KR102068184B1 - 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템 - Google Patents

흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템 Download PDF

Info

Publication number
KR102068184B1
KR102068184B1 KR1020170128057A KR20170128057A KR102068184B1 KR 102068184 B1 KR102068184 B1 KR 102068184B1 KR 1020170128057 A KR1020170128057 A KR 1020170128057A KR 20170128057 A KR20170128057 A KR 20170128057A KR 102068184 B1 KR102068184 B1 KR 102068184B1
Authority
KR
South Korea
Prior art keywords
core
adsorbent
shell
weight
adsorption
Prior art date
Application number
KR1020170128057A
Other languages
English (en)
Other versions
KR20190038061A (ko
Inventor
김준
김상윤
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020170128057A priority Critical patent/KR102068184B1/ko
Publication of KR20190038061A publication Critical patent/KR20190038061A/ko
Application granted granted Critical
Publication of KR102068184B1 publication Critical patent/KR102068184B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 내부에 배치되고, 탄소계열 물질을 포함하는 코어, 상기 코어를 감싸게 배치되는 흡착기능을 가지는 쉘을 포함하고, 상기 코어는 활성탄, 그래핀, 그라파이트 카본블랙 및 첨착 활성탄 중 적어도 하나를 포함하는 흡착제 및 이를 포함하는 것을 특징으로 한다.

