JP5720658B2 - 揮発性有機化合物処理装置 - Google Patents
揮発性有機化合物処理装置 Download PDFInfo
- Publication number
- JP5720658B2 JP5720658B2 JP2012247654A JP2012247654A JP5720658B2 JP 5720658 B2 JP5720658 B2 JP 5720658B2 JP 2012247654 A JP2012247654 A JP 2012247654A JP 2012247654 A JP2012247654 A JP 2012247654A JP 5720658 B2 JP5720658 B2 JP 5720658B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- processing unit
- adsorbent
- discharge
- voc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Treating Waste Gases (AREA)
- Separation Of Gases By Adsorption (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
VOCの回収を行うために疎水性ゼオライトや活性炭を担持したシートを蜂の巣(ハニカム)状に形成したガス濃縮ローターが開発され普及している。ガス濃縮ローターによって吸着され濃縮されたVOCは、触媒や燃焼装置によって分解され無害化されて大気へ放出される。
なお、VOC吸着体が吸着飽和し処理対象のガス中のVOCを十分には吸着できなくなることを、VOC吸着体が破過するという。(例えば、特許文献1を参照)
(1)全てのVOC吸着体を一度に処理するので、放電電流ひいては電源容量を大きくする必要が有り、装置コストが高くなる。
(2)放電発生時も放電が発生してない時と同じ量のガスを流しているため、ガス中の窒素と酸素が放電により反応して、大量の有害な窒素酸化物(NOxと略す)を発生する。
また、この発明に係る揮発性有機化合物処理装置は、処理対象ガスに触れ揮発性有機化合物を吸着し、処理対象ガスが流れる所定の直径の孔が所定の気孔率で形成されて成る誘電体である吸着体と、吸着体を間に挟んで配置された放電を発生させる電極の対と、吸着体と電極の対を中に収容するガス処理ユニットを複数備え、処理対象ガスの流れとは逆方向に放電発生後の所定期間に、所定のガス処理ユニットの吸着体に所定のガス処理ユニット以外のガス処理ユニットで処理された処理済ガスまたは外気を流し、放電により所定のガス処理ユニットで発生した放電副生成物を含む脱着後ガスを所定のガス処理ユニット以外のガス処理ユニットに送るガス返送機構とを備え、放電副生成物は、所定のガス処理ユニット以外のガス処理ユニットの吸着体で除去されるものである。
さらに、この発明に係る揮発性有機化合物処理装置は、処理対象ガスに触れ揮発性有機化合物を吸着し、処理対象ガスが通るガス通路を有する誘電体として成る吸着体と、吸着体を間に挟んでガス通路の壁面と交差する方向に放電を発生させるよう配置された、交流の電圧が印加される電極の対と、吸着体と電極の対を中に収容するガス処理ユニットを複数備え、処理対象ガスの流れとは逆方向に放電発生後の所定期間に、所定のガス処理ユニットの吸着体に所定のガス処理ユニット以外のガス処理ユニットで処理された処理済ガスまたは外気を流し、放電により所定のガス処理ユニットで発生した放電副生成物を含む脱着後ガスを所定のガス処理ユニット以外のガス処理ユニットに送るガス返送機構とを備え、放電副生成物は、所定のガス処理ユニット以外のガス処理ユニットの吸着体で除去されるものである。
図1は、実施の形態1での揮発性有機化合物処理装置(VOC処理装置と略す)のシステムブロック図である。VOC処理装置には、ガスが並列に供給されるVOCを吸着し放電により分解する所定個(2個以上)のグループに分割された所定個のガス処理ユニット1と、放電を起こすための交流の高電圧を発生させる高電圧発生装置2と、高電圧を何れかのガス処理ユニット1の高圧電極に印加する電圧スイッチング制御機構3と、ガスの吸入口にあるフィルター4と、各ガス処理ユニット1に流れるガスの流量を調整する流量調整機構5と、排気ファン6を有する。ここで、電圧スイッチング制御機構3がこの発明における放電制御機構である。なお、ガス処理ユニット1のグループには、1個以上のガス処理ユニット1が有るものとする。
ガス処理ユニット1は、VOCを吸着する吸着剤1Cと、放電を発生させる一対の電極である接地電極1Aと高圧電極1Dとを有する。
フィルター4は、ペンキカスや油分などの粘着度が高く処理対象ガスから比較的容易に分離できる成分を除去するためのものである。フィルター4は有用だが、VOC処理装置に必要不可欠なものではない。別の装置で処理された後のガスが処理対象ガスになるなどして、処理対象ガスにフィルター4で除去可能な成分が含まれない場合は、フィルター4は不要である。
図2(a)から分かるように、この実施の形態1では、断面が円形の容器7の中に、6個ずつ6グループに分割された36個のガス処理ユニット1が有る。図2(a)において破線が、ガス処理ユニット1のグループの区分を意味する。図2(b)に示すように、このグループごとにガスの流量を調整するバルブ5Aが有る。図2(b)において、処理対象ガスが容器7の右下にある吸気口7AからVOC処理装置の内部に入り、さらにバルブ5Aを通って並列に配置されたガス処理ユニット1で処理されて、容器7の左下にある排気口7Bから処理済ガスとして排出される。吸気口7Aの外側にはフィルター4が有り、排気口7Bのすぐ内側には排気ファン6が有る。なお、図2(b)では容器7の外側は、断面図ではなく側面から見た図として書いている。
吸着剤1Cが放電に触れて温度が上昇し、吸着したVOCを放出する。放出されたVOCは、電子と衝突したり、放電で発生した酸素原子やオゾンなどの活性種と反応したりして、水と二酸化炭素に分解される。吸着剤1CからはVOCが脱着され、吸着剤1CはVOCを吸着可能な状態に再生される。
図4のシーケンスによる方式(本方式と呼ぶ)の効果を、図5で説明する。図5では横軸に時間軸をとり、縦軸にVOC処理装置の消費電力を書く。実線が本方式であり、破線が連続方式(後述)、点線が間欠方式(後述)である。図5から、本方式は連続方式、間欠方式のどちらよりも消費電力が少ないことが分かる。なお、1周期における消費電力の積分値は、本方式と間欠方式とほぼ同じであり、連続方式はこれらよりも大きい。
特許文献1でも記載されているように、VOCの濃度が高いほどVOCの処理に要するエネルギー量が少なくなる。前にも説明したようにVOCは、放電された電子が衝突するか、放電された電子が酸素分子と衝突して発生した酸素原子やオゾンなどの活性種と反応して、分解される。このため、処理対象ガス中のVOCの濃度が高いほど、VOCが活性種または電子と反応する確率が高くなり、処理の効率も高くなる。このため、VOCを濃縮しない連続方式では、VOCを濃縮する本方式及び間欠方式よりも消費電力量が大きくなる。
十分にVOCを吸着した吸着剤に放電を触れさせると、吸着剤温度が上昇し、吸着されていたVOCが急速に脱着され、ガスを流す場合には、放電で分解しきれなかったVOCが処理済ガスとしてVOC処理装置外に漏れ出す問題があった。放電時にガスを止めることにより、VOCがガス処理ユニット1の外部に出ることはない。脱着されたVOCは、ガス処理ユニット1内にとどまり、電子や活性種と反応して分解される。
この実施の形態1では、一部のガス処理ユニット1で順番に放電を発生させることと、放電時にガス流を止めることを同時に実施したが、どちらかだけを実施してもよい。
この実施の形態1では、各グループでのガス処理ユニット1の数を同じにして、動作状態Bを取る時間も同じにした。これは、VOC処理装置を定常的に効率よく稼動させるためである。グループでのガス処理ユニット1の数を同じでなくしたり、動作状態Bを取る時間や放電の消費電力などを変化させたりしてもよい。ただし、その場合には、同時に何らかの対策をとらないと効率は低下する可能性が有る。吸着剤1CにVOCを十分に吸着させたガス処理ユニット1のグループを順番に高電圧を印加することで放電を発生させるものであればどのような制御方式でも、VOC濃度を高くすることによるVOCの分解に要する電力を低減し、かつ電源容量を小さくできるという効果が有る。
接地電極1Aまたは高圧電極1Dのどちらかを複数の電極の対で兼用するようにしてもよい。接地電極1Aと高圧電極1Dの複数の対が構成できるように、接地電極1Aまたは高圧電極1Dのどちらかが対の数だけあればよい。
このような制御は、動作状態Bでガス流を止めない場合には、特別な配管などを付加することなく容易に実施できる。処理対象ガスの配管が複雑になり、ガス処理ユニット1ごとにバルブ5Aが必要となるが、放電時にガス流を止める場合で同様な制御を行ってもよい。
この実施の形態1では、放電時にガス流を止めるバルブ5Aをガス処理ユニット1の吸気側に設けたが排気側に設けてもよい。バルブ5Aをガス処理ユニット1のグループごとに設けているので、部品点数を削減して低コストを実現する上で有利である。ガス処理ユニット1ごとにバルブ5Aを設けてもよく、その場合には装置のコストは高くなるが、より高度な制御ができてVOCの処理効率を向上できる場合もある。
この実施の形態1では、ガス処理ユニット1ごとに電圧スイッチング素子3Aを設けたが、ガス処理ユニット1のグループごとに設けてもよい。グループごとの方が、電圧スイッチング素子3Aの数が少なくなり、低コスト化の上では有利である。
バルブ5Aではなく開口と開口を塞ぐ部材による機構などでもよく、放電に触れている吸着剤に流れるガスの流量を十分に少なくできるものであれば、流量調整機構はどのようなものでもよい。流量調整機構は、ガス処理ユニット1ごとに備えるようにしてもよい。
以上のことは、他の実施の形態でもあてはまる。
この実施の形態2は、ガス処理ユニット1の内部の電極構成を変更したものである。この実施の形態2でのガス処理ユニット1の構造を説明する図を、図9に示す。図9(a)に横断面図を、図9(b)に縦断面図をそれぞれ示す。接地電極1Aの内面に誘電体膜1Jをコーティングし、球状の疎水性ゼオライトを1列配置して、金属円筒の高圧電極1Dを配置している。その他の構成は実施の形態1と同じである。
この実施の形態2でも、小さい電源容量で効率よくVOCを処理でき、NOxの発生を低減できる。
なお、接地電極1Aの内面に誘電体膜1Jをコーティングする代わりに、誘電体の管の外側に金属を密着させて接地電極1Aを構成してもよい。
この実施の形態3は、ガス処理ユニット1の内部の電極構成を変更して、高圧電極を冷却するように実施の形態1を変更したものである。この実施の形態3でのガス処理ユニット1の構造を説明する図を図10に示す。図10(a)に横断面図を、図10(b)に縦断面図をそれぞれ示す。なお、図10(a)におけるBB断面が図10(b)であり、図10(b)におけるAA断面が図10(a)である。
高圧電極1Dの内面(冷却水が接触する面)は何もコーティングしていないので、高圧電極1Dが冷却水を介して接地とつながることがないように、冷却水は比抵抗104(Ω×m)以上の純水とする。
誘電体膜1Jの外部には、実施の形態2同様に吸着剤1Cである球状の疎水性ゼオライトを1列配置して、金属円筒の接地電極1Aを配置している。接地電極1Aの外側の空洞7Dには冷却水を流さない。
その他の構成は実施の形態1と同じである。
この実施の形態3では、高圧電極1Dに誘電体膜1Jをコーティングしているので、高圧電極1Dを水冷することにより誘電体膜1Jも冷却できる。そのため、誘電体膜1Jの温度を実施の形態1の場合と同じ100℃程度にした場合に、接地電極1Aを冷却する実施の形態1の場合よりも、接地電極1Aと高圧電極1Dの間にある放電空間の温度を高くできる。つまり、放電電流密度を高くして放電空間の温度が高くなっても誘電体1Jの温度は100℃程度に維持できる。放電電流密度を高くできるので、同じ出力の場合には、ガス処理ユニット1をより小型化できる。なお、誘電体膜1Jを接地電極1Aにコーティングするなど、接地電極1Aに隣接して誘電体がある場合は、接地電極1Aの方を冷却した方が放電電流密度を高くできる。高圧電極1Dと接地電極1Aの両方を冷却してやれば、さらに放電電流密度を高くできる。
以上のことは、電極を冷却する他の実施の形態でもあてはまる。
この実施の形態4は、実施の形態3での誘電体膜の代わりにガラス管を用いるように実施の形態3を変更したものである。この実施の形態4でのガス処理ユニット1の構造を説明する図を図11に示す。図11(a)に横断面図を、図11(b)に縦断面図をそれぞれ示す。なお、図11(a)におけるBB断面が図11(b)であり、図11(b)におけるAA断面が図11(a)である。
高圧電極1Dの構造は、実施の形態3の場合とほぼ同様である。ただし、高圧電極1Dの外面には誘電体膜をコーティングしていない。高圧電極1Dの外側にはガラス管1Bを配置し、ガラス管1Bと高圧電極1Dとを電気的及び熱的に結合する給電層1Qをガラス管1Bと高圧電極1Dの間に設ける。なお、ガラス管1Bと高圧電極1Dの間の電気的結合が不十分であると、高圧電極1Dとガラス管1Bの間で異常放電が発生する。熱的結合が不十分であるとガラス管1Bが十分に冷却できない。給電層1Qは、そのような事態が発生しないようにするためのものである。
その他の構成は、実施の形態3と同じである。
電気的及び熱的な結合を高める上では給電層1Qが薄い方が望ましい。給電層1Qを装着した高圧電極1Dをガラス管1Bに挿入するためには、給電層1Qは所定の柔軟性も持ちかつ所定の厚さが必要である。給電層1Qの材質などにもよるが、給電層1Qの厚みは0.5mm程度以上であることが望ましい。
給電層1Qは、所定の導電性および熱伝導特性を有するものであれば良く、導電性グリース、導電性接着剤、導電性パテ、導電性粘土、導電性高分子、金属板等でも代用できる。スチールウールではなく、より熱伝導率が高い銅やアルミニウムを編みこんだ給電層1Qとしてもよい。さらに、導電性を増すために、ガラス管1Bの内面に、ニッケルや、アルミや、クロム、金などのメッキなどにより導電層を設けるようにするなどしてもよい。
誘電体としてガラス管1Bを使用することにより、高圧電極1Aに誘電体膜1Jをコーティングする手間を省くことができ、コストを低減できる。
給電層1Qを備えることにより、ガラス管1Bの温度を実施の形態1と同じ100℃程度にした場合の放電電流密度を、実施の形態1の場合よりも増大させることができ、ガス処理ユニット1をより小型化できる。
なお、ガラス管ではなくセラミックなどの管を誘電体として使用してもよい。ガラス管のような固体の誘電体を使用して、電極との間に隙間が発生する可能性がある場合は、隙間が発生しないように電気的及び熱的に誘電体と電極とを結合する給電層を備えることにより、安定に放電を発生させ、冷却効率を維持できる。
図13は、高圧電極1Dの縦断面図を示した図である。ガラス横断面の入口部に炭化珪素(SiC)や、シリコン(Si)系ゴムなどの絶縁層1Rを設けることにより、沿面放電による絶縁破壊を防ぎ、信頼性を高めることができる。
以上のことは、給電層を有する他の実施の形態でもあてはまる。
この実施の形態5は、ガス処理ユニット1の内部にある吸着剤の構成を変更したものである。この実施の形態5でのガス処理ユニット1の構造を説明する図を、図14に示す。図14(a)に横断面図を、図14(b)に縦断面図をそれぞれ示す。吸着剤1Cは、突起がある弾力性を持つ平板を円筒状に丸めた構造である。吸着剤1Cは、平板及び突起の表面にVOCを吸着する成分を付加している。図14(a)から分かるように、吸着剤1Cの突起がガラス管1Bを支持する部材を兼ねている。その他の構成は実施の形態1と同じである。
この実施の形態6も、実施の形態5と同様に、ガス処理ユニット1の内部にある吸着剤の構成を変更したものである。この実施の形態6でのガス処理ユニット1の構造を説明する図を、図15に示す。図15(a)に横断面図を、図15(b)に縦断面図をそれぞれ示す。図15に示すように、吸着剤1Cは、中心部分が欠けた円柱(ドーナツ状)である。円柱の縦方向にハニカム(蜂の巣)状にガス通路を構成した吸着剤1Cを、接地電極1Aとガラス管1Bの間に配設している。ガス通路は、図15(b)において矢印で示すガスの流れる方向と平行である。ここで、小さい断面積の管を多数集積したような構造をハニカム状と呼ぶことにする。このハニカム状の吸着剤1Cがガラス管1Bを支持する部材を兼ねている。ガス通路に対して垂直に電極が配置され、放電もガス通路に対してほぼ垂直に発生する。その他の構成は実施の形態1と同じである。
このような形状の吸着剤1Cは、疎水性ゼオライトを円筒状に成形後に中心部分に穴をあけて成形するか、薄いガス通路を有するシート状の疎水性ゼオライトを巻いて重ねて成形する。シートを巻く方が安価に成形できる場合が多い。
吸着剤1Cを誘電体とすれば、ガス通路の壁面に対して垂直に放電が発生するので、誘電体であるガラス管1Bと同様に、吸着剤1Cが放電を安定させる効果を発揮する。なお、吸着剤1Cの絶縁耐力はそれほど大きくないので、ガラス管1Bなどの誘電体が電極間にある方が装置の信頼性は高くなる。
以上のことは、他の実施の形態でもあてはまる。
この実施の形態7も、ガス処理ユニット1の内部にある吸着剤1Cの構成の変更を実施の形態1に対して行ったものである。この実施の形態7でのガス処理ユニット1の構造を説明する図を、図16に示す。
図16(a)に横断面図を、図16(b)に縦断面図をそれぞれ示す。図16に示すように、吸着剤1Cは、多数の細かい孔ができるように疎水性ゼオライトを焼結した中心部分が欠けた高さ5〜100mm程度の円柱(ドーナツ状)である。円柱の縦方向にガス通路を構成した吸着剤1Cを、接地電極1Aとガラス管1Bの間に重ねて配設している。ドーナツの内径と外径は、ガラス管1Bと接地電極1Aの間でできるだけ隙間なく挿入できる大きさとする。吸着剤1Cの高さは、低い方が製造しやすく歩留まりが高くなるが、扱い易さという点では高い方がよい。
その他の構成は実施の形態1と同じである。
このような形状の吸着剤1Cは、疎水性ゼオライトが好ましいが、天然ゼオライト、ゼオライト以外でも、メソポーラスシリケート、脱アルミニウムフォージャサイト、高シリカペンタシルゼオライト、シリカゲルなどの高シリカ吸着剤の中から一つもしくは複数を配合し焼結したものを用いても、同様の効果が得られる。吸着剤の焼結時に酸化分解の触媒作用がある白金、金、二酸化チタン、二酸化マンガンなどの金属を配合しても良い。
吸着剤1Cを誘電体としているので、吸着剤1Cと交差するように放電が発生すると、誘電体であるガラス管1Bと同様に、吸着剤1Cが放電を安定させる効果を発揮する。
吸着剤1Cを焼結して製造しているので、安価に製造できるという効果も有る。
以上のことは、他の実施の形態でもあてはまる。
この実施の形態8は、誘電体であるガラス管1Bを無くするように、実施の形態6を変更した実施の形態である。この実施の形態8でのガス処理ユニット1の構造を説明する図を、図17に示す。図17(a)に横断面図を、図17(b)に縦断面図をそれぞれ示す。図17に示すように、吸着剤1Cは、中心部分が欠けた円柱(ドーナツ状)である。円柱の縦方向にハニカム状にガス通路を構成した吸着剤1Cを、接地電極1Aと高圧電極1Dの間に配設している。このハニカムを有する吸着剤1Cが高圧電極1Dを支持する部材を兼ねている。ガス通路に対して垂直に電極が配置され、放電もガス通路に対してほぼ垂直に発生する。その他の構成は実施の形態1と同じである。
このような形状の吸着剤1Cは、実施の形態6と同様にして成形する。
この実施の形態9は、ガス処理ユニット1を縦置きにした場合である。この実施の形態9でのガス処理ユニット1の構造を説明する図を、図18に示す。図18(a)に水平な平面での横断面図を、図18(b)に垂直な平面での縦断面図をそれぞれ示す。図18は、実施の形態1での図3を、ヒューズ1Fが上になるように90度回転させている。VOC処理装置全体も、図は示さないが、同様に90度回転している。その他の構成は実施の形態1と同じである。
この実施の形態9は実施の形態1を元にしたが、ガス処理ユニット1を縦置きにすることは他の実施の形態でも適用できる。
この実施の形態10は、ガス処理ユニットを縦置きにして、高圧電極1Dをヒートパイプにより冷却するように実施形態3を変更したものである。縦置きというのは、高圧電極1Dなどが地面に対して垂直な方向になるように配置することを意味する。このガス処理ユニット1の構造を説明する図を、図19に示す。図19(a)に水平な平面での横断面図を、図19(b)に垂直な平面での縦断面図をそれぞれ示す。なお、図19(a)は図19(b)のAA断面に対応し、図19(b)は図19(a)のBB断面に対応する。
放熱板14Bは、薄いアルミ板を所定の間隔で重ね合わせたものである。高圧電極1Dの上端で高圧導線1Eに接続され、放熱板14B全体に高電圧が印加される。放熱板14Bの厚みとその間隔は、必要となる冷却能力が得られる表面積が使用可能なスペースで得られるように決める。
ヒートパイプ14は冷媒14Aの蒸発潜熱により、放電により生じた熱を高圧電極1Dおよび誘電体膜1Jから取り去る。蒸発した冷媒蒸気は、放熱板14Bで熱を奪われて冷却されて凝縮し再び冷媒液となる。
高圧電極1Dおよび誘電体膜1Jを効率的に冷却して、放電電流密度の増大ひいてはガス処理ユニット1をより小型化できるという効果は、実施の形態3と同様である。さらに、ヒートパイプ14を使うことにより、純水の管理が不要のためメンテナンスが容易になる。また、冷却水を循環させる必要がなくなるため、冷却水を循環させるためのポンプが不要になり、運転コストが低減できる。
誘電体膜1Jの代わりに、実施の形態4に示すようなガラス管などの固体の誘電体を用いた場合でも同様の効果を得ることができる。
高圧電極にヒートパイプを適用して冷却したが、接地電極にヒートパイプを適用して冷却してもよい。高圧電極と接地電極の両方をヒートパイプにより冷却してもよい。
以上のことは、ヒートパイプを用いる他の実施の形態でもあてはまる。
この実施の形態11は、平板状の電極を使用するように構成したものである。この実施の形態11でのVOC処理装置の構造を説明する図を、図21に示す。図21(a)に縦断面図を、図21(b)に横断面図を、図21(c)に別の位置での横断面図をそれぞれ示す。なお、図21(b)におけるAA断面が図21(a)に対応し、図21(a)におけるBB断面が図21(b)に対応し、図21(b)におけるCC断面が図21(c)に対応する。
図21では4個のガス処理ユニット1が有る。1個のガス処理ユニット1は、高さ2cm弱で、幅と奥行きは数10cm程度である。図21では、構造を説明するために高さ方向に拡大して表現している。
フィルター4を通った処理対象ガスは、右側面にある吸気口7Aから容器7の内部に入り、ガス処理ユニット1の内部を通過して、左側面の排気口7Bから排気される。排気口7Bのすぐ手前には排気ファン6が有る。
高圧電極1Dは、高圧導線1Eとヒューズ1Fを介して電圧スイッチング素子3Aに接続し、電圧スイッチング素子3Aのもう一端に接続する高圧導線1Hは、容器7の排気側の上部に有る高圧線導入口7Cから容器7の外部に出て、高電圧発生装置2に接続する。
この実施の形態11での動作状態Aは、排気口1Kが開き高圧電極1Dに高電圧が印加されていない状態とする。そして、動作状態Bは、排気口1Kが閉じられて高圧電極1Dに高電圧が印加されて放電している状態とする。
この実施の形態11では、複数の積層したガス処理ユニット1を1個の容器7の中に収納したので、より安価に実用的な装置とすることができる。なお、1個のガス処理ユニット1ごとに容器7と処理対象ガス及び冷却水の配管を備えるようにしてもよい。
以上のことは、同様な構成を持つ他の実施の形態でもあてはまる。
この実施の形態12は、平板状の電極とハニカム状の吸着剤を使用するように構成したものである。この実施の形態12でのVOC処理装置の構造を説明する図を、図22に示す。図22(a)に縦断面図を、図22(b)に横断面図を、図22(c)に別の位置での横断面図をそれぞれ示す。なお、図22(b)におけるAA断面が図22(a)に対応し、図22(a)におけるBB断面が図22(b)に対応し、図22(b)におけるCC断面が図22(c)に対応する。
吸着剤1Cをハニカム状の疎水性ゼオライトとしている。ハニカム状のガス通路の壁面とほぼ直角に放電が発生する。その他の構造は、実施の形態11と同じである。
これまでの実施の形態ではガス流方向に直角に放電を発生させたが、この実施の形態13は、ガス流方向に平行に放電を発生するように構成した場合である。この実施の形態13でのVOC処理装置の構造を説明する図を、図23に示す。図23(a)に横断面図を、図23(b)に縦断面図をそれぞれ示す。なお、図23(b)におけるAA断面が図23(a)に対応し、図23(a)におけるBB断面が図23(b)に対応する。ただし、図23(b)では容器7の内部だけを断面図とする。
横長の長方形の断面を有するガス処理ユニット1を収容した4個の容器7を、縦に4個重ねて配置している。各容器7にはそれぞれ処理対象ガスの供給配管8と排気配管9が接続する。排気配管9の手前には、バルブ5Aが有る。図における右から左に、ガスは流れる。供給配管8は、処理対象ガスの吸入口では1本だが、各ガス処理ユニット1に向けて分岐し、各ガス処理ユニット1からの排気配管9は1本に合流する。排気口7Bの手前に排気ファン6を配置する。
バルブ5Aの開閉を流量調整機構5が制御し、電圧スイッチング素子3Aを電圧スイッチング制御装置3が制御し、1個のガス処理ユニット1が順番に動作状態Bを取り、その他のガス処理ユニット1は動作状態Aを取る。
ガス流方向に放電を発生させるので、ガスが流れることができるように、電極はメッシュ状または線状または棒状とした。メッシュ状ではなくても、必要な大きさの穴を設けた板や、間隔を空けて並べた複数の線状または棒状の電極などでもよく、ガス流を流すことができ放電を発生させることができれば、電極の形状はどのようでもよい。
放電の電力密度をそれほど高くする必要がない場合は、高圧電極と接地電極の間に誘電体を配置しなくてもよい。その場合には、接地電極をメッシュなどの面状とし、高圧電極を線状として、高圧電極に負の高電圧を印加した場合に、安定な放電が得られやすい。
以上のことは、同様な構成を持つ他の実施の形態でもあてはまる。
この実施の形態14は、ガス流方向に平行に放電を発生する構成において、ヒートパイプで冷却する円筒型高圧電極と金属メッシュ(金網)またはパンチングメタル(孔あき金属板)による接地電極を用いた場合のものである。この実施の形態14でのVOC処理装置の構成を説明する図を、図24〜図27に示す。図24はシステム全体図であり、図25はガス処理ユニット1の内部の縦断面図であり、図26はガス処理ユニット1の内部の電極配置を示す横断面図であり、図27はVOC処理装置の電極の構造を説明する縦断面図である。なお、図26におけるBB断面が図27に対応し、図27のAA断面が図26に対応する。
ガス処理ユニット1は処理対象ガスを通す四角い筒状の金属製の構造部材1Tと、処理対象ガスの流れと交差する向きの最も外側の接地電極1Aの外側に所定の数の柱1Uを備える。構造部材1Tは供給配管8及び排気配管9と接続され、ガスが外部に漏れない隔室を構成する。構造部材1Tは所定の厚さの鋼板であり、外側の所定の個所に強度を高めるための補強リブを設ける。四角い筒状の構造部材1Tの上面と下面にはガラス管1Bを1個ずつ挿入する穴を設けておく。この穴にガラス管1Bを挿入して、所定の位置に固定する。柱1Uは、吸着剤1Cの荷重が加わる最も外側の接地電極1Aを支え、構造部材1Tの上面と下面とを接続してより頑丈にするものである。柱1Uはガスの流れをできるだけ妨げないように、ガス流に平行な接地電極1Aがある位置に配置する。
さらに、放熱板14Bに冷却ファン15Aで強制的に風をあててヒートパイプ14を冷却している。冷却ファン15Aによる空気の流れが安定する通風路を形成するように、放熱板15Aの周囲を筒状の送風ガイド15Bで囲っている。冷却ファン15Aにより外部の塵や埃を吸い込まないために、通風路の入口と出口にはフィルター15Cを設ける。通風路となる筒状の送風ガイド15Bは、構造部材1Tの上に設けている。なお、放熱板14Bと外気との自然な熱交換でガラス管1Bが適切に冷却することが可能であれば、冷却ファン15A、送風ガイド15B、フィルター15Cは不要である。
図27に、高圧電極1D及びその周囲の構成を説明する縦断面図を示す。高圧電極1Dは内部に冷媒として水を封入した円筒である。高圧電極1Dの外側にガラス管1Bを同心円状に設置し、高圧電極1Dとガラス管1Bと間には電気的及び熱的な伝導性がよい柔軟性のある金属などによる給電層1Qを設けている。高圧電極1Dの上部に所定の数の放熱板14Bを設けている。放熱板14Bは、図26に示す全4列の高圧電極14Dを冷却するヒートパイプ14で共用される。ここで、図27などの縦断面図では煩雑さを避けるために、送風ガイド15Bなどは図示していない。高圧電極1D及び放熱板14Bには高電圧が印加されるので、送風ガイド15Bなどとの間に放電が発生しないようにする適切な部材を配置するが、それらも図示していない。なお、図20に示すように放熱板14Bに高電圧が印加されないようにしておけば、送風ガイド15Bなどとの間に放電が発生しないようにする部材は不要である。
