JP5708605B2 - Pwmデューティ変換装置 - Google Patents

Pwmデューティ変換装置 Download PDF

Info

Publication number
JP5708605B2
JP5708605B2 JP2012210795A JP2012210795A JP5708605B2 JP 5708605 B2 JP5708605 B2 JP 5708605B2 JP 2012210795 A JP2012210795 A JP 2012210795A JP 2012210795 A JP2012210795 A JP 2012210795A JP 5708605 B2 JP5708605 B2 JP 5708605B2
Authority
JP
Japan
Prior art keywords
signal
duty
pwm
limit signal
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012210795A
Other languages
English (en)
Other versions
JP2013214942A (ja
Inventor
康隆 千田
康隆 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012210795A priority Critical patent/JP5708605B2/ja
Priority to US13/743,515 priority patent/US8878583B2/en
Priority to CN201310075111.4A priority patent/CN103312301B/zh
Publication of JP2013214942A publication Critical patent/JP2013214942A/ja
Application granted granted Critical
Publication of JP5708605B2 publication Critical patent/JP5708605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/017Adjustment of width or dutycycle of pulses

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

本発明は、信号源に対応するデューティ指令信号を三角波のキャリアと比較することでPWM信号を生成する際に、デューティに制限を加えるPWMデューティ変換装置に関する。
特許文献1には、複数の半導体素子についてそれぞれ検出される温度情報をPWM信号のデューティにより表わし、それらを合成して単一の出力端子よりシリアルに出力する構成が開示されている。そして、このような構成では、上記信号を受信する側が各温度情報を認識するため信号の境界を分けるエッジが必要となるから、各PWM信号のデューティに制限を設ける必要があると記載されている。例えば図12に示すように、デューティ指令(アナログ信号入力)が100%を示した場合に((a)参照)、それに応じて100%のデューティパルスを出力すると((b)参照)、その前後のキャリア周期のパルスその境界が不明確になる。これに対して、デューティに上限を設定することで((c)参照)、デューティパルスの境界が明確になり、各信号を判別するためのタイミング制御が容易となる。
温度情報をより広い範囲について取得するためには、デューティを制限する精度が重要となる。しかしながら、特許文献1のようにコンパレータ等のアナログ回路を用いると、閾値電圧やPWM搬送波の振幅電圧のばらつきなどが精度を低下させる要因となる。例えば精度が10%であれば、デューティの上限,下限の双方を設定する場合であればそれぞれ10%の変動が生じるため、最大デューティは80%に制限されてしまう。
また、特許文献2には、スイッチング電源回路に使用されるPWM信号のデューティの上限を設定する構成が開示されている。この構成では、デューティを制限する回路にカレントミラーを用いることにより、製造バラツキや周囲温度の変化がある場合でもその変化分がキャンセルされるので、より高精度で制限できる旨が示唆されている。
特開2011−172336号公報 特開2004−229451号公報
しかしながら、特許文献2のようにカレントミラー回路を用いる場合、デューティの制限値を0%や100%付近に設定しようとするとミラー比を小さく、又は大きくする必要があり、それが精度を低下させることに繋がる。
本発明は上記事情に鑑みてなされたものであり、その目的は、PWM信号のデューティを制限する際に、その制限値をより高い精度で設定できるPWMデューティ変換装置を提供することにある。
請求項1記載のPWMデューティ変換装置によれば、PWM信号生成部は、信号源に対応するデューティ指令信号を三角波のキャリアと比較することでPWM信号を生成する。タイミング信号生成部は、キャリア振幅の最小値及び最大値に対応するタイミング信号を生成し、制限信号生成部が、前記タイミング信号をトリガとしてデューティ制限信号(上限信号及び下限信号)を生成すると、デューティ制限部は、PWM信号とデューティ制限信号とを合成して出力する。
このように構成すれば、デューティ制限信号は、キャリア振幅が最小及び最大を示すタイミングで出力され、デューティを制限する幅は、制限信号生成部において決定される。そして、PWM信号は、デューティ制限信号と合成されることでデューティの上限及び下限の双方が制限される。つまり、デューティ指令信号が変動する範囲が100%,0%の双方に及ぶ場合は、デューティを上限,下限の両方について制限する必要がある。すなわち、デューティ制限信号は、キャリアに同期したタイミングで出力されるので、制限幅を制限信号生成部が決定すれば、より簡単な構成でPWM信号のデューティを高い精度で制限できる。
また、PWM信号生成部は、複数の信号源に対応する複数のデューティ指令信号をシリアルに配列して、1つのPWM信号を生成する。したがって、複数の信号源が存在する際に、前記PWM信号を受信する側では、各信号源に対応するPWM信号の境界を明確に認識し、それらを切り分けて取得することができる
請求項記載のPWMデューティ変換装置によれば、デューティ制限部は、デューティ制限信号を合成したPWM信号に、キャリア周期に対応するデューティ100%のパルスを付加して出力する。すなわち、PWM信号を受信して、各デューティに応じて信号源の状態を検出する側(例えばマイクロコンピュータ等)では、デューティを検出するためにキャリア周期を正確に把握する必要がある。そこで、PWM信号にデューティ100%のパルスを付加すれば、当該パルスを基準としてデューティを正確に求めることができる。そして、PWMデューティに上限を設定すれば、デューティ100%のパルスを付加した際に、当該パルスと、それに続いて出力されるPWMデューティパルスとの境界を明確にすることができる。
請求項記載のPWMデューティ変換装置によれば、制限信号生成部は、デューティ下限信号,デューティ上限信号をそれぞれハイレベルパルスとして出力する。そして、デューティ制限部を構成する第1ゲートは、PWM信号とデューティ下限信号との論理和信号を出力し、第2ゲートは、PWM信号と、デューティ上限信号の反転との論理積信号を出力し、第3ゲートは、第1,第2ゲートの出力信号の論理和信号を出力する。したがって、PWM信号のデューティの下限を、デューティ下限信号のハイレベルパルス幅で規定することができ、デューティの上限を、デューティ100%のパルス幅よりデューティ上限信号の時間幅を減じたパルス幅で規定できる。
請求項記載のPWMデューティ変換装置によれば、タイミング信号生成部は、キャリア振幅が最小値又は最大値を示すタイミングに同期して出力される、キャリアの周期と同じ周期を有するデューティ50%の矩形波をタイミング信号として生成する。このように構成すれば、タイミング信号のレベルがハイ,ロー間で変化するエッジが、キャリア振幅の最小値又は最大値を示すことになる。したがって、1つの信号により、デューティ下限信号及びデューティ上限信号の双方を出力するためのタイミングを与えることができ、タイミング信号生成部の構成が簡単になる。
請求項記載のPWMデューティ変換装置によれば、前記タイミング信号を、キャリア生成部においてコンデンサを定電流により交互に充電,放電を切り替えるための制御信号と共通化する。すなわち、前記制御信号は、キャリア周期と同じ周波数でデューティ50%の矩形波となるので、タイミング信号生成部を別途設ける必要が無くなる。
請求項記載のPWMデューティ変換装置によれば、制限信号生成部は、周波数がキャリアよりも高く設定されるクロック信号を出力する発振回路を備える。そして、カウンタは、タイミング信号が出力された時点からクロック信号に基づきカウント動作を開始すると共にデューティ制限信号をアクティブにする。それから、デューティ制限信号に相当する時間だけカウント動作を継続した後、デューティ制限信号をインアクティブにする。
このように構成すれば、デューティ制限信号は、タイミング信号が出力された時点からカウンタがカウント動作を行った時間に応じてアクティブとなる。したがって、クロック信号の周波数に対してカウンタのカウント値を設定することで、デューティ制限信号がアクティブとなる時間を容易に設定できる。
請求項記載のPWMデューティ変換装置によれば、制限信号生成部は、デューティ制限信号に相当する時間を規定するカウント値を書き込み設定するためのレジスタを備える。したがって、例えばアプリケーションに応じて、PWMデューティの制限値をダイナミックに設定することができる。
第1実施例であり、PWMデューティ変換装置を中心とする構成を示す機能ブロック図 各信号波形を示すタイミングチャート 電力変換装置の構成を示す図 第2実施例を示す図1の一部相当図 図2相当図 第3実施例を示す図1相当図 ヘッダが付加されたPWM信号波形を示す図 第4実施例を示す図1相当図 第5実施例を示す図1相当図 図2相当図 第6実施例を示す図1相当図 従来技術を説明する図
(第1実施例)
以下、第1実施例について図1ないし図3を参照して説明する。図3において、電力変換装置10は、コンバータ20と、モータジェネレータMGを駆動制御するインバータ30とを備え、マイコン50(図1参照)により制御される。コンバータ20には、バッテリ40が接続され、バッテリ40はコンバータ20に直流電力を供給すると共に、コンバータ20を介して回生される直流電力を蓄電する。また、コンバータ20は、バッテリ40より供給される直流電力を昇圧してインバータ30へ出力し、インバータ30から出力された直流電力を降圧してバッテリ40へ出力する。
以下、コンバータ20の構成を説明する。バッテリ40の正極側にコンデンサ23及びリアクトル24の一端が接続され、負極側にコンデンサ23の他端とスイッチング素子(例えばIGBT)22のエミッタ端子が接続されている。スイッチング素子21とスイッチング素子22とは直列に接続されており、リアクトル24の他端は、スイッチング素子21のエミッタ端子及びスイッチング素子22のコレクタ端子に接続されている。
スイッチング素子21のコレクタ端子はインバータ30の一端側に接続され、スイッチング素子22のエミッタ端子は、インバータ30の他端側に接続されている。スイッチング素子21のコレクタ−エミッタ間には、フリーホイールダイオードD1が逆並列に接続され、同様にスイッチング素子22のコレクタ−エミッタ間にもダイオードD2が接続されている。
インバータ30の直流母線はコンバータ20の入出力端子に接続され、インバータ30は、コンバータ20によって昇圧された直流電力を三相交流に変換してモータジェネレータMGに出力する。また、モータジェネレータMGが発電機として働く場合は、モータジェネレータMGから出力される交流電力を直流に変換してコンバータ20に出力する。更に、インバータ30とコンバータ20との共通接続点間には、コンデンサ31が接続されている。
インバータ30は、6つのスイッチング素子34〜39が三相ブリッジ接続されて構成されている。各スイッチング素子34〜39のコレクタ−エミッタ間には、フリーホイールダイオードD3〜D8がそれぞれ逆並列に接続されている。インバータ30の各相出力端子は、モータジェネレータMGの各相コイル(図示略)の一端に接続されている。
コンバータ20の各スイッチング素子21,22及びインバータ30の各スイッチング素子34〜39は、上アーム側のスイッチング素子がオンの場合は下アーム側のスイッチング素子がオフ、上アーム側のスイッチング素子がオフの場合は下アーム側のスイッチング素子がオンとなるように、マイコン50でスイッチング制御(オン/オフ制御)される。
この電力変換装置10によれば、マイコン50によるコンバータ20の各スイッチング素子21,22及びインバータ30の各スイッチング素子34〜39のスイッチング制御により、バッテリ40の直流電力がコンバータ20で昇圧されてインバータ30で三相交流に変換され、モータジェネレータMGが駆動される。一方、モータジェネレータMGが発電機として働く場合は、モータジェネレータMGから出力される交流電力がインバータ30で直流電力に変換され、更にコンバータ20で降圧されてバッテリ40に回生される。
図1に示すのは、上記インバータ30を構成する1相,例えばU相の下アームに相当する部分であり、3個のスイッチング素子35a,35b,35cが、モータジェネレータMGの巻線の一端と、グランドとの間に接続されている。したがって、これらのスイッチング素子35a,35b,35cは、共通のゲート信号が与えられて同時にスイッチングされる。また、これらのスイッチング素子35a,35b,35cには、夫々に対応して温度検出素子としてのダイオード61a,61b,61c(信号源)が併設されており、対応するスイッチング素子と個別にワンパッケージ化されている。
ダイオード61a,61b,61cのカソードはグランドに接続され、アノードには、定電流回路62a,62b,62cを介して電源63が接続されている。但し、電源63は、バッテリ40の電源がコンバータ20を介して供給されるものである。これらのダイオード61a,61b,61cのアノード電圧は、対応するスイッチング素子35a,35b,35cの温度検出信号として、後述するようにマイコン50により参照される。ここで、ダイオード61a,61b,61cそれぞれを、Ach,Bch,Cchと定義する。
ダイオード61a,61b,61cのアノードは、切り替え部(マルチプレクサ)71の3つの入力端子にそれぞれ接続されており、切り替え部71の出力端子は、デューティ変換部72(PWM信号生成部)の入力端子に接続されている。切り替え部71の入力切り替え制御は、入力切替制御部73より出力される制御信号によって行われる。したがって、切り替え部71からは、Ach,Bch,Cchのアノード電圧(アナログ入力信号)がデューティ指令として、順次切り替えられて出力される。
デューティ変換部72には、基準波生成部74(タイミング信号生成部)より三角波が基準波(キャリア)として入力される。デューティ変換部72は、基準波の振幅とデューティ指令に相当する各cHのアノード電圧とをコンパレータによりを比較することで(図2(a)参照)デューティ信号(PWM信号)を生成し、次段の出力制御部75(デューティ制限部)に出力する。すなわち、上記デューティ信号は、各周期毎にAch,Bch,Cchに対応したデューティに切り替わる信号となる(図2(c)参照)。
基準波生成部74は、コンパレータ74a,マルチプレクサ74b,充放電部74cで構成されている。コンパレータ74aの反転入力端子にはマルチプレクサ74bの出力端子が接続されており、マルチプレクサ74bは、切り替え制御信号に応じて2つの基準電圧VTH,VTLを選択して出力する。基準電圧VTH,VTLは、それぞれ基準波振幅の最大値,最小値付近に設定されている。
マルチプレクサ74bの切り替え制御信号は、コンパレータ74aの出力信号である。充放電部74cは、図示しないが、前記出力信号に応じて、コンデンサに対し定電流による充放電を繰り返すことで三角波を生成し、基準波として出力する。ここで、コンパレータ74aの出力信号は、三角波の振幅が上昇する期間はハイレベル,振幅が下降する期間はローレベルとなる矩形波信号となるので、当該信号を基準波上下限信号(タイミング信号)として出力する。すなわち、基準波上下限信号は、基準波と同じ周期でデューティ50%の矩形波となる(図2(d)参照)。
基準波上下限信号は、入力切り替え制御部73,上限信号生成部76(制限信号生成部,カウンタ),下限信号生成部77(制限信号生成部,カウンタ)にそれぞれ入力される。入力切り替え制御部73は、基準波上下限信号の立ち上がりエッジが入力されることにカウント値0,1,2,0,1,2,…を繰り返す2ビットカウンタであり、切り替え部71は、上記カウント値に応じて入力される信号を順次Ach,Bch,Cchに切り換えて選択する。
上限信号生成部76,下限信号生成部77もカウンタで構成されるが、これらには、発振回路78(制限信号生成部)により出力されるクロック信号CLKがカウントクロックとして入力されている。ここで、図2(b)に示すように、クロック信号CLKの周波数は、基準波の周波数よりも十分高い値に設定されている。そして、上限信号生成部76は、基準波上下限信号がハイレベルを示す期間はリセットされ、ローレベルを示す期間だけクロック信号CLKに基づくカウント動作を行う。一方、下限信号生成部77は、基準波上下限信号がローレベルを示す期間はリセットされ、基準波上下限信号がハイレベルを示す期間だけクロック信号CLKに基づくカウント動作を行う。すなわち、基準波上下限信号は、これらのリセット信号となっている。
また、上限信号生成部76,下限信号生成部77は、カウント値が設定されるレジスタやコンパレータを内蔵しており、リセット信号がインアクティブになるとカウント動作をスタートし、それぞれが出力するデューティ上限信号(デューティ制限信号),デューティ下限信号(デューティ制限信号)をハイレベル(アクティブ)にする。そして、それぞれのレジスタ値に設定されているカウントに達すると、デューティ上限信号,デューティ下限信号をローレベルに変化させる。
デューティ上限信号,デューティ下限信号は、出力制御部75に入力される。出力制御部75は、ANDゲート75a(第2ゲート),ORゲート75b(第1ゲート)及び75c(第3ゲート)で構成されており、ANDゲート75a,ORゲート75bの入力端子の一方には、デューティ変換部72からのデューティ信号が入力される。ANDゲート75aの入力端子の他方(負論理)にはデューティ上限信号が入力され、ORゲート75bの入力端子の他方には、デューティ下限信号が入力される。そして、ANDゲート75a,ORゲート75bの出力端子は、ORゲート75cの入力端子にそれぞれ接続されており、ORゲート75cからは、制限付きのデューティ信号(L)が出力される。デューティ信号(L)は、フォトカプラ79を介してマイコン50の入力端子に入力される。
次に、本実施例の作用について図2を参照して説明する。図2(d)に示すように、基準波上下限信号の立ち上がりは、基準波の振幅が最小となるタイミングに同期しており、基準波上下限信号の立ち下がりは、基準波の振幅が最小となるタイミングに同期している。そして、上限信号生成部76は、基準波上下限信号の立ち上がりからカウント動作を開始し、下限信号生成部77は、基準波上下限信号の立ち下がりからカウント動作を開始する。したがって、デューティ上限信号は、基準波の振幅が最小を示すタイミングからハイレベルとなり(図2(f)参照)、デューティ下限信号は、基準波の振幅が最高を示すタイミングからハイレベルとなる(図2(e)参照)。
ここで、デューティ上限信号,デューティ下限信号は、それぞれデューティ12.5%に相当する期間のハイレベルパルスとなるように、上限信号生成部76,下限信号生成部77内部のレジスタ値が設定されているとする。デューティ信号と、デューティ下限信号とは、両者のOR信号がORゲート75b,75cを介して出力される。したがって、図2(c)に示すデューティ信号において、Bchのデューティが0%であっても、デューティ信号(L)は、デューティ下限値12.5%となるように出力される(図2(g)参照)。
一方、デューティ信号とデューティ上限信号とは、後者の反転とのAND信号がANDゲート75a,ORゲート75cを介して出力される。したがって、図2(c)に示すデューティ信号において、Achのデューティが100%であっても、デューティ信号(L)は、100%より12.5%を減じたデューティ上限値88.5%となるように出力される(図2(g)参照)。
ここで、精度について具体数値例を検討する。例えば基準波周期が5ms(周波数200Hz)であり、クロック信号CLKの周期が2.5μs(周波数400kHz),発振回路78の精度が±30%であるとする。デューティ制限信号を10カウントで生成すると、基準波とクロック信号CLKとが非同期であるため、1クロックパルス分の誤差を含むことを想定すると、ばらつきは、
2.5μs×10×1.3−2.5μs×9×0.7=16.75μs
となる。16.75μsは、デューティ換算では0.335%であるから、デューティ下限値,上限値を0%,100%に近い値に設定することが可能である。
以上のように本実施例によれば、デューティ変換部72は、3つのダイオード61a,61b,61cが検出した温度に対応するAch,Bch,Cchの各デューティ指令信号をシリアルに配列して、三角波の基準波と比較することで1つのPWM信号を生成する。基準波生成部74は、基準波振幅の最小値及び最大値に対応する基準波上下限信号を生成し、上限信号生成部76及び下限信号生成部77は、基準波上下限信号をトリガとしてデューティ制限信号を生成すると、出力制御部75は、PWM信号とデューティ制限信号とを合成して出力する。
すなわち、デューティ上限信号及び下限信号は、基準波に同期したタイミングで出力されるので、それらの制限幅を上限信号生成部76及び下限信号生成部77が決定することで、より簡単な構成で、PWM信号デューティの上限及び下限を高い精度で制限できる。そして、上限信号生成部76及び下限信号生成部77は、デューティ上限信号,デューティ下限信号をそれぞれハイレベルパルスとして出力し、ORゲート75bは、PWM信号とデューティ下限信号との論理和信号を出力し、ANDゲート75aは、PWM信号と、デューティ上限信号の反転との論理積信号を出力し、ORゲート75cは、ORゲート75b,ANDゲート75aの出力信号の論理和を出力する。したがって、PWMデューティの下限を、デューティ下限信号のハイレベルパルス幅で規定し、デューティの上限は、デューティ100%のパルス幅よりデューティ上限信号の時間幅を減じたパルス幅で規定できる。
また、基準波生成部74は、基準波振幅が最小値又は最大値を示すタイミングに同期して出力される、基準波周期と同じ周期を有するデューティ50%の矩形波を基準波上下限信号として生成するので、当該信号のレベルが変化するエッジが、基準波振幅の最小値又は最大値を示すことになる。したがって、1つの信号により、デューティ下限信号及びデューティ上限信号の双方を出力するためのタイミングを与えることができ、構成が簡単になる。また、基準波上下限信号を、基準波生成部74においてコンデンサを定電流により交互に充電,放電を切り替えるための制御信号と共通化したので、基準波上下限信号を生成するための独立した構成を設ける必要が無い。
そして、周波数が基準波よりも高く設定されるクロック信号CLKを出力する発振回路78を備え、上限信号生成部76及び下限信号生成部77は、基準波上下限信号の一方及び他方のエッジからクロック信号CLKに基づきカウント動作を開始してデューティ制限信号をアクティブにすると、デューティ制限信号に相当する時間だけカウント動作を継続した後、当該信号をインアクティブにする。したがって、クロック信号CLKの周波数に対してカウンタのカウント値を設定することで、デューティ制限信号がアクティブとなる時間を容易に設定できる。
(第2実施例)
図4及び図5は第2実施例であり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。図4は図1の一部相当図であり、第2実施例では、デューティ上下限設定レジスタ80を設けることで、上限信号生成部76A,下限信号生成部77Aより出力されるデューティ上限信号,デューティ下限信号の時間幅を変更可能としたものである。
上限信号生成部76Aはカウンタ76a及び演算部76bを備え、下限信号生成部77Aはカウンタ77a及び演算部77bを備えている。デューティ上下限設定レジスタ80は、マイコン50により書き込み設定が行われ、書き込まれたレジスタ値は、演算部76b及び77bに入力される。演算部76b及び77bはコンパレータであり、それぞれカウンタ76a,77aのカウント値とデューティ上下限設定レジスタ80のレジスタ値とを比較する。そして、カウント値がレジスタ値以下を示す間は、デューティ上限信号,デューティ下限信号をハイレベルに維持し、カウント値がレジスタ値を超えるとローレベルに変化させる。
次に、第2実施例の作用について図5を参照して説明する。例えば、図5(e)に下向き矢印で示すタイミングにおいて、マイコン50が、デューティ上下限設定レジスタ80のレジスタ値を、デューティ12.5%相当値から25%相当値に書き替えたとする。これにより、以降のデューティ下限信号は25%設定され、デューティ上限信号は75%設定される。尚、ここでは変更された状態を分かり易くするため、値を極端に変更した例を示している。
以上のように第2実施例によれば、デューティ制限信号に相当する時間を規定するカウント値を書き込み設定するためのデューティ上下限設定レジスタ80を備えたので、例えばアプリケーションに応じて、PWMデューティの制限値をダイナミックに設定することができる。
(第3実施例)
図6及び図7は第3実施例であり、第1実施例と異なる部分について説明する。第3実施例は、第1実施例の構成について、PWM信号に基準波周期を示すパルスを含むヘッダを付加する機能を、出力制御部75に替わる出力制御部81(デューティ制限部)に追加したものである。出力制御部81は、出力制御部75にマルチプレクサ(MPX)81a,3ビットカウンタ81bを追加して構成されている。
3ビットカウンタ81bは、デューティ上限信号の立ち上がりエッジでカウント動作を行い、「0〜5」を循環的にカウントする。マルチプレクサ81aの3つの入力端子の1つはハイレベルにプルアップされ(H)、他の1つはローレベルにプルダウンされ(L)、残りの1つはORゲート75cの出力端子に接続されている(OR)。マルチプレクサ81aの切り替え制御は3ビットカウンタ81bのカウント値によって行われ、カウント値「0,1」では入力端子Lを選択し、カウント値「2」では入力端子Hを選択し、カウント値「3〜5」では入力端子ORを選択する。
したがって、マルチプレクサ81aより出力されるPWM信号は、図7に示す波形となり、基準波周期の6周期が1つのサイクル(検出周期)となる。前半の3周期はヘッダとなり、後半の3周期が3つのデューティ信号Ach,Bch,Cchとなる。ヘッダにおいては、冒頭の2周期がローレベルであり、最後の1周期が基準波周期に相当する100%デューティのパルスh1となる。
そして、入力切り替え制御部73Aには、基準波上下限信号に替えて、出力制御部81より与えられる制御信号に基づいて入力切り替えを行う。例えば、3ビットのカウント値を与えて、カウント値「0〜2」では切り替えを行わずにホールドし、カウント値「3〜5」ではAch,Bch,Cchを切り換えるようにする。
また、マイコン50は、上記PWM信号が入力されると、冒頭の2周期がローレベルを示すことでヘッダであることを認識し、3周期目のパルス幅によって基準波周期を取得する。すなわち、マイコン50が各チャネルのデューティを正確に検出するには、基準波周期を正確に把握する必要があるため、PWM信号にデューティ100%のパルスを付加し、当該パルスを基準としてデューティを正確に求める。そして、ヘッダに続くAch,Bch,Cchの各デューティ信号が示すパルス幅a1,b1,c1を取得すると、各チャネルのデューティを、a1/h1,b1/h1,c1/h1により演算して求める。
以上のように第3実施例によれば、出力制御部81は、デューティ制限信号を合成したPWM信号に、基準波周期に対応するデューティ100%のパルスを付加して出力する。したがって、マイコン50は当該パルスを基準としてデューティを正確に求めることができる。そして、PWMデューティに上限を設定すれば、ヘッダとそれに続いて出力されるPWMデューティパルスとの境界を明確に判別できる。
(第4実施例)
図8は第4実施例であり、第1実施例と異なる部分について説明する。第4実施例では、切り替え部71及び入力切り替え制御部73を削除し、デューティ変換部72を各チャネルについて設け、Achデューティ変換部72A,Bchデューティ変換部72B,Cchデューティ変換部72Cとしている。これらのデューティ変換部72A〜72Cには、対応するチャネルのダイオード61のアノード電圧が個別に入力されており、また、基準波生成部74が出力する基準波が共通に入力されている。
そして、出力制御部75に替わる出力制御部82には、基準波上下限信号が入力されている。出力制御部82は、内部に切替部71及び入力切替制御部73に相当する機能を内蔵しており、基準波上下限信号のエッジをカウントすることで各デューティ変換部72A〜72Cより入力されるデューティパルスを切り替えて、第1実施例と同様に1つのPWM信号を生成する。以上のように構成される第4実施例による場合も、第1実施例と同様の効果が得られる。
(第5実施例)
図9及び図10は第5実施例であり、第1実施例と異なる部分について説明する。第5実施例では、基準波生成部74に替わる基準波生成部83は、2つのコンパレータ83a,83bを使用し、これらのコンパレータ83a,83bの出力信号をラッチ(RSフリップフロップ)83cで受けて基準波上下限信号を生成する。尚、基準波は、コンパレータ83aの反転入力端子,コンパレータ83bの非反転入力端子に入力されている。コンパレータ83aの非反転入力端子には、基準波振幅の最小値付近に相当する基準電圧VTLが与えられ、コンパレータ83bの反転入力端子には、基準波振幅の最大値付近に相当する基準電圧VTHが与えられている。
コンパレータ83bは、基準波の振幅が基準電圧VTHを超えるとラッチ83cにセット信号を出力し、コンパレータ83aは、基準波の振幅が基準電圧VTLを下回るとラッチ83cにリセット信号を出力する。その結果、図10(d)に示す基準波上下限信号は、図2(d)に示す基準波上下限信号に対して逆相の信号になる。以上のように構成される第5実施例による場合も、第1実施例と同様の効果が得られる。
(第6実施例)
図11は第6実施例である。第6実施例は、第1実施例の構成をスイッチング電源回路に適用したものである。電源VINとグランドとの間には、PチャネルMOSFET91(スイッチング素子,出力トランジスタ)及びダイオード92の直列回路が接続されており、両者の共通接続点(FET91のドレイン,ダイオード92のアノード)は、コイル93を介してコンデンサ94及び負荷95の一端に接続されている。コンデンサ94及び負荷95の他端は、グランドに接続されている。コイル93及び負荷95の共通接続点は電源出力端子であり、出力電圧VOUTが出力される。
前記電源出力端子は、抵抗素子96及び97の直列回路を介してグランドに接続されており、抵抗素子96及び97の共通接続点は、差動増幅器98(信号源)の反転入力端子に接続されている。差動増幅器98の非反転入力端子には、基準電圧Vrefが与えられており、差動増幅器98の出力端子は、第1実施例の切替部71に替わってデューティ変換部72の入力端子に接続されている。そして、出力制御部75より出力される制限付きのデューティ信号(L)は、NOTゲート99(ドライブ回路)を介してPチャネルMOSFET91のゲートに与えられる。以上がスイッチング電源回路100を構成している。この場合、差動増幅器98により出力される信号が、デューティ指令信号となる。
以上のように構成することで、スイッチング電源回路100では、PチャネルMOSFET91が、デューティの上限及び下限が制限されたデューティ信号(L),PWM信号によってスイッチングされることになる。
ここで、スイッチング電源回路100のように、PWM信号が1つの信号源に基づくデューティ指令信号に応じて生成されるものにおいてもデューティの上限,下限を制限することは必要である。スイッチング電源回路100では、電源VINの変動や負荷95の変動によって、差動増幅器98の出力電圧がキャリア振幅の最大値を超えたり、最小値を下回ることがある。すると、PWMパルスに「抜け」が発生してPチャネルMOSFET91のスイッチング動作にも「抜け」が生じる。
また、上記のような「抜け」が発生すればスイッチング周波数が増減するので、予め定めたフィルタの時定数で対応できなくなりノイズを増加させることになる。したがって、PWM信号のデューティについて上限,下限を制限すれば、スイッチング制御を安定して行うことが可能となる。但し、デューティに制限を加えると、差動増幅器98の出力電圧に基づくデューティ指令と、実際に行われるスイッチング動作とが対応しなくなるため、出力電圧VOUTの精度を低下させることにも繋がる。そこで、上記のような弊害を極力小さくするためには、デューティの上限,下限を100%,0%の近傍に高い精度で設定する必要がある。そのためにも、本実施例のように高精度でデューティを制限できる構成は、電源回路等への適用に極めて有効である。
以上のように第6実施例によれば、スイッチング電源回路100の制御に使用されるPWM信号についてデューティ指令の上限,下限を制限することで、スイッチング制御の安定化を図り、出力電源電圧の精度を向上させることができる。
本発明は上記した、又は図面に記載した実施例にのみ限定されるものではなく、以下のような変形又は拡張が可能である
第2実施例において、デューティ上限信号と、デューティ下限信号とを設定するためのレジスタを個別に設けても良い。
第3実施例において、入力切替制御部74に対して、第1実施例と同様に、基準波上下限信号を入力して切替部71を制御しても良い。
また、第3実施例においてPWM信号にヘッダを設ける替わりに、マイコン50に基準波を直接入力して、マイコン50が自身で基準波周期を検出しても良い。
第2実施例を、第3〜第5実施例に適用しても良い。
第4,第5実施例に、第3実施例のヘッダを付加する構成を組み合わせて実施しても良い。
PWM信号に付加するヘッダの形式は、第3実施例に示すものに限らず、何らかの形で基準波の周期を示すデータを含むものであれば良い。
基準波上下限信号を、基準波生成部と独立に構成しても良い(但し、少なくとも基準波と基準波上下限信号との同期をとる必要はある)。
基準波の振幅が最大値を示すタイミングで出力する基準波上限信号と、同振幅が最小値を示すタイミングで出力する基準波下限信号とを個別に出力しても良い。この場合、基準波生成部内の充放電部及び、上限信号生成部,下限信号生成部を、上記各信号に対応するように構成すれば良い。
スイッチング素子は、IGBTに限ることなく、バイポーラトランジスタやMOSFETでも良い。
信号源は、スイッチング素子の温度を検出するものに限ることはない。
例えば、第1実施例の構成を、1組のスイッチング素子35及びダイオード61のみとして、切り替え部71及び入力切替制御部73を削除し、単一のPWM信号についてデューティの上限,下限を制限しても良い。
インバータ30のような電力変換装置や、スイッチング電源回路100のような電源回路に限らず、複数の信号源に対応するデューティ指令信号を処理するものであれば適用が可能である。
35はスイッチング素子、50はマイクロコンピュータ、61はダイオード(信号源)、72はデューティ変換部(PWM信号生成部)、74は基準波生成部(タイミング信号生成部)、75は出力制御部(デューティ制限部)、75aはANDゲート(第2ゲート)、75bはORゲート75(第1ゲート)、75cはORゲート(第3ゲート)、76は上限信号生成部(制限信号生成部,カウンタ)、77は下限信号生成部(制限信号生成部,カウンタ)、78は発振回路(制限信号生成部)、80はデューティ上下限設定レジスタ、81,82は出力制御部(デューティ制限部)、83は基準波生成部(タイミング信号生成部)、98は差動増幅器(信号源)を示す。

Claims (7)

  1. 信号源に対応するデューティ指令信号を三角波のキャリアと比較することでPWM信号を生成するPWM信号生成部と、
    前記キャリアの振幅の最小値及び最大値に対応するタイミング信号を生成するタイミング信号生成部と、
    前記タイミング信号をトリガとして、デューティの上限を制限するための上限信号及びデューティの下限を制限するための下限信号からなるデューティ制限信号を生成して出力する制限信号生成部と、
    前記PWM信号と、前記デューティ制限信号とを合成して出力するデューティ制限部とを備え
    前記PWM信号生成部は、複数の信号源に対応する複数のデューティ指令信号をシリアルに配列して、1つのPWM信号を生成することを特徴とするPWMデューティ変換装置。
  2. 前記デューティ制限部は、前記デューティ制限信号を合成したPWM信号に、前記キャリアの周期に対応するデューティ100%のパルスを付加して出力することを特徴とする請求項1記載のPWMデューティ変換装置。
  3. 前記制限信号生成部は、前記デューティ下限信号,前記デューティ上限信号を、それぞれハイレベルパルスとして出力し、
    前記デューティ制限部は、前記PWM信号と、前記デューティ下限信号との論理和信号を出力する第1ゲートと、
    前記PWM信号と、前記デューティ上限信号の反転との論理積信号を出力する第2ゲートと、
    前記第1,第2ゲートの出力信号の論理和信号を出力する第3ゲートとで構成されることを特徴とする請求項1又は2記載のPWMデューティ変換装置。
  4. 前記タイミング信号生成部は、前記キャリアの振幅が最小値又は最大値を示すタイミングに同期して出力される、前記キャリアの周期と同じ周期を有するデューティ50%の矩形波を、前記タイミング信号として生成することを特徴とする請求項1から3の何れか一項に記載のPWMデューティ変換装置。
  5. コンデンサを定電流によって交互に充電,放電させることで前記キャリアを生成するキャリア生成部を備え、
    前記タイミング信号を、前記キャリア生成部において前記充電,放電を切り替えるための制御信号と共通化したことを特徴とする請求項4記載のPWMデューティ変換装置。
  6. 前記制限信号生成部は、
    周波数が前記キャリアよりも高く設定されるクロック信号を出力する発振回路と、
    前記タイミング信号生成部によってタイミング信号が出力された時点から、前記クロック信号に基づきカウント動作を開始すると共に前記デューティ制限信号をアクティブにして、
    前記デューティ制限信号に相当する時間だけカウント動作を継続した後、前記デューティ制限信号をインアクティブにするカウンタとで構成されることを特徴とする請求項1から5の何れか一項に記載のPWMデューティ変換装置。
  7. 前記制限信号生成部は、前記デューティ制限信号に相当する時間を規定するカウント値を書き込み設定するためのレジスタを備えることを特徴とする請求項6記載のPWMデューティ変換装置。
JP2012210795A 2012-03-09 2012-09-25 Pwmデューティ変換装置 Active JP5708605B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012210795A JP5708605B2 (ja) 2012-03-09 2012-09-25 Pwmデューティ変換装置
US13/743,515 US8878583B2 (en) 2012-03-09 2013-01-17 PWM duty cycle converter
CN201310075111.4A CN103312301B (zh) 2012-03-09 2013-03-08 Pwm占空比转换器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012053152 2012-03-09
JP2012053152 2012-03-09
JP2012210795A JP5708605B2 (ja) 2012-03-09 2012-09-25 Pwmデューティ変換装置

Publications (2)

Publication Number Publication Date
JP2013214942A JP2013214942A (ja) 2013-10-17
JP5708605B2 true JP5708605B2 (ja) 2015-04-30

Family

ID=49113561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210795A Active JP5708605B2 (ja) 2012-03-09 2012-09-25 Pwmデューティ変換装置

Country Status (3)

Country Link
US (1) US8878583B2 (ja)
JP (1) JP5708605B2 (ja)
CN (1) CN103312301B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055165A (ja) * 2016-09-26 2018-04-05 株式会社デンソーテン 入力装置、入力装置の制御方法およびプログラム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278475B2 (ja) * 2011-03-28 2013-09-04 株式会社デンソー 情報伝達装置
JP5927060B2 (ja) * 2012-06-20 2016-05-25 ローム株式会社 信号伝達回路、集積回路およびそれを含む電気機器
CN103513571A (zh) * 2013-09-18 2014-01-15 东莞博用电子科技有限公司 一种带限幅的脉宽调制装置和方法
WO2016051567A1 (ja) * 2014-10-02 2016-04-07 三菱電機株式会社 チョッパ回路制御装置
CN104467762A (zh) * 2014-12-05 2015-03-25 青岛鼎信通讯股份有限公司 一种pwm调制红外发射管发射强度的方法
CN105764204B (zh) * 2014-12-18 2018-01-19 欧普照明股份有限公司 一种pwm调光方法及pwm调光装置
JP2017034835A (ja) * 2015-07-31 2017-02-09 株式会社デンソー Pwm信号出力装置及びpwm信号処理システム
JP6601356B2 (ja) * 2016-09-21 2019-11-06 株式会社デンソー 時間算出装置
CN109104171A (zh) * 2018-08-09 2018-12-28 成都黎声科技有限公司 一种pwm波形发生器
JP7092059B2 (ja) * 2019-01-31 2022-06-28 株式会社デンソー コントローラ
CN112924981B (zh) * 2021-01-28 2023-10-31 深圳奥锐达科技有限公司 一种飞行时间测距方法、系统和设备
CN117318681B (zh) * 2023-11-29 2024-03-22 深圳鹏城新能科技有限公司 一种pwm发生器的自适应调整方法、系统和存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855520A (en) * 1972-12-22 1974-12-17 Allis Chalmers Control having conduction limit means to vary duty cycle of power switch
US5896053A (en) * 1995-07-28 1999-04-20 Harris Corporation Single ended to differential converter and 50% duty cycle signal generator and method
JP3336588B2 (ja) 1997-05-28 2002-10-21 株式会社日立製作所 Pwmパルス発生装置
JP2003304879A (ja) 2002-04-17 2003-10-28 Nara Institute Of Science & Technology カフェイン合成酵素及びその用途
JP3748548B2 (ja) * 2002-11-21 2006-02-22 株式会社リコー Pwm信号発生回路
JP4163015B2 (ja) * 2003-01-24 2008-10-08 シャープ株式会社 スイッチング電源回路、および、それを用いた電子機器
JP4578198B2 (ja) * 2004-09-30 2010-11-10 株式会社リコー スイッチングレギュレータ
JP4739901B2 (ja) 2005-10-13 2011-08-03 ローム株式会社 スイッチング電源装置およびその制御回路、ならびにそれを用いた電子機器
US7453246B2 (en) * 2005-11-16 2008-11-18 Intersil Americas Inc. Adaptive PWM pulse positioning for fast transient response
WO2008149582A1 (ja) * 2007-06-05 2008-12-11 Sharp Kabushiki Kaisha バックライトランプ点灯制御装置およびそれを備えた表示装置
CN201063531Y (zh) * 2007-07-31 2008-05-21 Bcd半导体制造有限公司 电源变换电路及其脉冲宽度调制控制器
JP5146022B2 (ja) * 2008-03-10 2013-02-20 株式会社リコー Dc−dcコンバータ
JP5454902B2 (ja) * 2010-02-17 2014-03-26 株式会社デンソー 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055165A (ja) * 2016-09-26 2018-04-05 株式会社デンソーテン 入力装置、入力装置の制御方法およびプログラム

Also Published As

Publication number Publication date
US8878583B2 (en) 2014-11-04
JP2013214942A (ja) 2013-10-17
CN103312301B (zh) 2016-01-13
CN103312301A (zh) 2013-09-18
US20130234769A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5708605B2 (ja) Pwmデューティ変換装置
KR101055340B1 (ko) 스위칭 레귤레이터 및 그 동작 제어 방법
CN101755382B (zh) 开关电源装置及其驱动方法
TWI387185B (zh) 用於交錯式功因修正器的控制裝置
CN102308463B (zh) 使用同步整流方式的比较器方式dc-dc 转换器
US20140016381A1 (en) Current detecting circuit, controlling circuit and power conversion circuit
US9654040B2 (en) Drive circuit of stepping motor, integrated circuit thereof, and electronic equipment including same, and method for controlling drive circuit of stepping motor
WO2012137514A1 (ja) 電力変換装置の制御装置
JP2012139023A (ja) スイッチング電源装置
JP2014082919A (ja) コントローラ及びコントローラを有するシステム
CN104247245A (zh) 功率转换装置的控制装置
CN103179745A (zh) 发光二极管驱动装置
JP6142917B2 (ja) パワーデバイスの駆動回路
CN108880259B (zh) 用于转换器的次级侧电流模式控制
JP2009095206A (ja) インバータ制御回路とその制御方法
US9673735B2 (en) Power converter
CN102938627A (zh) 用于马达的控制电路以及控制方法
JP2020025435A (ja) 集積回路及びモータ装置
US11804797B2 (en) Motor controller, motor system and method for controlling motor
CN209963970U (zh) 半桥驱动电路和相关的系统
CN102739048B (zh) 电压转换电路
CN102236769A (zh) 乘除法器及其方法
EP3032745A1 (en) Switching power supply circuit
JP5823248B2 (ja) Ac/dcインバータ装置、および、ac/dcインバータ装置の制御方法
US9106144B2 (en) Voltage converting apparatus and sub-harmonic detector thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5708605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250