Description

흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템 {ADSORBER SYSTEM FOR REMOVING VOLATILITY ORGANIC COMPOUND}
본 발명은 다중이용시설, 행사장, 다양한 제조공정 및 자동차 도장공정 등에서 발생하는 유해성분을 포함하는 가스를 흡착하는 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템에 관한 것이다.
삶의 질의 향상으로 대기환경에 대한 관심이 증가함에 따라, 각종 산업공정, 도장시설, 하수처리장, 또는 소각장에서 발생되고 있는 휘발성 유기화합물(volatile organic compounds, VOC)과 같은 대기오염 물질의 배출을 억제하기 위한 규제들이 개정되고 있으며, 이를 위반하는 업체들에 대해서는 조업정지와 같은 강력한 행정처분을 집행하고 있다. 이에, 이러한 휘발성 유기화합물을 제거할 수 있는 많은 연구가 진행되어 왔다. 종래의 대표적인 휘발성 유기화합물 제거기술로는, 활성탄을 이용하는 흡착탑 시스템, 농축시스템, 촉매산화방식(regenerative catalytic oxidation, RCO), 또는 열원산화방식(regenerative thermal oxidation, RTO) 등이 있었다. 하지만, 흡착탑을 이용하는 경우, 주기적인 교체가 요구되어 유지비용이 상승하는 문제점이 있으며, 농축시스템이나 촉매 및 열원산화 방식의 경우, 에너지 효율이 낮은 단점이 있다.
상술한 종래기술의 문제점을 해결하기 위하여, 최근에는 마이크로파(microwave)를 이용하여 휘발성 유기화합물을 제거하는 기술이 개발되고 있다. 구체적으로, 마이크로파를 이용하는 휘발성 유기화합물 제거기술은, 흡착제에 휘발성 유기화합물을 흡착시킨 후 이를 탈착시켜 제거하는 것으로써, 흡착과 탈착을 통해 재생이 가능하므로, 흡착제를 반영구적으로 사용할 수 있다. 이러한 마이크로파를 이용한 휘발성 유기화합물 제거기술의 효율을 극대화하기 위해서는, 제거대상인 유기화합물에 대한 흡착력, 및 탈착시 흡착제에 조사되는 마이크로파에 대한 흡수력이 높은 흡착제가 필요하다.
한편, 매년 에너지 수요가 급격히 증대되고, 동시에 많은 에너지를 필요로 하는 기술에 대한 중요성이 부각됨에 따라, 에너지 문제는 세계 모든 나라들의 초미의 관심사로 부각되고 있다. 특히, 반도체 및 LCD 공정에서 이용되고 있는 로터형 제습시스템은 다소비 에너지의 대표적인 기술로, 이러한 에너지 문제를 해결하기 위해 마이크로파를 이용하여 에너지 효율을 증가시킬 수 있는 저소비형 제습시스템의 개발이 시도되고 있다. 이러한 마이크로파를 이용한 제습시스템 또한, 에너지 효율을 더욱 향상시킬 수 있는, 수분에 대한 흡착력과 재생을 위해 흡착제에 조사되는 마이크로파에 대한 흡수력이 모두 우수한 흡착제의 개발이 요구되고 있다.
도 1은 등록특허 10-1549359 호에 공지된, 종래의 흡착제를 나타낸 도면이다.
종래의 흡착제는 탄화규소 비드(210)가 코어를 형성하고, 탄화규소 비드(210)를 감싸는 형태로 쉘(110)가 배치되고, 쉘(110) 내에 탄화규소 입자(230)가 분산 배치되는 형태를 가진다.
이러한 종래기술의 경우, 쉘(110) 내에 탄화규소 입자(230)를 분산하는 과정에서, 탄화규소 입자(230)의 일부가 쉘(110)의 표면(쉘의 표면)으로 노출되게 된다. 쉘의 표면으로 노출된 탄화규소 입자(230)는 흡착력이 없기 때문에 , 흡착제의 흡착면적을 줄이고, 흡착제의 흡착 성능을 저하시키는 문제점이 존재한다.
또한, 종래기술의 경우, 쉘(110) 내에 탄화규소 입자(230)의 입자를 분산시키 위해, 쉘(110)의 두께를 너무 얇게 하면, 쉘의 표면으로 노출되는 탄화규소 입자(230)가 많아져서 흡착력이 저하되고, 쉘(110)의 두께를 너무 두껍게 하면, 쉘의 표면으로 노출되는 탄화규소 입자(230)가 줄어들지만, 쉘의 두께가 증가되어 흡착제의 무게가 증가되고, 코어에 가깝게 배치된 쉘이 흡착 기능을 하지 못하는 문제점이 존재한다.
또한, 종래기술의 경우, 코어로 사용되는 탄화규소 비드(210)와 탄화규소 입자(230)는 밀도가 높아서 동일 부피 대비 무게가 증가되어 흡착제의 경량화를 방해하고, 탄화규소의 비열이 높기 때문에, 흡착제를 가열하는 데 에너지 소비가 높은 단점이 존재한다.
본 발명이 해결하고자 하는 과제는 산업 현장에서 발생되는 휘발성유기화합물(이하 VOC)을 흡착하여 제거하고, 흡착제에 농축된 VOC를 탈착하여 흡착제를 재생하고, 탈착된 VOC는 촉매를 사용하여 분해할 수 있는 휘발성 유기화합물 제거시스템을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 VOC의 흡착효율이 증가되고, VOC의 탈착 시에 에너지가 절감되며, 경량화가 가능한 흡착제를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 발명의 실시예에 따른 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템은 내부에 배치되고, 탄소계열 물질을 포함하는 코어, 상기 코어를 감싸게 배치되는 흡착기능을 가지는 쉘을 포함하고, 상기 코어는 활성탄, 그래핀, 그라파이트 카본블랙 및 첨착 활성탄 중 적어도 하나를 포함하는 흡착제 및 이를 포함하는 것을 특징으로 한다.
또한, 실시예는 상기 코어 보다 작은 직경을 가지고, 상기 코어에 분산배치되는 분산입자를 더 포함할 수 있다. 상기 코어의 직경은 100 ㎛ 내지 300 ㎛ 이다.
상기 코어는 코어의 직경과 쉘의 두께 비율은 1:1 내지 1:3 이다.
상기 분산입자는 상기 코어와 다른 물질을 포함한다.
상기 분산입자는 코어 100중량%에 대하여 0.1중량% 내지 10중량%가 포함된다.
상기 분산입자는 유전체를 포함하거나, 금속을 포함하거나, 유전체와 금속을 포함할 수 있다.
상기 금속은 상기 분산입자 100중량%에 대하여 10중량% 내지 30중량%가 포함될 수 있다.
상기 분산입자의 직경은 0.5 ㎛ 내지 10 ㎛ 일 수 있다.
상기 쉘은 제올라이트, 활성 알루미나 또는 이들의 혼합물일 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 휘발성 유기화합물 제거시스템에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.
첫째, 본 발명은 산업 현장에서 발생되는 VOC 를 효과적으로 제거하면서, 외부로 배출하기 않고, 연속 구동이 가능한 장점이 있다.
둘째, 본 발명의 흡착제는 동일한 흡착면적을 확보하면서 그 중량을 줄일 수 있고, 이로 인해, 회전 카트리지를 구동하는 에너지를 줄일 수 있다.
셋째, 본 발명의 흡착제는 마이크로파를 이용하여 신속하게 탈착온도까지 승온시킬 수 있는 장점이 존재한다.
넷째, 본 발명의 코어는 밀도가 낮기 때문에, 동일 질량 대비 비열이 낮아서, 흡착제를 승온시키는 데 에너지가 절약되고, 코어의 열전도도가 높아서 코어의 열을 쉘로 신속하게 전달할 수 있는 장점이 존재한다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 기술에 따른 휘발성 유기화합물 제거장치를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 휘발성 유기화합물 제거시스템의 개념도이다.
도 3는 본 발명의 일 실시예에 따른 휘발성 유기화합물 제거시스템의 상부에서 본 단면도이다.
도 4는 도 3에 도시한 휘발성 유기화합물 제거시스템의 일 측 단면도이다.
도 5는 도 3에 도시한 휘발성 유기화합물 제거시스템의 타 측 단면도이다.
도 6은 본 발명의 일 실시예에 따른 회전 카트리지를 도시한 도면이다.
도 7은 도 6의 A-A 선을 취한 단면도이다.
도 8은 본 발명의 일 실시예에 따른 흡찹제를 도시한 도면이다.
도 9는 본 발명의 다른 실시예에 따른 흡찹제를 도시한 도면이다.
도 10는 도 9에 도시된 흡찹제의 열전달을 도시한 도면이다.