吸着剤1Cは粒状であり、最も外側の接地電極1Aで囲まれる範囲内に充填される。
その他の構造については、実施の形態13と同様である。
この実施の形態においても、小さい電源容量で効率よくVOCを処理でき、NOxの発生を低減できる。接地電極1Aの孔径が、吸着剤1Cの直径よりも十分に大きくすることにより、吸着剤1Cを詰める時に、上部1箇所から吸着剤を入れてもガス処理ユニット1の内部の最も外側の接地電極1Aで囲まれた放電空間の全体に吸着剤1Cが広がるため、組立てが容易になる。
なお、放電空間内部の接地電極1Aがすべて同じ孔径の孔を有する必要はない。例えば図26における水平方向にある接地電極1Aでは、孔の数を少なくしたり、孔の径を小さくしたり、さらには孔を無くしたりしてもよい。その理由は、この接地電極1Aは、処理対象ガスが流れる方向と平行なので、孔がなくても処理対象ガスを流すことができるからである。
なお、高圧電極1Dを円柱状としたが、角に所定の丸みを持たせた四角柱状としてもよい。高圧電極1Dを四角柱状にすれば、高圧電極1Dと接地電極1Aとの間の距離の変動を小さくできる。四角柱の角に丸みを持たせる理由は、放電が角に集中しないようにするためである。必ずしも角に丸みを持たせなくてもよい。
図28(a)に処理対象ガスの入口からの距離を説明する概念図を示す。図28(b)にガス処理ユニット1の入口からの距離による吸着剤1CのVOC吸着量の変化を示す。ここでの距離は、吸着剤の全長に対する比率である相対距離で表現する。図28(b)では縦軸は、吸着剤1Cの吸着可能なVOCの量に対して実際に吸着した量が何%かを意味する吸着済率を示す。
図28(a)ではガス流に垂直に放電を発生させる場合で示しているが、本実施の形態のようにガス流に平行に放電を発生させる場合でもガス処理ユニット1の入口からの距離による吸着剤1Cの吸着済率の変化は、図28(b)のようになる。
ここで、吸着剤1Cの全長の中央よりも上流側のVOCをほぼ100%吸着した部分を風上部と呼び、下流側のVOCをまだ十分に吸着可能な部分を風下部と呼ぶ。図28(b)では、風上部で平均した吸着済率は100%に近いが、風下部での吸着済率の平均は50%程度である。吸着剤1CからVOCを脱着するために必要なエネルギー量は、吸着したVOCの量に比例するので、風下部で放電を発生させる時間は風上部の半分程度にする。こうすると、風上部と風下部での放電時間を同じにした場合に風下部で無駄に消費されるエネルギーを節約できることになる。
ここで、風上部と風下部とが吸着剤1Cの全長のほぼ中央で区分するとしたが、区分する位置は、吸着剤1Cの全長により異なる。吸着剤1Cの全長が長ければ風上部の割合が大きくなる。その理由は、図28(b)の特性を持つVOC処理装置があったとすると、処理済ガスにVOCが残存するかどうかは、VOCをまだ十分に吸着できる吸着剤1Cの量すなわち風下部の長さだけにより決まり、吸着剤1Cの全長を長くすると長くした部分は風上部に入るからである。
構造部材1Tは金属製としたが、十分な強度が得られる場合は、強化セラミックス、強化プラスチックなどで製作してもよい。絶縁性を有する強化セラミックスまたは強化プラスチックで構造部材を製作する場合は、構造部材が不要な放電を防止するための絶縁物の機能も実現することになる。
柱1Uの太さや数や位置などは、所定の強度が得られ、処理対象ガスの流れをできるだけ妨げないように決める。小型の装置で筒状の構造部材で十分な強度が得られる場合は、処理対象ガスの流れと交差する向きの最も外側の接地電極1Aの外側に構造部材を設けなくてもよい場合が有る。吸着剤1Cを保持する空間の外側の構造部材だけでは強度が十分でない場合は、吸着剤1Cを保持する空間の内部に、放電に影響を与えないように接地電極で囲んだ構造部材を配置してもよい。
ガス処理ユニット1の吸着剤を保持する空間を直方体としたが、多角柱や円筒状や直方体を組合せた形状など直方体以外の形状でもよい。
以上のことは、他の実施の形態でもあてはまる。
この実施の形態15は、高圧電極1Dを取り囲む接地電極1Aの断面を正八角形にして、接地電極1Aだけで囲まれる四角形の部分に金属製の柱を通すように実施の形態14を変更した場合である。
図29〜図31に、この実施の形態15でのVOC処理装置の構造を説明する図を示す。図29が横断面図であり、図29のBB断面における縦断面図が図30であり、図29のCC断面における縦断面図が図31である。
実施の形態14の場合である図26、図27とは異なる点だけを説明する。高圧電極1Dとそれを囲むガラス管1Bは隣接する列で同じ位置になるように配置し、高圧電極1Dを取り囲む接地電極1Aの断面を正八角形にしている。すると、接地電極1Aで囲まれる四角形の部分が発生するので、この四角形の部分に表面を接地電極1Aとして機能させ、かつガス処理ユニットを構造的に強くする補強部材である柱1Uを設ける。柱1Uは、筒状の構造部材1Tの上面と下面を連結する。柱1Uは高導電性かつ高い熱伝導率を有する金属製とする。構造部材1Tの側面の内側には、穴がない板材の所定の位置に直角二等辺三角形の断面の溝をプレス加工などにより設けた接地電極1Aを溝の底が内部に向くように取り付けて、接地電極1Aの断面を正八角形にする。この接地電極1Aに穴を設けない理由は、接地電極1Aと構造部材1Tの間の空間に吸着剤1Cが入りこまないようにするためである。なお、この空間に入った吸着剤1Cは放電により脱着できないので、無駄になる。
その他の構造は、実施の形態14と同じである。
高圧電極1Dとそれを囲むガラス管1Bは隣接する列で同じ位置に配置されているので、図30では4列の高圧電極1D及びガラス管1Bが断面上にある。処理対象ガスの流れと平行な向きの接地電極1Aに非常に近い断面である図31では、接地電極1Aに穴が設けられており、その穴の向こう側にも吸着剤1Cが充填されていることが分かる。
柱1Uを接地電極1Aと兼用するようにしたが、導電率がそれほど高くない材料製で柱1Uを製作する場合などは、柱1Uとは別に接地電極1Aを設けるようにしてもよい。
構造部材1Tの側面の内側に設けた接地電極は、1個ずつを構造部材に取り付けてもよい。また、接地電極1Aを板材ではなく断面が直角二等辺三角形の柱材としてもよい。このことは、同様な接地電極を有する他の実施の形態でもあてはまる。
この実施の形態16は、より強度を増し、組立てを容易にするために、ガスの流れと平行にある側面側の接地電極を構造部材と兼用するように実施の形態15を変更した場合である。
図32に、この実施の形態16でのVOC処理装置の構造を説明する横断面図を示す。実施の形態15の場合である図29とは異なる点だけを説明する。処理対象ガスの流れと平行な向きにある強度を増すための補強部材として、柱1Uではなく板材1Wとしている。板材1Wは、高導電性かつ高い熱伝導率を有する金属製とする。板材1Wの両面にも、構造部材1Tの内側面と同様な形状の接地電極1Aを取り付ける。このような接地電極1Aを設けることにより、高圧電極1Dを囲む接地電極1Aの断面が正八角形になり、放電密度を一様に近くできる。板材1Wの厚さは所定の構造強度が得られる厚さとする。
その他の構造は、実施の形態15と同じである。
高圧電極1Dを囲む接地電極1Aの断面を正八角形にするための接地電極1Aを取り付けているので、放電が一様に近くなるという効果が有る。なお、板材1Wに接地電極1Aを取り付けなくてもよい。その場合は、放電が一様でない度合いが悪化するが、ガス処理ユニット1の製作コストを低減できるという効果が有る。
ガス処理ユニット1を構造的に補強する構造部材は、所定の強度が得られるものであれば、どのようなものでもよい。
この実施の形態17は、処理済ガスをヒートパイプの冷却に使用するように実施の形態14を変更した場合である。
図33に、この実施の形態17でのVOC処理装置の構造を説明する平面図を示す。図34に、この実施の形態17でのVOC処理装置の構造を説明する縦断面図を示す。実施の形態14の場合での図24と異なる点だけを説明する。処理済ガスをヒートパイプ14の冷却に使用するために、各ガス処理ユニット1の上部の送風ガイド15Bと排気配管9との間に冷却空気供給管16を設けている。排気ファン6により冷却空気供給管16を通ってヒートパイプ14に風が送られるので、冷却ファン15Aが無い。
その他の構造は、実施の形態14と同様である。
冬季などは外気の方が室温よりも温度が低くなるので、外気の方が室温よりも温度が低い場合は外気によりヒートパイプを冷却できる構造を備えるようにしてもよい。
この実施の形態18は、接地電極1Aと吸着剤1Cを複数のガス処理ユニット1で兼用するように、実施の形態13を変更した場合である。この実施の形態18でのVOC処理装置の構造を説明する図を、図35に示す。図35(a)に横断面図を、図35(b)と図35(c)に縦断面図をそれぞれ示す。なお、図35(b)におけるAA断面が図35(a)に対応し、図35(a)におけるBB断面が図35(b)に対応し、図35(a)におけるCC断面が図35(c)に対応する。
この実施の形態19は、接地電極を回転させるようにした場合である。この実施の形態19でのVOC処理装置の構造を説明する図を、図36に示す。図36(a)に横断面図を、図36(b)に縦断面図をそれぞれ示す。なお、図36(b)におけるAA断面が図36(a)に対応し、図36(a)におけるBB断面が図36(b)に対応する。
回転機構10が放電制御機構であり、かつ流量調整機構でもある。
この実施の形態19でも、小さい電源容量で効率よくVOCを処理できる。さらには、ガスを流すための配管やバルブなどが不要であるという特徴も有る。
効率は低下するが、脱着できない吸着剤の部分が発生したり、まだ脱着していない部分が存在するのに脱着済の個所を脱着することが発生したりすることを許容してもよい。
この実施の形態19では、冷却装置は省略したが、コストと性能を総合的に判断して、電極を冷却する装置を備えてもよい。なお、電極を冷却することは高い電力で安定して放電させる上で有効である。
以上のことは、同様な構成を持つ他の実施の形態でもあてはまる。
この実施の形態20は、接地電極を回転させるようにした別の場合である。この実施の形態20でのVOC処理装置の構造を説明する図を、図37に示す。図37(a)に横断面図を、図37(b)に縦断面図をそれぞれ示す。なお、図37(b)におけるAA断面が図37(a)に対応し、図37(a)におけるBB断面が図37(b)に対応する。
実施の形態19の場合である図36と比較して、相違する点だけを説明する。接地電極1Aを線状として、接地電極1Aのガス流の下流側に邪魔板1Mが有る。邪魔板1Mの幅は、放電に触れている範囲のハニカムのガス通路を隠すのに必要十分な長さとする。接地電極1Aと邪魔板1Mの組は、互いに120度の角度間隔で3個ある。その他の構造は、実施の形態19と同じである。
この実施の形態21は、放電させるガス処理ユニット1に酸素濃度を高くし窒素の代わりに不活性ガスを配合した特別配合ガスを供給するようにした場合である。実施の形態21でのVOC処理装置のシステムブロック図が図38である。
特別配合ガス供給機構11Aは、酸素と不活性ガスを所定の割合で配合した特別配合ガスを供給する機構である。特別配合ガス回収再生機構11Eは、回収した特別配合ガスから酸素と不活性ガス以外の成分を除去して、再び特別配合ガスとして使用できるように再生する機構である。再生した特別配合ガスは、特別配合ガス供給機構11Aで、所定の配合になるように酸素または不活性ガスを追加してガス処理ユニット1に供給される。
この実施の形態21は、実施の形態1を元にして特別配合ガスを使用するように変更したものだが、他の実施の形態を元にしてもよい。
この実施の形態22は、処理対象ガスの流れを止めて放電によりVOCを脱着した後にガス処理ユニット1の内部に残るガス(脱着後ガスと呼ぶ)を処理済ガスにより吸気側に返送するようにしたものである。実施の形態22でのVOC処理装置のシステムブロック図が図41である。
この実施の形態22でのVOC処理装置は、実施の形態1のものに、脱着後ガスを吸気側に返送するためのガス返送機構として以下のものを追加している。(1)処理済ガスをガス処理ユニット1の内部を通して吸気配管8に返送するための排気ファン11H。(2)ガス処理ユニット1と排気ファン11Hを結ぶ配管11F(3)配管11Fの流量を調整するバルブ11G(4)ガス処理ユニット1の排気が排気ファン6の方へ流れるかどうかを調節するバルブ11D。
ここで、フェーズnAにおいて、グループn−1が動作状態Dであり、グループnが動作状態Bであり、残りのグループは動作状態Aであるようにしてもよい。このような各グループが取る動作状態の変化のパターンをパターンBと呼ぶ。なお、パター−ンBでは常に1個のグループが動作状態Bにあり、フェーズnAでの動作状態Aを取るグループの数がパターンAの場合よりも1個少なくなる。グループの数が十分に大きければ、動作状態Aを取るグループの数がパターンAの場合よりも1個少ないことは問題ではなく、脱着後ガス中の副生成物や処理対象ガス中のVOCを吸着できないような事態は発生しない。
この実施の形態22は、実施の形態1を元にして処理済ガスを供給配管に返送するガス返送機構を備えるように変更したものだが、他の実施の形態を元にしてもよい。
放電発生時もガスを吸気側に戻す場合は、ガス処理ユニット1内に残留する副生成物の量が少ないので、放電発生後にガスを吸気側に戻す所定の時間は短くしてもよい。
以上のことは、他の実施の形態でもあてはまる。
この実施の形態23でのVOC処理装置は、実施の形態1を元にして、処理対象ガス中のVOC濃度を計測し、VOC濃度に応じて放電の消費電力量を調整するようにしたものである。実施の形態23でのVOC処理装置のシステムブロック図が図44である。実施の形態1の場合である図1に対して、以下の点が相違している。フィルター4の直後に処理対象ガス中のVOC濃度を計測するVOC濃度センサ12を追加している。電圧スイッチング制御装置3と流量調整機構5の代わりに、放電制御機構である放電電力制御機構13が有る。放電電力制御機構13は、VOC濃度センサ12で計測されたVOC濃度から吸着剤1Cが吸着したVOCの量(VOC吸着量と呼ぶ)を計算し、放電開始時のVOC吸着量に応じて、VOCを分解するのに必要最小限な放電の消費電力量となるように、電圧スイッチング素子3Aとバルブ5Aを制御する。その他の構成は、実施の形態1と同じである。
動作状態Eが必要となる理由を説明する。VOC濃度が低い場合には動作状態BでVOCを分解処理する時間は短くなる。動作状態Eを取らないで、あるグループで動作状態Bが終了した時点で、次のグループで動作状態Bを取るようにすると、VOC濃度に応じてVOC処理装置の動作の周期が変化することになる。VOC濃度が低い場合には処理の周期が短くなり、吸着剤が十分にVOCを吸着する前に放電で分解処理されることになり、VOCの分解効率が低下する。VOC濃度が低い場合に分解効率を低下させないように、処理の周期が所定の長さ以上とするために、動作状態Eは必要である。
グループ1では時間0ではVOC吸着量がゼロなので動作状態Bを取らないで、動作状態Eとなる。VOC吸着量が多くなると、動作状態Bを取る時間が長くなることが分かる。また、VOC吸着量がゼロになった後は、動作状態Bではなく動作状態Eを取ることが分かる。
この実施の形態23では、印加電圧と放電電流ひいては消費電力を一定にして放電させる時間を変化させたが、放電する時間は一定にして、高電圧発生装置2を制御して吸着したVOCの量に応じて、印加電圧または放電電流のどちらかまたは両方ひいては放電の消費電力を変えるようにしてもよい。さらには、印加電圧または放電電流のどちらかまたは両方とともに、放電する時間も変化させるようにしてもよい。VOCを脱着分解するための消費電力量を低減できれば、どのような方法でもよい。なお、VOCを確実に分解処理できる範囲で、消費電力量が必要最小限にできるだけ近い方が望ましい。
動作状態Bまたは動作状態Eを取る時間を所定値としたが、可変にしてもよい。可変にする場合の例としては、次に動作状態Bになるグループのガス処理ユニット1のVOC吸着量が所定値(例えば、75%)以上になるまでとする場合などが考えられる。可変にする場合には、VOC濃度が高い状況が継続しているような場合には、動作状態Bの後に動作状態Eを取らないで、次のグループのガス処理ユニット1を動作状態Bにしてもよい。
動作状態Bでの印加電圧、放電電流、放電継続時間を固定にして、動作状態Eの時間だけを可変にするようにしてもよい。
この実施の形態23は実施の形態1を元にしたが、他の実施の形態を元にしてもよい。
以上のことは、VOC濃度センサを使用する他の実施の形態でもあてはまる。
1A:接地電極
1B:ガラス管(誘電体)
1C:吸着剤(吸着体)
1D:高圧電極
1E:高圧導線
1F:ヒューズ
1G:支持材
1H:高圧導線
1J:誘電体膜
1K:排気口
1L:遮蔽板
1M:邪魔板
1N:冷却水供給口
1P:冷却水排出口
1Q:給電層
1R:絶縁層
1S:絶縁物
1T:構造部材
1U:柱(補強部材)
1V:絶縁物
1W:板材(補強部材)
2 :高電圧発生装置
3 :電圧スイッチング制御装置(放電制御機構)
3A:電圧スイッチング素子
4 :フィルター
5 :流量調整機構
5A:バルブ
6 :排気ファン
7 :容器
7A:吸気口
7B:排気口
7C:高圧線導入口
7D:空洞
7E:隔壁
7F:貫通穴
7G:冷却水供給口
7H:冷却水排出口
7J:冷却水通路
7K:絶縁体
8 :供給配管
9 :排気配管
10 :回転機構(放電制御機構、流量調整機構)
10A:回転軸
10B:固定枠
10C:モータ
10D:円盤
10E:ベルト
11A:特別配合ガス供給機構(ガス供給機構)
11B:配管
11C:バルブ
11D:バルブ
11E:特別配合ガス回収再生機構
11F:配管
11G:バルブ
11H:排気ファン
11J:配管
12 :VOC濃度センサ
13 :放電電力制御機構(放電制御機構、流量調整機構)
14 :ヒートパイプ(電極冷却機構)
14A:冷媒
14B:放熱板
15A:冷却ファン
15B:送風ガイド
15C:フィルター
16 :冷却空気供給管
Claims (3)
- 処理対象ガスに触れ揮発性有機化合物を吸着する吸着体と、
前記吸着体を間に挟んで配置された放電を発生させる電極の対と、
前記吸着体と前記電極の対を中に収容するガス処理ユニットを複数備え、前記処理対象ガスの流れとは逆方向に放電発生後の所定期間に、所定のガス処理ユニットの吸着体に前記所定のガス処理ユニット以外のガス処理ユニットで処理された処理済ガスまたは外気を流し、放電により前記所定のガス処理ユニットで発生した放電副生成物を含む脱着後ガスを前記所定のガス処理ユニット以外のガス処理ユニットに送るガス返送機構と
を備え、
前記放電副生成物は、前記所定のガス処理ユニット以外のガス処理ユニットの吸着体で除去される
揮発性有機化合物処理装置。 - 処理対象ガスに触れ揮発性有機化合物を吸着し、前記処理対象ガスが流れる所定の直径の孔が所定の気孔率で形成されて成る誘電体である吸着体と、
前記吸着体を間に挟んで配置された放電を発生させる電極の対と、
前記吸着体と前記電極の対を中に収容するガス処理ユニットを複数備え、前記処理対象ガスの流れとは逆方向に放電発生後の所定期間に、所定のガス処理ユニットの吸着体に前記所定のガス処理ユニット以外のガス処理ユニットで処理された処理済ガスまたは外気を流し、放電により前記所定のガス処理ユニットで発生した放電副生成物を含む脱着後ガスを前記所定のガス処理ユニット以外のガス処理ユニットに送るガス返送機構と
を備え、
前記放電副生成物は、前記所定のガス処理ユニット以外のガス処理ユニットの吸着体で除去される
揮発性有機化合物処理装置。 - 処理対象ガスに触れ揮発性有機化合物を吸着し、前記処理対象ガスが通るガス通路を有する誘電体として成る吸着体と、
前記吸着体を間に挟んでガス通路の壁面と交差する方向に放電を発生させるよう配置された、交流の電圧が印加される電極の対と、
前記吸着体と前記電極の対を中に収容するガス処理ユニットを複数備え、前記処理対象ガスの流れとは逆方向に放電発生後の所定期間に、所定のガス処理ユニットの吸着体に前記所定のガス処理ユニット以外のガス処理ユニットで処理された処理済ガスまたは外気を流し、放電により前記所定のガス処理ユニットで発生した放電副生成物を含む脱着後ガスを前記所定のガス処理ユニット以外のガス処理ユニットに送るガス返送機構と
を備え、
前記放電副生成物は、前記所定のガス処理ユニット以外のガス処理ユニットの吸着体で除去される
揮発性有機化合物処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012247654A JP5720658B2 (ja) | 2004-06-29 | 2012-11-09 | 揮発性有機化合物処理装置 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191949 | 2004-06-29 | ||
JP2004191949 | 2004-06-29 | ||
JP2004344084 | 2004-11-29 | ||
JP2004344084 | 2004-11-29 | ||
JP2012247654A JP5720658B2 (ja) | 2004-06-29 | 2012-11-09 | 揮発性有機化合物処理装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009281692A Division JP5229203B2 (ja) | 2004-06-29 | 2009-12-11 | 揮発性有機化合物処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013027878A JP2013027878A (ja) | 2013-02-07 |
