JP5636439B2 - 電動二輪車 - Google Patents

電動二輪車 Download PDF

Info

Publication number
JP5636439B2
JP5636439B2 JP2012545550A JP2012545550A JP5636439B2 JP 5636439 B2 JP5636439 B2 JP 5636439B2 JP 2012545550 A JP2012545550 A JP 2012545550A JP 2012545550 A JP2012545550 A JP 2012545550A JP 5636439 B2 JP5636439 B2 JP 5636439B2
Authority
JP
Japan
Prior art keywords
current
electric motor
regenerative
value
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012545550A
Other languages
English (en)
Other versions
JPWO2012070105A1 (ja
Inventor
普 田中
普 田中
秀樹 白澤
秀樹 白澤
鈴木 秀彰
秀彰 鈴木
孝幸 渥美
孝幸 渥美
秀樹 松枝
秀樹 松枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of JPWO2012070105A1 publication Critical patent/JPWO2012070105A1/ja
Application granted granted Critical
Publication of JP5636439B2 publication Critical patent/JP5636439B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/003Dynamic electric braking by short circuiting the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、三相交流電動モータが発生する駆動力を駆動輪に伝達するように構成された電動二輪車に関する。
特許文献1は、バッテリを電源とする電動モータで車輪を駆動し、かつ、回生制動により前記バッテリを充電するようにした電動車両の運転制御装置を開示している。この運転制御装置は、アクセル開度、車速等の運転情報に基づいて、走行モードか制動モードかを判断する。運転制御装置は、制動モードのときに、電動モータを発電領域で動作させる回生動作を行う。回生動作においては、アクセル開度および車速に応じた回生電流指令値が求められ、この指令値に基づいてモータドライブ回路が駆動される。
特開平11−215610号公報(段落0018)
特許文献1に記載された先行技術は、アクセル開度および車速に応じて回生電流指令値が設定されるので、十分な回生量を確保できないおそれがある。
本願発明者は、この課題を解決するために、回生電流指令値をアクセル開度および車速によらずに一定に保つことを考えた。しかし、本願発明者は、この解決策が別の課題を伴うことに気づいた。すなわち、電動モータの減速に伴う制動トルクの増大である。具体的に説明すると、回生電流指令値を一定に保持した状態で電動モータの回転速度が減少すると、それに応じて制動トルクが大きくなる。そのため、このような構成を電動二輪車に適用すると、ライダーは減速時に制動トルクの変化を強く感じるから、乗車フィーリングが悪くなる。
したがって、電動二輪車において、十分な回生量を確保し、かつ制動トルクの変化を小さくして乗車フィーリングを向上することは、本願発明者によって見出された未解決の課題である。
この発明は、駆動輪を有する電動二輪車を提供する。この電動二輪車は、バッテリと、三相交流電動モータと、前記バッテリから前記電動モータへの電流供給を制御するモータコントローラと、ライダーによって操作されるアクセル操作子と、前記アクセル操作子の操作量を検出するアクセル操作検出手段と、ライダーによって操作されるブレーキ操作子と、前記ブレーキ操作子の操作の有無を検出するブレーキ操作検出手段とを含む。前記電動モータは、界磁の強さを変化させる界磁可変手段を有し、前記バッテリから電流が供給されたときに前記駆動輪に伝達すべき駆動力を発生し、前記駆動輪が外力によって回転されたときに回生電流を発生するように構成されている。前記モータコントローラは、前記アクセル操作検出手段によって予め定めるアクセル操作が検出されたとき、および前記ブレーキ操作検出手段によって前記ブレーキ操作子の操作が検出されたときに、前記電動モータが発生する回生電流を前記バッテリに供給する回生動作を実行する回生制御手段と、前記アクセル操作検出手段によって予め定めるアクセル操作が検出されたときに前記回生電流の最大値である最大回生電流を予め定める第1の一定値に設定し、前記ブレーキ操作検出手段によって前記ブレーキ操作子の操作が検出されたときに前記最大回生電流を予め定める第2の一定値に設定する回生量設定手段とを含む。
この構成によれば、予め定めるアクセル操作が検出されると、最大回生電流が第1の一定値に設定される。また、ブレーキ操作子の操作が検出されると、最大回生電流が第2の一定値に設定される。これにより、予め定めるアクセル操作およびブレーキ操作子の操作に応じて、それぞれ一定の最大回生電流が設定されるので、十分な回生量を確保できる。一方、電動モータは、界磁可変手段を備えていて、その界磁の強さを変化させることができる。したがって、回生動作時に電動モータが発生する制動トルクは、界磁可変手段によって界磁の強さを変化させることによって調整できる。たとえば、電動モータの回転速度に応じて界磁の強さを変更することにより、制動トルクを適切に調整することができる。したがって、一定の回生電流を確保しながら電動モータを減速させるときに、その減速に応じて電動モータの界磁の強さを変化させていけば、制動トルクの変化を緩やかにすることができる。これにより、十分な回生量を確保しつつ、制動トルクの変化を小さくして、乗車フィーリングを向上できる。十分な回生量を確保できることにより、一回のバッテリ充電での走行距離を長くできる。
前記予め定めるアクセル操作は、アクセル操作子の操作量(アクセル操作量)を零にする操作であってもよい。これにより、アクセル操作量を零にすることによって、回生電流が第1の一定値に制御され、それに応じた制動力が得られる。
この発明の一実施形態では、前記第1の一定値が前記第2の一定値よりも小さい。この構成によれば、ブレーキ操作をしたときに電動モータが発生する制動トルクが、予め定めるアクセル操作が行われたときの制動トルクよりも大きくなる。これにより、ブレーキ操作時には、電動モータが大きな制動トルクを発生するので、ライダーの意図に対応した大きさの制動トルクを発生させることができる。また、最大回生電流が大きな値に設定されることによって、電動モータの運動エネルギーをバッテリの充電のために効率的に利用することができる。これにより、エネルギー効率を高めることができ、一回のバッテリ充電での走行距離を長くできる。
この発明の一実施形態では、前記電動二輪車の走行速度を検出する車速検出手段をさらに含み、前記回生制御手段は、前記車速検出手段が予め定める車速閾値またはそれよりも低い車速を検出したときに、車速が低いほど回生電流を小さくする。この構成によれば、車速閾値またはそれよりも低い低車速領域では、低速になるほど回生電流が少なくなり、それに応じて電動モータが発生する制動トルクが小さくなる。これにより、低速走行時の制動感を緩和できるので、より自然な乗車フィーリングを実現できる。
内燃機関および電動モータを駆動源とするハイブリッド車両においては、エンジンブレーキがよく効く低速の変速段のときに、電動モータの回生量を小さくして、円滑な走行を実現することが考えられるかもしれない。しかし、このような構成は、専ら電動モータを駆動源とする電動二輪車において採用可能な構成ではなく、車速に応じて回生電流を変化させる構成とは異なる。
また、ハイブリッド車両においては、エンジンストールを回避するために、エンジンの回転速度が低いときに回生トルクを小さくすることが考えられるかもしれない。しかし、このような構成は、エンジンストールを考慮する必要のない電動二輪車においては、通常は採用され得ない。なぜなら、エンジンストールを考慮する必要がなければ、回生電流をできるだけ大きくしてエネルギー利用効率を高めるべきだからである。
電動二輪車において、低車速領域では車速が低いほど回生電流を小さくする構成は、低速走行時の制動感を緩和するという新たな課題の発見に基づく。したがって、ハイブリッド車両における前述のような課題から示唆される構成ではない。
なお、電動二輪車の車速が前記電動モータの回転速度に対応している(たとえば比例している)場合には、前記車速検出手段は、前記電動モータの回転速度を検出する回転速度検出手段であってもよい。
この発明の一実施形態では、前記回生制御手段は、前記車速検出手段が予め定める低速閾値またはそれよりも低い車速を検出したときに、前記回生電流を零にする。この構成によれば、車速が低速閾値以下になると、回生電流が零になる。これにより、電動モータは制動トルクを発生しなくなるから、極低速域において、より自然な乗車フィーリングを実現できる。車速の検出を電動モータの回転速度の検出で代替する場合には、その回転速度が予め定める低速閾値またはそれよりも低い極低速域において、回生電流を零に制御すればよい。
この発明の一実施形態では、前記電動二輪車は、前記電動モータの回転速度を検出する回転速度検出手段をさらに含む。また、前記モータコントローラは、前記回転速度検出手段によって検出される回転速度に応じて前記界磁可変手段を制御する界磁制御手段をさらに含む。そして、前記回生制御手段は、前記電動モータの界磁の強さおよび前記回生量設定手段によって設定される前記最大回生電流に応じて、前記電動モータに流すべき電流指令値を設定する電流指令値設定手段を含み、前記電流指令値に応じて前記電動モータへの電流供給を制御する。
この構成によれば、電動モータの回転速度に応じて電動モータの界磁の強さが制御される。これにより、たとえば、低速回転域では界磁を強めて低速トルクを大きくしたり、高速回転域では界磁を弱めて高速回転を可能としたりすることができる。回生動作時には、電動モータの界磁の強さおよび達成すべき回生電流に応じて、電流指令値が設定される。これにより、電動モータの回転速度の変化に応じて界磁の強さが変化していき、その変化に応じて回生電流を一定に保つように電流指令値が設定される。電動モータが発生するトルクは、電流指令値にほぼ比例するから、結果として、緩やかに変化する制動トルクが得られることになる。制動トルクの緩やかな変化は、ライダーに優れた乗車フィーリングを提供する。
前記モータコントローラは、前記電流検出手段によって検出される検出電流と電流指令値との偏差に応じて前記電動モータをフィードバック制御するように構成されていることが好ましい。これにより、検出電流が電流指令値に追従するように電動モータへの電流供給が制御されるので、回生動作時において、十分な回生量を確保できる。
図1は、この発明の一実施形態に係る電動二輪車の左側面図である。 図2は、前記電動二輪車の後部の右側面図である。 図3は、前記電動二輪車に備えられたスイングユニットの分解斜視図であり、スイングユニットを右斜め後方から視た状態を示している。 図4は、前記スイングユニットおよび後輪の一部断面図であり、スイングユニットおよび後輪を上方から見た状態を示している。 図5は、スイングユニットの一部を分解した状態を示す右側面図であり、電動モータのロータおよび第1ステータを取り外した状態を示している。 図6は、電動モータの右側面図であり、ロータを取り外した状態を示す。 図7は、第2ステータの断面図であり、第2ステータを周方向に沿って切断した断面を示している。 図8Aおよび図8Bは、第2ステータを変位(モータ軸まわりに回動)させることに伴う電動モータの出力の特性の変化を説明するための主要部の図解図である。 図9は、電動モータおよびステータ駆動装置の制御に関連する電気的構成を示すブロック図である。 図10は、モータコントローラに備えられたCPUの機能を説明するためのブロック図である。 図11は、q軸上限電流値の参照マップの一例である。 図12は、d軸上限電流値およびd軸下限電流値の参照マップの一例である。 図13は、目標ギャップ演算部が参照する目標ギャップマップの一例を示す。 図14は、短絡/解除処理部によって参照される短絡閾値マップの一例を示す。 図15は、短絡/解除処理部による短絡実行判断処理を説明するためのフローチャートである。 図16は、3相短絡処理およびその解除処理を説明するためのフローチャートである。 図17A〜17Dは、各相の短絡状態を解除するタイミングを説明するための原理図である。 図18は、回生量設定部の処理を示すフローチャートである。 図19は、電動モータの回転速度と回生動作時におけるq軸電流指令値(回生電流指令値)との関係を示す。 図20は、回生時におけるギャップの制御による効果を説明するための図である。 図21は、電動モータの回転速度と回生動作時におけるd軸電流指令値(弱め界磁制御のための電流指令値)との関係を示す。 図22は、電動モータの回転速度と回生動作時に電動モータが発生する制動トルクとの関係を示す。 図23は、電動モータの回転速度と回生動作時における目標ギャップとの関係を示す。 図24は、電動モータの回転速度と回生動作時にバッテリに回生される回生電流(バッテリ電流)との関係を示す。 図25は、ブレーキ操作をすることなくアクセル開度を零とした場合の測定データ例を示す。 図26は、アクセル開度を零とし、かつブレーキ操作を行った場合(ブレーキ装置の機械的制動力が作用していない場合)の測定データ例を示す。 図27は、アクセル開度を零とし、かつブレーキ操作を行った場合(ブレーキ装置の機械的制動力が作用している場合)の測定データ例を示す。
図1は、この発明の一実施形態に係る電動二輪車1の左側面図である。電動二輪車1は、この実施形態では、スクータタイプの車両である。この電動二輪車1は、前部および後部に荷物を載せて走行することが可能であり、荷役車両としての用途に適している。
以下の説明における前後、上下および左右の各方向は、電動二輪車1が水平面を直進走行している状態に相当する基準姿勢にあり、かつライダー(運転者)が前方を向いているときの当該ライダーの視点を基準とする。また、垂直に起立し、前輪3および後輪4が路面A1に接地し、かつ、ライダーが乗車していない状態の電動二輪車1を基準として、電動二輪車1の構成を説明する。
電動二輪車1は、車体フレーム2、前輪3、後輪4、電動モータ5、バッテリ6および車体カバー7を備えている。電動二輪車1は、バッテリ6から供給される電力によって、電動モータ5を駆動し、電動モータ5の出力によって駆動輪としての後輪4を駆動する。
電動二輪車1は、この電動二輪車1の前上部に配置されたヘッドパイプ8を有している。ヘッドパイプ8内には、ステアリング軸9が回動自在に挿入されている。ステアリング軸9の下端部には、左右一対のフロントフォーク10が取り付けられている。前輪3は、フロントフォーク10に取り付けられている。
ステアリング軸9の上端部には、ハンドル11が取り付けられている。ライダーは、ハンドル11を操作することにより、ステアリング軸9、フロントフォーク10および前輪3をステアリング軸9の軸線回りに回すことが可能である。
ハンドル11の左右両端部には、それぞれ、グリップ12が設けられている(左側のグリップのみを図示)。右側のグリップはアクセルグリップ(アクセル操作子)を構成している。ライダーは、このアクセルグリップを回すことにより、電動モータ5の出力を調整することが可能である。左右のグリップ12の各前方には、ブレーキレバー16(ブレーキ操作子)が配置されている。ブレーキレバー16は、ライダーの手指によって前後に操作されるように構成されている。たとえば、右ブレーキレバー16は、前輪3を制動するために操作され、左ブレーキレバー16は後輪4の制動のために操作されるように構成されている。
ハンドル11の中央付近にはメータ13が設けられている。メータ13の下方には、荷台14が配置されている。荷台14は、ヘッドパイプ8に固定されている。荷台14の下部には、ヘッドランプ15が固定されている。
車体フレーム2は、ヘッドパイプ8から後方に延びている。車体フレーム2は、ダウンチューブ19と、ダウンチューブ19の後方に配置された左右一対のフレーム本体20とを含む。ダウンチューブ19は、ヘッドパイプ8の下部から後斜め下方に延びている。側面視において、フレーム本体20は、ダウンチューブ19の下端部から後方に延びており、車両の前後方向X1の途中部がS字状に形成されている。より詳細には、フレーム本体20は、第1フレーム部21と、第2フレーム部22と、第3フレーム部23と、第4フレーム部24とを含む。第1フレーム部21は、ダウンチューブ19の下端部から後方にほぼ真っ直ぐに延びており、わずかに後斜め上方に傾斜している。第2フレーム部22は、後斜め上方に向かって立ち上がっており、その下端部が第1フレーム部21の後端部に連結されており、その上端部が第3フレーム部23に連結されている。第3フレーム部23は、わずかに後斜め上方に傾斜した姿勢で後方に延びている。第4フレーム部24は、第2フレーム部22の中間部から後方に延び、途中で後斜め上方へ湾曲され、第3フレーム部23の中間部に接続されている。
車体カバー7は、車体フレーム2に取り付けられている。車体カバー7は、ヘッドパイプ8を覆う前カバー25と、前カバー25の下部から後方に延びる下カバー26と、前カバー25の後方に配置された後カバー27とを含んでいる。
前カバー25は、ステアリング軸9の一部およびヘッドパイプ8を取り囲み、かつ、ダウンチューブ19を取り囲んでいる。下カバー26は、前カバー25の下部から後方に延びており、フレーム本体20の一部を下方および左右両側方から覆っている。下カバー26の上端部には、足載せ部28が配置されている。足載せ部28は、ライダーが足を載せるために設けられており、ほぼ平坦に形成されている。
後カバー27は、全体として、下カバー26の後部から後斜め上方に延びた形状に形成されている。後カバー27は、フレーム本体20の一部を前方および左右両側方から覆っている。
シート29の下方には、左右一対のフレーム本体20の間に収容空間が形成されている。この収容空間には、電動モータ5の電源としてのバッテリ6が配置されている。バッテリ6は、充電可能な二次電池である。
シート29の後方には、荷台45が配置されている。第3フレーム部23の上方に配置され、第3フレーム部23に支持されている。
図2は、電動二輪車1の後部の右側面図である。電動二輪車1は、車体フレーム2に対して揺動可能に結合されたスイングユニット47を備えている。スイングユニット47は、モータケース67と、モータケース67の前端部から突出した左右一対の結合アーム68とを含んでいる。結合アーム68は、モータケース67から前斜め上方に延びている。各結合アーム68の先端部は、ピボット軸51を介して、一対のフレーム本体20に結合されている。したがって、スイングユニット47は、ピボット軸51の回りを揺動可能である。スイングユニット47は、後輪4の右方に配置されている。スイングユニット47の後部は、ショックアブソーバ69を介して第3フレーム部23に連結されている。
図3は、スイングユニット47の分解斜視図であり、スイングユニット47を右斜め後方から視た状態を示している。また、図4は、スイングユニット47および後輪4の一部断面図であり、スイングユニット47および後輪4を上方から見た状態を示している。スイングユニット47のモータケース67は、モータケース本体71と、モータケース本体71の前端部に固定された連結部材72と、モータケース本体71の右側面を覆う蓋73とを含んでいる。
モータケース本体71は、左右方向Y1に延びる前端部67aを有しており、前端部67aの右部から後方に延びた形状に形成されている。
連結部材72は、モータケース本体71の前端部の左方に配置されている。連結部材72と、モータケース本体71の前端部は、複数のねじ部材74を用いて固定されている。連結部材72には、結合アーム68L(68)が一体成形されている。モータケース本体71の前端部には、別の結合アーム68R(68)が一体成形されている。連結部材72およびモータケース本体71の前端部によって、モータケース67の前端部67aが形成されている。
モータケース本体71は、前後方向X1に延びる側壁75と、側壁75の外周縁部から右方に延びる筒状の周壁76とを含んでいる。側壁75および周壁76によって、電動モータ5を収容可能なモータ収容空間SP1が形成されている。蓋73は、周壁76の右方に配置されており、モータ収容空間SP1を覆っている。蓋73は、複数のねじ部材77を用いて周壁76の右端面に固定されている。周壁76と蓋73との間には、図示しないガスケットなどが配置されている。モータ収容空間SP1において、電動モータ5よりも前方には、モータコントローラ78が収容されている。
スイングユニット47は、電動モータ5の出力を後輪4に伝達するための減速機構131を含んでいる。減速機構131は、電動モータ5のモータ軸85の回転を減速することにより、モータ軸85からのトルクを増幅して後輪4に出力するように構成されている。減速機構131は、モータケース67に固定されたギヤケース132に収容されている。ギヤケース132は、複数のねじ部材139を用いて、モータケース67の左側面に固定されている。ギヤケース132内には、減速機構131を収容するギヤ収容空間SP2が形成されている。
減速機構131は、2段減速式に構成されている。具体的には、減速機構131は、入力ギヤ140と、中間軸141と、中間ギヤ142と、車軸143に設けられた出力ギヤ144とを含んでいる。この実施形態においては、各ギヤ140,142,144は、平歯車である。入力ギヤ140は、電動モータ5の出力軸であるモータ軸85に一体に設けられている。モータ軸85は、モータケース本体71の側壁75に形成された挿通孔145を挿通している。挿通孔145とモータ軸85の中間部との間には、軸受103が配置されている。モータ軸85は、軸受103の左方に向かってギヤ収容空間SP2に延びており、その左端部には、軸受104が嵌められている。軸受104は、ギヤケース132の左側壁に保持されている。中間軸141は、左右方向に延びており、その両端部は、軸受(図示せず)を介して、ギヤケース132の左側壁およびモータケース67の左側壁にそれぞれ支持されている。中間ギヤ142は、中間軸141に設けられている。中間ギヤ142は、入力ギヤ140に噛み合い、かつ出力ギヤ144に噛み合うように構成されている。中間ギヤ142は、大径の第1中間ギヤ142aと、それよりも小径の第2中間ギヤ142bとを有している。第1中間ギヤ142aは、入力ギヤ140に噛み合っている。第2中間ギヤ142bは、出力ギヤ144に噛み合っている。出力ギヤ144は、第2中間ギヤ142bよりも大径に形成されており、車軸143に固定されている。
車軸143は、左右方向Y1に延びており、その右端部および中間部には、軸受107,108がそれぞれ嵌められている。軸受107,108は、モータケース67の左側壁およびギヤケース132の左側壁にそれぞれ保持されている。車軸143は、ギヤケース132の左方に突出し、後輪4に連結されている。
後輪4は、ホイル部材148と、ホイル部材148に取り付けられたタイヤ149と、を含んでいる。ホイル部材148は、ハブ150と、ディスク151と、ハブ150を取り囲む筒状部152と、リム153とを含んでいる。ハブ150は、車軸143に固定されている。これにより、ホイル部材148(後輪4)は、車軸143と一体回転可能に連結されている。タイヤ149は、リム153にはめ込まれている。
ホイル部材148とギヤケース132との間には、ブレーキ装置155が配置されている。この実施形態においては、ブレーキ装置155は、ドラムブレーキ装置である。ブレーキ装置155からは、操作軸156が右方に延びている。操作軸156の右端部は、操作レバー157に固定されている。操作レバー157は、操作軸156から後斜め下方に延びている。操作レバー157の下端部には、操作ケーブル158(図2参照)が接続されている。操作ケーブル158は、ライダーによって操作される左ブレーキレバー16(図1参照)の操作によって前後方向X1に変位するように構成されている。
前輪3に関しても同様なブレーキ装置160(図1参照)が備えられており、右グリップ(図示せず)の前方に配置された右ブレーキレバー(図示せず)の操作に連動するように構成されている。
電動モータ5は、ロータ81と、ロータ81に対向したステータ82とを含んでいる。この実施形態においては、電動モータ5は、8極12スロットの3相ブラシレスモータ(3相交流電動モータ)である。電動モータ5は、この実施形態では、アキシャルギャップモータであり、ロータ81とステータ82との間には、電動モータ5の軸方向(左右方向Y1)にギャップが設けられている。ロータ81は、ステータ82の右方に配置されている。
ロータ81は、円板状に形成されたロータコア83と、ロータコア83に固定されたロータマグネット84とを含んでいる。ロータコア83は、モータ軸85の右端部にスプライン結合などによって結合されており、モータ軸85と一体回転可能である。また、ロータコア83は、軸受105を介して、ステータ82に支持されている。ロータマグネット84は、ロータコア83の左側面に固定され、ステータ82と対向している。ロータマグネット84は、複数(この実施形態では8個)設けられており、ロータコア83の周方向に沿って等間隔に配置されている。これらのロータマグネット84は、ロータコア83の周方向に沿ってN極とS極とが交互にステータ82に対向するように配置されている。
ステータ82は、ロータ81の左方に配置されている。ステータ82は、モータ軸85を取り囲む扁平な筒状に形成されている。ステータ82は、電動モータ5の軸方向に並ぶ第1ステータ86および第2ステータ87を含んでいる。第1ステータ86は、ロータ81の左方に配置されており、モータケース本体71の側壁75にねじ部材92を用いて固定されている。第2ステータ87は、第1ステータ86の左方に配置されており、第1ステータ86に対してステータ82の周方向に変位可能(モータ軸85まわりに回動可能)とされている。これにより、ステータ82の界磁の強さを変化させることができるようになっている。
図5は、スイングユニット47の一部を分解した状態を示す右側面図であり、電動モータ5のロータ81および第1ステータ86を取り外した状態を示している。スイングユニット47は、モータ収容空間SP1内に配置されたモータコントローラ78と、電動モータ5と、ステータ駆動装置79とを含んでいる。モータ収容空間SP1内において、モータコントローラ78は前方に配置され、電動モータ5は後方に配置されている。ステータ駆動装置79は、モータコントローラ78と電動モータ5との間において、モータ収容空間SP1内の上方領域に配置されている。
モータコントローラ78は、合成樹脂などを用いて形成されたケース78a内に、モータ駆動回路や、このモータ駆動回路を制御する制御回路などを収容して構成されている。
ステータ駆動装置79は、駆動ユニット110と、歯車機構113と、出力ギヤ114とを含む。駆動ユニット110は、駆動モータ111を含む。駆動ユニット110は、必要に応じて、駆動モータ111の回転を減速する減速機構を含んでいてもよい。歯車機構113は、ウォーム減速機構であり、ウォーム軸120と、ウォームホイール121とを含んでいる。駆動ユニット110は、ウォーム軸120をその軸線まわりに回転駆動するように構成されている。出力ギヤ114は、たとえば、平歯車である。出力ギヤ114は、ウォームホイール121に結合されており、ウォームホイール121と一体的に回転するように構成されている。したがって、駆動モータ111を回転駆動(正転または逆転)すると、その回転が歯車機構113によって出力ギヤ114に伝達され、出力ギヤ114の回転を引き起こす。
出力ギヤ114は、第2ステータ87の外周の一部に形成された歯部87aに噛み合っている。出力ギヤ114の回転に伴い、第2ステータ87が電動モータ5の周方向に変位する。この実施形態においては、第2ステータ87が電動モータ5の周方向に変位可能な角度範囲は、約15度である。
第2ステータ87の外周部には、歯部87aとは別の領域に、着磁部128が設けられている。着磁部128には、磁気パターンが形成されている。着磁部128(第2ステータ87)の変位は、界磁位置センサ129aによって検出される。界磁位置センサ129aは、第2ステータ87の手前側(第1ステータ86側)に配置され、第1ステータ86に固定された回路基板129に保持されている。界磁位置センサ129aは、必要に応じて複数個設けられていてもよい。たとえば、着磁部128の着磁パターン、界磁位置センサ129aの配置、界磁位置センサ129aの個数等は、少なくとも第2ステータ87の変位量を検出できるように定められている。より具体的には、着磁部128および1つまたは複数個の界磁位置センサ129aは、第2ステータ87の原点位置、第2ステータ87の変位方向、および第2ステータ87の変位量を検出できるように設計されていることが好ましい。
界磁位置センサ129aの出力は、回路基板129を介してモータコントローラ78に出力されるようになっている。モータコントローラ78は、駆動モータ111に電気的に接続されている。モータコントローラ78は、界磁位置センサ129aで検出された第2ステータ87の位置を参照しながら、駆動モータ111の駆動を制御するように構成されている。これにより、第2ステータ87が変位される。
図6は、電動モータ5の右側面図であり、ロータ81を取り外した状態を示す。第1ステータ86は、第1ティース88と、コイル89と、第1合成樹脂部材90とを含んでいる。第1ティース88は、電動モータ5の軸方向に平行な複数枚の電磁鋼板を重ねて柱状に形成されている。第1ティース88は、複数設けられており、ステータ82の周方向に等間隔に配置されている。この実施形態においては、第1ティース88は、12個設けられている。
コイル89は、各第1ティース88に巻かれている。コイル89は、電動モータ5の周方向に沿って、U相コイル、V相コイル、W相コイル、U相コイル、V相コイル…、の順に規則的に配列されている。U相コイルは、U相給電線91Uに接続されている。V相コイルは、V相給電線91Vに接続されている。W相コイルは、W相給電線91Wに接続されている。給電線91U,91V,91Wは、それぞれ、モータコントローラ78に接続されている(図5参照)。
第1合成樹脂部材90は、第1ティース88およびコイル89をモールドしている。第1合成樹脂部材90は、その外周面から突出したフランジ部90bを含んでいる。フランジ部90bは、第1ステータ86の左端部に配置されており、第2ステータ82に隣接している。フランジ部90bは、電動モータ5の周方向に沿って複数形成されている。フランジ部90bには、ねじ挿通孔が形成されており、このねじ挿通孔にねじ部材92(図3参照)が挿通されている。図3に示すように、各ねじ部材92は、モータケース本体71の側壁75に形成されたねじ孔にねじ結合されている。これにより、第1ステータ86は、モータケース本体71に固定されている。
第1合成樹脂部材90に隣接して、センサ基板130が配置されている。センサ基板130上に、U相、V相およびW相に対応した磁極位置センサ130aが保持されている。磁極位置センサ130aは、ホール(hall)ICセンサなどからなり、ロータ81の回転に伴う磁界の変化を検出する。この実施形態では、磁極位置センサ130aは、側面視において、隣り合うティース間のスロットに配置されている。磁極位置センサ130aの出力は、モータコントローラ78に入力されるようになっている。モータコントローラ78は、各磁極位置センサ130aからの信号に基づき、給電線91U,91V,91Wへ供給する電力を制御する。
図7は、第2ステータ87の断面図であり、第2ステータ87を周方向に沿って切断した断面を示している。第2ステータ87は、ヨーク93と、第2ティース94と、第2合成樹脂部材95とを含んでいる。
ヨーク93は、円環状の板状の部分である。第2ティース94は、第2ヨーク93の右側面から第1ステータ86に向かって突出している。第2ティース94は、電動モータ5の周方向に等間隔に複数設けられている。この実施形態では、第2ティース94の数は、第1ティース88の数と同じである。第2合成樹脂部材95は、円環状に形成されており、第2ヨーク93および各第2ティース94をモールドしている。各第2ティース94の右端面は、第2合成樹脂部材95から露出している。
図4に最もよく表れているように、電動モータ5の軸方向において、第2ティース94の長さは、第1ティース88の長さより短い。第2合成樹脂部材95の内周面には、軸受102が取り付けられている。軸受102は、モータケース本体71に取り付けられている。このようにして、第2ステータ87は、第1ステータ86に対して相対回転に支持されている。すなわち、ステータ駆動装置79を駆動することによって、電動モータ5の周方向における第2ステータ87の回転位置を変更することができる。
図8Aおよび図8Bは、第2ステータ87を変位(モータ軸85まわりに回動)させることに伴う電動モータ5の出力の特性の変化を説明するための主要部の図解図である。
ステータ駆動装置79が発生する駆動力によって、第2ステータ87は、図8Aに示す第1位置と、図8Bに示す第2位置との間で変位可能である。第1位置(図8A)とは、第2ステータの各第2ティース94が、第1ステータ86の対応する第1ティース88とモータ軸85に平行な方向に正対する位置である。第2位置(図8B)とは、第2ステータ87の各第2ティース94が、第1ステータ86の隣り合う一対の第1ティース88の中間位置に対向していて、いずれの第1ティース88とも正対しない位置である。
図8Aに示すように、第2ステータ87が第1位置に位置しているとき、第1および第2ティース88,94は大きな面積で対向しており、それらの間のギャップG1は小さいので、このギャップG1における磁気抵抗が小さい。これにより、ステータ82の界磁は最大の状態となる。ギャップG1が小さい状態では、電動モータ5には、強力な磁束M1が生じる。磁束M1は、ロータ81のロータコア83、第1ティース88、第2ティース94、および第2ステータ87のヨーク93を通る。強力な磁束M1が発生していることにより、電動モータ5は、低回転だが高トルクの出力を発生できる。モータコントローラ78は、電動二輪車1が停車状態から発進するときや、坂道を上るときに、大きな磁束M1が生じるように第2ステータ87の位置を制御するように構成されている。
一方、図8Bに示すように、第2ステータ87が第2位置に位置しているときには、第1および第2ティース88,94は正対しておらず、それらの間のギャップG1における磁気抵抗が大きい。これにより、ステータ82の界磁は最小の状態となる。ギャップG1が大きい状態では、電動モータ5には、磁束M1よりも弱い磁束M2が生じる。磁束M2は、ロータ81のロータコア83、および第1ティース88の周囲に形成され、第2ステータ87を通らない。弱い磁束M2が発生していることにより、電動モータ5は、低トルクだが高回転の出力を発生できる。モータコントローラ78は、電動二輪車1が平坦路を一定速度で走行しているときなどに、磁束M2が生じるように第2ステータ87の位置を制御するように構成されている。
このようにステータ82の界磁の大きさを変化させることにより、電動二輪車1の走行状態に応じた出力を電動モータ5が発生できるようになっている。
図9は、電動モータ5およびステータ駆動装置79の制御に関連する電気的構成を示すブロック図である。電動モータ5は、前述の通り、ステータ82と、これに対向するロータ81とを含む。ステータ82は、第1ステータ86(メインステータ)と、第1ステータ86に対して予め定める角度範囲で相対回転する第2ステータ87(界磁ステータ)とを含む。第2ステータ87の回転位置は、界磁位置センサ129aによって検出される。界磁位置センサ129aの出力信号(界磁位置信号)は、モータコントローラ78に入力される。一方、ロータ81の磁極位置は、磁極位置センサ130aによって検出される。磁極位置センサ130aの出力信号(磁極位置信号)は、モータコントローラ78に入力される。
モータコントローラ78は、バッテリ6に接続されている。また、モータコントローラ78は、電動モータ5に給電線91U,91V,91Wを介して接続されており、駆動モータ111に給電線98を介して接続されている。
また、モータコントローラ78には、メインスイッチ17の出力信号と、アクセル操作量センサ301の出力信号と、ブレーキセンサ302の出力信号とが入力されている。メインスイッチ17は、電動二輪車1の使用開始時に使用者によってオン操作され、使用終了時に使用者によってオフ操作されるスイッチである。アクセル操作量センサ301は、ライダーによるアクセルグリップ12R(右側のグリップ12)の操作量に応じたアクセル開度信号を、アクセル情報としてモータコントローラ78に出力する。アクセル操作量センサ301は、たとえば、アクセル操作に応じて電気抵抗値が変化する可変抵抗器を含み、可変抵抗器の両端電圧をアクセル開度信号として出力するように構成されていてもよい。ブレーキセンサ302は、ライダーによって左右いずれかのブレーキレバー16が操作されたか否か(ブレーキ操作の有無)を検出するように構成されている。たとえば、ブレーキセンサ302は、ブレーキレバー16の変位量が予め定める閾値以上のとき(または閾値を超えたとき)、ブレーキ操作有りを検出し、さもなければブレーキ操作無しを検出するように構成されていてもよい。
さらに、モータコントローラ78は、バッテリ6の充放電を制御するバッテリコントローラ200との間で通信ライン190を介して情報通信を行うように構成されている。バッテリコントローラ200は、バッテリ6への充電が行われているか否かを検出する充電検出部201と、バッテリ6の充電状態(SOC:State Of Charge)を検出する充電状態検出部202と、バッテリ6の電圧VBを検出するバッテリ電圧検出部203とを含む。バッテリコントローラ200は、さらに、充電状態検出部202による充電状態に応じて回生指令を発生する回生指令発生部204を含む。回生指令とは、電動モータ5が発生する回生電流をバッテリ6への供給すべきことを表す指令である。充電検出部201、充電状態検出部202、バッテリ電圧検出部203および回生指令発生部204のうちの一部または全部は、バッテリコントローラ200に備えられたコンピュータがプログラムを実行することによって実現される機能処理ユニットであってもよい。
モータコントローラ78は、制御回路310と、モータ駆動回路350とを含む。
制御回路310は、CPU280と、スイッチ駆動回路281と、ステータ駆動回路282とを含む。また、図示は省略するけれども、制御回路310は、CPU280の動作プログラムや制御動作に必要なマップ等を記憶したROMと、演算データの一時記憶等のために用いられるRAMとを含む。CPU280には、メインスイッチ17の作動信号、アクセル操作量センサ301の出力信号、バッテリコントローラ200からのデータ信号、磁極位置センサ130aの出力信号、界磁位置センサ129aの出力信号等が、適当なインタフェースを介して入力されている。CPU28は、これらの入力信号に応じて、スイッチ駆動回路281と、ステータ駆動回路282とを制御する。スイッチ駆動回路281は、モータ駆動回路350に備えられたスイッチング素子を駆動するための駆動信号を生成する。また、ステータ駆動回路282は、ステータ駆動装置79の駆動モータ111に駆動電力を供給する。
モータ駆動回路350は、バッテリ6が発生する直流電圧を交流電圧に変換して電動モータ5に供給するDC/AC変換回路(インバータ回路)である。より具体的には、モータ駆動回路350は、U相回路351と、V相回路352と、W相回路353とを含む。U相回路351、V相回路352およびW相回路353は、バッテリ6に対して互いに並列に接続されている。
U相回路351は、上アームスイッチング素子Sw1と下アームスイッチング素子Sw2との直列回路である。V相回路352は、上アームスイッチング素子Sw3と下アームスイッチング素子Sw4との直列回路である。W相回路353は、上アームスイッチング素子Sw5と下アームスイッチング素子Sw6との直列回路である。これらのスイッチング素子Sw1〜Sw6は、たとえば、パワーMOSFET等のパワーデバイスで構成されており、それらのゲートに、スイッチ駆動回路281からの駆動信号が供給されるようになっている。これにより、スイッチング素子Sw1〜Sw6がオン/オフ駆動される。各スイッチング素子Sw1〜Sw6には、ダイオードD1〜D6がそれぞれ並列に接続されている。これらのダイオードD1〜D6は、パワーMOSFET等のスイッチング素子に内蔵されたダイオード(たとえば寄生ダイオード)であってもよいし、素子外に並列接続したダイオードであってもよい。
各相回路において上アームスイッチング素子と下アームスイッチング素子との間に、対応する相の給電線が接続されている。すなわち、U相回路の上アームスイッチング素子Sw1と下アームスイッチング素子Sw2との間にU相給電線91Uが接続されている。V相回路352の上アームスイッチング素子Sw3と下アームスイッチング素子Sw4との間にV相給電線91Vが接続されている。さらに、W相回路353の上アームスイッチング素子Sw5と下アームスイッチング素子Sw6との間にW相給電線91Wが接続されている。U相給電線91Uは、電動モータ5のU相コイル5Uに接続されており、V相給電線91Vは電動モータ5のV相コイル5Vに接続されており、W相給電線91Wは電動モータ5のW相コイル5Wに接続されている。
各相の電流を検出するために、モータ駆動回路350には、電流検出回路354が備えられている。電流検出回路354は、各相の下アームスイッチング素子Sw2,Sw4,Sw6に流れる電流を検出し、その方向および大きさを表す検出信号(電流値信号)を制御回路310に入力するように構成されている。すなわち、電流検出回路354は、U相電流I、V相電流IおよびW相電流Iの検出値を出力する。これらの相電流検出値は、CPU280に入力される。
図10は、CPU280の機能を説明するためのブロック図である。CPU280は、動作プログラムを実行することによって、複数の機能処理ユニットとして機能するように構成されている。この複数の機能処理ユニットには、電流指令値演算部311と、回転速度演算部312と、q軸電流偏差演算部313と、d軸電流偏差演算部314と、q軸PI(比例積分)演算部315と、d軸PI演算部316と、3相/2相座標変換部317とが含まれている。さらに、複数の機能処理ユニットには、電気角演算部318と、電圧指令値演算部319と、2相/3相座標変換部320と、駆動信号生成部321と、目標ギャップ演算部322と、ギャップ差分演算部323と、ギャップPI演算部324と、駆動信号生成部325と、実ギャップ演算部326とが含まれている。さらに、前記複数の機能処理ユニットには、短絡/解除処理部330と、回生量設定部340とが含まれている。
電流指令値演算部311は、アクセル操作量センサ301からのアクセル開度信号に基づいてアクセル開度AO(%)を算出する。アクセル開度AOは、アクセル操作量の最大値に対する実際のアクセル操作量の比率、すなわち、アクセル開度信号の最大値に対するアクセル操作量センサ301によって取得されたアクセル開度信号の比率を百分率で表した値であってもよい。
電流指令値演算部311は、アクセル開度AOと回転速度演算部312によって演算される電動モータ5の回転速度nとに基づいて、電動モータ5を駆動するための電流指令値(目標電流値)を演算する。回転速度演算部312は、電気角演算部318が演算する電気角θに基づいて、電動モータ5の回転速度nを演算するように構成されていてもよい。電気角演算部318は、磁極位置センサ130aの出力信号に基づいて、電動モータ5の電気角θを算出する。
電流指令値演算部311は、この実施形態では、dq軸座標系における電流指令値を演算する。dq座標系とは、電動モータ5のロータ81とともに回転する2相回転座標系であり、界磁の方向に沿うd軸と、d軸に対して直交するq軸とで定義される直交座標系である。電流指令値演算部311は、トルクを発生する成分となるq軸電流の指令値Iqと、電動モータ5の誘起電圧を弱める成分となるd軸電流の指令値Idとを演算する。
q軸電流指令値Iqは、たとえば、q軸上限電流値Iqmaxにアクセル開度AOを乗じて算出される(Iq=Iqmax×AO÷100)。d軸電流指令値Idは、アクセル開度AO、電動モータ5の回転速度nおよびq軸電流指令値Iqのうち少なくともいずれか1つをパラメータ情報として、計算によって求められる。
d軸電流指令値Idは、たとえば、d軸上限電流値Idmaxにアクセル開度AOを乗じて算出されてもよい(Id=Idmax×AO÷100)。また、電動モータ5の回転速度nをパラメータ情報とし、回転速度nに対応する最適なIdを予め実験等で求めてマップデータとしてROMに記憶しておき、当該マップデータに基づいて電動モータ5の回転速度nからd軸電流指令値Idを求めてもよい。さらに、q軸電流指令値Iqのパラメータ情報に対応する最適なIdを予め実験等で求めてマップデータとしてROMに記憶しておき、当該マップデータに基づいてq軸電流指令値Iqからd軸電流指令値Idを求めてもよい。また、アクセル開度AOとq軸電流指令値Iqとのパラメータ情報に対応する最適なIdを予め実験等で求めて三次元マップデータとしてROMに記憶しておき、当該三次元マップデータに基づいてアクセル開度AOとq軸電流指令値Iqとからd軸電流指令値Idを求めてもよい。なお、d軸電流指令値Idは、上述したアクセル開度AO、電動モータ5の回転速度n、q軸電流指令値Iqの情報にかかわらず、常にゼロ(Id=0)に設定されてもよい。
一方、アクセル開度AOが零の場合およびブレーキ操作が検出された場合に、バッテリコントローラ200(図9参照)から回生指令が与えられているときには、電流指令値演算部311は、q軸電流指令値Iqを負の値に設定する。このとき、q軸電流指令値Iqは、バッテリコントローラ200から与えられる充電状態(SOC)やバッテリ電圧VBに応じて定められてもよい。また、高速回転時には、d軸電流指令値Idを負の値に設定して、弱め界磁制御が行われてもよい。
回生量設定部340は、アクセル開度AOが零のとき、およびブレーキ操作がされたときの最大回生電流を設定する。回生電流とは、バッテリ6に実際に回生されてその充電に用いられる電流(バッテリ電流)であり、最大回生電流はその最大値である。回生電流と電流指令値との間に相関関係はあるが、それらは一致するわけではない。回生量設定部340は、具体的には、アクセル開度AOが零であって、ブレーキセンサ302がブレーキ操作なしを検出しているときには、最大回生電流を第1の一定値に設定する。また、回生量設定部340は、ブレーキセンサ302がブレーキ操作ありを検出しているときには、最大回生電流を、第1の一定値よりも大きな第2の一定値に設定する。さらに、回生量制御部340は、アクセル開度AOが零でないときは、最大回生電流を零に設定する。回生電流設定部340が最大回生電流を設定したときには、電流指令値演算部311は、その設定された最大回生電流以下(または未満)の回生電流となるように、q軸電流指令値Iqおよびd軸電流指令値Idを設定する。
電流指令値演算部311は、q軸電流指令値Iqをq軸電流差分演算部313に、d軸電流指令値Idをd軸電流差分演算部314にそれぞれ出力する。q軸電流差分演算部313には、3相/2相座標変換部317から、電動モータ5に実際に流れたq軸実電流値Iqが供給される。q軸電流差分演算部313は、q軸実電流値Iqとq軸電流指令値Iqとの差分値(Iq−Iq)を算出し、q軸PI演算部315に出力する。また、d軸電流差分演算部314には、3相/2相座標変換部317から、電動モータ5に実際に流れたd軸実電流値Idが供給される。d軸電流差分演算部314は、d軸実電流値Idとd軸電流指令値Idとの差分値(Id−Id)を算出し、d軸PI演算部316に出力する。
3相/2相座標変換部317は、電流検出回路354が出力するU相実電流I、V相実電流IおよびW相実電流Iを座標変換して、q軸実電流値Iqおよびd軸実電流値Idを算出する。すなわち、3相/2相座標変換部317は、3相固定座標系であるUVW座標系から、2相回転座標系であるdq座標系への座標変換を行う。この座標変換のために、3相/2相座標変換部317は、電気角演算部318によって算出された電気角θを用いる。
q軸PI演算部315は、差分値(Iq−Iq)に基づいて比例積分演算を行い、q軸実電流値Iqがq軸電流指令値Iqに追従するような制御量を算出する。同様に、d軸PI演算部316は、差分値(Id−Id)に基づいて比例積分演算を行い、d軸実電流値Idがd軸電流指令値Idに追従するような制御量を算出する。このようにして算出された制御量は、電圧指令値演算部319に出力され、電圧指令値演算部319においてq軸電圧指令値Vqおよびd軸電圧指令値Vdに変換される。
q軸電圧指令値Vqおよびd軸電圧指令値Vdは、2相/3相座標変換部320に出力される。2相/3相座標変換部320は、電気角演算部318によって算出された電気角θを用いて、q軸電圧指令値Vqおよびd軸電圧指令値Vdを、3相の電圧指令値V ,V ,V に変換する。すなわち、2相/3相座標変換部320は、2相回転座標系であるdq座標系から、3相固定座標系であるUVW座標系への座標変換を実行する。3相の電圧指令値V ,V ,V は、駆動信号生成部321に供給される。駆動信号生成部321は、電圧指令値V ,V ,V に応じたデューティ制御信号(PWM制御信号)をスイッチ駆動回路281に出力する。これにより、モータ駆動回路350のスイッチング素子Sw1〜Sw6が、当該デューティ比に応じてオン/オフ駆動される。これにより、電動モータ5には、電圧指令値V ,V ,V に応じた電圧で、駆動用電力が供給される。
次に、ステータ駆動装置79の駆動モータ111の制御系について説明する。目標ギャップ演算部322は、第2ステータ87の目標位置を演算する。より具体的には、第1ステータ86の第1ティース88と第2ステータ87の第2ティース94との間のギャップGの目標値(目標ギャップ)Gを演算する。第1ティース88と第2ティース94とが正対する第1位置(図8A参照)におけるギャップGが0%と定義され、第1ティース88と第2ティース94とが最も離れた第2位置(図8B参照)におけるギャップGが100%と定義される。実際のギャップGおよび目標ギャップGは、0%〜100%の値をとる。この実施形態では、ギャップGおよび目標ギャップGは、0%〜100%の値で段階的に(たとえば10%間隔で)変化する値をとるように制御される。むろん、ギャップGおよび目標ギャップGは、0%〜100%の値で連続的に変化する値をとってもよい。
目標ギャップ演算部322には、たとえば、回転速度演算部312によって演算された電動モータ5の回転速度nと、電流指令値演算部311によって演算されたq軸電流指令値Iqと、バッテリ6の電圧VBと、実ギャップ演算部326によって演算された実ギャップGとが入力される。目標ギャップ演算部322は、これらの入力情報に基づいて、目標ギャップGを演算し、ギャップ差分演算部323に出力する。また、目標ギャップ演算部322は、メインスイッチ17の投入操作が行われた直後には、目標ギャップGを0%に設定する。これは、電動二輪車1の走行開始時に必要な大トルク発生の準備のためである。また、目標ギャップ演算部322は、メインスイッチ17の遮断操作が行われると、目標ギャップGを100%に設定する。これは、電動二輪車1を押し歩きするときに電動モータ5が大きな負荷とならないようにするためである。
ギャップ差分演算部323は、目標ギャップGと、実ギャップ演算部326によって演算された実ギャップGとの差分値(G−G)を演算し、ギャップPI演算部324に出力する。ギャップPI演算部324は、差分値(G−G)に基づいて比例積分演算を行い、実ギャップGが目標ギャップGに追従するような制御量を演算する。駆動信号生成部325は、その演算結果に応じたデューティ比の駆動信号(PWM信号)をステータ駆動回路282に出力する。
ステータ駆動回路282は、バッテリ6に接続されており、たとえばMOSFETからなる4個のスイッチング素子を含むHブリッジ回路であってもよい。各スイッチング素子のゲートに、駆動信号生成部325からの駆動信号が入力される。これにより、各スイッチング素子がオン/オフ駆動され、デューティ比に応じた電圧で駆動モータ111に駆動用電力が供給する。駆動モータ111への通電方向に応じて、駆動モータ111は、正転方向または逆転方向に回転する。
実ギャップ演算部326は、ステータ駆動装置79の界磁位置センサ129aからの出力信号に基づいてギャップGを演算し、目標ギャップ演算部322に出力する。
短絡/解除処理部330は、電動モータ5の3相の端子間を短絡する3相短絡を実行したり、3相短絡状態の解除を行ったりする。短絡/解除処理部330は、回転速度演算部312によって演算される回転速度nやバッテリ電圧VB等の情報に基づいて、所定の短絡条件が成立すると、3相短絡を実行する。また、短絡/解除処理部330は、電動モータ5が3相短絡状態のときに、所定の解除条件が成立すると、3相短絡状態を解除する。3相短絡を実行するとき、短絡/解除処理部330は、駆動信号生成部321に対して、モータ駆動回路350の全ての相回路351,352,353における下アームスイッチング素子Sw2,Sw4,Sw6をオン状態とするための指令を与える。また、短絡/解除処理部330は、3相短絡状態を解除するとき、駆動信号生成部321に対して、モータ駆動回路350の全ての相回路351,352,353における下アームスイッチング素子Sw2,Sw4,Sw6をオフ状態とするための指令を与える。これらの詳細については、後述する。
3相短絡状態とは、モータ駆動回路350のU相回路351、V相回路352およびW相回路353の全てにおいて、下アームスイッチング素子Sw2,Sw4,Sw6をオンしている状態である。このとき、電動モータ5のU相コイル5U、V相コイル5VおよびW相コイル5Vの端子間が短絡され、ロータ81の回転によって生じる電力は、コイル5U,5V,5Wによって熱消費される。すなわち、電動モータ5からバッテリ6に回生される回生電流は零になる。
3相短絡状態のとき、電動モータ5に流れる電流は、電動モータ5の回転を妨げる。すなわち、電動モータ5は、制動トルクを発生し、この制動トルクが電動二輪車1に作用する。電動モータ5が発生する電流をバッテリ6に回生させる回生動作を行うときも、回生電流に応じた制動トルクが生じる。回生量設定部340が設定する前記第1の一定値は、3相短絡状態のときに電動モータ5が発生する制動トルクと同等の制動トルクを発生させる回生電流に相当している。
図11は、q軸電流指令値Iqの上限値であるq軸上限電流値Iqmaxの参照マップの一例である。電流指令値演算部311は、この参照マップに基づいてq軸上限電流値Iqmaxを決定し、そのq軸上限電流値Iqmaxに基づいてq軸電流指令値Iq(=Iqmax×AO÷100)を演算する。この参照マップは、q軸上限電流値Iqmaxを電動モータ5の回転速度nおよびギャップGに基づいて設定するために用いられる。ギャップG=0%、10%、20%、30%、40%、50%、60%、70%、80%、90%および100%の場合について、異なる参照曲線に従って、q軸上限電流値Iqmaxが設定される。
参照曲線は、q軸上限電流値Iqmaxを0以上の値に設定する力行(りきこう)参照曲線群と、q軸上限電流値Iqmaxを0以下に設定する回生参照曲線群とを含む。力行参照曲線群は、電動モータ5を電動機として作用させ、後輪4に駆動力を伝達する力行動作時に参照される。回生参照曲線群は、電動モータ5を発電機として作用させ、後輪4から伝達さる駆動力によって回転される電動モータ5が発生する回生電流をバッテリ6に供給する回生動作時に参照される。
力行参照曲線群の各参照曲線(力行参照曲線)は、電動モータ5の回転速度nが各所定値に達するまではq軸上限電流値Iqmaxを一定値とし、当該所定値を超える領域では、回転速度nの増加に伴ってq軸上限電流値Iqmaxを減少させる特性となるように設定されている。ギャップGが大きいほどステータ87の界磁が弱くなるので、誘起電圧が抑制され、高速回転が可能となる。
ギャップG=100%の力行参照曲線は、高速度域まで延びる特性に設定されている。これは、ギャップG=100%のときには、d軸電流指令値Idを負の値に設定して弱め界磁制御を行い、q軸電流を流せる領域を拡大していることによる。この実施形態では、ギャップG<100%のときには、d軸電流指令値Id=0として、弱め界磁制御を行わないように構成されている。むろん、ギャップG<100%のときにも弱め界磁制御を行ってもよい。
一方、回生参照曲線群を構成する各参照曲線(回生参照曲線)は、電動モータ5の回転速度nが各所定値に達するまではq軸上限電流値Iqmaxを一定値とし、当該所定値を超える領域では、回転速度nの増加に伴ってq軸上限電流値Iqmaxを減少(絶対値を増加)させる特性となるように設定されている。回生動作時には、q軸電流指令値Iqは、その絶対値がq軸上限電流値Iqmaxの絶対値以下となるように設定される。ギャップGが大きいほどステータ87の界磁が弱くなるので、誘起電圧が抑制され、高回転時でも適切な回生電流が得られる。
ギャップG=100%の回生参照曲線は、高速度域まで延びる特性に設定されている。これは、ギャップG=100%のときには、d軸電流指令値Idを負の値に設定して弱め界磁制御を行い、q軸電流を流せる領域を拡大していることによる。この実施形態では、ギャップG<100%のときには、d軸電流指令値Id=0として、弱め界磁制御を行わないように構成されている。むろん、ギャップG<100%のときにも弱め界磁制御を行ってもよい。
図11には、電動モータ5の低速回転領域にq軸電流指令値Iqを制限するための低速制限参照曲線Lが併せて示されている。電動モータ5の回転速度nが所定の回転速度閾値n1以下の場合において、回生参照曲線に基づいて定められたq軸電流指令値Iqが低速制限参照曲線L上の制限値を下回るときには、q軸電流指令値Iqは、当該制限値に補正される。低速制限参照曲線Lは、回転速度nが低いほど絶対値が小さくなり、所定の低速閾値n2以下(または低速閾値n2未満)の極低速域において零になる特性を有している。回転速度nは、後輪4の回転速度に比例しているから、電動二輪車1の車速に比例している。したがって、回転速度演算部312(図10参照)が演算する回転速度nは、車速に相当するである。回転速度閾値n1は、たとえば、電動二輪車1の車速に換算すると、25km/h程度に相当する。また、低速閾値n2は、たとえば、電動二輪車1の車速に換算すると、6km/h程度に相当する。したがって、電動二輪車1が低速で惰性走行しているときには、回生電流が抑制されるので、それに応じて、電動モータ5が発生する制動トルクが弱められる。その結果、低速走行時の制動感を抑制できるから、良好な乗車フィーリングが得られる。
図12は、d軸電流指令値Iqの上限値であるd軸上限電流値Idmaxおよびその下限値であるd軸下限電流値Idminの参照マップの一例である。電流指令値演算部311は、この参照マップに基づいてd軸上限電流値Idmaxおよびd軸下限電流値Idminを決定し、そのd軸上限電流値Idmaxおよびd軸下限電流値Idminに基づいてd軸電流指令値Idを演算する。
この参照マップは、d軸上限電流値Idmaxおよびd軸下限電流値Idminを電動モータ5の回転速度nに基づいて設定するために用いられる。より具体的には、参照マップは、d軸上限電流値Idmaxを回転速度nに基づいて設定するためのd軸上限曲線と、d軸下限電流値Idminを回転速度nに基づいて設定するためのd軸下限曲線とを含む。これらの曲線は、いずれもId<0の領域に設定されている。d軸電流指令値Idは、d軸上限曲線(Idmax)とd軸下限曲線(Idmin)との間の値に定められる。
d軸上限曲線(Idmax)は、界磁を弱めて、q軸電流値Iqの絶対値を最大値(たとえば100アンペア)とすることができるd軸電流値を表す。このd軸上限曲線(Idmax)は、回転速度nの所定値以上の領域において有意な値(負の値)をとり、回転速度nの増加に伴って減少(絶対値が増加)するように定められている。d軸下限曲線(Idmin)は、q軸電流Iqを有意値として制御することができる最小絶対値のd軸電流値を表す。このd軸下限曲線(Idmin)は、回転速度nの所定値以上の領域において有意な値(負の値)をとり、回転速度nの増加に伴って減少(絶対値が増加)するように定められている。d軸電流値を、d軸上限曲線(Idmax)とd軸下限曲線(Idmin)との間の値に定めることによって、界磁を弱めたのと同等の効果を得ることができる。すなわち、力行動作時には、電動モータ5を高速に回転させることができ、回生動作時には、高速回転時でも過大な誘起電圧を回避できる。
図13は、目標ギャップ演算部322が参照する目標ギャップマップの一例を示す。目標ギャップ演算部322は、この目標ギャップマップを参照して目標ギャップGを設定するように構成されていてもよい。目標ギャップGは、この例では、q軸電流指令値Iqの絶対値|Iq|と、電動モータ5の回転速度nとに応じて設定される。目標ギャップマップは、q軸電流指令値の絶対値|Iq|=0,30,60,70,80,90,100(アンペア)にそれぞれ対応した複数の目標ギャップ曲線を有している。各目標ギャップ曲線は、電動モータ5の回転速度nが或る値になるまでは目標ギャップG=0%で、その値以上の領域では、回転速度nが大きいほど目標ギャップGを大きくする特性に設定されている。これにより、低速回転時にはステータ87の界磁が強く、高速回転時にはステータ87の界磁が弱められる。さらに、q軸電流指令値Iqの絶対値|Iq|が大きいほど、小さな回転速度nで大きな目標ギャップGを設定する特性に設定されている。
図14は、短絡/解除処理部330によって参照される短絡閾値マップの一例を示す。短絡/解除処理部330は、電動モータ5の回転速度と短絡閾値とを比較し、その比較結果に基づいて、3相短絡を実行するか否かを決定する。短絡閾値マップは、その短絡閾値を設定する。図14に示す短絡閾値マップは、ステータ87における第1および第2ステータ86,87間のギャップGに応じて短絡閾値を変化させるように設定されている。ギャップGが大きいほど、短絡閾値が大きくなる。ギャップGが大きいほど、界磁が弱められるので、誘起電圧が小さくなるからである。
図14には、バッテリ電圧VBが46Vの場合と54Vの場合とについて、短絡閾値の変動を表す曲線が示されている。すなわち、短絡閾値は、バッテリ電圧VBに応じて可変設定されてもよい。バッテリ電圧VBが高いほど高い誘起電圧が許容されるから、それに応じて短絡閾値が高回転側にシフトしている。ギャップGが90%の場合と100%の場合とで短絡閾値が大きく異なるのは、弱め界磁制御の有無に起因する。すなわち、ギャップG=100%のときは、d軸電流指令値Idを有意値に設定して弱め界磁制御が行われるから、誘起電圧が一層抑制されるので、より高い短絡閾値が許容される。
図15は、短絡/解除処理部330による短絡実行判断処理を説明するためのフローチャートである。短絡/解除処理部330(CPU280)は、予め定める制御周期毎に短絡実行判断処理を繰り返し実行する。短絡/解除処理部330は、まず、3相短絡状態かどうかを判断する(ステップS1)。
3相短絡状態でなければ(ステップS1:NO)、短絡/解除処理部330は、電動モータ5の回転速度nが短絡閾値A(図14参照)を超えている(n>A)かどうかを判断する(ステップS2)。この判断は、回転速度nが短絡閾値A以上(n≧A)か否かの判断に代えてもよい。回転速度nが短絡閾値Aを超えていれば(または短絡閾値A以上であれば)、短絡/解除処理部330は、3相短絡実行要求を発生する(ステップS6)。すなわち、電動モータ5の回転速度nが大きく、バッテリ6に大きな電圧がかかるおそれがあるときには、3相短絡が実行される。これにより、バッテリ6の保護が図られる。
回転速度nが短絡閾値Aを超えていなければ(または短絡閾値A以上であれば)、短絡/解除処理部330は、バッテリコントローラ200から通信ライン190を介して与えられている情報を参照する(ステップS3)。より具体的には、バッテリコントローラ200から回生指令が与えられているかどうかを調べる。さらに、バッテリ6が充電中かどうかを調べる。回生指令が与えられておらず、かつ充電中であれば(ステップS3:YES)、短絡/解除処理部330は、3相短絡実行要求を発生する(ステップS6)。一般的には、ステップS3の判断が肯定されることはないけれども、たとえば、急加速時、急減速時、無負回転時(スタンドを立てた状態で後輪を空転させた場合)などには、制御の追従遅れによって、ステップS3の判断が肯定される可能性がある。
ステップS3の判断が否定のときは、短絡/解除処理部330は、さらに、バッテリ電圧VBが短絡閾値電圧Bを超えている(VB>B)かどうかを判断する(ステップS4)。この判断は、バッテリ電圧VBが短絡閾値電圧B以上(VB≧B)か否かの判断に代えてもよい。ステップS4の判断が肯定されると、短絡/解除処理部330は、3相短絡実行要求を発生する(ステップS6)。これにより、バッテリ6が満充電に近い状態のときに、回生電流がバッテリ6に供給されることを回避できる。短絡閾値電圧Bは、バッテリ6が充電限界まで充電されたときのバッテリ電圧値であってもよいし、それよりも少し低い値であってもよい。
ステップS4の判断が否定のときは、短絡/解除処理部330は、さらに、モータ電流の制御余裕があるかどうかを判断する(ステップS5)。具体的には、駆動信号生成部321がデューティ比100%の駆動信号を生成しており、かつq軸電流偏差(Iq−Iq)が負の値のときには、制御余裕がないと判断され、さもなければ制御余裕があると判断される。ステップS5の判断が肯定のときは、短絡/解除処理部330は、3相短絡実行要求を発生する(ステップS6)。これにより、電動モータ5の回転速度nを適切な範囲に保つことができ、制御余裕のある通常状態への復帰を促すことができる。ステップS5の判断が否定のときは、当該制御周期における3相短絡判断処理を終える。
ステップS2〜S5において判断される条件は、3相短絡を実行するための条件(短絡条件)の例である。この実施形態では、少なくともいずれか一つの短絡条件が成立すると、3相短絡実行要求が発生される。ただし、これらの短絡条件のうちの一つまたは2つ以上が省かれてもよい。たとえば、回転速度nに関する短絡条件(ステップS2)のみを判断してもよい。また、回転速度nに関する短絡条件(ステップS2)と、バッテリ電圧VBに関する短絡条件(ステップS5)との2つの短絡条件のみを用いてもよい。
一方、3相短絡状態であれば(ステップS1:YES)、3相短絡解除判定(ステップS7〜S10)が行われる。
具体的には、短絡/解除処理部330は、電動モータ5の回転速度nが解除閾値A′(=A−α。αは0以上の定数。たとえばαは500rpm程度。)未満かどうかを判断する(ステップS7)。この判断は、回転速度nが解除閾値A′以下(n≦A)か否かの判断に代えてもよい。A>A′(α>0)とすることにより、3相短絡の実行とその解除とにヒステリシス特性を与えることができるので、制御を安定化できる。
また、短絡/解除処理部330は、電動モータ5の回転速度nが、3相短絡を開始したときの回転速度n未満(n<n)かどうかを判断する(ステップS8)。この判断は、回転速度nが3相短絡を開始したときの回転速度n以下(n≦n)か否かの判断に代えてもよい。
さらに、短絡/解除処理部330は、バッテリ6の電圧VBが、解除閾値電圧B′(=B−β。βは0よりも大きな定数。たとえばβは1V程度。)未満(VB<B′)かどうかを判断する(ステップS9)。この判断は、バッテリ電圧VBが解除閾値電圧B′以下(VB≦B′)か否かの判断に代えてもよい。B>B′(β>0)とすることにより、3相短絡の実行とその解除とにヒステリシス特性を与えることができるので、制御を安定化できる。
さらに、短絡/解除処理部330は、弱め界磁制御が不要な制御領域(Id不要領域)かどうかを判断する(ステップS10)。弱め界磁制御が不要な制御領域とは、d軸電流指令値Idが零に保たれる領域である。より具体的には、図11に示すギャップGが100%以外の力行参照曲線において、q軸上限電流値Iqmaxが零となる回転速度n以下の回転速度領域は、弱め界磁制御が不要な制御領域である。したがって、弱め界磁制御が不要かどうかは、ギャップGおよび回転速度nに基づいて判断される。
ステップS7〜S10のいずれかの判断が否定されれば、当該制御周期における3相短絡判断処理を終える。一方、ステップS7〜S10の全ての判断が肯定されると、短絡/解除処理部330は、3相短絡解除要求を発生する(ステップS11)。
ステップS7〜S10において判断される条件は、3相短絡を解除するための条件(解除条件)の例である。この実施形態では、例示した全ての解除条件が成立すると、3相短絡実行要求が発生される。ただし、これらの解除条件のうちの一つまたは2つ以上が省かれてもよい。たとえば、回転速度nに関する解除条件(ステップS7)のみを判断してもよい。また、回転速度nに関する解除条件(ステップS7)と、バッテリ電圧VBに関する解除条件(ステップS9)との2つの解除条件のみを用いてもよい。
図16は、3相短絡処理およびその解除処理を説明するためのフローチャートである。この処理は、短絡/解除処理部330(CPU280)によって、予め定める制御周期毎に繰り返し実行される。
短絡/解除処理部330は、3相短絡実行要求の有無を判断する(ステップS21)。3相短絡実行要求があれば(ステップS21:YES)、短絡/解除処理部330は、電動モータ5に通電しているか否かを判断する(ステップS22)。より具体的には、モータ駆動回路350に供給される駆動信号のデューティ比に基づいて、通電中かどうかが判断される。通電中でなければ(ステップS22:NO)、短絡/解除処理部330は、駆動信号生成部321に3相短絡指令を与える(ステップS23)。これに応答して、駆動信号生成部321は、モータ駆動回路350の全ての相回路351〜353において、上アームスイッチング素子Sw1,Sw3,Sw4をオフ状態に保持し、下アームスイッチング素子Sw2,Sw4,Sw6をオン状態に保持するための駆動信号を生成する。これにより、電動モータ5は3相短絡状態となる。
一方、電動モータ5に通電中であれば(ステップS22:YES)、短絡/解除処理部330は、駆動信号生成部321に通電停止指令を与え、実際に通電停止に至るまでの一定時間を待機する(ステップS23)。その後、短絡/解除処理部330は、駆動信号生成部321に3相短絡指令を与える(ステップS23)。通電中には、モータ駆動回路350の上アームスイッチング素子Sw1,Sw2,Sw3がオン/オフ駆動されている。この状態で、3相短絡のために下アームスイッチング素子Sw2,Sw4,Sw6をオンすると、バッテリ6のプラス端子とマイナス端子間が短絡して、大きな貫通電流が流れるおそれがある。ステップS23の処理によって、上アームスイッチング素子Sw1,Sw2,Sw3を完全にオフしてから3相短絡を実行できるので、バッテリ6の端子間短絡を回避できる。
3相短絡実行要求がなければ(ステップS21:NO)、短絡/解除処理部330は、電動モータ5が3相短絡状態かどうかを判断する(ステップS25)。3相短絡状態でなければ(ステップS25:NO)、当該制御周期の処理を終える。3相短絡状態のときは(ステップS25:YES)、短絡/解除処理部330は、3相短絡解除要求の有無を判断する(ステップS26)。3相短絡解除要求がなければ(ステップS26:NO)、当該制御周期の処理を終える。3相短絡解除要求があれば(ステップS26:YES)、3相短絡解除処理(ステップS27〜S35)を実行する。
3相短絡解除処理は、U相短絡解除(ステップS27〜S29)と、V相短絡解除(ステップS30〜32)と、W相短絡解除(ステップS33〜S35)とを含む。この実施形態では、U相短絡解除、V相短絡解除およびW相短絡解除の順に実行される。したがって、まず、U相回路351の下アームスイッチング素子Sw2がオン状態からオフ状態に切り換えられる。次に、V相回路352の下アームスイッチング素子Sw4がオン状態からオフ状態に切り換えられる。その後に、W相回路353の下アームスイッチング素子Sw6がオン状態からオフ状態に切り換えられる。
U相短絡解除は、U相短絡中かどうかの判断(ステップS27)を含む。この判断は、U相回路351の下アームスイッチング素子Sw2がオン状態か否かの判断である。さらに、短絡/解除処理部330は、電流検出回路354によって検出されるU相電流Iを参照して、U相電流Iが電動モータ5に流れ込む方向の値かどうかを判断する(ステップS28)。「流れ込む方向」とは、下アームスイッチング素子から電動モータ5に向かって流れる電流の方向である。逆に、電動モータ5から下アームスイッチング素子に向かって流れる電流の方向を、「流れ出る方向」または「流出する方向」などということにする。たとえば、各相電流は、電動モータ5に流れ込む方向のときに正符号で表され、電動モータ5から流れ出る方向のときに負符号で表されてもよい。この場合、ステップS28の判断は、U相電流Iが正(または0以上)か否かの判断となる。U相電流Iが電動モータ5から流出する方向であれば(ステップS28:NO)、当該制御周期での処理を終える。U相電流Iが電動モータ5に流れ込む方向であれば(ステップS28:YES)、短絡/解除処理部330は、駆動信号生成部321に対して、U相短絡解除指令を与える(ステップS29)。これにより、駆動信号生成部321は、U相回路351の下アームスイッチング素子Sw2をオンからオフに切り換えるための駆動信号を生成する。こうして、U相短絡が解除される。
V相短絡解除(ステップS30〜S32)は、U相短絡解除と同様である。すなわち、V相短絡解除は、V相短絡中かどうかの判断(ステップS30)を含む。この判断は、V相回路352の下アームスイッチング素子Sw4がオン状態か否かの判断である。さらに、短絡/解除処理部330は、電流検出回路354によって検出されるV相電流Iを参照して、V相電流Iが電動モータ5に流れ込む方向の値かどうかを判断する(ステップS31)。この判断は、V相電流Iが正(または0以上)か否かの判断であってもよい。V相電流Iが電動モータ5から流出する方向であれば(ステップS31:NO)、当該制御周期での処理を終える。V相電流Iが電動モータ5に流れ込む方向であれば(ステップS31:YES)、短絡/解除処理部330は、駆動信号生成部321に対して、V相短絡解除指令を与える(ステップS32)。これにより、駆動信号生成部321は、V相回路352の下アームスイッチング素子Sw4をオンからオフに切り換えるための駆動信号を生成する。こうして、V相短絡が解除される。
W相短絡解除に際しては、短絡/解除処理部330は、電流検出回路354によって検出されるW相電流Iを参照して、電動モータ5から流出するW相電流Iが所定値以下(または所定値未満)かどうかを判断する(ステップS33)。電動モータ5に流れ込む方向の電流値に正符号を与えている場合、ステップS33の判断は、W相電流Iが負の所定値以上かどうかの判断であってもよい。電動モータ5から流出するW相電流Iが所定値以下であれば(ステップS33:YES)、短絡/解除処理部330は、駆動信号生成部321に対して、W相短絡解除指令を与える(ステップS34)。これにより、駆動信号生成部321は、W相回路353の下アームスイッチング素子Sw6をオンからオフに切り換えるための駆動信号を生成する。こうして、W相短絡が解除される。電動モータ5から流出するW相電流Iが所定値を超えていれば(または所定値以上であれば)(ステップS33:NO)、短絡/解除処理部330は、さらに、V相の短絡を解除してから予め定める一定回転角度(電気角であってもよい)だけロータが回転したかどうかを判断する(ステップS35)。この一定回転角度は、V相の短絡を解除してから、電動モータ5から流出するW相電流Iが前記所定値以下となると見積もられる値(たとえば90度)に設定されている。前記一定回転角度だけ回転した場合には(ステップS35:YES)、短絡/解除処理部330は、駆動信号生成部321に対して、W相短絡解除指令を与える(ステップS32)。前記一定回転角度の回転前であれば(ステップS35:NO)、当該制御周期での処理を終える。
図17A〜17Dは、各相の短絡状態を解除するタイミングを説明するための原理図である。図17Aに示すように、バッテリ6に上アームスイッチング素子SwH(Sw1,Sw3,Sw5)と下アームスイッチング素子SwL(Sw2,Sw4,Sw6)との直列回路が接続されている。上アームスイッチング素子SwHには並列にダイオードDH(D1,D3,D5)が接続されており、下アームスイッチング素子SwLには並列にダイオードDL(D2,D4,D6)が接続されている。
短絡状態では、下アームスイッチング素子SwLがオン状態であり、図17Bに示すように、ロータ81の回転に伴って発生する相電流Imは、交流波状に変化する。したがって、相電流Imが電動モータ5のコイルに流れ込む期間(正の値の期間)と、相電流Imが電動モータ5のコイルから流出する期間(負の値の期間)とが存在する。この相電流Imは、オン状態の下アームスイッチング素子SwLを通って流れ、上アームスイッチング素子SwHまたはダイオードDHからバッテリ6に向かうことはない。よって、相電流Imは、電動モータ5のコイルで熱消費される。
相電流Imが電動モータ5から流れ出る期間(Im<0の期間)に下アームスイッチング素子SwLをオフして短絡状態を解除すると、図17Cに示すように、その相電流は、上アーム側のダイオードDHを通ってバッテリ6に流れ込んで吸収される。
一方、相電流Imが電動モータ5に流れ込む期間(Im>0の期間)に下アームスイッチング素子SwLをオフして短絡状態を解除すると、図17Dに示すように、その相電流は、下アーム側のダイオードDLを通って電動モータ5に流れ込む。したがって、バッテリ6に向かうことはない。
したがって、相電流Imが電動モータ5に流れ込んでいる期間に下アームスイッチング素子SwLをオフして短絡状態を解除すれば(図17D参照)、回生電流がバッテリ6に流れ込まないので、突入電流が生じない。また、相電流Imが電動モータ5から流れ出している期間であっても、その絶対値が所定値以下のときに下アームスイッチング素子SwLをオフ状態として短絡状態を解除すれば、大きな突入電流がバッテリ6に流れ込むことを回避できる。
図18は、回生量設定部340の処理を示すフローチャートであり、CPU280(回生量設定部340)が予め定める制御周期毎に繰り返し実行する処理を示す。回生量設定部340は、アクセル開度AOが零かどうかを判断する(ステップS41)。回生量設定部340は、さらに、ブレーキセンサ302がブレーキ操作ありを検出しているかどうかを判断する(ステップS42)。
アクセル開度AOが零で(ステップS41:YES)、ブレーキセンサ302がブレーキ操作無しを検出していれば(ステップS42:NO)、回生量設定部340は、最大回生電流を第1の一定値に設定する(ステップS44)。この第1の一定値は、3相短絡状態のときに電動モータ5に生じる制動トルクとほぼ同等の制動トルクが生じるように予め定められている。
アクセル開度AOが零で(ステップS41:YES)、ブレーキセンサ302がブレーキ操作ありを検出していれば(ステップS42:YES)、回生量設定部340は、最大回生電流を、前記第1の一定値よりも大きな第2の一定値(たとえば17A)に設定する(ステップS44)。たとえば、第1の一定値は、第2の一定値の35%〜50%(たとえば40%)程度の値であってもよい。
アクセル開度AOが零でないときは(ステップS41:NO)、回生量設定部340は、最大回生電流を零に設定する(ステップS43)。
図19は、電動モータ5の回転速度nと回生動作時におけるq軸電流指令値Iq(回生電流指令値)との関係を示す。q軸電流指令値Iqを負値に設定することによって、電動モータ5を発電機として作用させることができ、それによって生じた電流をバッテリ6に供給(回生)することができる。回生動作時のq軸電流指令値Iqは、q軸上限電流値Iqmaxの参照マップ(図11)および回生量設定部340によって設定される最大回生電流による制限に従い、それらによる制限範囲で絶対値が最大になるように設定される。図19には、図11に示した回生参照曲線群および低速制限参照曲線Lを併せて示してある。
最大回生電流が第1の一定値に設定されたときは、q軸電流指令値Iqは、たとえば曲線L1に従って設定される。また、最大回生電流が第2の一定値に設定されたときは、q軸電流指令値Iqは、たとえば曲線L2に従って設定される。ただし、これらの曲線L1,L2に対応する参照マップが用意されているわけではない。つまり、最大回生電流を制御目標として、ステータ87におけるギャップG、q軸電流Iqおよびd軸電流Idが制御されることにより、結果として、q軸電流指令値Iqが曲線L1,L2に従う。
曲線L1,L2は、低速制限参照曲線Lとの交点に対応する回転速度n11,n12以下(または当該回転速度n11,n12未満)の範囲においては、当該低速制限参照曲線Lに一致する。したがって、最大回生電流が第1の一定値に設定されたときは、回転速度n11を超える(または回転速度n11以上の)回転速度範囲では、当該第1の一定値を制御目標として回生電流が制御される。そして、回転速度n11以下(または当該回転速度n11未満)の範囲では、回生電流が抑制され、それに応じて電動モータ5が発生する制動トルクが抑制される。同様に、最大回生電流が第2の一定値に設定されたときは、回転速度n12を超える(または回転速度n12以上の)回転速度範囲では、回生電流が当該第2の一定値を制御目標として制御される。そして、回転速度n12以下(または当該回転速度n12未満)の範囲では、回生電流が抑制され、それに応じて電動モータ5が発生する制動トルクが抑制される。これにより、低速域においては、制動感を抑制できるから、良好な乗車フィーリングが実現される。とくに、電動モータ5の回転速度nが低くなるほど、すなわち車速が低くなるほど回生電流が抑制されて制動トルクが抑制されるから、より優れた乗車フィーリングが得られる。たとえば、低速でUターンするときに、回生動作を行わせながら、同時に優れた乗車フィーリングを実現できる。
アクセル開度AOが零で、ブレーキ操作がされていないときは、最大回生電流が第1の一定値に設定されるから、曲線L1に従ってq軸電流指令値Iqが設定される。また、アクセル開度AOが零でブレーキ操作がされているときには、最大回生電流が第2の一定値に設定される。すなわち、曲線L2に従ってq軸電流指令値Idが設定される。したがって、ブレーキ操作がされているときは、ブレーキ操作がされていないときよりも、電動モータ5は大きな電流を発生し、その電流がバッテリ6に回生される。これにより、ブレーキ操作がされているときは、大きな制動トルクを電動モータ5から発生させ、かつその制動によって発生するエネルギーの多くをバッテリ6の充電のために利用することができる。これにより、エネルギー利用効率が高まる。その一方で、アクセル開度AOが零でブレーキ操作がされていないときには、電動モータ5が発生する制動トルクが抑制されるから、自然な乗車フィーリングを実現できる。
図20は、回生時におけるギャップGの制御による効果を説明するための図であり、電動モータ5の回転速度nと回生動作時におけるq軸電流指令値Iq(回生電流指令値)との関係が示されている。図20には、図19に示した曲線L1,L2が再度示されている。また、図20には、ギャップG=100%(アクセルオン)に対応した回生参照曲線Lrが示されている。さらに、図20には、ギャップG=100%の回生参照曲線Lrに対して前記第1の一定値と前記第2の一定値の比(第1の一定値/第2の一定値)を乗じて得られる仮想的な回生参照曲線Liが示されている。
ブレーキ操作が行われたときのq軸電流指令値Iqを表す曲線L2は、高回転速度域においては回生参照曲線Lrに沿う。そして、曲線L2で示すq軸電流指令値Iqは、ギャップG≠100%となる回転速度域では、参照符号402で示すように、回生参照曲線Lr上の値よりも小さな絶対値をとる。また、ブレーキ操作を伴うことなくアクセル開度AOが零となったときのq軸電流指令値Iqを表す曲線L1は、高回転速度域においては仮想的な回生参照曲線Liに沿う。そして、曲線L1で示すq軸電流指令値Iqは、ギャップG≠100%となる回転速度域では、参照符号401で示すように、仮想的な回生参照曲線Li上の値よりも小さな絶対値をとる。このように、ギャップGが回転速度n等に応じて変動することにより、q軸電流指令値Iqが、回生参照曲線Lrまたは仮想的な回生参照曲線Li上の値よりも小さな絶対値を有するように抑制される。これにより、十分な回生電流(たとえば前記第1の一定値または第2の一定値)を確保しながら、電動モータ5が発生する制動トルクを抑制できる。
なお、回生電流は、必ずしも常に最大回生電流(第1の一定値または第2の一定値)とされるわけではなく、最大回生電流以下の(または最大回生電流よりも小さい)範囲で定められる。たとえば、バッテリ6の充電状態、バッテリ6の温度(環境温度で代用してもよい)等のパラメータに応じて、最大回生電流以下の(または最大回生電流よりも小さい)範囲で、回生電流が決定されてもよい。そして、その決定された回生電流に基づいて、回生動作時のq軸電流指令値Iqが定められることになる。
図21は、電動モータ5の回転速度nと回生動作時におけるd軸電流指令値Id(弱め界磁制御のための電流指令値)との関係を示す。d軸電流指令値Idは、たとえば、q軸電流指令値Iqおよび回転速度nに応じて設定される。図21には、図12に示したd軸上限曲線(Idmax)およびd軸下限曲線(Idmin)を併せて示してある。d軸電流指令値Idは、これらの曲線に挟まれる領域内で設定される。
最大回生電流が第1の一定値に設定されたときは、d軸電流指令値Idは、たとえば曲線L11に従って設定される。また、最大回生電流が第2の一定値に設定されたときは、d軸電流指令値Idは、たとえば曲線L12に従って設定される。ただし、これらの曲線L11,L12に対応する参照マップが用意されているわけではない。つまり、最大回生電流を制御目標として、ステータ87におけるギャップG、q軸電流Iqおよびd軸電流Idが制御されることにより、結果として、q軸電流指令値Iqが曲線L11,L12に従う。回転速度nが大きいほど、d軸電流指令値Idの絶対値が大きくなり、電動モータ5の界磁がより弱められる。
図22は、電動モータ5の回転速度nと回生動作時に電動モータ5が発生する制動トルクとの関係を示す。電動モータ5が発生するトルクは、q軸電流Iqに比例するので、回生動作時における制動トルクは、q軸電流指令値Iqにほぼ比例する。曲線L21は、最大回生電流が第1の一定値に設定された場合の制動トルクを示しており、図19の曲線L1に対応している。同様に、曲線L22は、最大回生電流が第2の一定値に設定された場合の制動トルクを示しており、図19の曲線L2に対応している。
一方、曲線L23は、ステータ87のギャップGが100%の状態で電動モータ5を3相短絡したときに電動モータ5が発生する制動トルクを示す。さらに、曲線L24は、ステータ87のギャップGが0%の状態で電動モータ5を3相短絡したときに電動モータ5が発生する制動トルクを示す。3相短絡が実行されるのは、回転速度nが短絡閾値A(図15参照)を超えている(または短絡閾値A以上)のときである。したがって、通常状態では、3相短絡状態のとき、ギャップG=100%である。
最大回生電流が第1の一定値に設定された場合の制動トルクを示す曲線L21は、曲線L23,L24に整合している。とくに、曲線L21は、ギャップG=100%の場合の制動トルク曲線L23にほぼ一致している。換言すれば、第1の一定値は、3相短絡状態のときの制動トルクと同等の制動トルクが生じる回生電流に相当するように設定されている。これにより、3相短絡状態が解除されて回生動作に切り換わるときに、制動トルクの不連続変化を回避できるから、良好な乗車フィーリングを実現できる。
3相短絡状態で、かつギャップGが100%でない場合も考えられる。たとえば、回転速度nと比較される短絡閾値Aと解除閾値A′(図15参照)とが異なり、3相短絡の実行とその解除とにヒステリシスが与えられる場合である。しかし、曲線L23,L24の比較から明らかなとおり、回転速度nが比較的高い高速領域では、ギャップGによらずに制動トルクがほぼ一致していることが分かる。つまり、短絡閾値Aおよび解除閾値A′の速度域(2000rpm〜8000rpm。図14参照)では、ギャップGによらずに、制動トルクは概ね一致している。したがって、ギャップGが100%でない場合であっても、3相短絡状態が解除されて回生動作に切り換わるときに、制動トルクが大きく変化することがない。そのため、良好な乗車フィーリングが得られる。
図23は、電動モータ5の回転速度nと回生動作時における目標ギャップGとの関係を示す。図23には、図13に示した目標ギャップマップの曲線群を併せて示してある。最大回生電流が第1の一定値に設定されたときは、目標ギャップGは、たとえば曲線L31に従って設定される。また、最大回生電流が第2の一定値に設定されたときは、目標ギャップGは、たとえば曲線L32に従って設定される。ただし、これらの曲線L31,L32に対応する参照マップが用意されているわけではない。つまり、最大回生電流を制御目標としてq軸電流指令値Iqが制御されることにより、結果として、目標ギャップGが曲線L31,32に従う。この例では、目標ギャップGは、100%〜0%の間で、5%間隔で段階的に変化している。
図24は、電動モータ5の回転速度nと回生動作時にバッテリ6に回生される回生電流(バッテリ電流)との関係を示す。曲線L41は、最大回生電流が第1の一定値に設定された場合の回生電流を示しており、図19の曲線L1に対応している。同様に、曲線L42は、最大回生電流が第2の一定値に設定された場合の回生電流を示しており、図19の曲線L2に対応している。曲線L41は、回転速度n11以上の(または回転速度n11を超える)範囲において、第1の一定値(たとえば6A)によく整合している。同様に、曲線L42は、回転速度n12以上の(または回転速度n12を超える)範囲において、第2の一定値(たとえば17A)によく整合している。回転速度n11,n12未満(または回転速度n11,n12以下)の範囲では、回転速度nの低下に伴って回生電流が小さくなる。これは、q軸電流指令値Iqが低速制限参照曲線L(図11および図19参照)に従って設定されることによる。
図25は、ブレーキ操作をすることなくアクセル開度AOを零とした場合の測定データ例を示す。曲線E1はq軸電流指令値Iqの時間変化を示し、曲線E2は回生電流(バッテリ電流)の時間変化を示し、曲線E3は駆動力の時間変化を示す。さらに、曲線E4は電動モータ5の回転速度nの時間変化を示し、曲線E5はギャップGの時間変化を示し、曲線E6は電動モータ5の発生トルクの時間変化を示す。曲線E3に示す駆動力は、回転速度nの減速度(一階時間微分値)と電動二輪車1の質量とに基づいて演算した値であり、電動二輪車1に働く力(駆動力または制動力)を示す。曲線E6に示す発生トルクは、電動モータ5の特性、q軸電流指令値Iq等から推定した値を示す。
時刻t1においてアクセル開度AOが零とされると、q軸電流指令値Iqが負値となって、回生動作が始まる。これに応じて、バッテリ電流が負値(回生電流)に転じ、制動トルク(負のトルク)が発生して、回転速度nが減少する。バッテリ電流は、時刻t2までの期間に、ほぼ一定値(第1の一定値。この例では約6A)に保持されている。時刻t2からの期間には、低速制限参照曲線L(図11および図19参照)に従ってq軸電流指令値Iqが設定される。これにより、制動トルクが減少し、また、バッテリ電流が減少(絶対値が減少)する。つまり、低速域まで減速した後には、制動トルクが弱められ、それに応じて制動力(負の駆動力)が弱まる。
図26は、アクセル開度AOを零とし、かつブレーキ操作を行った場合の測定データ例を示す。ただし、ブレーキセンサ302がブレーキ操作ありを検出しているものの、ブレーキ装置155,160は実際には作動しておらず、よって、機械的な制動力が作用していない状態での測定データが示されている。図26では、各測定データを表す曲線に対して、図25と同じ参照符号を付してある。
時刻t11においてアクセル開度AOが零とされ、さらにブレーキ操作ありが検出されると、q軸電流指令値Iqが負値となって、回生動作が始まる。これに応じて、バッテリ電流が負値(回生電流)に転じ、制動トルクが発生して、回転速度nが減少する。バッテリ電流は、時刻t12までの期間に、ほぼ一定値(第2の一定値。この例では約17A)に保持されている。図25との比較から明らかなとおり、バッテリ電流(回生電流)が大きくなっており、それに応じて、大きな制動トルクが発生していて、制動力もこれに対応している。時刻t12からの期間には、低速制限参照曲線L(図11および図19参照)に従ってq軸電流指令値Iqが設定される。これにより、制動トルクが減少し、また、バッテリ電流が減少(絶対値が減少)する。つまり、低速域まで減速した後には、制動トルクが弱められ、それに応じて制動力が弱まる。
図27は、アクセル開度AOを零とし、かつブレーキ操作を行った場合の測定データ例を示す。この例は、ブレーキセンサ302がブレーキ操作ありを検出し、かつ、ブレーキ装置155,160が実際に作動して、機械的な制動力が作用している状態での測定データを示す。図27では、各測定データを表す曲線に対して、図25と同じ参照符号を付してある。
時刻t21においてアクセル開度AOが零とされ、さらにブレーキ操作ありが検出されると、q軸電流指令値Iqが負値となって、回生動作が始まる。これに応じて、バッテリ電流が負値(回生電流)に転じ、制動トルクが発生して、回転速度nが減少する。バッテリ電流は、時刻t22までの期間に、ほぼ一定値(第2の一定値。この例では約17A)に保持されている。つまり、図26の場合とほぼ同様のバッテリ電流(回生電流)が発生しており、電動モータ5は、それに応じた大きな制動トルクを発生している。さらに、ブレーキ装置155,160による機械的な制動力が加わることにより、図26の場合よりも大きな制動力が発生しており、それに応じて、電動モータ5の回転速度nが速やかに低下している。時刻t12からの期間には、低速制限参照曲線L(図11および図19参照)に従ってq軸電流指令値Iqが設定される。これにより、制動トルクが減少し、また、バッテリ電流が減少(絶対値が減少)する。つまり、低速域まで減速した後には、制動トルクが弱められ、それに応じて制動力が弱まる。
以上のように、この実施形態によれば、モータコントローラ78は、後輪4に伝達すべき駆動力を発生する三相交流電動モータ5を制御する。すなわち、モータコントローラ78は、バッテリ6から電動モータ5のコイル5U,5V,5Wへの電流供給を制御する。電動モータ5は、界磁の強さを変化させる界磁可変手段(第2ステータ87、ステータ駆動装置79)を有し、バッテリ6から電流が供給されたときに後輪4に伝達すべき駆動力を発生し、後輪4が外力によって回転されたときに回生電流を発生するように構成されている。モータコントローラ78は、アクセル操作量センサ301(アクセル操作検出手段)によって検出されるアクセルグリップ12R(アクセル操作子)の操作量に対応するアクセル開度AOを監視している。モータコントローラ78は、電動モータ5が発生する回生電流をバッテリ6に供給する回生動作を実行する回生制御手段(CPU280、電流指令値演算部311)を含む。この回生制御手段は、アクセル開度AOが零であるとき、およびブレーキセンサ302がブレーキ操作ありを検出したときに、回生動作を実行する。また、モータコントローラ78は、アクセル開度AOが零のときに最大回生電流を予め定める第1の一定値に設定し、ブレーキ操作ありが検出されたときに前記最大回生電流を予め定める第2の一定値に設定する回生量設定部340を含む。これにより、アクセルオフ操作およびブレーキ操作に応じて、それぞれ一定の最大回生電流が設定されるので、十分な回生量を確保できる。一方、電動モータ5の界磁の強さ(ギャップG)は、その回転速度nおよびq軸電流指令値Iqの絶対値|Iq|に応じて変化する。したがって、界磁の強さが回転速度n等に応じて変化することにより、回生動作時に電動モータ5が発生する制動トルクが調整される。したがって、一定の回生電流を確保しながら電動モータ5を減速させるときに、その減速に応じて電動モータ5の界磁の強さが変化するので、制動トルクの変化が緩やかになる。このようにして、十分な回生量を確保しつつ、制動トルクの変化を小さくして、乗車フィーリングを向上できる。十分な回生量を確保できることにより、一回のバッテリ充電での走行距離を長くできる。
また、この実施形態では、前記第2の一定値が前記第1の一定値よりも大きく定められている。したがって、ブレーキ操作をしたときに電動モータ5が発生する制動トルクが、アクセルオフ操作のときの制動トルクよりも大きくなる。これにより、ブレーキ操作時には、電動モータ5が大きな制動トルクを発生するので、ライダーの意図に対応した大きさの制動トルクを発生させることができる。また、回生電流が大きな値に設定されることによって、電動モータ5の運動エネルギーをバッテリ6の充電のために効率的に利用することができる。これにより、エネルギー効率を高めることができ、一回のバッテリ充電での走行距離を長くできる。
さらに、この実施形態では、前記回生制御手段(CPU280、電流指令値演算部311)は、電動モータ5の回転速度nが閾値n1またはそれよりも低いときに、低速制限参照曲線L(図11参照)に従って、回転速度nが低いほど回生電流を小さくする。すなわち、電動二輪車1の車速が予め定める車速閾値(前記閾値n1に相当)またはそれよりも小さいときに、車速が低いほど回生電流が小さくなる。これにより、車速閾値以下の低速領域では、低速になるほど回生電流が少なくなり、それに応じて電動モータ5が発生する制動トルクが小さくなる。これにより、低速走行時の制動感を緩和できるので、より自然な乗車フィーリングを実現できる。
また、この実施形態では、前記回生制御手段(CPU280、電流指令値演算部311)は、電動モータ5の回転速度が閾値n2(図11参照)よりも低いときには、回生電流を零に制御する。すなわち、自動二輪車1の車速が予め定める低速閾値(前記閾値n2に相当)またはそれよりも小さいときに、回生電流を零にする。これにより、極低速域においては、電動モータ5は制動トルクを発生しなくなるから、より自然な乗車フィーリングを実現できる。
さらに、この実施形態では、モータコントローラ78は、電動モータ5の回転速度nに応じて前記界磁可変手段(第2ステータ87、ステータ駆動装置79)を制御する界磁制御手段をさらに含む。界磁制御手段は、前記実施形態では、CPU280、とりわけ目標ギャップ演算部322、ギャップ差分演算部323、ギャップPI制御部324、実ギャップ演算部326などで構成されている。前記回生制御手段(CPU280、電流指令値演算部311)は、前記電動モータ5に流すべき電流指令値を設定する電流指令値演算部311(電流指令値設定手段)を含み、前記電流指令値に応じて電動モータ5への電流供給を制御する。電流指令値演算部311は、電動モータ5の界磁の強さ(ギャップG)および回生量設定部340によって設定される最大回生電流に応じて、電流指令値を設定する。
この構成によれば、電動モータ5の回転速度nに応じて電動モータ5の界磁の強さが制御される。これにより、低速回転域では界磁を強めて低速トルクを大きくしたり、高速回転域では界磁を弱めて高速回転を可能としたりすることができる。回生動作時には、電動モータ5の界磁の強さおよび達成すべき回生電流に応じて、電流指令値が設定される。これにより、電動モータ5の回転速度nの変化に応じて界磁の強さが変化してき、その変化に応じて回生電流を一定に保つように電流指令値が設定される。電動モータ5が発生するトルクは、電流指令値(とくにq軸電流指令値Iq)にほぼ比例するから、結果として、緩やかに変化する制動トルクが得られることになる。これにより、乗車フィーリングを向上できる。
モータコントローラ78は、電流検出回路354によって検出される検出電流と電流指令値との偏差に応じて電動モータ5をフィードバック制御するように構成されている。これにより、検出電流が電流指令値に追従するように電動モータ5への電流供給が制御されるので、回生動作時において、十分な回生量を確保できる。
以上、この発明の一実施形態について詳細に説明したけれども、この発明は、さらに他の形態で実施することもできる。
たとえば、前述の実施形態では、U相、V相およびW相の順に下アームスイッチング素子をオフして3相短絡状態を解除する例を示したけれども、下アームスイッチング素子をオフする順序は、U相回路351、V相回路352およびW相回路353の間で任意に変更できる。さらに、短絡状態を解除する相の順序を予め定めておく必要もない。すなわち、3相短絡実行要求(ステップS6)が発生した後、相電流が電動モータ5に引き込まれるタイミングが最初に到来する相を、短絡状態解除を最初に行う第1解除相としてもよい。そして、残る2相のうち、相電流が電動モータ5に引き込まれるタイミングが次に到来する相を、短絡状態解除を次に行う第2解除相としてもよい。残る1相が、短絡状態解除を最後に行う第3解除相となる。
また、前述の実施形態では、第1番目および第2番目に短絡状態が解除される相については、相電流が電動モータ5に引きまれる方向であることを解除実行条件(ステップS28,S31)としている。しかし、相電流が電動モータ5から流出する方向であっても、その大きさが十分に小さければ、大きな突入電流がバッテリ6に供給されることはない。したがって、電動モータ5から流出する相電流が所定値未満(または以下)であることを、各相の短絡解除の実行条件としてもよい。さらに、バッテリ6の性能によっては大きな突入電流が許容される場合もある。このような場合には、3相の短絡解除を同時に行ってもよい。
さらに、3相短絡およびその解除を行う代わりに、バッテリ6とモータ駆動回路350とを接続する回路の途中にスイッチを設けてもよい。この場合、たとえば、モータコントローラ78は、前述の短絡条件が成立すると当該スイッチをオフし、前述の解除条件が成立すると当該スイッチをオンするように構成されていてもよい。
さらに、前述の実施形態では、アクシャルギャップ型の電動モータ5を例示した。しかし、モータ軸に直交する径方向にステータ/ロータ間のギャップを形成したラジアルギャップ型の電動モータを有する電動二輪車に対しても、この発明の適用が可能である。
また、前述の実施形態では、回転速度演算部312が演算する電動モータ5の回転速度nを車速の代替指標として用いているが、車速を検出する車速センサや、車輪速を検出する車輪速センサを別途設けてもよい。
さらに、前述の実施形態では、スクータ型の電動二輪車1を例示したけれども、この発明は他の形態の電動二輪車にも同様に適用することができる。たとえば、いわゆるモーターサイクル、モペット、オフロード車等のような型の二輪車に対しても、この発明を適用することができる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1 電動二輪車
3 前輪
4 後輪
5 電動モータ
5U U相コイル
5V V相コイル
5W W相コイル
6 バッテリ
12R アクセルグリップ
16 ブレーキレバー
17 メインスイッチ
47 スイングユニット
78 モータコントローラ
79 ステータ駆動装置
81 ロータ
82 ステータ
85 モータ軸
86 第1ステータ
87 第2ステータ
89 コイル
110 駆動ユニット
111 駆動モータ
129a 界磁位置センサ
130a 磁極位置センサ
155 ブレーキ装置
160 ブレーキ装置
200 バッテリコントローラ
201 充電検出部
202 充電状態検出部
203 バッテリ電圧検出部
204 回生指令発生部
280 CPU
281 スイッチ駆動回路
282 ステータ駆動回路
301 アクセル操作量センサ
302 ブレーキセンサ
310 制御回路
311 電流指令値演算部
312 回転速度演算部
322 目標ギャップ演算部
326 実ギャップ演算部
330 短絡/解除処理部
340 回生量設定部
350 モータ駆動回路
354 電流検出回路

Claims (5)

  1. 駆動輪を有する電動二輪車であって、
    バッテリと、
    界磁の強さを変化させる界磁可変手段を有し、前記バッテリから電流が供給されたときに前記駆動輪に伝達すべき駆動力を発生し、前記駆動輪が外力によって回転されたときに回生電流を発生する三相交流電動モータと、
    前記バッテリから前記電動モータへの電流供給を制御するモータコントローラと、
    ライダーによって操作されるアクセル操作子と、
    前記アクセル操作子の操作量を検出するアクセル操作検出手段と、
    ライダーによって操作されるブレーキ操作子と、
    前記ブレーキ操作子の操作の有無を検出するブレーキ操作検出手段と
    を含み、
    前記モータコントローラは、
    前記アクセル操作検出手段によって予め定めるアクセル操作が検出されたとき、および前記ブレーキ操作検出手段によって前記ブレーキ操作子の操作が検出されたときに、前記電動モータが発生する回生電流を前記バッテリに供給する回生動作を実行する回生制御手段と、
    前記アクセル操作検出手段によって予め定めるアクセル操作が検出されたときに前記回生電流の最大値である最大回生電流を予め定める第1の一定値に設定し、前記ブレーキ操作検出手段によって前記ブレーキ操作子の操作が検出されたときに前記最大回生電流を予め定める第2の一定値に設定する回生量設定手段とを含む
    電動二輪車。
  2. 前記第1の一定値が前記第2の一定値よりも小さい、請求項1に記載の電動二輪車。
  3. 前記電動二輪車の走行速度を検出する車速検出手段をさらに含み、
    前記回生制御手段は、前記車速検出手段が予め定める車速閾値またはそれよりも低い車速を検出したときに、車速が低いほど回生電流を小さくする、請求項1または2に記載の電動二輪車。
  4. 前記回生制御手段は、前記車速検出手段が予め定める低速閾値またはそれよりも低い車速を検出したときに、前記回生電流を零にする、請求項3に記載の電動二輪車。
  5. 前記電動モータの回転速度を検出する回転速度検出手段をさらに含み、
    前記モータコントローラは、
    前記回転速度検出手段によって検出される回転速度に応じて前記界磁可変手段を制御する界磁制御手段をさらに含み、
    前記回生制御手段は、前記電動モータの界磁の強さおよび前記回生量設定手段によって設定される前記最大回生電流に応じて、前記電動モータに流すべき電流指令値を設定する電流指令値設定手段を含み、前記電流指令値に応じて前記電動モータへの電流供給を制御する、請求項1〜4のいずれか一項に記載の電動二輪車。
JP2012545550A 2010-11-22 2010-11-22 電動二輪車 Expired - Fee Related JP5636439B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070824 WO2012070105A1 (ja) 2010-11-22 2010-11-22 電動二輪車

Publications (2)

Publication Number Publication Date
JPWO2012070105A1 JPWO2012070105A1 (ja) 2014-05-19
JP5636439B2 true JP5636439B2 (ja) 2014-12-03

Family

ID=46145482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012545550A Expired - Fee Related JP5636439B2 (ja) 2010-11-22 2010-11-22 電動二輪車

Country Status (5)

Country Link
EP (1) EP2644435A4 (ja)
JP (1) JP5636439B2 (ja)
CN (1) CN103221250A (ja)
TW (1) TW201221413A (ja)
WO (1) WO2012070105A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103625305A (zh) * 2012-08-23 2014-03-12 杨晓东 车轮引动式发电节能型电动或混合动力车
ITMO20140307A1 (it) * 2014-10-27 2016-04-27 Energica Motor Company S P A Sistema per il pilotaggio di un motore elettrico in motocicli elettrici o simili
US11697392B2 (en) 2017-12-01 2023-07-11 Gogoro Inc. Security mechanisms for electric motors and associated systems
CN109204669A (zh) * 2018-08-24 2019-01-15 四川卓能智控科技有限公司 充、放电控制系统及其控制方法
DE102019209219A1 (de) 2019-06-26 2020-12-31 Robert Bosch Gmbh Steuersystem für eine elektrische Maschine zum Erzeugen eines Bremsmoments durch die elektrische Maschine und Verfahren zum Betreiben eines Steuersystems für eine elektrische Maschine
TWI716031B (zh) * 2019-07-11 2021-01-11 品睿綠能科技股份有限公司 電動機車之檔位模擬系統及電動機車
JP7409905B2 (ja) * 2020-02-28 2024-01-09 株式会社シマノ 人力駆動車用制御装置
CN113093822B (zh) * 2021-04-02 2023-05-26 重庆理工大学 两轮单辙载具静态平衡控制系统和方法
CN115085610B (zh) * 2022-08-22 2022-12-09 深圳市好盈科技股份有限公司 应用于竞赛级遥控模型车的线性刹车控制方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289701A (ja) * 1991-03-18 1992-10-14 Honda Motor Co Ltd 電動車両の回生制動装置
JPH0787601A (ja) * 1993-09-16 1995-03-31 Honda Motor Co Ltd 電動車用電源装置
JP2007001439A (ja) * 2005-06-23 2007-01-11 Yamaha Motor Co Ltd ハイブリッド車両の駆動装置及びこれを搭載するハイブリッド車両
JP2007269095A (ja) * 2006-03-30 2007-10-18 Toyota Motor Corp 車両の制動力制御装置
JP2009303342A (ja) * 2008-06-11 2009-12-24 Honda Motor Co Ltd 電動車両、および電動車両の制御方法
JP2010283951A (ja) * 2009-06-03 2010-12-16 Mitsuba Corp モータ制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3682590B2 (ja) * 1996-05-24 2005-08-10 ソニー株式会社 移動装置と移動制御方法
JP3751736B2 (ja) 1998-01-21 2006-03-01 ヤマハ発動機株式会社 電動車両の運転制御装置
JP2002186105A (ja) * 2000-12-15 2002-06-28 Nippon Yusoki Co Ltd 電気車両の回生制動制御装置
JP4016714B2 (ja) * 2002-05-21 2007-12-05 松下電器産業株式会社 補助動力装置付き自転車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04289701A (ja) * 1991-03-18 1992-10-14 Honda Motor Co Ltd 電動車両の回生制動装置
JPH0787601A (ja) * 1993-09-16 1995-03-31 Honda Motor Co Ltd 電動車用電源装置
JP2007001439A (ja) * 2005-06-23 2007-01-11 Yamaha Motor Co Ltd ハイブリッド車両の駆動装置及びこれを搭載するハイブリッド車両
JP2007269095A (ja) * 2006-03-30 2007-10-18 Toyota Motor Corp 車両の制動力制御装置
JP2009303342A (ja) * 2008-06-11 2009-12-24 Honda Motor Co Ltd 電動車両、および電動車両の制御方法
JP2010283951A (ja) * 2009-06-03 2010-12-16 Mitsuba Corp モータ制御装置

Also Published As

Publication number Publication date
EP2644435A4 (en) 2014-06-18
EP2644435A1 (en) 2013-10-02
WO2012070105A1 (ja) 2012-05-31
CN103221250A (zh) 2013-07-24
TW201221413A (en) 2012-06-01
JPWO2012070105A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
JP5636439B2 (ja) 電動二輪車
JP5636440B2 (ja) 電動二輪車
JP4648054B2 (ja) ハイブリッド車両,電動駆動装置用制御装置及び電動駆動装置
EP2910400B1 (en) Regenerative brake control system of electric vehicle
JP4380700B2 (ja) 電動車両
JP4513612B2 (ja) 車両のトルク配分制御装置
JP2009196545A (ja) ハイブリッド駆動方式の車両
JP2008199716A (ja) 車両駆動装置及びそれに用いられる電子回路装置
JP2011045184A (ja) 電動車駆動制御装置及び方法
WO2015080021A1 (ja) 電気自動車の制御装置
JP5450834B2 (ja) 電動二輪車
JP2009284726A (ja) 電動二輪車用モータ
JP2008074328A (ja) ハイブリッド車両の駆動力制御装置
JP2016073061A (ja) 電気自動車の制御装置
JP6475047B2 (ja) 電動機付自転車
JP2013184663A (ja) 車両用制御装置
JP2007056933A (ja) 車両の左右トルク配分制御装置
JP2009284727A (ja) 電動二輪車用モータ
JP2001122186A (ja) 電動補助機能付車両の制御方法および装置
TWI778044B (zh) 用於車輛的控制系統
JP2024044640A (ja) 低速電動車両の駆動装置
JP2014113023A (ja) 電動車用駆動装置、及び電動車
WO2016075811A1 (ja) 電動車両の旋回補助システム、電動車両、回転電機
JP2008222168A (ja) 4輪駆動車の制御装置
JP2004115200A (ja) フォークリフト

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

LAPS Cancellation because of no payment of annual fees