도 11은 본 발명의 실시예들과 비교예의 마이크로파에 의하 가열을 실험한 테이터이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
도면에서 각 구성의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다.
또한, 본 발명의 구조를 설명하는 과정에서 언급하는 각도와 방향은 도면에 기재된 것을 기준으로 한다. 명세서에서 구조에 대한 설명에서, 각도에 대한 기준점과 위치관계를 명확히 언급하지 않은 경우, 관련 도면을 참조하도록 한다.
도 2는 본 발명의 일 실시예에 따른 휘발성 유기화합물 제거시스템(1)의 개념도, 도 3는 본 발명의 일 실시예에 따른 휘발성 유기화합물 제거시스템(1)의 상부에서 본 단면도, 도 4는 도 3에 도시한 휘발성 유기화합물 제거시스템(1)의 일 측 단면도, 도 5는 도 3에 도시한 휘발성 유기화합물 제거시스템(1)의 타 측 단면도이다.
도 2 내지 도 5를 참고하면, 본 발명의 일 실시예에 따른 휘발성 유기화합물 제거시스템(1)은 VOC 등의 유해성분을 포함하는 배기가스를 공급받아 배기가스 내에 함유된 유해성분을 흡착제(71)로 흡착한 후, 정화가스를 배출한다.
예를 들면, 일 실시예에 따른 휘발성 유기화합물 제거시스템(1)은 VOC 등의 유해성분을 포함하는 배기가스를 공급받는 흡착모듈(10, 12), 유해성분을 흡착할 수 있는 흡착기능과 축열기능을 동시에 가지는 흡착제(71), 복수의 영역으로 구획되어 흡착제(71)를 수용하는 복수의 저장섹터(20a)를 가지는 회전 카트리지(20), 흡착제(71)에서 흡착된 유해성분을 탈착되어 유동되는 탈착모듈 및 회전 카트리지(20)를 회전시키는 구동부를 포함한다.
일 실시예에 따른 휘발성 유기화합물 제거시스템(1)은 마이크로 웨이브, 촉매모듈(60), 냉각수단을 더 포함할 수 있다.
흡착모듈(10, 12)은 오염원과 연결되어 배기가스를 공급하고, 내부에 배기가스에서 유해성분을 제거하는 공간이 배치된다.
예를 들면, 배기가스를 배출하는 오염원과 연결된 배기가스 유입유로(12)와 배기가스 유입유로(12)와 연결되어 배기가스 유입유로(12)를 통해 공급되고, 내부에 회전 카트리지(20)가 위치되는 흡착덕트(10)를 포함할 수 있다. 흡착덕트(10)에는 흡착덕트(10)에서 유해성분이 제거된 정화가스가 배출되는 정화가스 배출유로(13)가 연결된다. 흡착모듈(10, 12)에는 메인 팬(14)이 구비되어 배기가스에 유동력을 제공한다.
흡착덕트(10)는 내부에 회전 카트리지(20)를 수용하고, 회전 카트리지(20)의 흡착제(71)에 유해성분이 흡착되는 공간이다. 흡착제(71)는 유해성분을 흡착할 수 있는 흡착기능과 축열기능을 동시에 갖는 재질이 선택되어 사용될 수 있다. 이러한 흡착제(71)는 망상형 구조 또는 일정한 모양(저장섹턱와 대응되는)으로 성형한후 흡착 카드리지 형태로 저장섹터(20a) 내에 위치될 수 있다. 흡착제(71)에 대해서는 도 9 이하에서 상술한다.
탈착모듈은 유해성분이 흡착된 흡착제(71)에서 유해성분이 탈착되고, 유해성분이 농축된 농축가스가 유동되는 유로이다. 탈착모듈은 회전 카트리지(20)의 적어도 하나의 저장섹터(20a)와 연결될 수 있다. 예를 들면, 탈착모듈에는 적어도 하나의 저장섹터(20a)와 대응되게 형성되고, 저장섹터(20a)의 경계와 접촉되어 저장섹터(20a)를 격리하는 탈착덕트(30)를 더 포함한다.
탈착덕트(30)는 상부에서 바라볼 때, 저장섹터(20a)와 대응되는 부채꼴 형상을 가지고, 적어도 하나 내지 바람직하게는 2개의 저장섹터(20a)를 외부와 격리하게 형성된다. 구체적으로, 탈착덕트(30)는 저장섹터(20a)의 상부를 밀폐하는 상부 탈착덕트(310)와, 하부를 밀폐하는 하부 탈착덕트(320)를 포함한다. 상부 탈착덕트(310)는 저장섹터(20a)의 상부면에 밀착되고, 하부 탈착덕트(320)는 저장섹터(20a)의 하부면과 밀착된다. 물론, 상부 탈착덕트(310)와, 하부 탈착덕트(320)는 밀폐력을 강화하기 위한 플렉서블 재질의 패킹을 더 포함할 수 도 있다.
탈착덕트(30)는 흡착덕트(10)의 내부에 위치되고, 적어도 하나의 저장섹터(20a)의 경계와 접촉되어 흡착덕트(10)와 탈착덕트(30)의 내부 사이를 밀폐한다. 물론 탈착덕트(30)는 상하로 이동되는 구조를 가져져서, 개방되거나 폐쇄될 수도 있다. 탈착덕트(30)가 흡착덕트(10)의 내부에 배치되면 시스템의 공간을 절약할 수 있는 이점이 존재한다.
탈착모듈은 탈착가스의 유해성분을 제거하는 촉매모듈(60)과 연결될 수 있다. 구체적으로, 탈착모듈은 일측이 탈착덕트(30)와 연결되고, 타측이 촉매모듈(60)과 연결되어 탈착된 탈착가스를 촉매모듈(60)로 제공하는 제1 순환유로(32)와, 일측이 촉매모듈(60)과 연결되고 타측이 탈착덕트(30)와 연결되어 촉매모듈(60)에서 유해성분이 제거된 공기의 일부가 다시 탈착덕트(30)로 다시 공급되는 제2 순환유로(31)와, 촉매모듈(60)과 연결되어 유해성분이 제거된 공기가 외부로 배출되는 배출유로(33)를 더 포함할 수 있다.
제2 순환유로(31)를 통해 공급되는 공기는 탈착 에너지를 절약하기 위해, 촉매모듈(60)에서 열을 전달받거나 후술하는 냉각수단에서 열을 전달받을 수 있다.
탈착모듈을 통해 공급되는 공기의 양은 흡착모듈(10, 12)을 통해 공급되는 공기의 양보다 작으면 작을 수록 바람직하다. 일반적으로, 1/5에서 1/20이 바람직하다. 이 때 탈착하는 동안 흡착제(71)에 축열되어 있는 에너지의 손실이 없을 수 있도록 탈착시간과 방법을 적절히 강구하여야 한다. 구체적으로, 탈착덕트(30)의 크기는 흡착덕트(10) 보다 작고, 탈착덕트(30)는 1개 내지 2개의 저장섹터(20a)에 대응되는 크기를 가지고, 흡착덕트(10)는 10개 내지 40개의 저장섹터(20a)에 대응되는 크기를 가진다.
탈착덕트(30) 내에 흡착제(71)는 온도, 압력, 빛에너지 또는 음파에너지를 이용하여 탈착된다. 바람직하게는 탈착모듈에서의 탈착은 흡착제(71)를 마이크로 웨이브로 가열하여 수행될 수 있다. 실시예은 탈착덕트(30) 내에 흡착제(71)에 마이크로 웨이브를 공급하는 마이크로 웨이브 발생장치(50)를 더 포함한다.
마이크로 웨이브 발생장치(50)는 흡착덕트(10)의 내부 또는 외부에 배치될 수 있다.
촉매모듈(60)은 탈착모듈에서 공급된 공기에서 농축된 유해성분을 분해한다. 분해된 유해성분은 별도의 장치에 의해 외부로 배출된다. 촉매모듈(60)에서 유해성분이 제거된 공기는 다시 순환하여 탈착덕트(30)의 내부로 공급될 수 있다.
폐열을 활용하여 에너지를 줄이고, 효과적인 탈착과 유해성분의 분해를 위해, 촉매모듈(60)은 탈착모듈에서 공급된 공기를 가열한 후, 유해성분을 분해하고, 유해성분이 분해된 공기의 열을 탈착모듈 내의 흡착제(71)로 전달할 수 있다. 또한, 촉매모듈(60)은 유해성분이 분해된 공기의 열을 탈착모듈에서 배출되는 농축가스에 전달하여서, 촉매반응에 제공되는 열을 줄일 수도 있다.
구체적으로, 촉매모듈(60)은 촉매 카트리지(62), 열교환기(63, 65), 순환팬(64), 히터(61)를 포함할 수 있다.
촉매 카트리지(62)는 유해성분을 산화하여 분해하는 것으로, 제올라이트(zeolite), 알루미나(Al2O3), 활성탄(activated carbon), 산화금속(mixed oxide metal) 중에서 선택될 수 있다. 촉매 카트리지(62)는 유해성분을 산화시킬 수 있는 산화물질 성형체일 수 있다.
히터(61)는 탈착모듈에서 촉매모듈로 공급된 농축가스를 가열한다. 히터(61)는 다양한 가열수단이 사용될 수 있다.
열교환기(63, 65)는 탈착덕트(30)에서 공급된 농축가스와 촉매 카트리지(62)를 통과한 공기를 서로 열교환시킨다. 제1 열교환기(63, 65)는 외부로 배출전의 공기의 폐열을 이용하여 농축가스를 가열한다. 따라서, 제1 열교환기(63, 65)는 농축가스를 가열하는 에너지를 줄일 수 있다.