JP5720658B2 true JP5720658B2 (ja) | 2015-05-20 |
Family
ID=42068446
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009281692A Active JP5229203B2 (ja) | 2004-06-29 | 2009-12-11 | 揮発性有機化合物処理装置 |
JP2012247654A Active JP5720658B2 (ja) | 2004-06-29 | 2012-11-09 | 揮発性有機化合物処理装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009281692A Active JP5229203B2 (ja) | 2004-06-29 | 2009-12-11 | 揮発性有機化合物処理装置 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5229203B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5229203B2 (ja) * | 2004-06-29 | 2013-07-03 | 三菱電機株式会社 | 揮発性有機化合物処理装置 |
CN104128083B (zh) * | 2014-05-30 | 2016-08-17 | 中国石油化工股份有限公司青岛安全工程研究院 | 生物滴滤床耦合介质阻挡放电降解恶臭气体的方法 |
CN110088038B (zh) * | 2016-12-19 | 2022-08-30 | 东芝三菱电机产业系统株式会社 | 气体产生装置 |
CN112452149A (zh) * | 2020-11-27 | 2021-03-09 | 江西捷美软包装有限公司 | 一种减少制袋废气排放的熟化设备 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52143994A (en) * | 1976-05-26 | 1977-11-30 | Toshiba Corp | Ozonizer |
JPS5367689A (en) * | 1976-11-29 | 1978-06-16 | Toshiba Corp | Ozonizer |
JPS54133493A (en) * | 1978-04-07 | 1979-10-17 | Mitsubishi Electric Corp | Ozonizer |
JPH04362007A (ja) * | 1991-06-07 | 1992-12-15 | Ishikawajima Harima Heavy Ind Co Ltd | オゾン発生装置 |
JP3395432B2 (ja) * | 1995-02-28 | 2003-04-14 | 三菱電機株式会社 | ガス処理装置 |
JP4767400B2 (ja) * | 2000-10-25 | 2011-09-07 | 株式会社西部技研 | 揮発性有機物蒸気処理素子 |
JP4549563B2 (ja) * | 2001-03-22 | 2010-09-22 | 三菱電機株式会社 | ハロゲン含有ガスの処理装置 |
JP2004082097A (ja) * | 2002-06-26 | 2004-03-18 | Seibu Giken Co Ltd | 有機ガス処理素子及びそれを利用した有機ガス処理装置 |
JP5229203B2 (ja) * | 2004-06-29 | 2013-07-03 | 三菱電機株式会社 | 揮発性有機化合物処理装置 |
-
2009
- 2009-12-11 JP JP2009281692A patent/JP5229203B2/ja active Active
-
2012
- 2012-11-09 JP JP2012247654A patent/JP5720658B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010051967A (ja) | 2010-03-11 |
JP2013027878A (ja) | 2013-02-07 |
JP5229203B2 (ja) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4466422B2 (ja) | 揮発性有機化合物処理装置 | |
JP5266758B2 (ja) | 揮発性有機化合物処理装置 | |
JP5720658B2 (ja) | 揮発性有機化合物処理装置 | |
US10343105B2 (en) | Air cleaning system | |
CN103702690B (zh) | 利用电场再生的空气净化器 | |
US20120048792A1 (en) | Liquid treatment discharge unit, humidity control device, and water heater | |
KR102068184B1 (ko) | 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템 | |
JP2003017297A (ja) | 放電装置及びプラズマ反応器 | |
JP2020504306A (ja) | 接触式再結合器及びフィルタ装置 | |
CN100531866C (zh) | 挥发性有机化合物处理装置 | |
CN112113285A (zh) | 等离子体再生组件、具有其的空气净化装置和空调系统 | |
JP2010201373A (ja) | ガス処理装置 | |
JP7306683B2 (ja) | ガス置換用ドライルーム | |
US8297045B2 (en) | Exhaust gas treating apparatus and treating method | |
JP2003236332A (ja) | ガス処理装置 | |
JP2006142121A (ja) | 空気処理装置 | |
JP6072999B2 (ja) | オゾン発生システムおよびその運転方法 | |
KR101464830B1 (ko) | 제습장치 및 그 통전형 탈리장치 | |
JP5339134B2 (ja) | ガス処理装置 | |
JP2009284955A (ja) | 空気浄化装置 | |
KR20210001727A (ko) | 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템 | |
JP2004321954A (ja) | 有機ガス処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121109 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150309 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |