JP5686639B2 - ダイナミック型製氷システムおよびダイナミック型製氷方法 - Google Patents

ダイナミック型製氷システムおよびダイナミック型製氷方法 Download PDF

Info

Publication number
JP5686639B2
JP5686639B2 JP2011056291A JP2011056291A JP5686639B2 JP 5686639 B2 JP5686639 B2 JP 5686639B2 JP 2011056291 A JP2011056291 A JP 2011056291A JP 2011056291 A JP2011056291 A JP 2011056291A JP 5686639 B2 JP5686639 B2 JP 5686639B2
Authority
JP
Japan
Prior art keywords
strainer
water
ice making
ice
feed pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011056291A
Other languages
English (en)
Other versions
JP2012193871A (ja
Inventor
大介 三戸
大介 三戸
万尾 達徳
達徳 万尾
貴彦 三上
貴彦 三上
理亮 川上
理亮 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2011056291A priority Critical patent/JP5686639B2/ja
Publication of JP2012193871A publication Critical patent/JP2012193871A/ja
Application granted granted Critical
Publication of JP5686639B2 publication Critical patent/JP5686639B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本発明は、過冷却器で過冷却にした水を利用して連続的に氷を製造するダイナミック型製氷システムおよびダイナミック型製氷方法に関する。
過冷却器で水を過冷却状態にし、密閉配管内や蓄熱槽でその過冷却状態を解除させて、連続的にシャーベット状の氷を製造するダイナミック型製氷システムが知られている。このように過冷却水を利用したダイナミック型製氷システムでは、蓄熱槽から過冷却器にくみ出した水の中に僅かでも氷片が混入していると、水を過冷却状態まで冷却する過冷却器(熱交換器)内で相変化(凍結)が発生し、製氷運転を継続することができなくなる。このような事態を防止するために、次の特許文献1、2のように取水した水を加熱(予熱)する方法が提案されている。
即ち、特許文献1には、取水に含まれる氷粒子をフィルタで濾過し、フィルタ上流側に予熱回路を配置することでフィルタに補足された氷粒子を融解する技術が開示されている。また、特許文献2には、製氷運転と同時に躯体の予冷などを行い、躯体の予冷によって暖められた水を予熱の熱源に用いることで、予熱で失われる冷熱を有効利用し、システム全体の効率を改善する技術が開示されている。
更に、特許文献3には、蓄熱槽から過冷却器に水を供給する管路に設けられた送液ポンプの上流側に氷捕集用のフィルタを設置し、送液ポンプの下流側に設けられた主フィルタにおける氷の付着を防止する技術が開示されている。また、特許文献4には、蓄熱槽から過冷却器に水を供給する管路に設けられた送液ポンプの下流側に充填材を装填した通水容器を設置し、この通水容器で水の攪拌と滞在時間を確保することにより、氷を消去する技術が開示されている。
特許4514805号公報 特許第4369331号公報 実公平7−34267号公報 実用新案登録第2569297号公報
しかし、これら従来のものはいずれも取水を予熱する必要があった。この取水の予熱は、省エネルギーの観点からは加熱量を必要最小限にする必要がある一方で、僅かでも必要な加熱量を下回った場合には即座に凍結に至ってしまうことから、非常に精密な温度制御を要するという問題があった。
なお、予熱の熱源として躯体の予冷を行う場合には、必要最小量よりも多めの加熱量にしてもエネルギーの無駄は生じないため精密な温度制御は必ずしも必要ではないが、躯体蓄熱のための埋設配管や冷水搬送ポンプが別途必要となるだけでなく、負荷側の需要変動による製氷運転への悪影響を減じる対策も必要である。躯体蓄熱を予熱用の熱源に用いる場合、製氷システムと躯体蓄熱は基本的に別システムのため、負荷側(躯体蓄熱側)の事情によって躯体蓄熱が入り切りされてしまう可能性がある。例えば、躯体蓄熱を行う時間帯に建物を使用している人間がいた場合、躯体蓄熱運転を寒いと感じて一部のフロアで躯体蓄熱運転を止めてしまうと、躯体蓄熱によって得られる熱量が、予熱に必要な熱量を下回ってしまうことがあり、この場合、製氷運転では氷粒子流入による凍結が頻発する可能性がある。
本発明は、かかる点に鑑みてなされたものであり、ダイナミック型製氷システムの予熱を不要にして、システム全体の効率を大幅に改善するとともに、システム構成を簡略化する技術を提供することを目的とする。
前記の目的を達成するため、本発明によれば、過冷却器で水を過冷却状態にし、その過冷却状態を解除させて連続的にシャーベット状の氷を製造し、蓄熱槽に蓄熱するダイナミック型製氷システムであって、前記蓄熱槽から前記過冷却器に水を供給する管路に設けられた送液ポンプの下流側にストレーナを配置し、前記ストレーナは透過可能最大粒子径が既知のものを使用し、その透過可能最大粒子径と前記送液ポンプの出入口差圧に基づいて前記ストレーナから前記過冷却器までの水の滞在時間を設計され、前記送液ポンプの発熱の他に水を予熱しないことを特徴とする、ダイナミック型製氷システムが提供される。
前記ストレーナから前記過冷却器に至る管路部分における水の滞在時間tは、例えば下記式(1)に設定される。
t≧a×D/P (1)
但し、aは前記ストレーナの構造などによって決まる定数、Dは前記ストレーナの透過可能最大粒子径、Pは前記送液ポンプの出入口差圧である。
また、前記ストレーナは、例えばパンチング板からなる濾材、ディスクフィルタを備えている。
また本発明によれば、過冷却器で水を過冷却状態にし、その過冷却状態を解除させて、連続的にシャーベット状の氷を製造し、蓄熱槽に蓄熱するダイナミック型製氷方法であって、前記蓄熱槽から前記過冷却器に水を供給する管路に設けられた送液ポンプの下流側にストレーナを配置し、前記ストレーナは透過可能最大粒子径が既知のものを使用し、その透過可能最大粒子径と前記送液ポンプの出入口差圧に基づいて、前記ストレーナから前記過冷却器までの水の滞在時間が、前記ストレーナから前記過冷却器に至る間に、予熱せずに、前記送液ポンプのモータ発熱のみで氷を融解させることができる時間以上に設計されたことを特徴とする、ダイナミック型製氷方法が提供される。
本発明によれば、ダイナミック型製氷システムにおいて、蓄熱槽から過冷却器に供給される水を予熱せずに、過冷却器への氷片の混入を防止できるようになる。このため、省エネルギー化を図ることができ、また、予熱機構を省略することにより、システム構成を簡略化できる。
本発明の実施の形態にかかるダイナミック型製氷システムの説明図である。 氷粒子の融解モデルの説明図である。 本発明のダイナミック型製氷システムの運転例を示すグラフである。 数値限定例(パラメータ(D、θ、t)の組み合わせ例を示すグラフである。
以下、本発明の実施の形態について説明する。
図1は、本発明の実施の形態にかかるダイナミック型製氷システム1の説明図である。このダイナミック型製氷システム1は、蓄熱槽10内にシャーベット状の氷3を蓄えることによって大量の冷熱を蓄えるようにしたものであり、例えば夜間電力を利用して製氷運転を行い、蓄熱槽10に蓄えられた0℃の水が図示しない建物内の空気調和器群等に循環供給される。このダイナミック型製氷システム1は、例えば冷房シーズンにおいて活用される。
蓄熱槽10には水2が蓄えられている。蓄熱槽10の底部には管路11の一端11aが接続されている。管路11の他端11bは蓄熱槽10の上方において開口している。管路11には、送液ポンプ12、ストレーナ13、過冷却器14、伝播防止器15、過冷却の解除器16が順に設けられており、送液ポンプ12の稼動により、蓄熱槽10の底部において一端11aから管路11内に水2が引き込まれ、管路11内を通ってストレーナ13、過冷却器14、伝播防止器15、過冷却の解除器16の順に水2が流れて、管路11の他端11bからシャーベット状の氷3が放出される。
過冷却器14としては、例えばプレート式熱交換器が使用される。この過冷却器14では、図示しない冷凍サイクルで冷却されたブラインなどと熱交換が行われ、水2が0℃以下の一定の温度で過冷却される。
そして、この過冷却器14で0℃以下に過冷却された水2が解除器16に送液され、解除器16内で水2の過冷却状態が解除されてシャーベット状の氷3が製造される。解除器16は、例えば密閉室内において水2に超音波を加える方式であり、水2の過冷却状態を超音波で確実に解除して安定製氷を行うことができる。こうして解除器16で製氷されたシャーベット状の氷3が、蓄熱槽10の上方に開口した管路11の他端11bから放出され、蓄熱槽10内に蓄えられる。
なお、過冷却器14と解除器16の間には、超音波の伝播を妨げる伝播防止器15が介在している。このため、解除器16で加えられる超音波は伝播防止器15で遮断され、過冷却器14内における超音波に起因した凍結発生は防止される。
このように過冷却にした水2を利用したダイナミック型製氷システム1では、蓄熱槽10から管路11を通って過冷却器14にくみ出した水2の中に僅かでも氷片が混入していると、過冷却器14で水2を過冷却状態まで冷却する際に相変化(凍結)が発生し、製氷運転を継続することができなくなる。このような事態を防止するために、このダイナミック型製氷システム1にあっては、管路11において送液ポンプ12の下流側に配置されたストレーナ13として透過可能最大粒子径Dが既知のものを使用し、ストレーナ13の透過可能最大粒子径Dと送液ポンプ12の出入口差圧Pに基づいてストレーナ12から過冷却器14までの水の滞在時間tを設計する。この実施の形態にかかるダイナミック型製氷システム1では、ストレーナ13から過冷却器14に至る管路部分11cにおける水2の滞在時間tが、下記式(1)となるように設定されている。
t≧a×D/P (1)
ストレーナ13は、透過可能最大粒子径Dが既知のものとして、例えばパンチング板からなる濾材、フォトエッチングなどによって直径のそろった孔が開けられた濾材、ワイヤが等間隔に入ったメッシュからなる濾材、ディスクフィルタ(濾材)を備えている。デイスクフイルタとして、例えばドーナツ状の板に放射状に溝を彫ったものを多数積層させて濾材として使用する構成のArkal社ディスクフィルタが使用される。粒子径Dを超える氷粒子はストレーナ13ですべて捕捉される。このため、ストレーナ13から過冷却器14に至る管路部分11cには、粒子径Dを超える氷粒子は入り込むことがなく、管路部分11cには、粒子径D以下の氷粒子しか流入しないこととなる。
なお、不織布、紙や綿のように、繊維が絡まったもの、焼結体のように、粒子同士を融着させたもの、カイメンやスポンジなど不規則な細孔が入くんだ多孔質体などは、透過可能最大粒子径Dが不定であるので、本発明のストレーナ13には不適当である。
ストレーナ13から過冷却器14に至る管路部分11cは、管路11の内、ストレーナ13と過冷却器14の間に位置する部分である。送液ポンプ12の稼動により、蓄熱槽10から管路11内を循環して再び蓄熱槽10に戻される水2は、その途中で、ストレーナ13を出た後、この管路部分11cを通過して、過冷却器14に供給される。管路部分11cにおける水2の滞在時間tとは、ストレーナ13を出た後から過冷却器14に供給されるまでの間の時間であり、その間、水2は管路部分11cに滞在している。
式(1)において、aはストレーナ13の構造などによって決まる定数であり、氷粒子形状などの不確定要因を補正するための定数である。この定数aは、予め実験で求めておく。氷粒子形状などの不確定要因は、フィルタの開口形状が例えば四角形であったりするために、実際の氷粒子が完全な球からずれることが原因であるが、その値(定数a)は氷粒子の観察結果から決定するのではなく、製氷実験を通じたフィッティングにて求める。例えば、使用するストレーナ13を確定した後にさまざまな運転条件で製氷実験を行い、安定運転ができた(P、D、t)の組み合わせから式(1)を用いてaを求め、この値(定数aの最小値)を設計に用いる。
式(1)において、Pは送液ポンプ12の出入口差圧によって決まる定数である。本発明では、ストレーナ13から過冷却器14に至る管路部分11cにおいて、送液ポンプ12の発熱を利用して水2を昇温させ、管路部分11cにおいて氷粒子を融解させる。送液ポンプ12による発熱は、送液ポンプ12の出入口差圧P(送液ポンプ12が水2に与えた仕事)だけで決まる。なお、これ以外の要因で水温が上昇しても(例えば保温からの漏れ熱や、モーターの発熱)、氷粒子融解への悪影響は無く、製氷運転が不安定化することはない。
滞在時間tは、送液ポンプ12の発熱を利用して管路部分11cにおいて氷粒子を融解させ、過冷却器14への氷粒子混入を回避できる時間であり、式(1)で求められる。本発明のダイナミック型製氷システム1の設計方法は以下の手順になる。
(手順1)ストレーナ13の透過可能最大粒子径Dを決定する。(例えば透過可能最大粒子径D=100μm)
(手順2)送液ポンプ12の出入口差圧Pと透過可能最大粒子径Dから、管路部分11cにおける水2の滞在時間tを決定する。
なお上述したように、式(1)の定数aは、ストレーナ13の構造などの不確定要因を補正するための定数であり、予め実験で求めておく。
滞在時間tを所定のものにするためには、管路部分11cの全長はそのままで、管径を太くする、管路部分11cの太さはそのままで、全長を長くする、管路部分11cの途中にタンクを設ける、などの方法が考えられる。
ダイナミック型製氷システム1において、蓄熱槽10から管路11に取水された0℃の水2には大小さまざまな大きさの氷粒子が混入する。この水2は送液ポンプ12を通過する際に、ポンプ発熱によって僅かに上昇する。水2の液相の温度上昇幅は、送液ポンプ12の軸動力や、モータ発熱がどの程度水に伝わるかによって決まるが、概ね0.05〜0.1℃である。
この0℃から僅かに昇温した水2(液相)と氷粒子との混合物は、次に、送液ポンプ12下流に配置されたストレーナ13に流入する。本発明で使用するストレーナ13は濾材の透過可能最大粒子径Dが均一あるいは、透過可能最大粒子径Dが予めわかっているものを使用するため、透過可能最大粒子径D以下の氷粒子はストレーナ13の濾材を透過するが、透過可能最大粒子径Dよりも大きな氷粒子はストレーナ13の濾材に捕捉される。しかし、水2の液相温度は0℃よりも僅かに高いため、ストレーナ13の濾材に補足された氷粒子は濾材表面で融解し、透過可能最大粒子径D以下になったところで濾材を透過する。
以上の結果、ストレーナ13を通過した後の氷粒子の粒度分布は、透過可能最大粒子径Dを最大値とする分布となる。なお、ストレーナ13の濾材に多孔質材など、開口径に分布があり透過可能最大粒子径Dが定まらないものを使った場合には、本発明のような作用は得られない。この理由は、たとえ1個でも想定を超える大きさの開口が存在すると、そこを通過した氷粒子は想定を超える大きさになる可能性があり、所定の滞在時間t内で消滅せずに過冷却器14に到達することがあるからである。
次に、最大粒子径がわかっている氷粒子(透過可能最大粒子径D)が、送液ポンプ12の発熱によって僅かに温度上昇した水2の中で融解・消滅するまでの時間について、簡単なモデルを用いて説明する。
氷の粒子形状を球と仮定し、氷粒子への伝熱が熱伝導だけであるとすると氷粒子が消滅するまでの時間は下式で表される。
Figure 0005686639
(D0初期粒子直径、ρi:氷の密度、L:氷の融解線熱、λ:水の熱伝導率、θ:液相の温度)
実際には、フィルタを通過する氷粒子は完全な球ではないため、設計の際は下式のように定数bを用いてその影響を補正する必要がある。
Figure 0005686639
上式からは、初期粒子直径が大きいほど消滅に要する時間は多く必要であることがわかるが、前述のように本発明ではストレーナ13下流側での氷粒子の粒度分布はストレーナ13の濾材の透過可能最大粒子径Dを最大値とする分布であるので、濾材の透過可能最大粒子径Dを使ってストレーナ13から過冷却器14までの管路部分11cの滞在時間tを設計すれば、過冷却器14に到達する前に濾材を透過する氷粒子を全て融解させて消滅させることができる。
なお、液相の温度θと0℃の取水との温度差は、ポンプ軸動力Wが全て熱に変化したものによるとすると、以下の式で表される。
Figure 0005686639
(Q:体積流量、P:ポンプ出入口差圧、ρ:水の密度、c:水の比熱)
以上の原理により、式(1)を使ってストレーナ13から過冷却器14に至る管路部分11cの滞在時間tを設計すれば予熱を行うことなく安定的に製氷運転を行うことができる。本発明では従来システムのような予熱が不要であり、予熱に伴うエネルギーロスが生じない。また、これまで予熱に必要であったポンプや熱交換器、さらには、温度制御のための自動制御も不要にすることができる。なお、送液ポンプ12のモータ発熱で昇温した水12の温熱で氷粒子を全て融解させられるように、少なくとも送液ポンプ12の吐出部から過冷却器14に至るまでの間は管路11を、例えば発泡性ポリスチレンフォームなどの断熱材で被覆することが望ましい。または、周囲温度がモータ発熱で昇温した水2の水温と同じもしくは高いときはあえて断熱せず管路11を露出することができる。また、微細氷の融解は送液ポンプ12で送液された水2の乱流により行われる。
なお、実際の設計を考えた場合、ストレーナ13の透過可能最大粒子径Dは小さいほど管路部分11cの滞在時間を小さくできる半面、ストレーナ13の開口は水2中の異物によって詰まりやすくなる。透過可能最大粒子径Dを小さく設定しつつ、このような悪影響が出にくいストレーナ13としては、例えばドーナツ状の板(以降ドーナツ板と表記)に放射状に溝を彫ったものを多数積層させて濾材として使用する、いわゆるディスクフィルタが挙げられる。ディスクフィルタは、ドーナツ板の表面に正確な寸法で彫られた溝がドーナツ板の積層面でネットワーク流路を形成する構造となっているため、流路が異物で塞がれてもその異物を避けるような流路が多数存在する。このためパンチング板のように、閉塞した穴の数に単純に比例して有効開口が減少することはない。以上の理由から、本発明で使用するストレーナ13は、ディスクフィルタがより好適である。
この場合、ディスクフィルタの材質には、熱伝導率の大きな金属を使用することが望ましい。これにより、氷粒子がディスクフィルタの溝を通過する際に、液相によって暖められたディスクが氷粒子と接触することで融解促進する効果が得られる。また、ディスクフィルタ上に刻まれた溝が、ディスク内表面から外表面に向かってジグザクと折れ曲がった経路となっていることが望ましい。これにより、細長い氷粒子がディスクを透過することを防止することで、定数aを最小にする効果が得られる。また、送液ポンプとして、モータが配管内に配置された構造を有するポンプ(いわゆるバレルドポンプ)を使用することが望ましい。これにより、モータ発熱がほぼ全量水に伝わるため、氷粒子の融解を促進する効果が得られる。また、ストレーナ下流の配管経路を蛇行させることが望ましい。これにより、撹拌による氷粒子の融解促進効果が得られる。
ここで、氷粒子の融解モデルを説明する。以下の仮定1、2とする。
「仮定1」氷粒子の形状を球と仮定する
(体積あたりの表面積が最も小さいため融解しにくく、設計上安全側の仮定)
「仮定2」氷粒子まわりの流れを無視し、氷粒子への入熱は熱伝導のみ考慮する
(物質移動を伴う入熱を無視するため融解しにくく、設計上安全側の仮定)
「氷粒子まわりの温度分布」
図2に示すように、初期半径s=r0(直径D0=2r0)の氷粒子が温度θ0の水中にあるとする。この時氷粒子周りの半径rの空間を考え、r=rでの温度をθ0、氷粒子表面温度をTfとすると、中空球(外面=r、内面r=s)での定常温度分布は(2)式で表される。
Figure 0005686639
ここで、Tf=0℃(氷水界面温度)より、(2)式は
Figure 0005686639
さらにr→∝とすると、
Figure 0005686639
よって氷粒子まわりの温度分布は式(5)となる。
Figure 0005686639
「氷粒子粒子径の時間変化」
氷の融解と熱流入のバランスから
Figure 0005686639
ここにλ:水の熱伝導率、ρi:氷の密度、L:氷の融解潜熱である。
式(5)より
Figure 0005686639
から、氷粒子表面での温度勾配は
Figure 0005686639
これを式(6)に代入して定積分(t=0でr=r0)すると
Figure 0005686639
「氷粒子融解時間」
式(8)でs=0とおくと式(9)が得られる。
Figure 0005686639
図3に、本発明のダイナミック型製氷システムの運転例を示す。用いたストレーナの透過可能最大粒子径Dは55μm、ストレーナから過冷却器までの滞在時間tは6sec(理論最小滞在時間=4sec)である。過冷部入口温度は0.05℃まで低下した。なお、用いた温度計は氷水を用いて誤差±0.01℃以下に校正してある。予熱0、過冷度3K、連続10時間の運転データである。過冷却水温度が一部変動しているのは冷凍機のブライン温度制御による。
図4に、数値限定例(パラメータ(D、θ、t)の組み合わせ例を示す。D=100μmの濾材(ストレーナ)を使用した場合を示す。滞在時間t=15秒、5秒、3秒で製氷実験を行い、それぞれのtの条件下で10時間以上凍結しないポンプ発熱の最小値を調べたものである。図中の波線は、補助線として、t・θ=1.1の曲線を示したものであるが、この曲線は実験結果の傾向と良く合っていることがわかる。このことから、ストレーナの構造が決まれば式(1)の定数aが定まることがわかる。なお、この図より、D=100μmの場合は、この破線の上方または右側となるようにtとθを選べば、予熱0の製氷運転が実現できる。
本発明は、例えば氷蓄熱を利用して冷房運転を行う空調分野に有用である。
1 ダイナミック型製氷システム
2 水
3 氷
10 蓄熱槽
11 管路
11a 一端
11b 他端
11c 管路部分
12 送液ポンプ
13 ストレーナ
14 過冷却器
15 解除器
16 伝播防止器

Claims (4)

  1. 過冷却器で水を過冷却状態にし、その過冷却状態を解除させて、連続的にシャーベット状の氷を製造し、蓄熱槽に蓄熱するダイナミック型製氷システムであって、
    前記蓄熱槽から前記過冷却器に水を供給する管路に設けられた送液ポンプの下流側にストレーナを配置し、
    前記ストレーナは透過可能最大粒子径が既知のものを使用し、その透過可能最大粒子径と前記送液ポンプの出入口差圧に基づいて前記ストレーナから前記過冷却器までの水の滞在時間を設計され、前記送液ポンプの発熱の他に水を予熱しないことを特徴とする、ダイナミック型製氷システム。
  2. 前記ストレーナから前記過冷却器に至る管路部分における水の滞在時間tが、下記式(1)に設定されたことを特徴とする、請求項1に記載のダイナミック型製氷システム。
    t≧a×D/P (1)
    但し、aは前記ストレーナの構造などによって決まる定数、Dは前記ストレーナは透過可能最大粒子径、Pは前記送液ポンプの出入口差圧である。
  3. 前記ストレーナは、パンチング板からなる濾材またはディスクフィルタを備えることを特徴とする、請求項1または2に記載のダイナミック型製氷システム。
  4. 過冷却器で水を過冷却状態にし、その過冷却状態を解除させて、連続的にシャーベット状の氷を製造し、蓄熱槽に蓄熱するダイナミック型製氷方法であって、
    前記蓄熱槽から前記過冷却器に水を供給する管路に設けられた送液ポンプの下流側にストレーナを配置し、
    前記ストレーナは透過可能最大粒子径が既知のものを使用し、
    その透過可能最大粒子径と前記送液ポンプの出入口差圧に基づいて、前記ストレーナから前記過冷却器までの水の滞在時間が、前記ストレーナから前記過冷却器に至る間に、予熱せずに、前記送液ポンプのモータ発熱のみで氷を融解させることができる時間以上に設計されたことを特徴とする、ダイナミック型製氷方法。
JP2011056291A 2011-03-15 2011-03-15 ダイナミック型製氷システムおよびダイナミック型製氷方法 Active JP5686639B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056291A JP5686639B2 (ja) 2011-03-15 2011-03-15 ダイナミック型製氷システムおよびダイナミック型製氷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056291A JP5686639B2 (ja) 2011-03-15 2011-03-15 ダイナミック型製氷システムおよびダイナミック型製氷方法

Publications (2)

Publication Number Publication Date
JP2012193871A JP2012193871A (ja) 2012-10-11
JP5686639B2 true JP5686639B2 (ja) 2015-03-18

Family

ID=47085931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056291A Active JP5686639B2 (ja) 2011-03-15 2011-03-15 ダイナミック型製氷システムおよびダイナミック型製氷方法

Country Status (1)

Country Link
JP (1) JP5686639B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183266B2 (ja) 2018-06-12 2022-12-05 株式会社ブリヂストン 金属コード、金属コード-ゴム複合体およびコンベヤベルト

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022879B2 (ja) * 2011-10-05 2016-11-09 高砂熱学工業株式会社 製氷安定方法及び氷製造装置
CN110204081A (zh) * 2019-07-11 2019-09-06 南京慧城水处理设备有限公司 手动电动自转换净水器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153105A (en) * 1975-04-23 1979-05-08 U.S. Philips Corporation Reversible latent heat storage method, and reversible latent heat accumulator
US4671077A (en) * 1985-08-13 1987-06-09 Paradis Marc A Ice-maker heat pump using water supercooling
US5065598A (en) * 1989-09-05 1991-11-19 Mitsubishi Denki Kabushiki Kaisha Ice thermal storage apparatus
JPH04222374A (ja) * 1990-04-18 1992-08-12 Daikin Ind Ltd 製氷装置
JPH06207727A (ja) * 1993-01-11 1994-07-26 Toyo Netsu Kogyo Kk 氷蓄熱装置
JP3178641B2 (ja) * 1993-10-27 2001-06-25 株式会社荏原製作所 サブマージドモータポンプ
JP3388931B2 (ja) * 1995-03-15 2003-03-24 東芝キヤリア株式会社 氷蓄熱空調システム
JP2569297Y2 (ja) * 1996-12-27 1998-04-22 高砂熱学工業株式会社 空調用氷蓄熱装置
JP2005188896A (ja) * 2003-12-26 2005-07-14 Ishikawajima Harima Heavy Ind Co Ltd 氷蓄熱方法及び氷蓄熱装置
JP2005300045A (ja) * 2004-04-13 2005-10-27 Kansai Electric Power Co Inc:The 氷蓄熱装置
JP4565951B2 (ja) * 2004-09-30 2010-10-20 関西電力株式会社 ブラインの過冷却による製氷装置の氷核除去方法および同方法を用いた製氷装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183266B2 (ja) 2018-06-12 2022-12-05 株式会社ブリヂストン 金属コード、金属コード-ゴム複合体およびコンベヤベルト

Also Published As

Publication number Publication date
JP2012193871A (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5686639B2 (ja) ダイナミック型製氷システムおよびダイナミック型製氷方法
EP3189294B1 (en) Refrigeration or thermal energy storage system by phase change materials
WO2009065182A1 (en) Heat storage
JP5854613B2 (ja) 潜熱蓄熱貯湯槽及び給湯装置
JP2008020177A (ja) 蓄熱システム
JP2017502251A (ja) 流体処理装置および流体流れを加熱または冷却する方法
CN109802195A (zh) 电池系统及其温度控制方法
JP2004087301A (ja) 燃料電池装置
JP2009006395A (ja) 排熱回収方法及び排熱回収装置
US20160332506A1 (en) Motor vehicle heat transfer system
JP5824350B2 (ja) 海水・河川水からの採熱システムおよび採熱方法
JP2009168445A (ja) 氷蓄熱方法
JP5019355B2 (ja) 多成分系混合溶液の共晶点を利用した蓄熱システム及び冷却システムにおける浮遊性結晶製造機の管壁温度制御方法
EP2823243B1 (en) Cooling system and a method for separation of oil
JP4565951B2 (ja) ブラインの過冷却による製氷装置の氷核除去方法および同方法を用いた製氷装置
JP2006183970A (ja) 蓄熱装置
JP3811845B2 (ja) 空調用氷蓄熱装置
KR100487799B1 (ko) 냉장고의 디스펜서용 히팅장치
JP5908877B2 (ja) 熱利用方法
DK178864B1 (en) Faseændringsmateriale-baseret varmesystem
JP2004085008A (ja) 水和物スラリ製造システムおよびその運転方法
JP2007101168A (ja) 熱交換装置
US4993486A (en) Heat transfer loop with cold trap
JP2577156B2 (ja) プレート型熱交換器を用いた製氷方法
CN116222047A (zh) 过冷却水制备系统及具有其的制冰系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150120

R150 Certificate of patent or registration of utility model

Ref document number: 5686639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150