또한, 열교환기(63, 65)는 촉매 카트리지(62)를 통과한 공기와 탈착덕트(30) 내로 공급되는 공기를 서로 열교환 시킬 수 있다. 열교환기(63, 65)는 복수개가 구비될 수도 있다.
열교환기(63, 65)를 통과한 공기의 일부는 배출유로(33)를 통해 외부로 배출되거나, 다른 일부는 제2 순환유로(31)를 통해 다시 흡착덕트(10)로 유동된다.
순환팬(64)은 탈착모듈 및 촉매모듈(60)을 유동하는 공기에 유동력을 제공한다.
냉각수단은 탈착모듈에서 가열된 흡착체(71)를 냉각한다. 가열된 흡착제(71)의 경우, 배기가스 중에 유해성분이 흡착되기 어려우므로, 냉각수단에서 외부 공기를 공급하여 냉각할 수 있다.
냉각수단은 외부의 공기를 유해성분이 탈착된 흡착제(71)에 공급하는 다양한 구성을 가질 수 있다. 또한, 냉각수단은 유해성분이 탈착된 흡착제(71)를 냉각한 냉각공기가 외부로 직접 배출되거나, 촉매모듈(60)을 통해 외부로 배출되게 구성될 수 있다.
냉각수단에서 배출되는 유출공기는 탈착덕트(30) 내로 공급되는 공기와 열교환되어서, 공급되어 흡착제(71)에 열을 전달할 수 있다.
냉각수단은 저장섹터(20a)를 수용하는 별도의 냉각공간을 구비할 수도 있고, 실시예처럼 탈착덕트(30)에 연결되고 별도의 냉각공간을 구비하지 않을 수 있다.
구체적으로, 냉각수단은 일측이 외부공기와 연결되고 타측이 탈착덕트(30)와 연결되는 외기유로(41)와, 일측이 탈착덕트(30)와 연결되고, 타측이 촉매모듈(60)과 연결되는 냉각유로(42)를 포함한다.
냉각유로(42)와 외기유로(41)는 회전 카트리지(20)의 회전 방향에서 제1, 제2 순환유로(31) 보다 전방에 배치된다. 따라서, 탈착이 완료된 흡착제(71)를 효과적으로 냉각할 수 있다.
또한, 각 유로에는 공기의 유동을 단속하는 단속밸브(71, 72, 73)들이 배치될 수 있다. 구체적으로, 흡착모듈(10, 12), 탈착모듈 및 냉각유로(42)에 각각 단속밸브(71, 72, 73)가 배치된다. 이러한 단속밸브(71, 72, 73)들은 회전 카트리지(20)가 회전 시에 폐쇄되고, 정지 시에 개방될 수 있다.
이하, 회전 카트리지(20)의 구조 및 작동에 대해 상술한다.
도 6은 본 발명의 일 실시예에 따른 회전 카트리지(20)를 도시한 도면, 도 7은 도 6의 A-A 선을 취한 단면도이다.
도 2 내지 도 7을 참조하면, 회전 카트리지(20)는 회전 가능하게 구성되어서, 복수의 저장섹터(20a)에 각각 저장된 흡착제(71)가 흡착모듈(10, 12), 탈착모듈을 순환하도록 한다.
회전 카트리지(20)는 복수의 영역으로 구획되어 흡착제(71)를 수용하는 복수의 저장섹터(20a)를 가진다. 예를 들면, 회전 카트리지(20)는 회전축(23)과, 본체(21)와, 복수의 격벽(22)을 포함할 수 있다.
회전축(23)은 구동부의 구동력을 전달한다. 회전축(23)은 구동부와 연결된다.
본체(21)는 공기가 유입되어 흡착제(71)에 의해 흡착되고 배출될 수 있는 구조를 가진다. 본체(21)는 내부에 흡착제(71) 카트리지를 수용하는 공간을 가진다. 본체(21)는 상부에 공기가 유입되는 공기 유입구(24)와, 하부에 공기가 유출되는 공기 유출구(25)를 가진다. 본체(21)의 공기 유입구(24)와, 공기 유출구(25)는 완전히 개방된 형상을 가질 수도 있지만, 본체(21)의 내부에 저장된 흡착 카트리지(70)의 이탈을 방지하기 위해, 메쉬구조를 가지는 것이 바람직하다.
본체(21)의 형상은 회전 카트리지(20)의 회전축(23)을 중심축으로 하는 원통형상인 것이 바람직하다. 이는 회전 카트리지(20)가 회전 시에도 저장섹터(20a)의 형상이 변하지 않아서 탈착덕트(30)와 밀폐가 용이하기 때문이다.
복수의 격벽(22)은 본체(21)의 내부 공간을 복수개의 저장섹터(20a)로 구획한다. 복수의 격벽(22)은 회전 카트리지(20)의 회전축(23)에서 반경방향으로 연장되어 본체(21)와 연결된다. 즉, 복수의 격벽(22)은 회전 카트리지(20)의 회전축(23)에서 방사형으로 연장되는 형상을 가진다.
각 저장섹터(20a)의 형상과 크기가 서로 상이한 경우, 회전 카트리지(20)의 회전되면, 각 저장섹터(20a)들이 탈착덕트(30)와 밀폐되지 못하여 유해성분의 탈착이 어렵게 되므로, 복수의 저장섹터(20a)는 서로 동일한 형상을 가지는 것이 바람직하다.
구체적으로, 각 저장섹터(20a)는 회전 카트리지(20)의 회전축(23)을 중심으로 하여 형성된 2개의 현(격벽(22))과 2개의 현을 연결하는 호(본체(21)의 일부 영역)로 정의되는 부채꼴형상을 가진다. 이 때, 복수의 저장섹터(20a)들의 부채꼴각(θ)은 서로 동일하게 형성된다. 복수의 저장섹터(20a)들 사이는 서로 공기가 통하지 않도록 밀폐될 수도 있다.
또한, 본체(21)에는 마이크로 웨이브가 통과하는 윈도우가 형성될 수 있다. 윈도우는 메쉬구조를 형성되고, 각 저장섹터(20a)에 구비될 수 있다.
회전 카트리지(20)는 배기가스의 유동방향을 따라 다수 개가 적층되어 배치될 수 있다. 물론, 복수 개의 회전 카트리지(20) 내에 충진되는 흡착제(71)의 종류로 서로 다를 수도 있다.
구동부(미도시)는 복수의 저장섹터(20a)가 유해성분이 공급되는 흡착모듈(10, 12), 흡착제(71)에 흡착된 유해성분이 탈착되어 유동되는 탈착모듈의 순서로 이동되도록 회전 카트리지(20)를 회전시킨다. 도 3을 기준으로 구동부는 회전 카트리지(20)를 반 시계방향으로 회전시키고, 정지시키는 것을 반복한다.
구동부는 회전 카트리지(20)를 기설정된 회전각 만큼 회전시킨 후 일정시간 동안 정지되게 회전시킨다. 이 때, 기설정된 회전각은 각 저장섹터(20a)의 부채꼴 각과 동일한 것이 바람직하다. 회전 카트리지(20)가 정지되어 있는 동안 흡착덕트(10) 내의 흡착제(71)에서는 유해성분이 흡착되고, 탈착덕트(30) 내의 흡착제(71)에서는 유해성분이 탈착된다.
구동부는 각 저장섹터(20a)가 흡착덕트(10), 탈착덕트(30)를 순환하도록 회전 카트리지(20)를 회전시키고, 각 저장섹터(20a)의 경계와 탈착덕트(30)가 서로 대응되는 위치에서 회전 카트리지(20)를 정지시켜서, 일부 저장섹터(20a)가 탈착덕트(30)의 내부에서 흡착덕트(10)와 격리되도록 한다.
도면에는 도시하지 않았지만, 휘발성 유기화합물 제거 시스템의 전반적이 작동을 제어하는 제어부를 더 포함할 수 있다. 제어부는 구동부와, 각 단속밸브(71, 72, 73)를 제어할 수 있다.
제어부는 구동부를 작동되는 중에, 각 단속밸브(71, 72, 73)를 폐쇄하고, 구동부를 정지되는 중에, 각 단속밸브(71, 72, 73)를 개방할 수 있다.
도 8은 본 발명의 일 실시예에 따른 흡찹제를 도시한 도면이다.
본 발명에 따른 흡착제(71)는 에너지 효율이 우수한 마이크로 웨이브를 흡수하여 발열하면서, 흡착성능을 향상시키기 위해, 내부에 배치된 코어(711)와, 코어(711)를 감싸게 배치되는 흡착기능을 가지는 쉘(713)을 포함한다.
코어(711)는 내부에 배치되고, 축열기능을 가진 물질이 선택된다. 흡착제(71)의 흡착성능은 쉘(713)의 표면적에 비례하게 되는데, 코어(711)의 밀도가 너무 높은 경우, 쉘(713)의 표면적을 증대시키기 위해 코어(711)의 크기를 크게 하는 경우, 흡착제(71)의 무게가 늘어나게 되는 문제점이 존재한다.
따라서, 실시예의 코어(711)는 밀도가 낮고 마이크로 웨이브를 흡수하여 발열할 수 있는 탄소계열 물질을 포함한다. 예를 들면, 코어(711)는 코어(711)는 활성탄, 그래핀, 그라파이트 카본블랙 및 첨착 활성탄 중 적어도 하나 또는 이들의 혼합물일 수 있다. 특히, 본 발명의 탄소계열 코어(711)는 종래 기술의 탄화규소 보다 작은 밀도를 가지게 되므로, 종래 기술과 동일한 흡착면적을 확보하면서, 적은 무게를 가지게 된다. 따라서, 휘발성 유기화합물 제거시스템의 경량화가 가능하게 된다. 본 발명의 탄소계열 코어(711)는 종래 기술의 탄화규소 보다 마이크로파 흡수성능이 뛰어나사 흡착제가 신속하게 탈착온도로 승온될 수 있게 한다. 이에 대한 실험데이터는 도 11에서 후술한다.
코어(711)의 외면에는 쉘(713)이 면 접촉되게 된다. 코어(711)의 낮은 열전도성을 가지게 되면, 코어(711)에서 발생된 열이 쉘(713)로 효과적으로 전달되기 어렵다. 본 발명의 코어(711)는 열전도도가 우수한 탄소계열의 그래핀이 사용되게 되므로, 코어(711)의 열이 신속하게 쉘(713)로 전달되게 되고, 마이크로 웨이브를 흡수하여 탈착온도까지 승온되는 시간을 줄일 수 있는 장점을 가진다.
실시예에 따라, 코어(711)의 밀도는 분산입자(712) 또는/및 쉘(713)의 밀도 보다 작을 수 있다. 흡착제(71)에서 코어(711)가 차지하는 부피가 가장 크므로, 코어(711)의 밀도가 분산입자(712) 또는/및 쉘(713)의 밀도 보다 작은 재질을 선택하여서, 흡착제(71)의 중량을 줄일 수 있게 된다.
코어(711)의 중량은 흡착제(71)의 전체 중량을 줄이기 위해, 흡착제(71)의 중량 대비 적어도 50%를 초과할 수 있다. 바람직하게는, 코어(711)는 흡착제(71) 100중량%에 대하여 51중량% 내지 90중량%가 포함되는 것일 있다. 코어(711)가 흡착제(71) 100중량%에 대하여 51중량% 보다 작은 경우, 밀도가 낮은 코어(711) 보다 밀도가 높은 다른 재질 때문에 흡착제(71) 전체의 중량이 증가될 수 있고, 코어(711)가 흡착제(71) 100중량%에 대하여 90중량%를 초과하는 경우, 흡착제(71)의 전체 중량을 줄일 수 있지만, 쉘(713)의 부피가 너무 적어지게 되어 흡착성능이 저하될 수 있기 때문에 상술한 범위 내의 중량%를 가지는 것이 바람직하다.
코어(711)는 다양한 형상을 가질 수 있으나, 구형인 것이 바람직하다. 코어(711)의 직경은 제한이 없으나, 50 ㎛ 내지 2500 ㎛ 인 것이 바람직하다. 이는, 코어(711)의 직경이 50 ㎛ 보다 작으면 코어(711)가 마이크로파를 흡수하여 탈착온도까지 승온되는 속도가 낮을 수 있으며, 코어(711)의 직경이 2500 ㎛ 보다 큰 경우, 흡착제(71)에서 쉘(713)이 차지할 면적이 너무 좁아져 흡착력이 감소하기 때문이다.
쉘(713)은 코어(711)를 감싸게 배치되고 흡착기능을 가진다. 쉘(713)은 코어(711)의 외면과 면접촉되어서, 코어(711)에서 발생된 열을 전달받는다.
쉘(713)은 가스상 또는 입자상 물질에 대한 흡착성능이 큰 물질로 이루어진 것일 수 있으며, 쉘(713)은 복수개의 미세기공을 갖는 다공성일 수 있다. 구체적으로, 쉘(713)은, 제올라이트(zeolite), 활성알루미나(activated alumina), 또는 이들의 혼합물일 수 있다.
제올라이트는 실리콘(Si)과 알루미늄(Al)이 각각 4개의 가교 산소를 통해 연결되어 있는 3차원적인 무기고분자로 알려져 있다. 여기서, 알루미늄이 4개의 산소와 결합됨에 따라 음전하를 갖게 되므로, 이러한 전하를 상쇄하기 위해 제올라이트 내에는 다양한 양이온이 존재하게 된다. 상세하게는, 양이온들은 세공 내부에 존재하며 나머지 공간들은 보통 물분자들로 채워져 있어, 세공 내부에서 비교적 자유로운 이동도(mobility)를 가지며, 다른 양이온들과의 이온교환이 용이한 특징이 있다. 또한, 가열하여 탈수된 제올라이트들은 내부의 비어있는 공간을 다시 물분자를 비롯하여 세공 입구를 통과할 수 있는 크기의 다른 작은 분자들을 흡입하여 비어있는 공간을 채우려는 특성이 있어, 탈수된 제올라이트는 흡착제(71), 또는 흡수제로 많이 사용되고 있다. 통상적으로 제올라이트는 구조 또는 실리콘과 알루미늄의 비율에 따라 β-제올라이트, A-제올라이트, ZSM-5형 제올라이트, X-제올라이트, Y-제올라이트, 또는 L-제올라이트로 나뉘고 있다. 본 발명에서는, 흡착제(71)의 사용용도에 따라 흡착대상을 용이하게 흡착할 수 있는 종류의 제올라이트를 선택하여 사용할 수 있다. 구체적으로 본 발명의 일 실시예에서는, 휘발성 유기화합물 쉘(713)로 β-제올라이트를 사용할 수 있으며, 수분 쉘(713)로는 Y-제올라이트를 사용할 수 있다.
활성 알루미나는 주로 열처리된 알루미나 수화물로부터 생성되는 것으로, 내열성이 높고 비표적이 넓어, 특히 수분 흡수력이 강하기 때문에, 압축공기의 수분 제거용으로 많이 사용되고 있는 흡착제(71)이다.
실시예에 따라, 쉘(713)은 양이온으로 이온교환 처리된 것일 수 있다.
구체적으로, 양이온은 칼륨(K), 은(Ag), 나트륨(Na), 바륨(Ba), 리튬(Li), 마그네슘(Mg), 스트론튬(Sr), 인(P), 망간(Mn), 칼슘(Ca), 또는 철(Fe) 중에서 선택되는 적어도 어느 하나의 물질일 수 있다. 상기와 같이, 양이온으로 이온교환 처리된 쉘(713)은 마이크로파와의 반응성이 높아져, 마이크로파 흡수력이 향상될 수 있다. 예를 들어, 쉘(713)로 제올라이트를 사용하고, 칼륨으로 이온교환 처리하는 경우, 제올라이트의 구조가 나트륨 폼(sodium foam)에서 칼륨 폼(potassium foam)으로 전환되면서 마이크로파 흡수능력이 증가되는 것일 수 있다. 이에, 쉘(713)에 조사되거나 탄화규소 비드 및 탄화규소 입자에 의해 전달된 마이크로파와 반응하여 쉘(713)의 온도가 빠르게 상승할 수 있다. 구체적으로 이는, 후술하는 실시예 및 도면에서 상세하게 설명될 수 있다.
본 발명의 일 실시예에서, 흡착제(71)는 휘발성 유기화합물의 흡착에 사용되는 것일 수 있다. 구체적으로, 상 기 휘발성 유기화합물은, 휘발성 유기화합물은, 아세틸렌(aetylene), 아세트알데히드(ataldehyde), 벤젠(benzene), 1,3-부타디엔(1,3-butadiene), 부탄(butane), 1-부텐(1-butene), 2-부텐(2-butene), 사이클로헥산(cyclohexane), 에틸렌(ethylene), 포름알데히드(formaldehyde), n-헥산(n-hexane), 이소프로필알콜(isopropylalcohol), 메탄올(methanol), 메틸에틸케톤(methylethylketone), 프로필렌옥사이드(propylene oxide), 에틸벤젠(ethylbenzene), 염산(HCl), 톨루엔(toluene), 자일렌(xylene), 스틸렌(styrene), 또는 이들의 혼합물일 수 있으나, 이에 한정되지는 않는다.
흡착제(71)가 휘발성 유기화합물의 흡착에 사용되는 경우, 흡착제(71)의 외각에 배치된 쉘(713)은 휘발성 유기화합물을 용이하게 흡착할 수 있는 물질로 구성할 수 있다. 구체적으로, 흡착제(71)에 포함된 쉘(713)은, Si/Al ratio가 15 내지 300인 소수성(hydrophobic) 제올라이트, 활성 알루미나, 또는 이들의 혼합물일 수 있다.
본 발명의 다른 실시예에서, 흡착제(71)는 수분의 흡착에 사용되는 것일 수 있다. 흡착제(71)가 수분의 흡착에 사용되는 경우, 흡착제(71)의 외각에 배치된 쉘(713)은 수분을 용이하게 흡착할 수 있는 물질로 구성할 수 있다. 구체적으로, 흡착제(71)에 포함된 쉘(713)은, Si/Al ratio가 1 내지 10인 친수성(hydrophilic) 제올라이트, 활성 알루미나, 또는 이들의 혼합물일 수 있다.
쉘(713)은 흡착제(71) 100중량%에 대하여 40중량0% 내지 49중량%가 포함될 수 있다. 이 때, 쉘(713)의 두께(D)는 20 ㎛ 내지 4000 ㎛ 인 것이 바람직하다. 쉘(713)의 두께가 두꺼운 경우, 쉘(713)의 내부가 흡착성능을 발휘하니 못하는 영역이 되고, 코어(711)에 의해 빠르게 탈착온도 까지 승온되기 어렵고, 쉘(713)의 두께가 너무 얇은 경우 원하는 흡착성능을 기대할 수 없기 때문에, 쉘(713)은 상술한 범위의 두께 또는 무게를 가진다.
쉘(713)의 두께와 코어(711)의 직경의 비율은 1:1 내지 1:3인 것이 바람직하다. 쉘(713)의 두께가 두꺼운 경우, 쉘(713)의 내부가 흡착성능을 발휘하니 못하는 영역이 되고, 코어(711)에 의해 빠르게 탈착온도 까지 승온되기 어렵고, 쉘(713)의 두께가 너무 얇은 경우 원하는 흡착성능을 기대할 수 없기 때문에, 쉘(713)과 코어(711)는 상술한 비율로 형성된다. 도 9는 본 발명의 일 실시예에 따른 흡찹제를 도시한 도면이다.
본 발명에 따른 흡착제(71)는 에너지 효율이 우수한 마이크로 웨이브를 흡수하여 발열하면서, 흡착성능을 향상시키기 위해, 내부에 배치된 코어(711)와, 코어(711)를 감싸게 배치되는 흡착기능을 가지는 쉘(713)과, 코어(711)에 분산배치되는 분산입자(712)를 포함한다.
본 실싱예에서, 코어(711)와, 쉘(713)은 특별한 설명이 없는 한 도 8의 실시예와 동일하다.
분산입자(712)는, 코어(711)와 쉘(713) 구조만 가지는 경우, 코어(711)의 열전도가 높고, 밀도가 낮지만, 마이크로파의 흡수능력이 떨어져서, 흡착제(71)를 탈착온도까지 승온하는데 오래 걸리는 경우, 탈착온도까지 도달시간을 줄이거나, 코어(711)의 내부로 마이크로파를 산란하기 위해 사용된다.
분산입자(712)는 그 재질과, 중량을 조절하여서, 흡착제(71)의 중량과, 탈착시간 까지의 도달온도 등을 조절할 수 있다.
분산입자(712)는 축열기능을 가지고, 마이크로파에 대한 반응성이 코어(711) 보다 큰 물질을 포함할 수 있다. 분산입자(712)가 코어(711) 보다 마이크로파에 대한 반응성이 크게 되면, 흡착제(71)의 탈착온도까지 도달시간을 줄이면서, 흡착제(71)를 경량화할 수 있다.
예를 들면, 분산입자(712)는 코어(711)와 다른 물질을 포함할 수 있다. 구체적으로, 분산입자(712)는, 코어(711) 보다 마이크로파에 대한 반응성이 우수한 유전체를 포함할 수 있다.,
예를 들면, 분산입자(712)에 사용되는 유전체의 유전율은 1 내지 10인 것이 바람직하다. 유전체의 유전율이 1 보다 작은 경우 마이크로파와 반응성이 너무 약하고, 유전체의 유전율이 10을 초과하는 경우, 마이크로파에 대한 방응성이 매우 커서, 흡착제(71) 단시간 내에 너무 과열되는 문제점이 존재하기 때문에, 상술한 유전율의 범위를 가지는 것이 바람직하다. 예를 들면, 분산입자(712)는 산화 아연(ZnO), 산화구리(CuO) 및 이들의 혼합물을 포함할 수 있다.
다른 예를 들면, 분산입자(712)는 마이크로파를 반사하여 코어(711)의 내부로 산한 또는 확산하는 재질이 선택될 수 있다. 예를 들면, 분산입자(712)는, 철, 구리, 은, 알루미늄, 아연 등의 금속 중 적어도 하나 또는 이들의 혼합물을 포함할 수 있다.
코어(711)는 구형을 가져서 코어(711)의 내부로 마이크로파가 진행되기 어려울 수 있다.분산입자(712)가 금속을 포함하면, 쉘(713)을 통과하여 코어(711)의 외면으로 입사되는 마이이크로파가 코어(711)의 내부 전체로 확산되어서, 코어(711)가 신속하게 발열되고, 코어(711)가 신속하게 승온되게 한다.
분산입자(712)는 코어(711) 100중량%에 대하여 0.1중량% 내지 10중량%을 가지는 것이 바람직하다. 분산입자(712)가 코어(711) 100중량%에 대하여 0.1중량% 보다 작은 경우, 흡착제(71)가 탈착온도까지 승온되는 시간이 지연될 수 있고, 분산입자(712)가 코어(711) 100중량%에 대하여 10중량%를 초과하는 경우, 가벼운 코어(711) 재질 대비 분산입자(712)의 비율이 높아서 흡착제(71)의 중량이 너무 커질 수 있고, 코어(711)에서 쉘(713)로의 열 전달이 지연될 수 있기 때문에, 분산입자(712)는 상술한 범위의 중량을 가지는 것이 바람직하다. 더욱 바람직하게는, 분산입자(712)는 코어(711) 100중량%에 대하여 2중량% 내지 4중량%을 가질 수 있다.
분산입자(712)의 직경은 제한이 없으나, 코어(711)의 직경 보다 작은 것이 바람직하다. 구체적으로, 분산입자(712)의 직경은 0.5 ㎛ 내지 10 ㎛ 인 것이 바람직하다. 이는, 분산입자(712)의 직경이 0.5 ㎛ 보다 작으면 분산입자(712)가 마이크로파를 흡수하지 못하거나 반사하지 못하고, 분산입자(712)의 직경이 0.5 ㎛ 내지 10 ㎛ 보다 큰 경우, 흡착제(71)의 중량이 너무 커질 수 있고, 코어(711)에서 쉘(713)로의 열 전달이 지연되거나, 흡착제(71)가 탈착온도까지 도달하는 시간이 길어질 수 있기 때문에, 분산입자(712)는 상술한 범위의 직경을 가지는 것이 바람직하다.
실시예에 따라, 분산입자(712)는 분산입자(712)는 금속과 유전체를 포함할 수 있다. 여기서, 유전체와 금속은 상술한 바와 같다. 이 때, 분산입자(712)에서 금속과 유전체의 비율은 제한이 없지만, 금속은 분산입자(712) 100중량%에 대하여 10중량% 내지 30중량%가 포함되고, 유전체는 분산입자(712) 100중량%에 대하여 70중량% 내지 90중량%을 포함하는 것이 바람직하다.
분산입자(712) 중에 금속이 너무 많게 되면, 마이크로파와 반응하여 발열하는 유전체가 적어지게 되어 흡착제(71)가 탈착온도까지 도달하는 시간이 지연되고, 분산입자(712) 중에 유전제가 너무 많게 되면, 흡착제(71)의 무게가 증가되고, 코어(711)에서 쉘(713)로 열전도가 지연되기 때문에, 분산입자(712) 중에 금속과 유전체의 비율은 상술한 범위를 가지는 것이 바람직하다.
위와 같이, 본 발명의 흡착제(71)는 흡착대상물질(휘발성 유기화합물 또는 수분)에 따라 쉘(713)을 달리하여, 흡착대상에 대해 흡착력이 우수한 흡착제(71)를 구성할 수 있을 뿐만 아니라, 상술한 바와 같이, 전도성이 우수하고 밀도가 낮은 코어(711)와, 마이크로파와 반응성이 우수한 분산입자(712)를 사용하여서, 마이크로파와의 반응성을 높일 수 있어, 마이크로파를 이용하는 휘발성 유기화합물 제거시스템, 또는 수분 제거시스템에 적극 활용될 수 있다.
도 10는 도 9에 도시된 흡찹제의 열전달을 도시한 도면이다.
도 10를 참조하면, 흡착제(71)에 마이크로파가 조사되면, 먼저, 흡착제(71)의 내핵에 코어(711)에 마이크로파의 일부가 흡수되고, 흡수된 마이크로파 에너지는 코어(711)를 발열시키고, 코어(711)의 열은 쉘(713)로 전달된다. 코어(711)로 입사되는 마이크로파의 일부는 분산입자(712)에 의해 코어(711)의 중심으로 반사되어 확산되거나, 분산입자(712)에 흡수되어 분산입자(712)가 발열된다. 분산입자(712)의 열은 주변의 코어(711)로 전달된다.
코어(711)에 전달된 열은 코어(711)와 접촉된 쉘(713)로 전달된다.
이와 같이, 흡착제(71)에 조사된 마이크로파 에너지는 이러한 구조적 특징에 의해 흡착제(71) 전체영역에 신속하게 전달될 수 있어, 흡착제(71)는 더욱 빠르게 탈착온도까지 승온할 수 있으므로, 흡착제(71)의 탈착속도가 높아질 수 있다.
도 11은 본 발명의 실시예들과 비교예의 마이크로파에 의하 가열을 실험한 테이터이다.
도 11을 참조하면, 비교예는 코어-쉘구조에서, 코어가 SiC를 포함하는 것이다. 실시예 1은 코어-쉘구조에서, 코어가 활성탄을 포함하는 것이다. 실시예 2은 코어-쉘구조에서, 코어가 활성탄이고, 코어 내에 산화아연을 포함하는 분산입자가 코어 100중량%에 대하여 3중량% 포함되는 것이다. 실시예 3은 코어-쉘구조에서, 코어가 활성탄이고, 코어 내에 산화구리를 포함하는 분산입자가 코어 100중량%에 대하여 3중량% 포함되는 것이다.
비교예와, 실시예들은 모두 700kw의 마이크로파를 가한 후, 30초 및 1분 후의 이들의 온도를 측정한 것이다. 물론, 비교예와 실시예들의 코어의 직경은 동일하게 실험을 진행하였다.
비교예에 비하여 실시예 1 내지 실시예 3은 신속하게 흡착제의 온도가 승온되는 것이 나타난다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
10: 흡착덕트 20: 회전 카트리지
30: 탈착덕트 60: 촉매모듈
71: 흡착제 711: 코어
712: 분산입자 713: 쉘

Claims (15)

  1. 내부에 배치되고, 탄소계열 물질을 포함하는 코어;
    상기 코어를 감싸게 배치되는 흡착기능을 가지는 쉘; 및
    상기 코어 보다 작은 직경을 가지고, 상기 코어에 분산배치되는 분산입자를 포함하고,
    상기 코어는 활성탄, 그래핀, 그라파이트 카본블랙 및 첨착 활성탄 중 적어도 하나를 포함하며,
    상기 분산입자는 유전체를 포함하는 흡착제.
  2. 삭제
  3. 제1항에 있어서,
    상기 코어의 직경은 100 μm 내지 300 μm 인 흡착제.
  4. 제3항에 있어서,
    상기 코어의 직경과 쉘의 두께 비율은 1:1 내지 1:3 인 흡착제.
  5. 삭제
  6. 제4항에 있어서,
    상기 분산입자는 상기 코어 100중량%에 대하여 0.1중량% 내지 10중량%가 포함되는 흡착제.
  7. 삭제
  8. 제6항에 있어서,
    상기 유전체의 유전율은 1 내지 10인 흡착제.
  9. 제8항에 있어서,
    상기 분산입자는 산화구리(CuO) 또는 산화아연(ZnO)을 더 포함하는 흡착제.
  10. 제1항에 있어서,
    상기 분산입자는 금속을 더 포함하는 흡착제.
  11. 삭제
  12. 제10항에 있어서,
    상기 금속은 상기 분산입자 100중량%에 대하여 10중량% 내지 30중량%가 포함되는 흡착제.
  13. 제10항에 있어서,
    상기 분산입자의 직경은 0.5 ㎛ 내지 10 ㎛ 인 흡착제.
  14. 제12항에 있어서,
    상기 쉘은 제올라이트, 활성 알루미나 또는 이들의 혼합물인 흡착제.
  15. 유해성분을 흡착할 수 있는 흡착기능과 축열기능을 동시에 가지는 흡착제를 포함하는 휘발성 유기화합물 제거시스템에 있어서,
    상기 흡착제는,
    내부에 배치되고, 탄소계열 물질을 포함하는 코어;
    상기 코어를 감싸게 배치되는 흡착기능을 가지는 쉘; 및
    상기 코어 보다 작은 직경을 가지고, 상기 코어에 분산배치되는 분산입자를 포함하고,
    상기 코어는 활성탄, 그래핀, 그라파이트 카본블랙 및 첨착 활성탄 중 적어도 하나를 포함하며,
    상기 분산입자는 유전체를 포함하는 휘발성 유기화합물 제거시스템.


KR1020170128057A 2017-09-29 2017-09-29 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템 KR102068184B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170128057A KR102068184B1 (ko) 2017-09-29 2017-09-29 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170128057A KR102068184B1 (ko) 2017-09-29 2017-09-29 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템

Publications (2)

Publication Number Publication Date
KR20190038061A KR20190038061A (ko) 2019-04-08
KR102068184B1 true KR102068184B1 (ko) 2020-01-20

Family

ID=66164709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170128057A KR102068184B1 (ko) 2017-09-29 2017-09-29 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템

Country Status (1)

Country Link
KR (1) KR102068184B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053928A (ko) 2020-10-23 2022-05-02 주식회사 에코프로에이치엔 유해 가스 제거용 흡착제, 유해 가스 제거용 흡착제의 제조 방법 및 이를 포함하는 공기 정화 필터
KR20230010102A (ko) 2021-07-08 2023-01-18 주식회사 에코프로에이치엔 유해 가스 제거용 흡착제 및 이의 제조 방법
KR20230010103A (ko) 2021-07-08 2023-01-18 주식회사 에코프로에이치엔 유해 가스 제거용 흡착제 및 이를 포함하는 공기 정화 필터
KR20230047559A (ko) 2021-10-01 2023-04-10 주식회사 에코프로에이치엔 케미컬 필터의 재사용 방법
KR20230142142A (ko) 2022-04-01 2023-10-11 주식회사 에코프로에이치엔 케미컬 필터

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975806B (zh) * 2019-12-09 2022-07-12 万华化学集团股份有限公司 一种吸附剂及其应用于共氧化法联产二甲基苄醇氢解原料精制的用途和方法
KR20230168767A (ko) * 2022-06-08 2023-12-15 한국화학연구원 대기오염원 농축 및 파과 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515355A (ja) 2000-12-11 2004-05-27 ユナイテッド・ステイツ・フィルター・コーポレイション 臭気抑制用活性炭およびその製法
JP2005334737A (ja) * 2004-05-25 2005-12-08 Futaba Shoji Kk 磁性吸着剤、光触媒担持吸着剤、磁性光触媒、光触媒担持磁性吸着剤および有害物の分解処理方法
KR100816649B1 (ko) 2006-09-14 2008-03-27 주식회사 카엘 휘발성 유기화합물 제거장치
KR101549359B1 (ko) * 2014-12-31 2015-09-01 주식회사 에코프로 마이크로파 흡수특성을 가진 흡착제

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515355A (ja) 2000-12-11 2004-05-27 ユナイテッド・ステイツ・フィルター・コーポレイション 臭気抑制用活性炭およびその製法
JP2005334737A (ja) * 2004-05-25 2005-12-08 Futaba Shoji Kk 磁性吸着剤、光触媒担持吸着剤、磁性光触媒、光触媒担持磁性吸着剤および有害物の分解処理方法
KR100816649B1 (ko) 2006-09-14 2008-03-27 주식회사 카엘 휘발성 유기화합물 제거장치
KR101549359B1 (ko) * 2014-12-31 2015-09-01 주식회사 에코프로 마이크로파 흡수특성을 가진 흡착제

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jiabin Zhou외 4인, ACS Appl. Mater. Interfaces 2012, 4, 2174-2179*

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053928A (ko) 2020-10-23 2022-05-02 주식회사 에코프로에이치엔 유해 가스 제거용 흡착제, 유해 가스 제거용 흡착제의 제조 방법 및 이를 포함하는 공기 정화 필터
KR20230010102A (ko) 2021-07-08 2023-01-18 주식회사 에코프로에이치엔 유해 가스 제거용 흡착제 및 이의 제조 방법
KR20230010103A (ko) 2021-07-08 2023-01-18 주식회사 에코프로에이치엔 유해 가스 제거용 흡착제 및 이를 포함하는 공기 정화 필터
KR20230047559A (ko) 2021-10-01 2023-04-10 주식회사 에코프로에이치엔 케미컬 필터의 재사용 방법
KR20230142142A (ko) 2022-04-01 2023-10-11 주식회사 에코프로에이치엔 케미컬 필터

Also Published As

Publication number Publication date
KR20190038061A (ko) 2019-04-08

Similar Documents

Publication Publication Date Title
KR102068184B1 (ko) 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템
JP4660587B2 (ja) 回転式再生熱交換器による悪臭および有害ガス処理システム並びにその装置
KR101549359B1 (ko) 마이크로파 흡수특성을 가진 흡착제
JP5266758B2 (ja) 揮発性有機化合物処理装置
US5938523A (en) Device for removing the noxious and aromatic substances from an air flow fed into the interior of a vehicle
KR102127842B1 (ko) 휘발성 유기화합물 제거시스템
KR101549358B1 (ko) 에너지 효율적인 공기정화시스템
JP5130008B2 (ja) 揮発性有機化合物の処理装置
JP4466422B2 (ja) 揮発性有機化合物処理装置
US20020071979A1 (en) Method of species exchange and an apparatus therefore
KR101323108B1 (ko) 수평방향으로의 마이크로웨이브 조사에 의한 허니컴 로터식 VOCs가스 제거 시스템
CN103599676B (zh) 一种吸附式转轮气体净化装置
CA2865123A1 (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
JP2009090979A (ja) 小型デシカント空調装置
CN109548400B (zh) 利用气体分配板的vocs去除系统
JP2008142656A (ja) 除湿装置
KR102068183B1 (ko) 휘발성 유기화합물 제거시스템
JP5720658B2 (ja) 揮発性有機化合物処理装置
KR20210001727A (ko) 흡착제 및 이를 포함하는 휘발성 유기화합물 제거시스템
KR101453739B1 (ko) 마이크로웨이브 히터가 적용된 로터형 건식 제습기
JP2004176978A (ja) 半導体製造装置に供給する空気の浄化・空調方法および半導体製造装置の空気浄化・空調ユニット
JP2021510619A (ja) スロット型導波管を用いたVOCs除去システム
KR102063632B1 (ko) 휘발성 유기화합물 제거장치
KR102135090B1 (ko) 휘발성 유기화합물 제거장치
JP4352139B2 (ja) 小型デシカント空調装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant