JP5708284B2 - 電極・配線用導電体 - Google Patents
電極・配線用導電体 Download PDFInfo
- Publication number
- JP5708284B2 JP5708284B2 JP2011130290A JP2011130290A JP5708284B2 JP 5708284 B2 JP5708284 B2 JP 5708284B2 JP 2011130290 A JP2011130290 A JP 2011130290A JP 2011130290 A JP2011130290 A JP 2011130290A JP 5708284 B2 JP5708284 B2 JP 5708284B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- thin film
- metal ion
- film
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Non-Insulated Conductors (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electrodes Of Semiconductors (AREA)
Description
本発明は、上記従来技術に鑑みてなされたものであり、金属粒子の焼結体から構成された導電体を微細化が進んだ電極・配線とした場合でも、それらの腐蝕やマイグレーションの発生を長期間防止することができる電極・配線用導電体を提供することを目的とする。
即ち、本発明の電極・配線用導電体は、金属粒子の焼結体から構成された導電体薄膜上に、下記一般式(1)で表されるチオール化合物または下記一般式(2)で表されるスルフィド化合物から選択される少なくともいずれか一種の化合物を含有する金属イオン移動防止膜を設けてなる電極・配線用導電体であって、前記金属イオン移動防止膜中に凝集体構造が含まれていることを特徴とする。
Ar−SH …(1)
[式(1)中、Arはベンゼン環を示し、置換基を有していてもよい。]
(A−R’−O−R−S)2 …(2)
[式(2)中、R’、Rはアルキレン基を示し、Aはフルオロアルキル基を示す。]
Ar−SH …(1)
[式(1)中、Arはベンゼン環を示し、置換基を有していてもよい。]
置換基としてはハロゲン原子などが挙げられる。
一般式(1)で表されるチオール化合物としては、前記式(3)で表される4−フルオロベンゼンチオールであることが好ましい。
(A−R’−O−R−S)2 …(2)
[式(2)中、R’、Rはアルキレン基を示し、Aはフルオロアルキル基を示す。]
R’、RとしてはC1〜14のアルキレン基、AとしてはC1〜16のフルオロアルキル基などが挙げられる。
一般式(1)で表されるチオール化合物が、前記式(3)で表される4−フルオロベンゼンチオールであることが好ましい。
一般式(2)で表されるスルフィド化合物が、前記式(4)で表される[ジチオビス(1H、1H、2H、2H−パーフルオロデシルオキシ−ウンデカン):Dithibis(1H,1H,2H,2H-perfluorodecyloxy-undecane)]であることが好ましい。
特に、金属粒子の焼結体から構成された導電体が、銅等と比べ腐食性が非常に高い銀を主体とする金属材料により形成される場合、つまり、導電体として銀を用いた場合、高湿度雰囲気で直流印荷時において、銀がイオン化して正極側から負極側に移動して負極側に析出成長する現象(マイグレーション)が起生し易く、電気・電子部品における導電部の絶縁不良や短絡により不具合を併発する場合があるが、本発明の電極・配線用導電体とすることにより、効果的に腐蝕やマイグレーションを抑制することができる。
ここで、腐食性物質は電気・電子部品等の製造時や使用時に周囲環境の雰囲気中に存在することがあるものであり、例えば、硫黄、硫化水素、亜硫酸ガス、硫酸ミスト、メルカプタンガスなどが例示される。
即ち、本発明の電極・配線用導電体は、電気・電子部品における導電部、例えば、太陽電池やタッチパネル等の電極、あるいは、IC、LSI等の半導体デバイス、抵抗体、コンデンサ等を搭載した回路基板やプリント配線基板等における電極や配線などに適用することができる。電極や配線は、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド等からなる樹脂基板、ポリエチレンテレフタレート(PET)等からなるフィルム基板、アルミナ等からなるセラミック基板等の各種絶縁基板上に、銀、金、銅等の金属粒子を焼結体として設けた導電体薄膜により形成される。
本発明における導電体は、金属粒子の焼結体から構成された導電体薄膜からなり、電極や配線の微細化に対応できるものである。
導電体薄膜を構成する金属粒子として、銀、金、銅、アルミニウム等の粒子を用いることができ、特に高い導電性を有し、比較的安価である銀が好ましい。また、金属粒子の平均粒径は500nm以下が好ましく、30nm以下がより好ましい。ナノサイズの導電性金属微粒子を用いた場合には導電性向上の効果が特に優れる。
金属粒子の焼結体から構成された導電体薄膜は、金属粒子を溶媒に分散した導電体用溶液または糊状の組成物(ペースト)を支持体(基板)上に塗布した後、塗膜を加熱焼成して形成することができる。導電体用溶液またはペーストは目的に応じて所望の金属ナノ粒子を選択し、適宜濃度等を調製して用いることができる。また、市販の導電体用溶液(例えば、商品名ナノペースト(NPS−J:ハリマ化成社製等)を用いても構わない。限定されるものではないが、例えば、銀ナノ粒子分散溶液(溶媒:テトラデカン)を用いた場合には、プリベークを100℃程度で行った後、200℃程度にて焼成処理して焼結体からなる導電体薄膜とするのが好ましい。なお、導電体薄膜の体積抵抗は、限定されるものではないが通常10−4Ωcm以下であることが好ましい。
導電体用溶液の塗布方法としては、例えば、スピンコート法、スプレー法、ディスペンス法、ノズル吐出法(インクジェットを含む)、ディップ法等を用いることができる。
上述した金属ナノ粒子の焼結体から構成された導電体薄膜上に、前記一般式(1)または一般式(2)で表される特定の構造を有するチオール化合物またはスルフィド化合物から選択される少なくともいずれか一種の化合物(以降、「金属イオン移動防止剤」と呼称することがある。)を溶媒中に含有する塗工液を用いて金属イオン移動防止膜を形成することができる。
ここで、前記一般式(1)で表されるチオール化合物が、前記式(3)で表される4−フルオロベンゼンチオールであることが好ましい。また、前記一般式(2)で表されるスルフィド化合物が、前記式(4)で表されるジチオビス(1H、1H、2H、2H−パーフルオロデシルオキシ−ウンデカン)であることが好ましい。なお、前記金属イオン移動防止剤は単独あるいは複数種併用して用いることができる。
上記塗工液は、溶媒1リットル中、金属イオン移動防止剤(金属イオン捕捉剤としての機能を有するものでもよい)を0.1〜20mモル、より好ましくは1〜10mモルの濃度として含有するのが好ましい。0.1mモルより少ないと効果が確認されず、20mモルより濃いと、全て溶解することができず沈殿物が生じてしまう。
前記塗布プロセスにより、導電体薄膜表面にチオール化合物またはスルフィド化合物を含有する金属イオン移動防止膜が形成されていることは、表面濡れ性の変化(純水の接触角変化)、例えば、銀ナノ粒子の焼結体から構成された導電体薄膜のみの場合:50°に対して、チオール化合物を含有する金属イオン移動防止膜を形成した場合:95°に変化することから確認される。また、前記金属イオン移動防止膜中に凝集体構造が含まれていることは、走査型電子顕微鏡(SEM)観察により確認することができる。凝集体構造の大きさは、導電体薄膜を構成する金属粒子の焼結体組織の大きさに比較して小さいことが好ましい。
ここで、金属イオン移動防止膜を構成するチオール化合物またはスルフィド化合物は、導電体薄膜上において、1mg/m2〜1000mg/m2の被覆量であることが好ましく、さらに10mg/m2〜500mg/m2の被覆量であることがより好ましい。
なお、導電体薄膜上において加熱処理(例えば、230℃程度)された金属イオン移動防止剤(チオール化合物またはスルフィド化合物)は、後工程での溶媒を用いた洗浄においても導電体薄膜から剥離や離脱をすることがないため、吸着により導電体薄膜に強く結着していると想定される。
