave of the first wavelength band is determined according to the difference in the waveguide length of the arrayed waveguide 1, and the light wave of the second wavelength band is reflected in the reflective region 2, and the length difference of the array waveguide experienced by the light wave of the second wavelength band is The waveguide length difference between the arrayed waveguide 1 and the arrayed waveguide 2 is determined.
  • the adjacent channel wavelength interval is inversely proportional to the array waveguide length difference. Therefore, the array waveguide grating of the embodiment of the present invention outputs the first wave of the light wave and the second wavelength band.
  • the adjacent channels of the light wave have different wavelength intervals.
  • x 0 is the position of the output waveguide
  • dx 0 is the adjacent waveguide center-to-center spacing where the input-output waveguide 2 meets the slab waveguide
  • d ⁇ is the wavelength interval of the adjacent channel (ie, the adjacent input-output waveguide)
  • dx 0 /d ⁇ represents the line dispersion of the input and output waveguides, that is, in the input-output waveguide with a distance of dx 0 , the difference between the center wavelengths of the optical signals is d ⁇
  • N g ( ⁇ ) is the group refractive index of the arrayed waveguide
  • ⁇ L is the phase a difference in length of the adjacent array waveguide
  • LFPR o is the length of the slab waveguide
  • ⁇ 0 is the center wavelength of the optical signal in the input and output waveguide
  • n s ( ⁇ ) is the equivalent refractive index of the slab waveguide
  • d g o is An adjacent waveguide center spacing at which the first array waveguide
  • the arrayed waveguide grating is fabricated from a silicon dioxide material system, that is, an input/output waveguide 1, an input/output waveguide 2, a slab waveguide, an arrayed waveguide 1, a reflective region 1, an arrayed waveguide 2, and a reflective region 2 Made up of silica material.
  • the reflectors in the reflective region 1 and the reflective region 2 may be TFF.
  • the reflection area 1 and the reflection area 2 are respectively provided with a thin film filter.
  • a reflection area can reflect or transmit the light waves output by all the array waveguides by using only one TFF.
  • the arrayed waveguide grating is fabricated by a silicon material system, that is, the input/output waveguide 1, the input/output waveguide 2, the slab waveguide, the arrayed waveguide 1, the reflective region 1, the arrayed waveguide 2, and the reflective region 2 are Made up of silicon material.
  • the reflectors in the reflective region 1 and the reflective region 2 may be based on a silicon material system.
  • Waveguide type Bragg grating reflector may be based on a silicon material system.
  • each waveguide in the array waveguide is respectively connected to a waveguide type Bragg grating reflector.
  • the number of waveguide type Bragg grating reflectors disposed in one reflection area is equal to the number of waveguides in the adjacent array waveguide, that is, each of the array waveguides
  • the waveguides are respectively connected to a waveguide type Bragg grating reflector.
  • the arrayed waveguide grating is fabricated from a silicon and silica hybrid material system.
  • the input-output waveguide 1 and the input-output waveguide 2 include a silicon-based waveguide portion and a silicon-based waveguide portion, and the silicon-based waveguide portion and the silicon-based waveguide portion are connected by a coupler, wherein the coupler is connected to the slab waveguide The silicon-based waveguide.
  • the silicon-based waveguide in the present invention generally refers to a waveguide containing a silicon component of a material component, and is not limited to a waveguide in which the core layer is pure silicon, which is a high refractive index difference waveguide or a "silicon-containing waveguide.”
  • FIG. 4 is a schematic diagram of a DWDM-PON system according to an embodiment of the present invention.
  • the DWDM-PON system includes at least one ONU, AWG1 (ie, first arrayed waveguide grating), AWG2 (second arrayed waveguide grating), and OLT, wherein:
  • AWG1 and AWG2 refer to the description of the embodiment corresponding to FIG. 2 and FIG. 3, and details are not described herein again;
  • the ONU consists of TLD, PD, and WDM.
  • the TLD is used for transmitting uplink signals of the DWDM-PON system
  • the PD is used for receiving downlink signals of the DWDM-PON system
  • the WDM is used for combining and dividing the uplink and downlink wavelengths.
  • the OLT is composed of at least one optical transceiver unit, and each of the optical transceiver units is composed of an LD, a PD, and a WDM.
  • LD is used for transmitting downlink signals of DWDM-PON system
  • PD is used for receiving uplink signals of DWDM-PON system
  • WDM is used for combining and dividing of uplink and downlink wavelengths.
  • the AWG and the OLT are independent of each other, that is, the AWG is disposed outside the OLT; in other optional embodiments, the AWG may be disposed inside the OLT for management.
  • Upstream direction ie, user side to network side
  • the upstream light wave output by each ONU is input to AWG1 through the input/output waveguide 2 of AWG1.
  • AWG1 combines the light waves uploaded by each ONU, and outputs it to the long fiber through the input/output waveguide 1 (such as backbone fiber).
  • the input/output waveguide 1 of the AWG 2 enters the AWG 2, and the AWG 2 separates the optical wave generated by the long optical fiber, and then outputs it to the optical transceiver unit corresponding to the OLT through the input/output waveguide 2.
  • the light wave of the first wavelength band is an upward light wave
  • the wavelengths are ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 , respectively, and the upward light waves ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are input to the AWG 1 through the input/output waveguide 2, and are sequentially
  • the slab waveguide of the AWG 1 and the arrayed waveguide 1 enter the reflection region 1, and after the reflection region 1 is reflected back to the array waveguide 1, and sequentially passes through the array waveguide 1 and the slab waveguide, the light waves are combined and output through the input/output waveguide 1.
  • the light wave of the second wavelength band is an upward light wave
  • the wavelengths are ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 , respectively, and the upward light waves ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are input to the AWG 1 through the input/output waveguide 2, and are sequentially
  • the slab waveguide and the arrayed waveguide 1 of the AWG 1 enter the reflective region 1, are transmitted to the arrayed waveguide 2 in the reflective region 1, enter the reflective region 2 through the arrayed waveguide 2, are reflected back to the arrayed waveguide 2 in the reflective region 2, and sequentially pass through the arrayed waveguide 2.
  • the reflection area 1 the array waveguide 1, and the slab waveguide, the light waves are combined and output through the input/output waveguide 1.
  • Downstream optical waves output by the optical transceiver units in the OLT are input to the AWG2 through the input/output waveguide 2 of the AWG2, and the AWG2 combines the optical waves emitted by the respective optical transceiver units through the input/output waveguide 1
  • the output to the long fiber such as the backbone fiber
  • the AWG1 separates the light wave emitted by the long fiber, and then outputs it to the corresponding ONU through the input/output waveguide 2.
  • the light wave of the first wavelength band is a downward light wave
  • the wavelengths are ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 , respectively, and the descending light waves ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are input to the AWG 2 through the input/output waveguide 2, and are sequentially
  • the slab waveguide of the AWG 2 and the arrayed waveguide 1 enter the reflection region 1, and after the reflection region 1 is reflected back to the array waveguide 1, and sequentially passes through the array waveguide 1 and the slab waveguide, the light waves are combined and output through the input/output waveguide 1.
  • the light wave of the second wavelength band is a downward light wave
  • the wavelengths are ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 , respectively, and the descending light waves ⁇ 5 , ⁇ 6 , ⁇ 7 , and ⁇ 8 are input to the AWG 2 through the input/output waveguide 2, and are sequentially
  • the reflection area 1 the array waveguide 1, and the slab waveguide, the light waves are combined and output through the input/output waveguide 1.
  • the transmission principle of the downlink optical wave in the AWG1 is deduced by analogy and will not be described here.
  • the ports of the input and output waveguide 1 and the input/output waveguide 2 of the AWG are distributed on the Roland circle of diameter R i , and the adjacent input and output waveguides 2
  • the waveguide spacing is dx 0 .
  • the ports of the arrayed waveguide 1 are distributed over a larger circle (generally, the radius is twice that of the Roland circle) with a spacing d i . It is assumed that light waves of different wavelengths are incident by the input/output waveguide 1, and the light waves will have different phase differences at the array waveguide outlet, and the phase difference can realize separation or combination of light waves.
  • Roland's circle is as follows: a radiation grating consisting of a series of equally spaced parallel lines is drawn on the concave spherical mirror surface, which has the ability to split and condense. If the slit light source and the concave grating are placed on a circumference having a diameter equal to the radius of curvature of the concave grating, and the circle is tangent to the midpoint G of the grating, the spectrum formed by the concave grating is on this circumference, and the circle becomes a Roland circle.
  • reflection region 1 and the reflection region 2 reflect or transmit the light wave of the specified light wave through the TFF or the waveguide type Bragg grating reflector is understood by those skilled in the art, and details are not described herein again.
  • the single-array waveguide grating provided by the embodiment of the present invention can output light waves with different adjacent channel wavelength intervals, compared with the prior art, through two existing AWGs and (N+1) TFFs (N is a PON system).
  • the number of operating wavelengths outputs light waves of different adjacent channel wavelengths, reducing the number of devices used in asymmetric systems with wavelength spacing between adjacent channels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种阵列波导光栅,包括输入输出波导1、输入输出波导2、平板波导、阵列波导1、反射区1、阵列波导2和反射区2。输入输出波导1和输入输出波导2位于平板波导同一侧,并与平板波导相连,平板波导的另一侧与阵列波导1的一端相连,阵列波导1的另一端与反射区1的反射器的一端相连,反射区1的反射器的另一端与阵列波导2的一端相连,阵列波导2的另一端与反射区2的反射器相连,且反射区1用于反射第一波段的光波,且透射第二波段的光波,反射区2用于反射第二波段的光波。实现了单个阵列波导光栅输出不同相邻通道波长间隔的光波,进而减少了上下行相邻通道波长间隔非对称系统中的使用器件的数量。

Description

一种阵列波导光栅 技术领域
本发明涉及光纤通信技术领域,尤其涉及一种阵列波导光栅。
背景技术
无源光网络(Passive Optical Network,简称:PON),是指在光线路终端(Optical line terminal,简称:OLT)和光网络单元(Optical Network Unit,简称:ONU)之间是光分配网络(Optical Distribution Network,简称:ODN),没有任何有源电子设备,目前比较典型的结构包括密集波分复用无源光网络(Dense Wavelength Division Multiplexing PON,简称:DWDM-PON)和波分复用无源光网络(Wavelength Division Multiplexing PON,简称:WDM-PON)。
为了降低成本,OLT的发射机使用固定波长激光器作为光源,而ONU的发射机使用可调波长激光器作为光源。由于工艺上的误差,同一个晶圆上同一种设计的半导体激光器存在几纳米量级的工作波长差异。这个问题造成用于PON系统的固定波长激光器的产率降低,因此为了提高此种固定波长激光器的产率,需适当增加PON的下行相邻通道波长间隔,例如将相邻通道波长间隔从100GHz增加到400GHz。而对于ONU,因可调波长激光器的可调范围越大,其成本越高,因此为了降低ONU侧可调波长激光器的成本,需适当减少PON的上行相邻通道波长间隔。考虑到这些问题,相比上下行相邻通道波长间隔对称系统,上下行相邻通道波长间隔非对称系统可以实现更低的成本。
现有技术在用户侧和网络侧分别使用两个波长间隔不相等的阵列波导光栅(Arrayed Waveguide Grating,简称:AWG)和N个TFF实现上下行相邻通道波长间隔非对称系统,其示意图如图1所示。其中TFF用于上下行两个波段的光信号的分合波,而两个AWG分别用于PON系统中上下行两个波段内的光信号的分合波。TFFc首先对上下行两个波段的光信号进行分波,分离后的两个波段的光信号分别进入AWG1和AWG2,AWG1和AWG2是两个分光器件,具有相邻通道波长间隔相等的工作特性,但是分别工作在不同的波段且各自的相邻通道波长间隔不相等,经过AWG1分光的光信号再与其配对的经 过AWG2分光的光信号用TFF进行合波。可见,上下行相邻通道波长间隔非对称系统的现有方案使用器件较多。
发明内容
本发明实施例提供了一种阵列波导光栅,可以减少上下行相邻通道波长间隔非对称系统中使用器件的数量。
本发明第一方面提供了一种阵列波导光栅,包括第一输入输出波导、第二输入输出波导、平板波导、第一阵列波导、第一反射区、第二阵列波导以及第二反射区,其中:
第一输入输出波导和第二输入输出波导位于平板波导同一侧,并与平板波导相连,平板波导的另一侧与第一阵列波导的一端相连,第一阵列波导的另一端与第一反射区的反射器的一端相连,第一反射区的反射器的另一端与第二阵列波导的一端相连,第二阵列波导的另一端与第二反射区的反射器相连。
第一反射区用于反射第一波段的光波,且透射第二波段的光波,第二反射区用于反射第二波段的光波。
在该技术方案中,第一反射区和第二反射区具有波长选择的功能,使得不同波段的光波通过该阵列波导光栅时,经历的阵列波导长度差不同,第一波段的光波在第一反射区被反射,则第一波段的光波经历的阵列波导长度差根据第一阵列波导的波导长度差确定,而第二波段的光波在第二反射区才被反射,则第二波段的光波经历的阵列波导长度差根据第一阵列波导和第二阵列波导的波导长度差确定。
根据以下公式可知,在输入输出波导(即输入或输出分离光波的波导)间距固定的条件下,相邻通道波长间隔和阵列波导长度差成反比,因此,本发明实施例的阵列波导光栅输出的第一波段的光波和第二波段的光波的相邻通道波长间隔不同。
Figure PCTCN2015098671-appb-000001
其中,x0是输出波导的位置;dx0是所述输入输出波导与平板波导相接处的相邻波导中心间距,dλ是所述相邻通道(即相邻输入输出波导)的波长间隔, dx0/dλ代表输入输出波导的线色散,即间隔dx0距离的输入输出波导中,光信号中心波长的差值为dλ;Ng(λ)是阵列波导的群折射率;ΔL是相邻阵列波导的长度差;LFPRo是所述平板波导的长度;λ0是输入输出波导中光信号的中心波长;ns(λ)是所述平板波导的等效折射率;dg o是所述第一阵列波导与所述平板波导相接处的相邻波导中心间距。
由于,本发明实施例提供的单个阵列波导光栅可以输出不同相邻通道波长间隔的光波,因此减少了上下行相邻通道波长间隔非对称系统中的使用器件的数量。
在第一方面的第一种可能的实现方式中,阵列波导光栅由二氧化硅材料体系制作,即第一输入输出波导、第二输入输出波导、平板波导、第一阵列波导、第一反射区、第二阵列波导以及第二反射区由二氧化硅材料组成。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,第一反射区和第二反射区中的反射器为薄膜滤波器((thin film filter,简称:TFF)。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,第一反射区和第二反射区分别设置一个薄膜滤波器。
在该技术方案,由于TFF的覆盖面积较广,因此,一个反射区只需使用一个TFF即可对所有阵列波导输出的光波进行反射或透射。
在第一方面的第四种可能的实现方式中,阵列波导光栅由硅材料体系制作,即第一输入输出波导、第二输入输出波导、平板波导、第一阵列波导、第一反射区、第二阵列波导以及第二反射区由硅材料组成。
结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,第一反射区和第二反射区中的反射器包括基于硅材料体系的波导型布拉格光栅反射器。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,第一阵列波导和第二阵列波导中的每条波导分别连接一个波导型布拉格光栅反射器。
在该技术方案,由于波导型布拉格光栅反射器覆盖面积较小,因此,一个反射区设置的波导型布拉格光栅反射器的数量与相邻的阵列波导中波导的数量相等,即阵列波导的每条波导分别连接一个波导型布拉格光栅反射器。
进一步的,阵列波导光栅由硅和二氧化硅混合材料体系制作。具体的,第一输入输出波导和第二输入输出波导包括二氧化硅基波导部分和硅基波导部分,二氧化硅基波导部分和硅基波导部分通过耦合器连接,其中,利用耦合器与平板波导连接的为硅基波导。
应指出的是,本发明中的硅基波导泛指材料组分含硅的波导,而非限于芯层为纯硅的波导,其为高折射率差波导或“含硅波导”。
结合第一方面或第一方面的第一种至第六种中任一种可能的实现方式,在第七种可能的实现方式中,第一波段的光波为上行光波,第二波段的光波为下行光波;或者,第一波段的光波为下行光波,第二波段的光波为上行光波。
其中,第一波段的光波包括至少一种波长的光波,第二波段的光波包括至少一种波长的光波,且第一波段的光波和第二波段的光波的波长不相等。
本发明第二方面提供了一种无源光网络系统,该系统包括至少一个光网络单元、第一阵列波导光栅、第二阵列波导光栅和光线路终端,所述第一和第二阵列波导光栅为本发明实施例第一方面提供的阵列波导光栅,其中:
从上行方向(即用户侧到网络侧)角度,所述第一阵列波导光栅用于将各个所述光网络单元输出的光波合并到长光纤,所述第二阵列波导光栅用于将所述长光纤中的光波分离到所述光线路终端;
从下行方向(即网络侧到用户侧)角度,所述第二阵列波导光栅用于将所述光线路终端输出的光波合并到所述长光纤,所述第一阵列波导光栅用于将所述长光纤中的光波分离到对应的所述光网络单元。
在该技术方案中,不管是用户侧还是网络侧,无源光网络系统只需一个阵列波导光栅即可实现上下行相邻通道波长间隔非对称系统,相比现有技术,通过两个阵列波导光栅和N个TFF而言,减少了上下行相邻通道波长间隔非对称系统中使用器件的数量。
实施本发明实施例,具有以下有益效果:
通过单个阵列波导光栅输出不同相邻通道波长间隔的光波,减少了上下行相邻通道波长间隔非对称系统中的使用器件的数量。
附图说明
为了更清楚地说明本发明实施例,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了使用普通AWG实现上下行相邻通道波长间隔非对称系统的示意图;
图2是本发明实施例提供的一种AWG的结构示意图;
图3是本发明实施例提供的AWG中平板波导的细节示意图;
图4是本发明实施例提供的一种DWDM-PON系统的示意图;
图5是阵列波导光栅平板波导罗兰圆示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图2,图2是本发明实施例提供的一种AWG的结构示意图;如图2所示,该阵列波导光栅包括输入输出波导1(即上述的第一输入输出波导)和输入输出波导2(即上述的第二输入输出波导)位于平板波导同侧,并与平板波导相连,平板波导的另一侧与阵列波导1(即上述的第一阵列波导)的一端相连,阵列波导1的另一端与反射区1(即上述的第一反射区)的反射器的一端相连,反射区1的反射器的另一端与阵列波导2(即上述的第二阵列波导)的一端相连,阵列波导2的另一端与反射区2(即上述的第二反射区)的反射器相连。
应指出的是,图2所示的输入输出波导1只包含1条波导,在其他可选实施例中,输入输出波导1可以包含至少两条波导。
输入输出波导1、输入输出波导2、平板波导和阵列波导1的细节示意图可以如图3所示,光波若从输入输出波导1输入,则从输入输出波导2输出; 光波若从输入输出波导2输入,则从输入输出波导1输出。
在该技术方案中,反射区1和反射区2具有波长选择的功能,使得不同波段的光波通过该阵列波导光栅时,经历的阵列波导长度差不同,第一波段的光波在反射区1被反射,则第一波段的光波经历的阵列波导长度差根据阵列波导1的波导长度差确定,而第二波段的光波在反射区2才被反射,则第二波段的光波经历的阵列波导长度差根据阵列波导1和阵列波导2的波导长度差确定。
根据以下公式可知,在输入输出波导2间距固定的条件下,相邻通道波长间隔和阵列波导长度差成反比,因此,本发明实施例的阵列波导光栅输出的第一波段的光波和第二波段的光波的相邻通道波长间隔不同。
Figure PCTCN2015098671-appb-000002
其中,x0是输出波导的位置;dx0是所述输入输出波导2与平板波导相接处的相邻波导中心间距,dλ是所述相邻通道(即相邻输入输出波导)的波长间隔,dx0/dλ代表输入输出波导的线色散,即间隔dx0距离的输入输出波导中,光信号中心波长的差值为dλ;Ng(λ)是阵列波导的群折射率;ΔL是相邻阵列波导的长度差;LFPRo是所述平板波导的长度;λ0是输入输出波导中光信号的中心波长;ns(λ)是所述平板波导的等效折射率;dg o是所述第一阵列波导与所述平板波导相接处的相邻波导中心间距。
在一种可选的实施方式中,阵列波导光栅由二氧化硅材料体系制作,即输入输出波导1、输入输出波导2、平板波导、阵列波导1、反射区1、阵列波导2以及反射区2由二氧化硅材料组成。
在这种情况下,反射区1和反射区2中的反射器可以为TFF。
当反射区采用TFF时,反射区1和反射区2分别设置一个薄膜滤波器。
在该技术方案,由于TFF的覆盖面积较广,因此,一个反射区只需使用一个TFF即可对所有阵列波导输出的光波进行反射或透射。
在另一种可选的实施方式中,阵列波导光栅由硅材料体系制作,即输入输出波导1、输入输出波导2、平板波导、阵列波导1、反射区1、阵列波导2以及反射区2由硅材料组成。
在这种情况下,反射区1和反射区2中的反射器可以为基于硅材料体系的 波导型布拉格光栅反射器。
当反射区采用波导型布拉格光栅反射器时,阵列波导中的每条波导分别连接一个波导型布拉格光栅反射器。
在该技术方案,由于波导型布拉格光栅反射器覆盖面积较小,因此,一个反射区设置的波导型布拉格光栅反射器的数量与相邻的阵列波导中波导的数量相等,即阵列波导的每条波导分别连接一个波导型布拉格光栅反射器。
在又一种可选的实施方式中,阵列波导光栅由硅和二氧化硅混合材料体系制作。具体的,输入输出波导1和输入输出波导2包括二氧化硅基波导部分和硅基波导部分,二氧化硅基波导部分和硅基波导部分通过耦合器连接,其中,利用耦合器与平板波导连接的为硅基波导。
应指出的是,本发明中的硅基波导泛指材料组分含硅的波导,而非限于芯层为纯硅的波导,其为高折射率差波导或“含硅波导”。
以下具体分析本发明实施例的AWG在PON系统中的应用,以DWDM-PON系统为例。请参阅图4,图4是本发明实施例提供的一种DWDM-PON系统的示意图。
如图4所示,该DWDM-PON系统包括至少一个ONU、AWG1(即第一阵列波导光栅)、AWG2(第二阵列波导光栅)和OLT,其中:
AWG1和AWG2参见图2和图3所对应的实施例的描述,在此不再赘述;
ONU由TLD、PD和WDM组成。其中,TLD用于DWDM-PON系统上行信号的发射,PD用于DWDM-PON系统下行信号的接收,WDM用于上下行波长的合分波。
OLT由至少一个光收发单元组成,每个所述光收发单元由LD、PD和WDM组成。其中,LD用于DWDM-PON系统下行信号的发射,PD用于DWDM-PON系统上行信号的接收,WDM用于上下行波长的合分波。
应指出的是,在本发明实施例中,AWG与OLT是相互独立的,即AWG是设置在OLT外部的;在其他可选实施例中,为了便于管理,AWG可以设置在OLT的内部。
以下分别从上行方向和下行方向介绍AWG在DWDM-PON的应用。
上行方向(即用户侧到网络侧):各个ONU输出的上行光波通过AWG1的输入输出波导2输入AWG1,AWG1将各个ONU上传的光波合并后,通过输入输出波导1输出到长光纤(如骨干光纤),在长光纤传输后,通过AWG2的输入输出波导1进入AWG2,AWG2将长光纤上传的光波分离后,通过输入输出波导2输出到OLT对应的光收发单元。
假设,第一波段的光波为上行光波,且波长分别为λ1、λ2、λ3、λ4,上行光波λ1、λ2、λ3、λ4通过输入输出波导2输入AWG1,并依次通过AWG1的平板波导和阵列波导1进入反射区1,在反射区1被反射回阵列波导1,并依次通过阵列波导1和平板波导后,光波被合并,并通过输入输出波导1输出。
假设,第二波段的光波为上行光波,且波长分别为λ5、λ6、λ7、λ8,上行光波λ5、λ6、λ7、λ8通过输入输出波导2输入AWG1,并依次通过AWG1的平板波导和阵列波导1进入反射区1,在反射区1被透射到阵列波导2,通过阵列波导2进入反射区2,在反射区2被反射回阵列波导2,并依次通过阵列波导2、反射区1、阵列波导1、平板波导后,光波被合并,并通过输入输出波导1输出。
上行光波在AWG2中的传输原理以此类推,在此不再赘述。
下行方向(即网络侧到用户侧):OLT中的各个光收发单元输出的下行光波通过AWG2的输入输出波导2输入AWG2,AWG2将各个光收发单元下发的光波合并后,通过输入输出波导1输出到长光纤(如骨干光纤),在长光纤传输后,通过AWG1的输入输出波导1进入AWG1,AWG1将长光纤下发的光波分离后,通过输入输出波导2输出到对应的ONU。
假设,第一波段的光波为下行光波,且波长分别为λ1、λ2、λ3、λ4,下行光波λ1、λ2、λ3、λ4通过输入输出波导2输入AWG2,并依次通过AWG2的平板波导和阵列波导1进入反射区1,在反射区1被反射回阵列波导1,并依次通过阵列波导1和平板波导后,光波被合并,并通过输入输出波导1输出。
假设,第二波段的光波为下行光波,且波长分别为λ5、λ6、λ7、λ8,下行光波λ5、λ6、λ7、λ8通过输入输出波导2输入AWG2,并依次通过AWG2的平板波导和阵列波导1进入反射区1,在反射区1被透射到阵列波导2,通过阵列波导2进入反射区2,在反射区2被反射回阵列波导2,并依次通过阵列波导2、反射区1、阵列波导1、平板波导后,光波被合并,并通过输入输出波导1输出。
下行光波在AWG1中的传输原理以此类推,在此不再赘述。
其中,AWG1和AWG2如何对光波进行合并或分离如图5所示,AWG的输入输出波导1和输入输出波导2的端口分布在直径为Ri的罗兰圆上,且输入输出波导2的相邻波导间隔为dx0。阵列波导1的端口分布在一更大圆上(一般情况下,半径为罗兰圆的2倍),间距为di。假设,由输入输出波导1入射不同波长的光波,该光波在阵列波导出口将存在不同的相位差,该相位差可实现光波的分离或合并。
罗兰圆的定义如下:在凹球面反射镜面上刻划一系列等间距的平行线条构成的发射光栅,它具有分光能力和聚光能力。若将缝光源和凹面光栅放置在直径等于凹面光栅曲率半径的圆周上,且该圆与光栅中点G相切,则由凹面光栅形成的光谱呈在这个圆周上,该圆成为罗兰圆。
可理解的是,反射区1和反射区2如何通过TFF或波导型布拉格光栅反射器反射或透射指定光波的光波是本领域技术人员可理解的,在此不再赘述。
由于,本发明实施例提供的单个阵列波导光栅可以输出不同相邻通道波长间隔的光波,相比现有技术中,通过2个现有AWG以及(N+1)个TFF(N为PON系统的工作波长数量)输出不同相邻通道波长间隔的光波,减少了上下行相邻通道波长间隔非对称系统中的使用器件的数量。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (9)

  1. 一种阵列波导光栅,其特征在于,包括:
    第一输入输出波导、第二输入输出波导、平板波导、第一阵列波导、第一反射区、第二阵列波导以及第二反射区,其中:
    所述第一输入输出波导和所述第二输入输出波导位于所述平板波导同一侧,并与所述平板波导相连;
    所述平板波导的另一侧与所述第一阵列波导的一端相连;
    所述第一阵列波导的另一端与所述第一反射区的反射器的一端相连;
    所述第一反射区的反射器的另一端与所述第二阵列波导的一端相连;
    所述第二阵列波导的另一端与所述第二反射区的反射器相连;
    所述第一反射区用于反射第一波段的光波,且透射第二波段的光波;
    所述第二反射区用于反射所述第二波段的光波。
  2. 如权利要求1所述的阵列波导光栅,其特征在于,
    所述第一输入输出波导、所述第二输入输出波导、所述平板波导、所述第一阵列波导、所述第一反射区、所述第二阵列波导以及所述第二反射区由二氧化硅材料组成。
  3. 如权利要求2所述的阵列波导光栅,其特征在于,
    所述反射器包括薄膜滤波器。
  4. 如权利要求3所述的阵列波导光栅,其特征在于,
    所述第一反射区和所述第二反射区分别设置一个所述薄膜滤波器。
  5. 如权利要求1所述的阵列波导光栅,其特征在于,
    所述第一输入输出波导、所述第二输入输出波导、所述平板波导、所述第一阵列波导、所述第一反射区、所述第二阵列波导以及所述第二反射区由硅材料组成。
  6. 如权利要求5所述的阵列波导光栅,其特征在于,
    所述反射器包括波导型布拉格光栅反射器。
  7. 如权利要求6所述的阵列波导光栅,其特征在于,
    所述第一阵列波导和所述第二阵列波导中的每条波导分别连接一个所述波导型布拉格光栅反射器。
  8. 如权利要求1-7中任一项所述的阵列波导光栅,其特征在于,
    所述第一波段的光波为上行光波,所述第二波段的光波为下行光波;或者,
    所述第一波段的光波为下行光波,所述第二波段的光波为上行光波。
  9. 一种无源光网络系统,其特征在于,所述系统包括至少一个光网络单元、两个阵列波导光栅和光线路终端,其中,所述阵列波导光栅为如权利要求1-8中任一项所述的阵列波导光栅。
PCT/CN2015/098671 2015-12-24 2015-12-24 一种阵列波导光栅 WO2017107133A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/098671 WO2017107133A1 (zh) 2015-12-24 2015-12-24 一种阵列波导光栅
EP15911132.7A EP3385763A4 (en) 2015-12-24 2015-12-24 Arrayed waveguide grating
CN201580083822.3A CN108139540B (zh) 2015-12-24 2015-12-24 一种阵列波导光栅
KR1020187020996A KR20180095918A (ko) 2015-12-24 2015-12-24 어레이 도파관 격자
US16/016,402 US10209444B2 (en) 2015-12-24 2018-06-22 Arrayed waveguide grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/098671 WO2017107133A1 (zh) 2015-12-24 2015-12-24 一种阵列波导光栅

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/016,402 Continuation US10209444B2 (en) 2015-12-24 2018-06-22 Arrayed waveguide grating

Publications (1)

Publication Number Publication Date
WO2017107133A1 true WO2017107133A1 (zh) 2017-06-29

Family

ID=59088792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098671 WO2017107133A1 (zh) 2015-12-24 2015-12-24 一种阵列波导光栅

Country Status (5)

Country Link
US (1) US10209444B2 (zh)
EP (1) EP3385763A4 (zh)
KR (1) KR20180095918A (zh)
CN (1) CN108139540B (zh)
WO (1) WO2017107133A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2595090Y (zh) * 2002-04-15 2003-12-24 浙江大学 将多个波长信道的光信号分开的阵列波导光栅
US20040047559A1 (en) * 2002-09-11 2004-03-11 Jong-Won Lee Multi-channel dispersion compensator for an optical transmission system
CN1512207A (zh) * 2002-12-26 2004-07-14 上海乐通光通信有限公司 反射式温度不敏感阵列波导光栅器件
KR20080082950A (ko) * 2008-08-25 2008-09-12 (주)포인테크 반사형 광도파로열격자 소자 및 그 제작방법
CN102778730A (zh) * 2012-07-02 2012-11-14 华南理工大学 基于多模干涉器反射镜的反射式阵列波导光栅
CN104170402A (zh) * 2014-02-26 2014-11-26 华为技术有限公司 无源光网络系统、无源光网络保护方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452897A3 (en) * 1996-09-02 2005-02-16 Nippon Telegraph and Telephone Corporation Optical signal processing apparatus and optical signal processing method
US6049640A (en) * 1997-09-04 2000-04-11 Lucent Technologies Inc. Wavelength-division-multiplexing cross-connect using angular dispersive elements and phase shifters
JP2001166162A (ja) * 1999-12-09 2001-06-22 Hitachi Cable Ltd アレイ導波路型グレーティング
GB0106475D0 (en) * 2001-03-16 2001-05-02 Roke Manor Research Parallel transmitter TDM device
JP4949355B2 (ja) * 2008-11-13 2012-06-06 日本電信電話株式会社 波長選択スイッチ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2595090Y (zh) * 2002-04-15 2003-12-24 浙江大学 将多个波长信道的光信号分开的阵列波导光栅
US20040047559A1 (en) * 2002-09-11 2004-03-11 Jong-Won Lee Multi-channel dispersion compensator for an optical transmission system
CN1512207A (zh) * 2002-12-26 2004-07-14 上海乐通光通信有限公司 反射式温度不敏感阵列波导光栅器件
KR20080082950A (ko) * 2008-08-25 2008-09-12 (주)포인테크 반사형 광도파로열격자 소자 및 그 제작방법
CN102778730A (zh) * 2012-07-02 2012-11-14 华南理工大学 基于多模干涉器反射镜的反射式阵列波导光栅
CN104170402A (zh) * 2014-02-26 2014-11-26 华为技术有限公司 无源光网络系统、无源光网络保护方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385763A4 *

Also Published As

Publication number Publication date
EP3385763A1 (en) 2018-10-10
CN108139540A (zh) 2018-06-08
EP3385763A4 (en) 2018-12-12
US10209444B2 (en) 2019-02-19
KR20180095918A (ko) 2018-08-28
CN108139540B (zh) 2020-09-08
US20180299618A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP2953947B2 (ja) 光通信ネットワーク
US10578804B2 (en) Optical slab
CN102565932B (zh) 色散校正的阵列波导光栅
US20170059779A1 (en) Waveguide-type optical diffraction grating and optical wavelength filter
US20230024334A1 (en) Adjustable grid tracking transmitters and receivers
TWI725076B (zh) 光子晶片光學收發器
US9116305B2 (en) Arrayed waveguide grating, optical module provided with said arrayed waveguide grating, and optical communications system
US20170168238A1 (en) Wavelength division device, wavelength division multiplexing system and wavelength multiplexing system
CN116699757A (zh) 一种波导光栅滤波器,相关设备以及系统
WO2017107133A1 (zh) 一种阵列波导光栅
KR101032453B1 (ko) 트리플렉서
JP2019086660A (ja) 光導波路素子
KR101991764B1 (ko) 광 처리 장치
US20060291858A1 (en) Bi-directional compound-WDM fiberoptic system architecture with redundancy protection for transmission of data, voice and video signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015911132

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015911132

Country of ref document: EP

Effective date: 20180702

ENP Entry into the national phase

Ref document number: 20187020996

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020996

Country of ref document: KR