JP5729605B2 - 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム - Google Patents

熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム Download PDF

Info

Publication number
JP5729605B2
JP5729605B2 JP2011177586A JP2011177586A JP5729605B2 JP 5729605 B2 JP5729605 B2 JP 5729605B2 JP 2011177586 A JP2011177586 A JP 2011177586A JP 2011177586 A JP2011177586 A JP 2011177586A JP 5729605 B2 JP5729605 B2 JP 5729605B2
Authority
JP
Japan
Prior art keywords
group
structural formula
carbon atoms
represented
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011177586A
Other languages
English (en)
Other versions
JP2013040270A (ja
Inventor
悦子 鈴木
悦子 鈴木
和郎 有田
和郎 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2011177586A priority Critical patent/JP5729605B2/ja
Publication of JP2013040270A publication Critical patent/JP2013040270A/ja
Application granted granted Critical
Publication of JP5729605B2 publication Critical patent/JP5729605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、その硬化物において優れた難燃性、耐熱性、低誘電正接を発現し、かつ、溶剤溶解性に優れた性能を有する熱硬化性樹脂組成物、その硬化物、及びこれに用いる活性エステル樹脂、並びに、該熱硬化性樹脂組成物半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルムに関する。
エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、その硬化物において優れた耐熱性と絶縁性を発現することから、半導体や多層プリント基板などの電子部品用途において広く用いられている。
この電子部品用途のなかでも多層プリント基板絶縁材料の技術分野では、近年、各種電子機器における信号の高速化、高周波数化が進んでいる。しかしながら、信号の高速化、高周波数化に伴って、十分に低い誘電率を維持しつつ低い誘電正接を得ることが困難となりつつある。
そこで、高速化、高周波数化された信号に対しても、十分に低い誘電率を維持しつつ十分に低い誘電正接を発現する硬化物を得ることが可能な熱硬化性樹脂組成物の提供が望まれている。これらの低誘電率・低誘電正接を実現可能な材料として、フェノールノボラック樹脂中のフェノール性水酸基をアリールエステル化して得られる活性エステル化合物をエポキシ樹脂用硬化剤として用いる技術が知られている(下記特許文献1参照)。
然し乍ら、電子部品における高周波化や小型化の傾向から多層プリント基板絶縁材料にも極めて高度な耐熱性が求められているところ、前記したフェノールノボラック樹脂中のフェノール性水酸基をアリールエステル化して得られる活性エステル化合物は、アリールエステル構造の導入により硬化物の架橋密度が低下してしまい、硬化物の耐熱性が十分でないものであった。このように耐熱性と低誘電率・低誘電正接とは両立が困難なものであった。
一方、同分野に用いられる材料は、ダイオキシン問題に代表とする環境問題への対応が不可欠となっており、近年、添加系のハロゲン系難燃剤を用いることなく、樹脂自体に難燃効果を持たせた所謂ハロゲンフリーの難燃システムの要求が高まっている。ところが、前記したフェノールノボラック樹脂中のフェノール性水酸基をアリールエステル化して得られる活性エステル化合物は、誘電特性は良好になるものの、その分子構造内に燃焼しやすいペンダント状の芳香族炭化水素基が多く含まれることになる為、硬化物の難燃性に劣り、前記したハロゲンフリーの難燃システムを構築することが出来ないものであった。
特開平7−82348号公報
従って、本発明が解決しようとする課題は、その硬化物において、低誘電率、低誘電正接でありながら、優れた耐熱性と難燃性とを兼備させることのできる熱硬化性樹脂組成物、その硬化物、これらの性能を発現させる活性エステル樹脂、前記組成物から得られる半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルムを提供することにある。
本発明者らは、前記課題を解決すべく鋭意検討した結果、エポキシ樹脂用硬化剤として、下記構造式(1)
Figure 0005729605
(式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、フェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
Figure 0005729605

で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、アラルキル基を表す。)で表される構造部位(a−1)における*位に、下記構造式(1−2)
Figure 0005729605

(式中、Arは、フェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチル基を表す。)
で表される構造部位(a−2)を有するか、或いは、*位の全部或いは前記構造部位(a−2)と共に、下記構造式(1−3)
Figure 0005729605

(式中、Arは、フェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。)
で表される構造部位(a−3)を前記構造部位(a−1)の結節基として有する樹脂構造を有する活性エステル樹脂(A)、及びエポキシ樹脂(B)を必須成分とすることを特徴とする熱硬化性樹脂組成物に関する。
本発明は、更に、上記熱硬化性樹脂組成物を硬化させて得られる硬化物に関する。
本発明は、更に、下記構造式(1)
Figure 0005729605
(式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、フェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
Figure 0005729605

で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、アラルキル基を表す。)で表される構造部位(a−1)における*位に、下記構造式(1−2)
Figure 0005729605

(式中、Arは、フェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチル基を表す。)
で表される構造部位(a−2)を有するか、或いは、*位の全部が、或いは、前記構造部位(a−2)と共に、下記構造式(1−3)
Figure 0005729605

(式中、Arは、フェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。)
で表される構造部位(a−3)を前記構造部位(a−1)の結節基として有する樹脂構造を有する活性エステル樹脂に関する。
本発明は、更に、上記熱硬化性樹脂組成物における前記活性エステル樹脂(A)及び前記エポキシ樹脂(B)に加え、更に無機質充填材(C)を組成物中70〜95質量%となる割合で含有する熱硬化性樹脂組成物からなることを特徴とする半導体封止材料に関する。
本発明は、更に、上記熱硬化性樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることによって得られるプリプレグに関する。
本発明は、更に、上記熱硬化性樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板に関する。
本発明は、更に、上記熱硬化性樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させることによって得られるビルドアップフィルムに関する。
本発明によれば、その硬化物において、低誘電率、低誘電正接でありながら、優れた耐熱性と難燃性とを兼備させることのできる熱硬化性樹脂組成物、その硬化物、これらの性能を発現させる活性エステル樹脂、前記組成物から得られる半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルムを提供できる。
図1は、合成例1で得られたリン原子含有オリゴマー(A−1)のGPCチャート図である。 図2は、合成例1で得られたリン原子含有オリゴマー(A−1)の13C−NMRチャート図である。 図3は、合成例1で得られたリン原子含有オリゴマー(A−1)のFD−MSのスペクトルである。 図4は、合成例2で得られたリン原子含有オリゴマー(A−2)のGPCチャート図である。 図5は、実施例1で得られた活性エステル樹脂(B−1)のGPCチャート図である。
以下、本発明を詳細に説明する。
本発明の熱硬化性樹脂組成物で用いる活性エステル樹脂(A)は、前記したとおり、下記構造式(1)
Figure 0005729605

(式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、フェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
Figure 0005729605

で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、アラルキル基を表す。)で表される構造部位(a−1)における*位に、下記構造式(1−2)
Figure 0005729605

(式中、Arは、フェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチル基を表す。)
で表される構造部位(a−2)を有するか、*位の一部乃至全部に下記構造式(1−3)
Figure 0005729605

(式中、Arは、フェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。)
で表される構造部位(a−3)を、前記構造部位(a−1)の結節基として有するか、或いは、*位の一部乃至全部に前記構造部位(a−2)と共に、前記構造部位(a−3)を前記構造部位(a−1)の結節基として有する樹脂構造を有するものである。
ここで、前記活性エステル樹脂(A)は、更に具体的には、下記構造式(1’)
Figure 0005729605

(式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、フェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
Figure 0005729605

で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、アラルキル基を表す。)で表され、かつ、前記構造式(1’)においてnが2以上の成分の含有率が、GPC測定におけるピーク面積基準で5〜90%の範囲にあることを特徴とするリン原子含有オリゴマー(a)を、該リン原子含有オリゴマー(a)のフェノール性水酸基に、芳香族モノカルボン酸又はそのハライド(b−1)と反応させてエステル結合を形成させた樹脂構造(A1)、前記リン原子含有オリゴマー(a)のフェノール性水酸基に、芳香族ジカルボン酸又はそのハライド(b−2)を反応させてエステル結合を形成させた樹脂構造(A2)、或いは、前記リン原子含有オリゴマー(a)のフェノール性水酸基に、芳香族モノカルボン酸又はそのハライド(b−1)及び芳香族ジカルボン酸又はそのハライド(b−2)を反応させてエステル結合を形成させた樹脂構造(A3)を有するものである。
本発明では、分子主骨格に特定のリン原子含有構造を有することから、優れた耐熱性及び難燃性を硬化物に付与できると共に、該構造に前記構造式(1−2)で表される構造部位(a−2)を有するか、或いは、該構造が前記構造式(1−3)で結節された構造部位(a−3)を有することから、硬化物に低誘電率、低誘電正接といった優れた誘電特性を兼備させることができる。本来、多官能フェノール性水酸基含有樹脂のフェノール性水酸基をアリールカルボニルオキシ化した樹脂構造中に有する活性エステル樹脂では、該アリールカルボニルオキシ基に起因して耐熱性や難燃性が低下するところ、本発明ではこのような耐熱性や難燃性の低下が殆ど認められないのは、特筆すべき点である。
ここで、前記活性エステル樹脂(A)は、前記構造式(1)で表される構造部位(a−1)における*位において、前記構造式(1−2)で表される構造部位(a−2)、又は、前記構造式(1−3)で表される構造部位(a−3)を有しない場合、水素原子と結合する樹脂構造を有するものとなる。
ここで、前記活性エステル樹脂(A)が、前記構造(A1)を有する場合、*位の40〜95%が下記構造式(1−2)
Figure 0005729605

(式中、Arは、フェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチル基を表す。)で表される構造部位(a−2)を有し、*位のその他の部位が水素原子を有するものであることが硬化性、硬化物の耐熱性に優れる点から好ましい。
また、前記活性エステル樹脂(A)が、前記構造(A2)を有する場合、*位の1〜10モル%が下記構造式(1−3)
Figure 0005729605

(式中、Arは、フェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。)
で表される構造部位(a−3)が前記構造部位(a−1)の結節基として結合した構造を有するものであることが溶剤溶解性の点から好ましい。
更に、前記活性エステル樹脂(A)が、前記構造(A3)を有する場合、*位の40〜95モル%が前記構造部位(a−2)を有し、かつ、1〜10モル%が前記構造部位(a−3)を有し、その他の*位は水素原子と結合するものであることが、硬化物における耐熱性、誘電特性の点から好ましい。
ここで、前記活性エステル樹脂(A)の前駆体である、リン原子含有オリゴマー(a)は、具体的には、下記構造式(1’)
Figure 0005729605

(式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、フェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
Figure 0005729605
で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、アラルキル基を表す。)で表され、かつ、前記構造式(1)においてnが2以上の成分の含有率が、GPC測定におけるピーク面積基準で5〜90%の範囲にあることを特徴とするものである。
前記リン原子含有オリゴマー(a)は、このように前記構造式(1’)中に下記構造式(2)
Figure 0005729605

(式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、フェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
Figure 0005729605

で表される構造部位である。)で表される構造部位を繰り返し単位として有することから、硬化した状態において難燃性に優れ、かつ、高ガラス転移温度を有し、更に耐熱剥離性に優れたものとなる。
ここで、前記構造式(2)中で表される構造部位は、具体的には、下記構造式(2−1)〜(2−8)で表されるものが挙げられる。
Figure 0005729605
本発明では、前記構造式(1’)中のXは構造式(x1)及び構造式(x2)から選択されるものであるが、特に難燃性の点から構造式(x1)であることが好まく、よって、前記構造式(2)で表される構造部位のなかでも、前記構造式(x−1)に対応する構造式(2−1)、(2−2)、(2−3)、及び(2−4)が好ましい。
また、前記構造式(1’)において、Yは、水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であるが、該リン原子含有オリゴマー中にこれらが共存していてもよい。本発明では、Yは、溶剤溶解性や耐熱性の点から水素原子又は前記構造式(x1)若しくは(x2)で表される構造部位であることが好ましく、特に、難燃性の点から構造式(x1)であることが好ましい。
また、前記リン原子含有オリゴマー(a)は、前記した通り、上記した構造式(1’)においてnが2以上の成分の含有率が、GPC測定におけるピーク面積基準で5〜90%の範囲にある。このような範囲の含有率を有することから該オリゴマーの有機溶剤への溶解性、及び、硬化物の難燃性が顕著に優れたものとなる。
ここで、前記構造式(1’)におけるnが2以上の成分の含有率とは、下記の条件で測定されたGPCのチャートにおいて、36.0分未満のピーク面積の割合をいう。
<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
本発明では、nが2以上の成分の含有率が、GPC測定におけるピーク面積基準で5%以上の場合、最終的に得られる活性エステル樹脂(A)の溶剤溶解性が良好なものとなり、他方、90%以下の場合には溶融時の流動性或いはワニスにした場合の流動性が良好なものとなる。ここで、その他の成分はnが1の成分であり、よって、前記リン原子含有オリゴマー(a)は、nが1の成分がGPC測定におけるピーク面積基準で95〜10%の割合となる。本発明では、前記した溶剤溶解性と流動性とを保持しつつ、更に硬化物において優れた耐熱性、とりわけ高ガラス転移点かつT288試験に優れた性能を発現する点から、前記リン原子含有オリゴマー(a)におけるnが2以上の成分の含有率が、40〜75%となる範囲であって、nが1の成分の含有率が60〜25%となる範囲であることが好ましい。
更に、具体的には、nが1の成分の含有率が95〜10%、nが2の成分の含有率が3〜50%、かつ、nが3以上の成分の含有率が1〜45%であることが溶剤溶解性の点から好ましく、特に、nが1の成分の含有率が60〜25%、nが2の成分の含有率が10〜45%、かつ、nが3以上の成分の含有率が10〜40%であることが溶剤溶解性、流動性、及び耐熱性のバランスが顕著なものとなる点から好ましい。
また、前記した通り、前記構造式(1’)におけるYは構造式(x1)であることが好ましく、よって、リン原子含有オリゴマー(a)は、前記構造式(1’)において、Yが構造式(x1)であって、かつ、nが2以上の成分の含有率が40〜75%、nが1の成分の含有率が60〜25%であるものが難燃性と耐熱性の点から好ましく、更に、前記構造式(1’)において、Yが構造式(x1)であって、かつ、nが1の成分の含有率が95〜10%、nが2の成分の含有率が3〜50%、nが3以上の成分の含有率が1〜45%であるリン原子含有オリゴマーが難燃性と耐熱性と溶剤溶解性に優れる点から好ましく、特に、Yは構造式(x1)であって、かつ、nが1の成分の含有率が60〜25%、nが2の成分の含有率が10〜45%、かつ、nが3以上の成分の含有率が10〜40%であるリン原子含有オリゴマーが難燃性、溶剤溶解性、流動性、及び耐熱性のバランスに優れる点から最も好ましい。
また、上記したリン原子含有オリゴマー(a)は、該オリゴマー中のリン原子含有率が9〜12質量%の範囲であることが難燃性の点から好ましい。かかるリン原子含有率は、「JIS規格K0102 46」に準拠して測定した値である。
以上詳述したリン原子含有オリゴマー(a)は、例えば、以下の製造方法によって得ることができる。
即ち、下記構造式(a1−1)又は(a1−2)
Figure 0005729605

(式中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、アラルキル基を表す。)で表される化合物(a1)と、
下記構造式(a2)
Figure 0005729605

(式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、フェニル基を表す。)
で表される化合物(a2)とを、モル比[化合物(a1)/化合物(a2)]が0.01/1.0〜0.99/1.0となる割合で配合し、酸触媒の存在下、80〜180℃で反応を行い、次いで、前記化合物(a2)の仕込み量に対して、モル基準で合計1.01〜3.0倍量となる前記化合物(a1)を加え、120〜200℃にて反応を行う方法により製造することができる。
本発明では、かかる方法によりリン原子含有オリゴマー(a)を製造する場合、反応中間体の析出を良好に抑制でき、高分子量化し易くなる。
ここで、前記構造式(a1−1)又は(a1−2)中の、R、R、R、Rを構成する炭素原子数1〜5のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基が挙げられるが、本発明で用いる化合物(a1)は、R、R、R、Rの全てが水素原子であるものが難燃性の点から好ましい。更に化合物(a1)は、硬化物の難燃性に優れる点から構造式(a1−1)を有するものが好ましい。他方、化合物(a2)における前記構造式(a2)中のRは、メチル基、エチル基、n−プロピル基、メトキシ基等が挙げられるが、化合物(a1)との反応性及び硬化物の難燃性に優れる点からRは水素原子であることが好ましい。
前記方法において使用し得る触媒としては、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p−トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。その使用量は硬化物の電気絶縁の低下を防ぐ観点から仕込み原料の総重量に対して、0.1〜5.0質量%の範囲であることが好ましい。
該反応は前記化合物(a2)が液状であるため、これを有機溶媒として用い反応を行うことができるが、作業性等の向上という観点から他の有機溶媒を使用してもよい。ここで、用いる有機溶媒としては、アルコール系有機溶媒、炭化水素系有機溶媒などの非ケトン系有機溶媒が挙げられ、具体的には、前記アルコール系有機溶媒としてはプロピレングリコールモノメチルエーテル等が挙げられ、前記炭化水素系有機溶媒としてはトルエン、キシレン等が挙げられる。
反応終了後は、減圧下で乾燥することによって目的とする、リン原子含有オリゴマー(a)を得ることができる。
本発明で用いる活性エステル樹脂(A)は、前記した通り、リン原子含有オリゴマー(a)のフェノール性水酸基に、芳香族モノカルボン酸又はそのハライド(b−1)、
芳香族ジカルボン酸又はそのハライド(b−2)、或いは、これら(b−1)及び(b−2)を反応させて得ることができる。
ここで用いる芳香族モノカルボン酸又はそのハライド(b−1)は、具体的には、安息香酸、或いは、フェニル安息香酸、メチル安息香酸、エチル安息香酸、n−プロピル安息香酸、i−プロピル安息香酸及びt−ブチル安息香酸等のアルキル安息香酸、1−ナフトエ酸、2−ナフトエ酸、フェニルナフトエ酸、メチルナフトエ酸、エチルナフトエ酸、n−プロピルナフトエ酸、i−プロピルナフトエ酸及びt−ブチルナフトエ酸等のアルキルナフトエ酸、並びにこれらの酸フッ化物、酸塩化物、酸臭化物、酸ヨウ化物等の酸ハロゲン化物等が挙げられる。リン原子含有オリゴマー(a)中のフェノール性水酸基との反応性が良好なものとなる点から安息香酸塩化物又はアルキル安息香酸塩基物であることが好ましい。
他方、芳香族ジカルボン酸又はそのハライド(b−2)としては、具体的には、フタル酸、イソフタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸、1,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、及びこれらの酸塩化物が挙げられる。これらの中でも特に溶剤溶解性と耐熱性のバランスの点からイソフタル酸クロライド、テレフタル酸クロライドが好ましい。
ここで、上記したリン原子含有オリゴマー(a)のフェノール性水酸基に、芳香族ジカルボン酸又はそのハライド(b−2)を反応させてエステル結合を形成させた樹脂構造を有するものである場合、その製法上、その分子構造中には、リン原子含有オリゴマー(a)に起因するフェノール性水酸基、或いは、前記(b−2)に起因するカルボキシル基を有することになる。本発明における活性エステル樹脂(A)では、フェノール性水酸基、又はカルボキシル基を有していてもよいが、分子末端がフェノール性水酸基となる場合には、該部位に構造部位(a−2)を形成させてエステル化された構造を有することが好ましく、他方、分子末端が、カルボキシル基となる場合には、フェノール、クレゾール、p−t−ブチルフェノール、1−ナフトール、2−ナフトール等の1価フェノール系化合物(b−3)と反応させてエステル化された構造を有することが好ましい。
従って、リン原子含有オリゴマー(a)と、芳香族モノカルボン酸又はそのハライド(b−1)、及び/又は、芳香族ジカルボン酸又はそのハライド(b−2)との反応は、具体的には、下記の方法1〜5が挙げられる。
方法1:[樹脂構造(A1)の製法]リン原子含有オリゴマー(a)と、芳香族モノカルボン酸又はそのハライド(b−1)とを反応させる方法。
方法2:[樹脂構造(A2)の製法]リン原子含有オリゴマー(a)と、芳香族ジカルボン酸又はそのハライド(b−2)とを反応させる方法。
方法3:[樹脂構造(A3)の製法]リン原子含有オリゴマー(a)、芳香族モノカルボン酸又はそのハライド(b−1)、及び、芳香族ジカルボン酸又はそのハライド(b−2)を反応させる方法。
方法4:[樹脂構造(A3)の製法]リン原子含有オリゴマー(a)に芳香族モノカルボン酸又はそのハライド(b−1)を反応させた後、芳香族ジカルボン酸又はそのハライド(b−2)を反応させる方法。
方法5:[樹脂構造(A2)の製法]リン原子含有オリゴマー(a)、芳香族ジカルボン酸又はそのハライド(b−2)、及び一価フェノール系化合物(b−3)を反応させる方法。
ここで、方法1は、具体的には、リン原子含有オリゴマー(a)を、芳香族モノカルボン酸又はそのハライド(b−1)と塩基性触媒下に反応させる方法が挙げられる。また、リン原子含有オリゴマー(a)と芳香族モノカルボン酸又はそのハライド(b−1)との反応割合は、(a)中のフェノール性水酸基と、(b−1)中のカルボキシル基(またはハライド)との当量比[(a)中のOH/カルボキシル基(またはハライド)]が1.0/0.40〜1.0/0.95となる割合であることが溶剤溶解性の点から好ましい。
方法2は、具体的には、リン原子含有オリゴマー(a)と、芳香族ジカルボン酸又はそのハライド(b−2)とを塩基性触媒下に反応させる方法が挙げられる。また、リン原子含有オリゴマー(a)と芳香族ジカルボン酸又はそのハライド(b−2)との反応割合は、(a)中のフェノール性水酸基と、(b−2)中のカルボキシル基(またはハライド)との当量比[(a)中のOH/カルボキシル基(またはハライド)]が1.0/0.01〜1.0/0.10となる割合であることが溶剤溶解性の点から好ましい。
次に、方法3は、具体的には、リン原子含有オリゴマー(a)、芳香族ジカルボン酸又はそのハライド(b−2)、及び芳香族モノカルボン酸又はそのハライド(b−1)を、塩基性触媒の存在下に反応させる方法が挙げられ、これらの反応割合は、リン原子含有オリゴマー(a)中の水酸基に対する、芳香族ジカルボン酸又はそのハライド(b−2)のカルボキシル基又はそのハライドの当量比[OH/カルボキシル基(またはハライド)/]が1.0/0.01〜1.0/0.10の範囲であって、かつ、該リン原子含有オリゴマー(a)中の水酸基に対する、芳香族モノカルボン酸又はそのハライド(b−1)のカルボキシル基又はそのハライドの当量比[OH/カルボキシル基(またはハライド)/]が1.0/0.40〜1.0/0.95の範囲であることが耐熱性の点から好ましい。
次に、方法4は、具体的には、リン原子含有オリゴマー(a)と芳香族モノカルボン酸又はそのハライド(b−1)とをそれらの当量比[OH/カルボキシル基(またはハライド)/]が1.0/0.40〜1.0/0.95の範囲となる割合で、塩基性触媒下の存在下に反応させたのち、得られた中間体と、芳香族ジカルボン酸又はそのハライド(b−2)とを、リン原子含有オリゴマー(a)中の水酸基に対する、芳香族ジカルボン酸又はそのハライド(b−2)のカルボキシル基又はそのハライドの当量比[OH/カルボキシル基(またはハライド)/]が1.0/0.01〜1.0/0.10の範囲となる割合で、塩基性触媒下に反応させる方法が挙げられる。
次に、方法5は、具体的には、リン原子含有オリゴマー(a)、芳香族ジカルボン酸又はそのハライド(b−2)、及び一価フェノール系化合物(b−3)を、塩基性触媒の存在下に反応させる方法が挙げられ、これらの反応割合は、リン原子含有オリゴマー(a)中の水酸基に対する、芳香族ジカルボン酸又はそのハライド(b−2)のカルボキシル基又はそのハライドの当量比[OH/カルボキシル基(またはハライド)/]が1.0/0.01〜1.0/0.10の範囲であって、かつ、芳香族ジカルボン酸又はそのハライド(b−2)のカルボキシル基又はそのハライドに対する一価フェノール系化合物(b−3)のフェノール性水酸基の当量比[OH/酸(またはハライド)]が1.0/0.2〜1.0/0.5の範囲であることが溶剤溶解性と耐熱性のバランスの点から好ましい。
上記方法1〜5で使用し得るアルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ピリジン等が挙げられる。これらのなかでも特に水酸化ナトリウム、水酸化カリウムが水溶液の状態で使用することができ、生産性が良好となる点から好ましい。
上記方法1〜5の反応では、各原料成分は、有機溶媒に溶解させて反応に供することが好ましく、ここで用いる有機溶媒としては、トルエン、ジクロロメタンなどが挙げられる。
上記方法1〜5のなかでも、特に、得られる活性エステル樹脂の耐熱性に優れる点から方法1、又は方法4が好ましい。
このようにして得られる活性エステル樹脂(A)は、前記した通り、下記構造式(1)
Figure 0005729605
(式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、フェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
Figure 0005729605

で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、アラルキル基を表す。)で表される構造部位(a−1)における*位に、下記構造式(1−2)
Figure 0005729605

(式中、Arは、フェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチル基を表す。)
で表される構造部位(a−2)を有するか、或いは、*位の一部乃至全部に下記構造式(1−3)
Figure 0005729605

(式中、Arは、フェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。)
で表される構造部位(a−3)を、前記構造部位(a−1)の結節基として有するか、或いは、*位の一部乃至全部に前記構造部位(a−2)と共に、前記構造部位(a−3)を前記構造部位(a−1)の結節基として有する樹脂構造を有する樹脂構造を有するものである。
ここで、かかる構造式(1−2)で表される構造部位(a−2)は、具体的には、フェニルカルボニル、ナフタレン−1−カルボニル、ナフタレン−2−ジカルボニル、及びこれらの芳香核にメチル基、エチル基、プロピル基、又はt−ブチル基等のアルキル基が結合した構造部位が挙げられる。これらの中でも特に溶剤溶解性の点からフェニルカルボニルであることが好ましい。
また、かかる構造式(1−3)で表される構造部位(a−3)は、具体的には、ベンゼン−1,2−ジカルボニル、ベンゼン−1,3-ジカルボニル、ベンゼン−1,4−ジカルボニル、ナフタレン−2,6−ジカルボニル、ナフタレン−2,7−ジカルボニル、及びこれらの芳香核にメチル基、エチル基、プロピル基、又はt−ブチル基等のアルキル基が結合した構造部位が挙げられる。これらの中でも特に溶剤溶解性の点からベンゼン−1,2−ジカルボニル、ベンゼン−1,3-ジカルボニル、又はベンゼン−1,4−ジカルボニルであることが好ましい。
以上詳述した活性エステル樹脂(A)は、その軟化点が120〜200℃であることが、有機溶剤への溶解性が高くなり、回路基板用ワニスに適した材料となる他、従来にない難燃性能を発現させることができる点から好ましい。
更に、前記活性エステル樹脂(A)は、これを回路基板用途へ適用する際にはエポキシ樹脂中の官能基濃度をより一層低くして硬化後の誘電特性や耐湿性の改善を図ることが好ましく、その一方で、前記活性エステル樹脂(A)中の分子量が小さい場合には、有機溶剤への溶解性に劣り回路基板用ワニスへの適用が困難なものとなる点から、前記活性エステル樹脂(A)は、その樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計の官能基数を基準とした場合における官能基当量が400〜600g/eq.の範囲であることが好ましい。
次に、本発明の熱硬化性樹脂組成物で用いるエポキシ樹脂(B)は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂の中でも、特に難燃性に優れる硬化物が得られる点から、テトラメチルビフェノール型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、
ノボラック型エポキシ樹脂を用いることが好ましい。
本発明の熱硬化性樹脂組成物における前記活性エステル樹脂(A)、及びエポキシ樹脂(B)の配合量は、硬化性及び硬化物の諸物性が良好なものとなる点から前記活性エステル樹脂(A)中のエステルを構成するカルボニルオキシ基1当量に対して、前記エポキシ樹脂(B)中のエポキシ基が0.8〜1.2当量となる割合であることが好ましい。
本発明の熱硬化性樹脂組成物は、前記した活性エステル樹脂(A)及びエポキシ樹脂(B)に加え、エポキシ樹脂用硬化剤を併用してもよい。ここで用いることのできるエポキシ樹脂用硬化剤としては、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などの硬化剤を使用できる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
これらの中でも、特に芳香族骨格を分子構造内に多く含むものが難燃効果の点から好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂が難燃性に優れることから好ましい。
上記したエポキシ樹脂用硬化剤を併用する場合、その使用量は誘電特性の点から10〜50質量%の範囲であることが好ましい。
また必要に応じて本発明の熱硬化性樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特にビルドアップ材料用途や回路基板用途として使用する場合には、耐熱性、誘電特性、耐ハンダ性等に優れる点から、ジメチルアミノピリジンやイミダゾールが好ましい。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
以上詳述した本発明の熱硬化性樹脂組成物は、前記した通り、優れた溶剤溶解性を発現することを特徴としている。従って、該熱硬化性樹脂組成物は、上記各成分の他に有機溶剤(C)を配合することが好ましい。ここで使用し得る前記有機溶剤(C)としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、1−メトキシ−2−プロパノール等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40〜80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤(C)として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30〜60質量%となる割合で使用することが好ましい。
また必要に応じて本発明の熱硬化性樹脂組成物に他の熱硬化性樹脂を適宜併用することもできる。ここで使用し得る他の熱硬化性樹脂は、例えばシアネートエステル化合物、ビニルベンジル化合物、アクリル化合物、マレイミド化合物などが挙げられる。上記した他の熱硬化性樹脂を併用する場合、その使用量は本発明の効果を阻害しなければ特に制限をうけないが、本発明の熱硬化性樹脂組成物に対して1〜80重量%の範囲であることが好ましい。
また、上記熱硬化性樹脂組成物は、難燃性を発揮させるために、例えばプリント配線板の分野においては、信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,5―ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
それらの配合量としては、リン系難燃剤の種類、熱硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、活性エステル樹脂(A)、エポキシ樹脂(B)、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した熱硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。
また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、前記アミノトリアジン変性フェノール樹脂、及び該アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、熱硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、活性エステル樹脂(A)、エポキシ樹脂(B)、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した熱硬化性樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。
また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、熱硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、活性エステル樹脂(A)、エポキシ樹脂(B)、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した熱硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
前記無機系難燃剤の配合量としては、無機系難燃剤の種類、熱硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、活性エステル樹脂(A)、エポキシ樹脂(B)、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した熱硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。
前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、熱硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、活性エステル樹脂(A)、エポキシ樹脂(B)、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した熱硬化性樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。
本発明の熱硬化性樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、熱硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
本発明の熱硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
本発明の熱硬化性樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明の活性エステル樹脂(A)、エポキシ樹脂(B)、更に必要により硬化促進剤の配合された本発明の熱硬化性樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
本発明の熱硬化性樹脂組成物が用いられる用途としては、硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用絶縁材料、半導体封止材料、導電ペースト、ビルドアップ用接着フィルム、樹脂注型材料、接着剤等が挙げられる。これら各種用途のうち、硬質プリント配線板材料、電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高難燃性、高耐熱性、低熱膨張性、及び溶剤溶解性といった特性から硬質プリント配線板材料、フレキシルブル配線基板用樹脂組成物、ビルドアップ基板用層間絶縁材料等の回路基板用材料、及び、半導体封止材料に用いることが好ましい。
ここで、本発明の回路基板は、熱硬化性樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものを銅箔と積層し、加熱加圧成型して製造されるものである。具体的には、例えば硬質プリント配線基板を製造するには、前記有機溶剤を含むワニス状の熱硬化性樹脂組成物を、更に有機溶剤を配合してワニス化し、これを補強基材に含浸し、半硬化させることによって製造される本発明のプリプレグを得、これに銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の熱硬化性樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得る。この際、用いる熱硬化性樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、目的とする回路基板を得ることができる。
本発明の熱硬化性樹脂組成物からフレキシルブル配線基板を製造するには、活性エステル樹脂(A)及びエポキシ樹脂(B)、及び有機溶剤を配合して、リバースロールコータ、コンマコータ等の塗布機を用いて、電気絶縁性フィルムに塗布する。次いで、加熱機を用いて60〜170℃で1〜15分間加熱し、溶媒を揮発させて、接着剤組成物をB−ステージ化する。次いで、加熱ロール等を用いて、接着剤に金属箔を熱圧着する。その際の圧着圧力は2〜200N/cm、圧着温度は40〜200℃が好ましい。それで十分な接着性能が得られれば、ここで終えても構わないが、完全硬化が必要な場合は、さらに100〜200℃で1〜24時間の条件で後硬化させることが好ましい。最終的に硬化させた後の接着剤組成物膜の厚みは、5〜100μmの範囲が好ましい。
本発明の熱硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては、例えば、ゴム、フィラーなどを適宜配合した当該熱硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
次に、本発明の熱硬化性樹脂組成物から半導体封止材料を製造するには、活性エステル樹脂(A)及びエポキシ樹脂(B)、及び無機充填剤等の配合剤を必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に溶融混合する方法が挙げられる。その際、無機充填剤としては、通常シリカが用いられるが、その場合、熱硬化性樹脂組成物中、無機質充填材を70〜95質量%となる割合で配合することにより、本発明の半導体封止材料となる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である半導体装置を得る方法が挙げられる。
本発明の熱硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の熱硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
本発明の熱硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
ここで、多層プリント配線板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の熱硬化性樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて熱硬化性樹脂組成物の層(α)を形成させることにより製造することができる。
形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。
なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
本発明の熱硬化性樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該熱硬化性樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
また、本発明の熱硬化性樹脂組成物は、更にレジストインキとして使用することも可能である。この場合、前記熱硬化性樹脂組成物に、エチレン性不飽和二重結合を有するビニル系モノマーと、硬化剤としてカチオン重合触媒を配合し、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。
本発明の硬化物を得る方法としては、例えば、上記方法によって得られた組成物を、20〜250℃程度の温度範囲で加熱すればよい。
従って、本発明によれば、ハロゲン系難燃剤を使用しなくても高度な難燃性を発現する環境性に優れる熱硬化性樹脂組成物を得ることができる。また、これらの硬化物における優れた誘電特性は、高周波デバイスの高速演算速度化を実現できる。また、該フェノール性水酸基含有樹脂は、本発明の製造方法にて容易に効率よく製造する事が出来、目的とする前述の性能のレベルに応じた分子設計が可能となる。
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、150℃における溶融粘度及び軟化点測定、GPC測定、13C−NMR、FD−MSスペクトルは以下の条件にて測定した。
1)150℃における溶融粘度:ASTM D4287に準拠した。
2)軟化点測定法:JIS K7234に準拠した。
3)GPC:
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
4)13C−NMR:日本電子株式会社製「NMR GSX270」により測定した。
5)FD−MS :日本電子株式会社製 二重収束型質量分析装置「AX505H(FD505H)」により測定した。
合成例1
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、2−ヒドロキシベンズアルデヒド122g(1.0モル)と9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(以下、「HCA」と略記する。)151.2g(0.7モル)、シュウ酸2.23g(0.019モル)を仕込み、120℃まで昇温し1時間反応させた。次いで、HCA172.8g(0.8モル)を添加し、180℃まで昇温して、3時間反応させた。次いで、水を加熱減圧下に除去し、下記構造式
Figure 0005729605

で表される構造単位を有するリン原子含有オリゴマー(A−1)410gを得た。得られたリン原子含有オリゴマーの軟化点は138℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:180℃)は66dPa・s、水酸基当量は428g/eq.リン含有量10.5%であり、n=1体の成分比率は51%、n=2体の成分比率は29.6%、n=3以上の成分比率は19.4%(n=2以上の成分比率は49.0%)であった。得られたリン含有オリゴマー(A−1)のGPCチャートを図1に、13C−NMRチャートを図2に、MSスペクトルを図3に示す。
合成例2
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、o−ヒドロキシベンズアルデヒド122g(1.0モル)とHCA 129.6g(0.6モル)、シュウ酸3.81g(0.032モル)を仕込み、120℃まで昇温し1時間反応させた。次いで、HCA 129.6g(0.6モル)を添加し、180℃まで昇温して、3時間反応させた。次いで、水を加熱減圧下に除去し、リン原子含有オリゴマー(A−2)415gを得た。このリン原子含有オリゴマー(A−2)の軟化点は150℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:180℃)は105dPa・s、水酸基当量は363g/eq.リン含有量9.9質量%であり、n=1体の成分比率は33.8%、n=2体の成分比率は31.2%、n=3以上の成分比率は35.0%(n=2以上の成分比率は66.2%)であった。得られたリン原子含有オリゴマー(A−2)のGPCチャートを図4に示す。
実施例1
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコにフェノール樹脂類(A−1)428gとメチルイソブチルケトン(以下、「MIBK」と略記する。)1560gを仕込み、系内を減圧窒素置換し溶解させた。次いで、塩化ベンゾイル126g(0.90モル)を仕込みその後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液234gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているMIBK相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のPHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し、続いて減圧脱水でMIBKを除去し、活性エステル樹脂(B−1)を得た。この活性エステル樹脂(B−1)の官能基当量は仕込み比より522グラム/当量、軟化点は130℃であった。またフェノール性水酸基に対するエステル化率は90%であった。得られた活性エステル樹脂(B−1)のGPCチャートを図5に示す。MSスペクトルからフェノール樹脂(A−1)に含まれるそれぞれの化合物に塩化ベンゾイルが脱塩酸を伴い反応する化合物のピークを活性エステル樹脂(B−1)に確認した。13C−NMRの165ppmピークよりエステル基由来のカルボニルの炭素の生成を確認した。
実施例2
フェノール樹脂(A−2)363gに変えた以外は実施例1と同様に反応し、活性エステル樹脂(B−2)を得た。この活性エステル樹脂(B−2)の官能基当量は仕込み比より456グラム/当量、軟化点は160℃であった。
実施例3
塩化ベンゾイル70g(0.5モル)に変えた以外は実施例1と同様に反応し、活性エステル樹脂(B−3)を得た。この活性エステル樹脂(B−3)の官能基当量は仕込み比より480グラム/当量、軟化点は140℃であった。
実施例4
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに活性エステル樹脂(B−1)522gとMIBK1580gを仕込み、系内を減圧窒素置換し溶解させた。次いで、イソフタル酸クロライド10.1g(0.05モル)を仕込みその後、窒素ガスパージを施しながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液26gを3時間かけて滴下した。次いでこの条件下で1.0時間撹拌を続けた。反応終了後、静置分液し、水層を取り除いた。更に反応物が溶解しているMIBK相に水を投入して約15分間撹拌混合し、静置分液して水層を取り除いた。水層のPHが7になるまでこの操作を繰り返した。その後、デカンタ脱水で水分を除去し、続いて減圧脱水でMIBKを除去し、活性エステル樹脂(B−4)を得た。この活性エステル樹脂(B−4)の官能基当量は仕込み比より528グラム/当量、軟化点は150℃であった。またフェノール性水酸基に対するエステル化率は100%であった。MSスペクトルからフェノール樹脂(A−1)に含まれるそれぞれの化合物にイソフタル酸クロライドが脱塩酸を伴い反応する化合物のピークを活性エステル樹脂(B−4)に確認した。
実施例5
活性エステル樹脂(B−3)480gに変えた以外は実施例4と同様に反応し、活性エステル樹脂(B−5)を得た。この活性エステル樹脂(B−5)の官能基当量は仕込み比より565グラム/当量、軟化点は180℃であった。
比較例1
フェノール樹脂類(A−1)をDIC製TD−2090(フェノールノボラック樹脂、水酸基当量:105g/eq)105gに変え、20%水酸化ナトリウム水溶液189gに変えた以外は実施例1と同様に反応し、活性エステル樹脂(B−6)を188g得た。この活性エステル樹脂(B−6)の官能基当量は仕込み比より199グラム/当量であった。
実施例6〜10及び比較例2(エポキシ樹脂組成物の調整及び物性評価)
下記、表1記載の配合に従い、エポキシ樹脂として、DIC製N−770(フェノールノボラック型エポキシ樹脂、エポキシ当量:183g/eq)、硬化剤として(B−1)〜(B−6)を配合し、更に、硬化触媒としてジメチルアミノピリジン0.05phrを加え、最終的に各組成物の不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合して調整した。
次いで、下記の如き条件で硬化させて積層板を試作し、下記の方法で耐熱性、誘電特性及び難燃性を評価した。結果を表1に示す。
<積層板作製条件>
基材:日東紡績株式会社製 ガラスクロス「#2116」(210×280mm)
プライ数:6 プリプレグ化条件:160℃
硬化条件:200℃、40kg/cmで1.5時間、成型後板厚:0.8mm
<耐熱性(ガラス転移温度)>
粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
<耐熱性(耐熱剥離性)>
T288:試験法はIPC TM650に準拠し評価した。
<誘電率及び誘電正接の測定>
JIS−C−6481に準拠し、アジレント・テクノロジー株式会社製ネットワークアナライザ「E8362C」を用い空洞共振法にて、絶乾後23℃、湿度50%の室内に24時間保管した後の試験片の1GHzでの誘電率および誘電正接を測定した。

<難燃性>
UL−94試験法に準拠し、厚さ0.8mmの試験片5本用いて燃焼試験を行った。
Figure 0005729605


表1の脚注:
B−1:実施例1で得られた活性エステル樹脂(B−1)
B−2:実施例2で得られた活性エステル樹脂(B−2)
B−3:実施例3で得られた活性エステル樹脂(B−3)
B−4:実施例4で得られた活性エステル樹脂(B−4)
B−5:実施例5で得られた活性エステル樹脂(B−5)
B−6:比較例1で得られた活性エステル樹脂(B−6)
N−770:フェノールノボラック型エポキシ樹脂(DIC(株)製「N−770」、エポキシ当量:183g/eq.)
A−1:合成例1で得られたフェノール性水酸基含有樹脂(A−1)
A−2:合成例2で得られたフェノール性水酸基含有樹脂(A−2)
*1:1回の接炎における最大燃焼時間(秒)
*2:試験片5本の合計燃焼時間(秒)

Claims (12)

  1. 下記構造式(1)
    Figure 0005729605
    (式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、又はフェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
    Figure 0005729605
    で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、又はアラルキル基を表す。)で表される構造部位(a−1)における*位の40〜95モル%に、
    下記構造式(1−2)
    Figure 0005729605
    (式中、Arは、フェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニル基、又は炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチル基を表す。)
    で表される構造部位(a−2)を有するか、
    或いは、*位の40〜95モル%に前記構造部位(a−2)と共に、*位の1〜10モル%に下記構造式(1−3)
    Figure 0005729605
    (式中、Arは、フェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、又は炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。)
    で表される構造部位(a−3)を、前記構造部位(a−1)の結節基として有する樹脂構造を有し、前記構造式(1−2)で表される構造部位(a−2)、又は、前記構造式(1−3)で表される構造部位(a−3)を有しない場合、水素原子と結合し、
    その樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計の官能基数を基準とした場合における官能基当量が400〜600g/eq.の範囲である活性エステル樹脂(A)、
    及びエポキシ樹脂(B)を必須成分とすることを特徴とする熱硬化性樹脂組成物。
  2. 前記活性エステル樹脂(A)が、下記構造式(1’)
    Figure 0005729605
    (式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、又はフェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
    Figure 0005729605
    で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、又はアラルキル基を表す。)で表され、かつ、前記構造式(1)においてnが2以上の成分の含有率が、GPC測定におけるピーク面積基準で5〜90%の範囲にあることを特徴とするリン原子含有オリゴマー(a)と、
    芳香族モノカルボン酸又はそのハライド(b−1)とを反応させて得られるものである請求項1記載の熱硬化性樹脂組成物。
  3. 前記活性エステル樹脂(A)が、下記構造式(1’)
    Figure 0005729605
    (式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、又はフェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
    Figure 0005729605
    で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、又はアラルキル基を表す。)で表され、かつ、前記構造式(1)においてnが2以上の成分の含有率が、GPC測定におけるピーク面積基準で5〜90%の範囲にあることを特徴とするリン原子含有オリゴマー(a)と、
    芳香族モノカルボン酸又はそのハライド(b−1)と、
    芳香族ジカルボン酸又はそのハライド(b−2)
    とを反応させて得られるものである請求項1記載の熱硬化性樹脂組成物。
  4. 前記リン原子含有オリゴマー(a)が、リン原子含有率が9〜12質量%の範囲である請求項2又は3記載の熱硬化性樹脂組成物。
  5. 前記活性エステル樹脂(A)が、その軟化点が120〜200℃の範囲にあるものである請求項1記載の熱硬化性樹脂組成物。
  6. 請求項1〜の何れか1つ記載の熱硬化性樹脂組成物を硬化させて得られる硬化物。
  7. 下記構造式(1)
    Figure 0005729605
    (式中、Rは水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、又はフェニル基を表し、nは繰り返し単位で1以上の整数であり、Xは下記構造式(x1)又は(x2)
    Figure 0005729605
    で表される構造部位であり、Yは水素原子、水酸基又は前記構造式(x1)若しくは(x2)で表される構造部位であり、また、該構造式(x1)又は(x2)中、R、R、R、Rは、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、又はアラルキル基を表す。)で表される構造部位(a−1)における*位の40〜95モル%に、下記構造式(1−2)
    Figure 0005729605
    (式中、Arは、フェニル基、ナフチル基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニル基、又は炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチル基を表す。)
    で表される構造部位(a−2)を有するか、
    或いは、*位の40〜95モル%に前記構造部位(a−2)と共に、*位の1〜10モル%に下記構造式(1−3)
    Figure 0005729605
    (式中、Arは、フェニレン基、ナフチレン基、炭素原子数1〜4のアルキル基の1〜3つで核置換されたフェニレン基、又は炭素原子数1〜4のアルキル基の1〜3つで核置換されたナフチレン基を表す。)
    で表される構造部位(a−3)を、前記構造部位(a−1)の結節基として有する樹脂構造を有し、前記構造式(1−2)で表される構造部位(a−2)、又は、前記構造式(1−3)で表される構造部位(a−3)を有しない場合、水素原子と結合し、
    その樹脂構造中に有するアリールカルボニルオキシ基およびフェノール性水酸基の合計の官能基数を基準とした場合における官能基当量が400〜600g/eq.の範囲であることを特徴とする活性エステル樹脂。
  8. 請求項1〜の何れか1つに記載のエポキシ樹脂組成物における前記活性エステル樹脂(A)及び前記エポキシ樹脂(B)に加え、更に無機質充填材(C)を組成物中70〜95質量%となる割合で含有する熱硬化性樹脂組成物からなることを特徴とする半導体封止材料。
  9. 請求項1〜の何れか1つに記載の熱硬化性樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることによって得られるプリプレグ。
  10. 請求項1〜の何れか1つに記載の熱硬化性樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板。
  11. 請求項1〜の何れか1つに記載の熱硬化性樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させることを特徴とするビルドアップフィルム。
  12. 下記構造式(a1−1)又は(a1−2)
    Figure 0005729605
    (式中、R 、R 、R 、R は、それぞれ独立的に、水素原子、炭素原子数1〜4のアルキル基、フェニル基、又はアラルキル基を表す。)で表される化合物(a1)と、
    下記構造式(a2)
    Figure 0005729605
    (式中、R は水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基、又はフェニル基を表す。)
    で表される化合物(a2)とを、モル比[化合物(a1)/化合物(a2)]が0.01/1.0〜0.99/1.0となる割合で配合し、酸触媒の存在下、80〜180℃で反応を行い、次いで、前記化合物(a2)の仕込み量に対して、モル基準で合計1.01〜3.0倍量となる前記化合物(a1)を加え、120〜200℃にて反応を行う方法によりリン原子含有オリゴマー(a)を製造した後、
    芳香族モノカルボン酸又はそのハライド(b−1)と、
    (a)中のフェノール性水酸基と、(b−1)中のカルボキシル基(またはハライド)との当量比[(a)中のOH/カルボキシル基(またはハライド)]が1.0/0.40〜1.0/0.95となる割合で塩基性触媒下に反応させる、及び/又は
    芳香族ジカルボン酸又はそのハライド(b−2)と、
    (a)中のフェノール性水酸基と、(b−2)中のカルボキシル基(またはハライド)との当量比[(a)中のOH/カルボキシル基(またはハライド)]が1.0/0.01〜1.0/0.10となる割合で塩基性触媒下に反応させることを特徴とする活性エステル樹脂の製造方法。
JP2011177586A 2011-08-15 2011-08-15 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム Active JP5729605B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177586A JP5729605B2 (ja) 2011-08-15 2011-08-15 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177586A JP5729605B2 (ja) 2011-08-15 2011-08-15 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム

Publications (2)

Publication Number Publication Date
JP2013040270A JP2013040270A (ja) 2013-02-28
JP5729605B2 true JP5729605B2 (ja) 2015-06-03

Family

ID=47888955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177586A Active JP5729605B2 (ja) 2011-08-15 2011-08-15 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム

Country Status (1)

Country Link
JP (1) JP5729605B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737054B2 (ja) * 2011-08-17 2015-06-17 Dic株式会社 感光性樹脂組成物およびその硬化物
JP5910866B2 (ja) * 2012-03-06 2016-04-27 Dic株式会社 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5500408B2 (ja) * 2012-03-21 2014-05-21 Dic株式会社 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
KR102046767B1 (ko) * 2013-06-10 2019-11-20 디아이씨 가부시끼가이샤 인 원자 함유 활성 에스테르 수지, 에폭시 수지 조성물, 그 경화물, 프리프레그, 회로 기판, 및 빌드업 필름
JP6934638B2 (ja) * 2017-12-21 2021-09-15 パナソニックIpマネジメント株式会社 半導体パッケージ及びプリント回路板
US11773217B2 (en) 2020-04-29 2023-10-03 Chang Chun Plastics Co., Ltd. Phosphorus containing compounds and epoxy resins thereof
JPWO2023286714A1 (ja) 2021-07-14 2023-01-19
JPWO2023286713A1 (ja) 2021-07-14 2023-01-19

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782348A (ja) * 1993-07-22 1995-03-28 Hitachi Chem Co Ltd エポキシ樹脂組成物及びその硬化物
JP2001354685A (ja) * 2000-06-16 2001-12-25 Dainippon Ink & Chem Inc 燐原子含有フェノール化合物とその製造方法
JP2002138096A (ja) * 2000-10-27 2002-05-14 Dainippon Ink & Chem Inc リン含有フェノール化合物とその製造方法、及び、それを用いたエポキシ樹脂組成物
JP3825715B2 (ja) * 2002-04-18 2006-09-27 長春人造樹脂廠股▲分▼有限公司 リン含有難燃性エポキシ樹脂とその組成物
EP2537853B1 (en) * 2010-02-18 2014-08-27 DIC Corporation Phosphorus-atom-containing oligomers, process for producing same, curable resin composition, cured product thereof, and printed wiring board

Also Published As

Publication number Publication date
JP2013040270A (ja) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5120520B2 (ja) 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5152445B2 (ja) 活性エステル樹脂、その製造方法、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP4953039B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5262915B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、エステル化合物、エステル系樹脂、及びその製造方法
JP5500408B2 (ja) 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5729605B2 (ja) 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5637418B1 (ja) リン原子含有活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP5557033B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5648832B2 (ja) 熱硬化性樹脂組成物、その硬化物、活性エステル樹脂、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5907319B2 (ja) 活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP5146793B2 (ja) リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5776465B2 (ja) ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6171760B2 (ja) リン原子含有活性エステル樹脂、エポキシ樹脂組成物、その硬化物、プリプレグ、回路基板、及びビルドアップフィルム
JP2012201798A (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、及びナフトール樹脂
JP6070134B2 (ja) 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5910866B2 (ja) 活性エステル樹脂、熱硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP5924523B2 (ja) 活性エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルム
JP6015289B2 (ja) 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5880921B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板
JP6048734B2 (ja) 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6048738B2 (ja) 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6002993B2 (ja) 活性エステル樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014065829A (ja) クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150325

R150 Certificate of patent or registration of utility model

Ref document number: 5729605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250