本発明に用いられる支持体(基板)としては、プラスチック製、ガラス製あるいはセラミック製のフィルムや板を用いることができる。
プラスチック製のフィルムおよび板に用いられる材料としては、ポリエステル類、ポリオレフィン類、ビニル系樹脂、その他の樹脂類が挙げられる。
ポリエステル類としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などが例示される。ポリオレフィン類としては、例えば、ポリプロピレン(PP)、ポリスチレン、ポリエチレン(PE)、EVAなどが例示される。ビニル系樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデンなどが例示される。その他の樹脂類としては、例えば、ポリカーボネート(PC)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などが例示される。セラミックとしては、例えば、アルミナ、シリカなどが例示される。
なお、基板としてのフィルムや板は、上記材料を単層構成としたものでも、2層以上を組み合わせて多層構成としたものでも構わない。基板としてガラス板をディスプレイ用途に用いる場合、強化層を設けた強化ガラスを用いることが好ましい。強化ガラスは、通常のガラス板に比べて破損防止能力が高く、万一の破損においても破砕破片が小さく、かつ端面も鋭利になることはないため安全製が高い。
ディスプレイ用途に用いる基板としては、PET、PEN、PE、PP、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデンやTAC等のプラスチックフィルム、またはプラスチック板が好ましく、特に透光性電磁波遮蔽膜用には光透過性や加工性などの観点からPETが好ましい。
プラスチックフィルムまたはプラスチック板を透明導電性フィルムとして用いる場合、基板の透明性が高いことが好ましい。通常、プラスチックフィルムまたはプラスチック板の全可視光透過率は70〜100%が好ましく、さらに好ましくは85〜100%であり、特に好ましくは90〜100%である。また、本発明では、前記プラスチックフィルムおよびプラスチック板に本発明の目的を妨げない程度に着色したものを用いることもできる。
〔導電体薄膜の形成〕
良く洗浄した無アルカリガラス基板に、導電体用溶液として固形分濃度40%の銀ナノ分散溶液ナノペースト(NPS−J:ハリマ化成社製等)を滴下し、スピンコート法にてナノ銀の塗膜を形成した。ガラス基板上の塗膜をホットプレート上にて100℃でプリベークした後、続いて200℃にて焼成し、銀ナノ粒子の焼結体から構成された導電体薄膜を形成した。形成した導電体薄膜の膜厚を触針法にて測定したところ、200〜250nmであった。
100℃でプリベーク後の銀ナノ粒子薄膜表面の走査型電子顕微鏡(SEM)観察写真を図1(a)に示す。また、200℃で焼成後の銀ナノ粒子薄膜表面のSEM観察写真を図1(b)に示す。
なお、導電体薄膜の表面濡れ性は、純水の接触角で50°であった(測定方法は、静的接触角法による)。
下記式(3)で表される4−フルオロベンゼンチオール(略称:4FBT)を、後述の予備実験に基づいて好適な濃度(1回の滴下処理の場合に好適な範囲)を選択してトルエン溶液中に添加し(9.5mモル/l)、スターラーで60分以上攪拌して完全に溶解し、金属イオン移動防止膜用塗工液を調製した。
金属イオン移動防止膜の形成における処理は次のように行った。
前記銀ナノ粒子の焼結体から構成された導電体薄膜全面を覆うように、金属イオン移動防止膜用塗工液(4FBTのトルエン溶液)を滴下して10分保持した後、スピンコート法にて延展し、余分な溶液を完全に飛ばした。この後、80℃のホットプレートにて加熱し、溶媒(トルエン)を気散させた。次いで、導電体薄膜上に4FBT薄膜を形成したガラス基板ごと、トルエン溶液に浸漬してよく洗浄した。洗浄後、ガラス基板ごとさらに80℃のホットプレートにて乾燥させた。
なお、蒸気トルエン溶液を用いた洗浄においても、4FBT薄膜が導電体薄膜から剥離や離脱をすることがなかった(吸着により導電体薄膜に強く結着していると想定される。)。
80℃での乾燥処理に続いて、導電体薄膜上に4FBT薄膜を形成したガラス基板ごと、不活性ガス中、230℃の温度で2時間ホットプレートにて焼成処理を行い電極・配線用導電体1を作製した。金属イオン移動防止膜の膜厚は、およそ0.02μmであった。
230℃で2時間焼成処理後の4−フルオロベンゼンチオール(4FBT)薄膜表面のSEM観察写真を図2に示す。図2で見られるように、4FBT薄膜中に凝集体構造が含まれており、この凝集体構造の大きさは、導電体薄膜を構成する銀ナノ粒子の焼結体組織の大きさに比較して小さいことがわかる。また、銀ナノ粒子の焼結体組織は、後述の比較例1を基準とした場合、これより大きい。下記表1に、銀ナノ粒子の焼結体組織の相対的な大きさと、凝集体構造の有無をまとめて示す。
実施例1において、金属イオン移動防止膜用塗工液に用いた4−フルオロベンゼンチオールを、下記式(4)で表されるジチオビス(1H、1H、2H、2H−パーフルオロデシルオキシ−ウンデカン)[Dithibis(1H,1H,2H,2H-perfluorodecyloxy-undecane)(略称:DFU)]に変えて用い、導電体薄膜上にDFU薄膜を形成した以外は実施例1と同様にして電極・配線用導電体2を作製した。金属イオン移動防止膜の膜厚は、およそ0.02μmであった。
図3で見られるように、DFU薄膜中に凝集体構造が含まれており、この凝集体構造の大きさは、導電体薄膜を構成する銀ナノ粒子の焼結体組織の大きさに比較して小さいことがわかる。また、銀ナノ粒子の焼結体組織は、後述の比較例1を基準とした場合、これより大きい。下記表1に、銀ナノ粒子の焼結体組織の相対的な大きさと、凝集体構造の有無をまとめて示す。
実施例1において、金属イオン移動防止膜を形成しない以外は実施例1と同様にして、電極・配線用導電体3を得た。即ち、実施例1と同様に無アルカリガラス基板上に導電体薄膜の形成を行った後、導電体薄膜を形成したガラス基板ごとトルエン溶液に浸漬してよく洗浄し、80℃のホットプレートにて乾燥させ後、不活性ガス中、230℃の温度で2時間ホットプレートにて焼成処理を行って比較の電極・配線用導電体得3を作製した。
実施例1において、金属イオン移動防止膜用塗工液に用いた4−フルオロベンゼンチオールを、下記式(5)で表される16−ホスホノヘキサデカン酸(略称:PHD)に変え、そのエタノール溶液を金属イオン移動防止膜用塗工液として用いたこと、および洗浄に用いたトルエンをエタノールに変えたこと以外は実施例1と同様にして電極・配線用導電体4を作製した。
実施例1において、金属イオン移動防止膜用塗工液に用いた4−フルオロベンゼンチオールを、下記式(6)で表される1,8−オクタンジホスホン酸(略称:ODP)に変え、そのエタノール溶液を金属イオン移動防止膜用塗工液として用いたこと、および洗浄に用いたトルエンをエタノールに変えたこと以外は実施例1と同様にして、電極・配線用導電体5を作製した。
実施例1において、金属イオン移動防止膜用塗工液に用いた4−フルオロベンゼンチオールを、MoO3(酸化モリブデン)に変え、その水溶液を金属イオン移動防止膜用塗工液として用いたこと、および洗浄に用いたトルエンを水に変えたこと以外は実施例1と同様にして、電極・配線用導電体6を作製した。
なお、実施例1,2における金属イオン移動防止膜用塗工液については、4−フルオロベンゼンチオール(4FBT)およびジチオビス(1H、1H、2H、2H−パーフルオロデシルオキシ−ウンデカン)(DFU)のそれぞれについて予備実験を行い、各化合物の添加濃度の異なる塗工液(トルエン溶液)を調製し、前記塗工液の滴下処理(1回の滴下処理)後に、乾燥処理(80℃)および焼成処理(230℃)を施して凝集体構造を形成する好適な濃度を選択して用いた。つまり、4FBTおよびDFUのいずれの場合も、0.05mモル/lから10mモル/lが、1回の滴下処理の場合に好適と言えることから実施例ではこの範囲の濃度を選択した。下記表2に、4FBTの場合を例にして、銀ナノ粒子の焼結体組織の相対的な大きさ(比較例1を基準とする)と、SEM観察に基づく凝集体構造の発生の有無をまとめて示す。なお、DFUの場合にも表2と同様の結果が得られた。
無アルカリガラス基板上に、実施例1と同様にして導電体用溶液を滴下し、スピンコート法にて銀ナノ粒子塗膜とした後、焼結処理により導電体薄膜を形成し、更にフォトリソ法による化学エッチングで図7に示すような、くし型形状の電極(くし型電極)を作製した。図7に示すくし型電極(1)は、電子回路の配線パターンを模擬した評価試験用のラインパターン電極(2)からなり、各ラインパターン電極のライン間は絶縁されている。ラインパターン電極(2)の両側端部には電圧印荷用の接続電極(3)が設けられている。
このくし型電極上に、実施例1と同様の金属イオン移動防止膜用塗工液[4−フルオロベンゼンチオール(4FBT)トルエン溶液]を実施例1と同様にして滴下処理して4FBT塗膜とした後、乾燥処理(80℃)および焼成処理(230℃)により金属イオン移動防止膜を設けて評価用のくし型電極を作製した。作製した評価用のくし型電極の表面抵抗値を、測定装置(アドバンテスト社製:R8340A)を用いて、直流10Vの電圧印加により測定した結果、1012Ω/□であった。
実施例3において用いた4−フルオロベンゼンチオール(4FBT)トルエン溶液を、ジチオビス(1H、1H、2H、2H−パーフルオロデシルオキシ−ウンデカン(DFU)トルエン溶液に変えて金属イオン移動防止膜を設けた以外は実施例3と同様にして、評価用のくし型電極を作製した。作製した評価用のくし型電極の表面抵抗値を、測定装置(アドバンテスト社製:R8340A)を用いて、直流10Vの電圧印加により測定した結果、1012Ω/□であった。
実施例3において、くし型電極上に金属イオン移動防止膜を設けず、銀ナノ粒子の焼結体から構成された導電体薄膜のラインパターン電極のみの評価用のくし型電極を作製した。作製した評価用のくし型電極の表面抵抗値を、測定装置(アドバンテスト社製:R8340A)を用いて、直流10Vの電圧印加により測定した結果、1012Ω/□であった。
実施例3において用いた4−フルオロベンゼンチオール(4FBT)トルエン溶液を、1,8−オクタンジホスホン酸(ODP)エタノール溶液に変えて金属イオン移動防止膜を設けた以外は実施例3と同様にして、評価用のくし型電極を作製した。作製した評価用のくし型電極の表面抵抗値を、測定装置(アドバンテスト社製:R8340A)を用いて、直流10Vの電圧印加により測定した結果、1012Ω/□であった。
実施例3、4、および比較例5、6で作製した評価用のくし型電極を用いて電極を構成する金属のイオンマイグレーション(マイグレーション)の発生試験を行った。
即ち、作製した評価用のくし型電極の接続電極端部(図中の黒い部分)に直流電源を接続し、60℃・90%の湿熱雰囲気下で、直流10Vの電流を継続的に(100時間)印加した。但し、絶縁特性の変化を調べるため、途中一時的に通電を中断して60℃・90%の雰囲気の環境条件から取り出し、アドバンテスト社製のR8340Aを用いて、直流10Vの電圧印加により表面抵抗値を測定した。
直流を連続的に通電することによってマイグレーションが発生すれば、くし型電極ラインパターン間の絶縁抵抗値が経時的に低下する。なお、マイグレーションが発生した場合、電極を構成する金属(銀)が樹状に成長してライン間を短絡し、絶縁破壊に至ることがある。
結果を下記表3に示す。表中の評価基準は下記による。
○:100時間後の表面抵抗値が1010Ω/□以上
△:100時間後の表面抵抗値が106Ω/□以上1010Ω/□未満
×:100時間後の表面抵抗値が106Ω/□未満
一方、比較例5のくし型電極上に金属イオン移動防止膜を設けない場合には、:表面抵抗値が106Ω/□未満と著しく低下しており、短時間でマイグレーションが発生し、金属イオン移動の大きいことがわかる。つまり、金属イオン移動防止膜を設けない比較例5では、導電体薄膜がマイグレーションを発生させやすい銀であり、かつ電極間の絶縁部が吸湿しやすい無アルカリガラス基板であることから、短時間でイオンマイグレーションが発生したものと考えられる。また、比較例6の1,8−オクタンジホスホン酸(ODP)を含有する金属イオン移動防止膜を設けた評価用のくし型電極の場合には、100時間後の表面抵抗値が106Ω/□以上1010Ω/□未満であり、金属イオン移動の抑制効果は十分ではない。従って、比較例5および比較例6では、電圧を掛けた状態での経時的マイグレーションにより絶縁抵抗が低下し、通電(絶縁破壊)していると判断される。
即ち、本発明の電極・配線用導電体は、電子・電気関連機器の各種導体として有用であり、例えば、半導体部品やこれらの部品を搭載した電気・電子回路基板等の電極や配線用材料として使用することができる。
2 ラインパターン電極
3 接続電極
Claims (6)
- 金属粒子の焼結体から構成された導電体薄膜上に、下記一般式(1)で表されるチオール化合物または下記一般式(2)で表されるスルフィド化合物から選択される少なくともいずれか一種の化合物を含有する金属イオン移動防止膜を設けてなる電極・配線用導電体であって、前記金属イオン移動防止膜中に凝集体構造が含まれていることを特徴とする電極・配線用導電体。
Ar−SH …(1)
[式(1)中、Arはベンゼン環を示し、置換基を有していてもよい。]
(A−R’−O−R−S)2 …(2)
[式(2)中、R’、Rはアルキレン基を示し、Aはフルオロアルキル基を示す。] - 前記一般式(1)で表されるチオール化合物が、下記式(3)で表される4−フルオロベンゼンチオールであることを特徴とする請求項1に記載の電極・配線用導電体。
- 前記一般式(2)で表されるスルフィド化合物が、下記式(4)で表されるジチオビス(1H、1H、2H、2H−パーフルオロデシルオキシ−ウンデカン)であることを特徴とする請求項1に記載の電極・配線用導電体。
- 前記金属粒子が金属ナノ粒子であることを特徴とする請求項1乃至3のいずれか1項に記載の電極・配線用導電体。
- 前記金属粒子が銀ナノ粒子であることを特徴とする請求項1乃至4のいずれか1項に記載の電極・配線用導電体。
- 前記凝集体構造の大きさが、前記導電体薄膜を構成する金属粒子の焼結体組織の大きさに比較して小さいことを特徴とする請求項1乃至5のいずれか1項に記載の電極・配線用導電体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011130290A JP5708284B2 (ja) | 2011-06-10 | 2011-06-10 | 電極・配線用導電体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011130290A JP5708284B2 (ja) | 2011-06-10 | 2011-06-10 | 電極・配線用導電体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012256802A JP2012256802A (ja) | 2012-12-27 |
JP5708284B2 true JP5708284B2 (ja) | 2015-04-30 |
Family
ID=47528094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011130290A Expired - Fee Related JP5708284B2 (ja) | 2011-06-10 | 2011-06-10 | 電極・配線用導電体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5708284B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102383625B1 (ko) * | 2013-12-20 | 2022-04-05 | 미쓰비시마테리알덴시카세이가부시키가이샤 | 은 피복 도전성 입자, 도전성 페이스트 및 도전성 막 |
JPWO2015146022A1 (ja) * | 2014-03-25 | 2017-04-13 | 国立大学法人山形大学 | 配線形成方法 |
KR102341438B1 (ko) * | 2014-06-24 | 2021-12-20 | 이데미쓰 고산 가부시키가이샤 | 도체 조성물 잉크, 도체, 적층체, 적층 배선 기판 및 전자 기기 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5651910B2 (ja) * | 2007-12-13 | 2015-01-14 | コニカミノルタ株式会社 | 透明導電膜、及び透明導電膜の製造方法 |
CN101974759A (zh) * | 2010-11-23 | 2011-02-16 | 海宁市科泰克金属表面技术有限公司 | 一种用于稀贵金属的后处理保护剂 |
JP2013120624A (ja) * | 2011-12-06 | 2013-06-17 | Ricoh Co Ltd | 導電性ペーストおよび導電性薄膜 |
-
2011
- 2011-06-10 JP JP2011130290A patent/JP5708284B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012256802A (ja) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7120973B2 (ja) | 融着ネットワークを有する透明導電性フィルムの形成のための金属ナノワイヤーインク | |
JP6644684B2 (ja) | 金属ナノワイヤおよびポリマーバインダーを主成分とする透明導電性コーティング、その溶液処理、およびパターン化方法 | |
JP5557005B2 (ja) | 導電性ペースト組成物およびその製造方法 | |
TWI607063B (zh) | 透明電極形成用傳導性墨水組成物 | |
WO2016160759A1 (en) | Noble metal coated silver nanowires, methods for performing the coating and stabilized transparent conductive films | |
JP4759271B2 (ja) | 複合粒子分散体および複合粒子分散体の製造方法 | |
KR20130110389A (ko) | 인쇄용 구리 페이스트 조성물 및 이를 이용한 금속패턴의 형성방법 | |
JP2011187194A (ja) | 導電性ペースト | |
JP5708284B2 (ja) | 電極・配線用導電体 | |
JP2006049148A (ja) | 導電性ペースト | |
JP2008097949A (ja) | 導電性ペースト | |
JP4908194B2 (ja) | 導電性インクとそれを用いた印刷配線基板とその製造方法 | |
TW202143254A (zh) | 導電性膜、及使用其之導電性膜捲筒、電子紙、觸控面板及平面顯示器 | |
KR20130019607A (ko) | 투명도전막 및 그 제조방법, 이를 구비한 전기소자 | |
US20170044383A1 (en) | Photonic sintering of a polymer thick film copper conductor composition | |
CN108140445B (zh) | 可焊接的聚合物厚膜铜导体组合物的光子烧结 | |
WO2024042872A1 (ja) | 導電性ペースト、電極、電子部品及び電子機器 | |
JP2001273816A (ja) | 導電性ペースト | |
WO2024043328A1 (ja) | 導電性ペースト、電極、電子部品及び電子機器 | |
JP2015183291A (ja) | 銀被覆銅粉及びこれを用いた導電性ペースト | |
JP2024031862A (ja) | 導電性ペースト、電極、電子部品及び電子機器 | |
JP2021034154A (ja) | 導電性組成物及びこれを用いた配線基板 | |
JP2001274535A (ja) | 銀マイグレーション防止方法 | |
JPH01320217A (ja) | マイグレーション防止剤及び電子回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140516 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150216 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5708284 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |