JP5627590B2 - 相互直交方向で分離的検知を有するトランスデューサ - Google Patents

相互直交方向で分離的検知を有するトランスデューサ Download PDF

Info

Publication number
JP5627590B2
JP5627590B2 JP2011534580A JP2011534580A JP5627590B2 JP 5627590 B2 JP5627590 B2 JP 5627590B2 JP 2011534580 A JP2011534580 A JP 2011534580A JP 2011534580 A JP2011534580 A JP 2011534580A JP 5627590 B2 JP5627590 B2 JP 5627590B2
Authority
JP
Japan
Prior art keywords
test mass
substrate
mass
axis
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011534580A
Other languages
English (en)
Other versions
JP2012507716A (ja
JP2012507716A5 (ja
Inventor
リン、イツェン
シー. マクニール、アンドリュー
シー. マクニール、アンドリュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of JP2012507716A publication Critical patent/JP2012507716A/ja
Publication of JP2012507716A5 publication Critical patent/JP2012507716A5/ja
Application granted granted Critical
Publication of JP5627590B2 publication Critical patent/JP5627590B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/082Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for two degrees of freedom of movement of a single mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Description

本発明は一般に微小電子機械システム(MEMS)センサに関連している。特に相互直交方向の分離検知機能を有するMEMS加速度センサに関連している。
加速度センサは、一般的に、加速力を測定するために使用される。このような力は重力の一定の力のような静的力、または加速度センサの移動または振動による動的力である。加速度センサは、一つ、二つ、または三つの軸または方向に沿って加速度または他の現象を検知できる。この情報から、加速度センサを取り付けられた装置の移動または方向を取得できる。加速度センサは慣性誘導システム、自動車内エアバッグ展開システム、種々デバイスの保護システム、その他多くの科学的で工学的なシステムに使用される。
静電容量を検知するMEMS加速度のデザインは、比較的安価なコストであるので、高重力において小型の装置の操作で非常に望ましい。電圧を印加された回路の出力を変えるために、静電容量性加速度センサは、加速に対する電気容量の変化を検知する。加速度センサの一般的な構成の一つは、「ティータ・トォター」または「シーソー」構成を有する静電容量性トランスデューサである。この一般に使用されるトランスデューサのタイプは、基板の上でZ軸加速下で回転する可動要素またはプレートを使用する。差分キャパシタンスまたは相対キャパシタンスを決定するために、加速度センサ構成は少なくとも二つの個別のキャパシタンスを測定できる。
図1、2を参照すると、図1は、従来のヒンジまたは「ティータ・トォター」型加速度センサとして構成された従来技術の静電容量検知MEMSセンサ20の平面図を示し、図2は、MEMSセンサ20の側面図を示す。MEMSセンサ20は、静的基板22と、静的基板22から間隔した可動要素24とを備え、静的基板22及び可動要素24はそれぞれ対向する平坦面を有する。キャパシタ電極すなわちまたは「プレート」を形成するために、基板22は、基板の表面28に堆積された所定構成の誘電性電極要素26をいくつか有する。典型的なシナリオでは、電極要素26は、刺激信号を受信する検知または励起電極として作動する。検知信号にフィードバック信号を重ね合わせる時、電極要素26はさらに信号にフィードバック電極として作動もできる。
電極要素26とともにキャパシタ34,36(C1,C2で示す)を形成するよう回転軸32の周囲で移動要素24が枢動または回転することを可能にするために、一般的に「試験質量」と呼ばれる可動要素24が、一つまたはそれ以上の保持アンカーまたは回転可撓性部材30によって基板22の上に柔軟に保持される。可動要素24は加速に応じて移動し、従って静的に検知する電極要素26に対してその位置を変化させる。この位置変化は、一連のキャパシタをもたらし、当該キャパシタンスの差(すなわち、差分キャパシタンス)が方向37の加速を示す。
ティータ・トォター型加速度センサとしての作動を意図される場合、回転軸32の一側の可動要素24の部分38は、回転軸32のもう一方の側面の可動要素24の部分40よりも大きな質量を有するように形成される。回転軸32をオフセットすることによって、部分38のより大きな質量が一般的に形成される。すなわち、回転軸32と部分38の端部44との間の長さ42は、回転軸線32と部分40の端部48との間の長さ46より長い。さらに電極素子26は、回転軸32と可動要素24の長手方向軸50に対して対称に形成及び離間される。
図1、2に示す装置はZ軸にのみに沿った加速を検知する単軸加速度センサである。しかし、いくつかの応用においては、二つまたは三つの相互に直交する軸に沿って加速を検知する能力が必要である。さらに、多くのMEMSセンサの応用は、積極的なコスト目的を達成するためにコンパクトなサイズと安価なパッケージングを必要とする。
図3,4を参照すると、図3は、従来技術の多軸MEMSセンサ52の平面図を示し、図4は多軸MEMSセンサ52の側面図を示す。MEMSセンサ52は、三つの相互直交方向にコンプライアント(compliant)することが望ましい一連のバネ58によって複数のアンカー56に取り付けられた試験質量54を含む。ダイまたは基板60にはアンカー56が装着される。MEMSセンサ52の試験質量54は、X軸検知フィンガー62及びY軸検知フィンガー64を備える。各X軸検知フィンガー62は、基板60に形成された二つの固定フィンガー66,68によって囲まれる。同様に、各Y軸検知フィンガー64は、基板60に形成された二つの固定フィンガー70,72によって囲まれる。MEMSセンサ52がX軸74に沿った加速を経験すると、X軸検知するフィンガー62と隣接した固定フィンガー66,68との間の距離が変化し、従ってフィンガー間のキャパシタンスが変化する。このキャパシタンスの変化は検知回路(図示せず)によって記録され、X軸74に沿った加速を示す出力信号に変換される。Y軸検知フィンガー64と、それに対応する固定フィンガー70,72との間のキャパシタンスの変化を記録することによって、Y軸76に沿った加速も同様に検知される。
試験質量54は、異なる質量を有する対向側面78,80を有する。対向側面78,80は基本的に等しい厚さ及び幅であるが長さが等しくないように試験質量54が形成されることにより完成される。従って、側面78は側面80より大きな質量を有し、Z軸82に沿った加速に応答してY軸76に対して試験質量54を回転させる。この加速は試験質量54の下に配置された静電容量性プレート84,86によって検知される。
MEMSセンサ52のデザインは、かなりコンパクトなトランスデューサのサイズを可能にする。この構成では、X、Y軸検知はバネ58を介してZ軸検知に接続される。従って、バネ58はXY軸バネ(すなわち、線形バネ)及びZ軸線バネ(すなわち、ねじりバネ)の両方として機能する必要がある。残念ながら、XY軸(すなわち、線形)とZ軸(すなわち、ねじれ)の両方の動きのために機能するバネ58のデザインは、交差軸検知エラーとなる可能性があり、最適化することは困難である。
Z軸82に沿った加速下で、アンカー56及びバネ58は一つの軸を中心としているわけではないので、試験質量54の枢動位置は、試験質量54の一つの端部またはもう一方の端部から移動する。この「沈み」は望ましくない二次非線形性効果となり、測定精度を低下させるか、またはフィードバック閉ループ制御のための感知回路機構の複雑度を増加させるか、またはその両者となる。さらに、枢動位置は加速周波数とともに変化する可能があるので、共通モードと差分モードは非線形性効果を悪化させる異なる減衰周波数とモード周波数を有する可能がある。
MEMSセンサは低いオフセット温度係数(TCO)の仕様を求める。「オフセット」という用語は、非励起状態のMEMセンサでの公称値からの出力偏差のことである。従って、TCOは、いかに熱応力が、MEMSセンサといった半導体デバイスの性能に影響を与えるかの測定基準となる。MEMセンサのパッケージは常に熱膨張の異なる係数を有する材料を使用する。従って、製造または操作の間に、望ましくない高いTCOを発生する可能がある。湿度及び製造処理による圧力と同様に、このような熱応力は、下にある基板の変形(以下「パッケージ応力」という)という結果を招く可能がある。
MEMSセンサ52の下にある基板に配置された中心でないアンカー56が複数に位置することは、パッケージ応力によって不正確な測定をする傾向をもたらす。
従って、二つまたはそれ以上の相互直交軸に沿って検知可能であり、相当する検知軸に対してバネを最適化すると共に非線形性効果を減少すべくXY軸検知をZ軸検知から分離する、コンパクトトランスデューサが必要である。
図面と関連して詳細説明と請求項を参照することで、本発明についてより完全に理解することが可能である。図面では同様な参照番号は同様な部材を指す。
従来ヒンジまたは「ティータ・トォター」型加速度計として構成された従来技術の静電容量検知MEMS加速度センサの平面図。 図1のMEMSセンサの側面図。 従来技術の多軸MEMSセンサの平面図。 図3の多軸MEMSセンサの側面図。 本発明の実施形態に従った多軸MEMSセンサの平面図。 図5のMEMSセンサの側面図。 本発明の別の実施形態に従った多軸MEMSセンサの平面図。 本発明の別の実施形態に従った多軸MEMSセンサの平面図。
図5,6を参照して、図5は本発明の実施形態に従った微小電子機械システム(MEMS)センサ90の平面図を示し、図6はMEMSセンサ90の側面を示す。例えば、センサ90は静電容量検知可能加速度センサまたは別のMEMS検知装置であっても良い。本発明の一つ実施形態において、MEMSセンサ90は少なくとも二つの相互直交方向の加速度を検知するようになっている多軸センサである。より具体的には、MEMSセンサ90は、X軸線に相当する方向92(以下「X方向92」とする)の加速と、Y軸線に相当する方向94(以下「Y方向94」とする)の加速と、Z軸線に相当する方向96(以下「Z方向96」とする)の加速とを検知する。ここではMEMSセンサ90は三つの相互直交方向の加速を検知するものとして説明するが、MEMSセンサ90は二つの直行方向の加速を、例えばX方向92及びZ方向96を検知するようになっていてもよいものとする。
MEMSセンサ90は、基板98及び基板98から離間された可動要素(以下、「試験質量100」とする)を有し、基板98および試験質量100はどちらも対向する平坦面を有する。基板98の表面104には静的誘電層102が堆積される。静的誘電層102は、少なくとも二つの電気的に分離された電極またはプレート、例えば電極素子106と電極素子108により形成される。電極素子106,108は、刺激信号を受信する励起または検知電極として作動できる。電極素子106,108は、フィードバック信号を検知信号に重ね合わせる時、さらにフィードバック電極としても作動できる。
試験質量100は、基板98の表面104の上方に平行に離間した関係で配置される。すなわち、試験質量100は、表面104の上に自在に保持され、表面104に接触しない。試験質量100は一般的に平面構造であって、外部周辺壁110、内部周辺壁114によって区画形成された開口112を有する。試験質量100は、アンカーシステム116によって基板98上に自在に保持され、基板98に枢動可能に接続される。アンカーシステム116は、基板98の表面104に形成された保持アンカー(以下「枢動要素118,120」とする)を有する。具体的に、枢動要素118は、係留124を通じて内部周辺壁の側面122で試験質量100に取り付けられる。同様に、枢動要素120は、係留128を通じて側面122の反対側の内部周辺壁114の別の側面126で、試験質量100に取り付けられる。
アンカーシステム116の枢動要素118,120は、開口112の中心線130に沿って配置され、中心線130に配置された回転軸132を形成する。枢動要素118,120は、電極素子106,108のそれぞれによって試験質量100間のキャパシタを形成するために、試験質量100が回転軸132の周囲を枢動または回転することを可能にする。従って、試験質量100は、ヒンジまたはティータ・トォター型加速度センサとして構成される。説明を簡単にするために、図5では電極素子106,108だけを示す。しかし、他の実施形態において、MEMSセンサ90は、電極素子の異なる数、または異なる構成、またはその両者を含んでもよい。さらに、回転軸132の周囲の試験質量100の枢動移動を可能にするために、多くの可撓性部材、ヒンジ、そして他の回転機構が使用され得ることは理解されるべきである。
回転軸132の一側の試験質量100の部分134は、回転軸132の他側の試験質量100の部分136よりも相対的に大きな質量を有するように形成される。部分134のより大きな質量は、回転軸132をずらす、つまりオフセットすることで形成される。これは、回転軸132と部分134の端部140との間の長さ138が、回転軸132と部分136の端部144との間の長さ142より大きいことを示している。電極素子106は、試験質量100の部分134に面しており、電極素子108は試験質量100の部分136に面している。さらに、電極素子106、108は大きさが等しく、試験質量100の回転軸132に対して対称的に配置される。つまり、電極素子106、108はそれぞれ回転軸132の両側で等しい距離146だけオフセットされていることを示している。
示した実施形態において、部分134,136の間の不均衡は、MEMSセンサ90がZ方向96における検知機能を発揮するために回転軸132をオフセットすることによって構成される。しかし、別の実施形態において、部分134は、試験質量100の端部140,144の間で回転軸132を幾何学的中心として比較的により大きな質量を有するように構成してもよい。例えば、部分136の質量に対して、より質量を大きくするために、部分134は部材層で重くしてもよい。または、部分134の質量に対してより質量を小さくするために、部分136に孔を構成してもよい。
試験質量100は、Z軸と実質的に平行のZ方向96の加速に応じて移動し、従って静的電極素子106,108に対してその位置を変化させる。従って、電極素子106,108は、電極素子106,108の平面と垂直な軸に沿って試験質量100の移動を検知するようになっている。この位置変化は、キャパシタの差分キャパシタンスがZ方向96の加速度を示す一連のキャパシタになるという結果をもたらす。本明細書で使用する「静的」という用語は、試験質量100に対して固定された誘電層102及び電極素子106,108の意味である。すなわち、試験質量100は、回転軸線132に関して枢動システム116の枢動要素118,120で回転または枢動するが、誘電層102(電極素子106,108を含む)は、試験質量100に対して枢動、回転、または移動はしない。
図1,2に示すMEMSセンサ20の従来技術の単軸デザインでは、回転軸32を囲み、電極素子26によって結合されている可動要素24の領域は、方向37(Z軸の検知)の検知に貢献しない。むしろ、その構成の物理性質のため、2軸XY変位センサに比較して、MEMSセンサ20は望ましくない高い減衰及び固有周波数の減少を有している。この高い減衰は、より低いロールオフ周波数をもたらす。MEMSセンサ52(図3,4)のような従来技術の三軸センサにおいて、XY検知軸は、必要とされるより低い減衰を有し、一方ではZ軸は必要とされるより高い減衰を有する。従来技術の3軸トランスデューサの妥協は、XY減衰を増加するために装置をより高い結合圧力で装置をキャップすることである。しかし、これはZ軸でより低いロールオフ周波数を招く。試験質量100に開口112を形成することによって、Z方向96の検知感度を犠牲にすることなく、Z軸ロールオフ周波数を増加することができる。
MEMSセンサ90はさらに、開口112に存在し、基板98の表面104上に平行に離間した関係で配置された試験質量148を含む。試験質量148が、開口112の中心線130と同軸の中心線150を有する。また、試験質量148の中心線150は回転132と合致する。試験質量148を開口112内に配置することによって、コンパクトなサイズと安価なパッケージングを必要とするMEMSセンサ応用への増加した要求をみたすために、コンパクトな多軸トランスデューサデザインが達成される。
試験質量148は、基板98の表面104で形成された複数のアンカー154からなるアンカーシステム152によって、基板98の上に自在に保持され、基板98に接続される。アンカー154は、バネ要素156を介して試験質量148に接続する。バネ要素156は、X方向92またはY方向94の加速に応じて、試験質量148が表面104と実質的に平行に移動することを可能にするコンプライアント線形バネである。従って、試験質量148はXY検知が可能である。一つの実施形態において、バネ要素156は、二つ直交検知軸に沿って同様な加速度を検知するために、X方向92及びY方向94で同様な硬さを有する。
MEMSセンサ90の試験質量148は、試験質量148の中心線150と整列されたX軸検視フィンガー158を備える。試験質量148は、中心線150に対して直交して配置された試験質量148の別の中心線162と整列されたY軸検知フィンガー160をさらに備える。各X検知フィンガー158は、基板98に構成された二つの固定フィンガー164,166によって囲まれる。同様に、各Y検知フィンガー160は、基板98に構成された二つの固定フィンガー168,170によって囲まれる。MEMSセンサ90がX方向92で加速を経験すると、X軸検知フィンガー158と隣接した固定フィンガー164,166との間の距離が変化し、従ってフィンガー間のキャパシタンスが変化する。このキャパシタンス変化は検知回路(図示せず)によって記録され、X軸方向92の加速度を示す出力信号に変換される。Y軸検知フィンガー160と、それに対応する固定フィンガー168,170との間のキャパシタンスの変化を記録することによって、Y軸方向94の加速も同様に検知される。
この実施形態において、中心線150は試験質量148の第1対称軸であって、中心線150に対して直交して配置された中心線162は、試験質量148の第2対称軸である。一般に、アンカーシステム152のアンカー154は中心線150,162からオフセットされ、中心線150,162に対して対称的配置される。すなわち、各アンカー154は中心線150,162から同等距離にオフセットされる。このアンカー154の構成は、試験質量148を中心とする、または中心線150,170の交点172で均衡化されるという結果をもたらす。X軸検知フィンガー158及びY検知フィンガー160は、試験質量148の中心線150,170に対して対称的に配置されても良い。試験質量148の対称的構成は、中心線150,162のいずれの側でも一般に同様な熱応力をもたらす結果となる。従って、試験質量148に対する熱応力の効果は、X軸方向92及びY方向94の検知の正確度に影響し、その効果は減少する。
試験質量148のアンカーシステム152は、試験質量100のアンカーシステム116から機械的に分離される(すなわち、異なる)ことを特に理解されたい。この構成において、Z方向96のZ軸検知のための電極素子118,120及び係留124,128のデザインを最適化すると共に、X方向92とY方向94のXY軸検知のためのバネ要素156を最適化することが可能である。また、Z軸検知はXY軸検知から分離されるので、交差軸検知は大幅に削除される。これは図6で示しており、Z方向96の加速に応じて、回転軸132の周囲を試験質量100が回転する。しかし、独立アンカーシステム152によって試験質量148は試験質量100から分離されるので、試験質量148は試験質量100に相当して枢動及び回転しない。すなわち、試験質量148は、下にある基板98の表面104と離間し、実質的に平行なままである。
図7は、本発明の別の実施形態に従った多軸MEMSセンサ174の平面図を示す。MEMSセンサ174のデザインは、MEMSセンサ90のデザインと類似する。すなわち、MEMSセンサ174は、基板98(図示せず)と、アンカーシステム116によって基板98の上に自在に保持され、枢動的に接続された試験質量100と、アンカーシステム152によって基板98上に自在に保持され、枢動的に接続された試験質量148とを備えている。この特徴は図5,6で説明しており、該特徴の利点及び規定は、簡潔にするためにここでは繰り返さない。
いくつかの例では、X検知フィンガー158及びY検知フィンガー160のXY検知感度を増加するように、試験質量148の質量を増加することが望ましい。すなわち、試験質量148の質量が増加すれば、かなり低い加速度でも、X方向92またはY方向94のいずれに試験質量148が変位する可能性が大きくなる。従って、MEMSセンサ174は、試験質量148の中心線150,162に対して試験質量148上に対称的に配置された材料176をさらに備える。材料176は、例えば、金属または試験質量148上に配置される他の適切な材料である。材料176は公知の処理によって堆積及びパターン化できる。材料176は、試験質量148の質量を増加するために機能する。結果として、X検知フィンガー158及びY検知フィンガー160のXY検知感度が効果的に増加する。
図8は、本発明の別の実施形態に従った多軸MEMSセンサ178の平面図を示す。MEMSセンサ178のデザインはMEMSセンサ90と類似している。すなわち、MEMSセンサ178は、基板98と、アンカーシステム116によって基板98の上に自在に保持され、枢動的に接続される試験質量100とを備えている。これらの特徴は、図5,6で上述しており、該特徴の説明および利点は、簡潔にするために繰り返さない。いくつかの例では、X方向検知はY方向検知から機械的に分離されることが望ましい。従って、試験質量180,182は、試験質量100の開口112に存在する。
試験質量180は、基板98に形成された複数のアンカー186の形態でアンカーシステム184によって基板98の上に自在に保持され、基板98に接続される。アンカー186は、バネ要素188を介して試験質量188に接続する。試験質量180は試験質量100の回転軸132に整列した複数のX軸検知フィンガー190をさらに備える。各X軸検知フィンガー190は、下にある基板98に形成された二つの固定フィンガー192,194によって囲まれる。バネ要素188は、X方向92の加速に応じて試験質量180が基板と実質的に平行に移動することを可能にするコンプライアント線形バネである。従って、MEMSセンサ178がX方向92で加速を検知する時、X軸検知フィンガー190と隣接した固定フィンガー192,194との間の距離が変化し、そしてフィンガー間のキャパシタンスを変える。このキャパシタンス変化は検知回路(図示せず)によって記録され、X方向92の加速度を示す出力信号に変換される。
試験質量182は、基板98に形成された複数のアンカー198の形態でアンカーシステム196によって、基板98の上に自在保持され、基板98に接続される。アンカー198は、バネ要素200を介して試験質量182に接続される。試験質量182はさらに、試験質量100の回転軸132に対して直交して配置されたY検知フィンガー202を備える。各Y軸検知フィンガー202は、下にある基板98に形成された二つの固定フィンガー204,206によって囲まれる。バネ要素200は、Y方向94の加速に応じて試験質量182が基板と実質的に平行に移動することを可能にするコンプライアント線形バネである。従って、MEMSセンサ178がY方向94で加速を検知する時、Y軸検知フィンガー202と隣接した固定フィンガー204,206との間の距離が変化し、そしてフィンガー間のキャパシタンスを変える。このキャパシタンス変化は検知回路(図示せず)によって記録され、Y方向94の加速度を示す出力信号として変換される。
この実施形態では、試験質量100の異なるアンカーシステム116に加えて、試験質量182が、試験質量180のアンカーシステム183とは異なるアンカーシステム196によって自在に保持されることを理解されたい。従って、X軸方向92とY軸方向94の間のいかなる交差軸検知も、大幅に削除される。また、個別アンカー186,198は、二つの直交検知軸に沿って異なった加速度の大きさを検知するためにX方向92対Y方向94で異なる剛性を有するようにデザインできる。さらに、MEMSセンサ178の構成は、試験質量100の係留124,126の長さに対してより大きな柔軟性を提供し、一方で開口112の利点、すなわち非線形の減少及び減衰の改善を維持する。
ここで記述する実施形態は、少なくとも二つの相互に直交する方向の加速度を検知するようになっているトランスデューサを含む。該トランスデューサは、異なるアンカーシステムによって基板の上に各々が自在に保持された少なくとも二つの試験質量を含む。第1試験質量は、第1第1方向の加速度を検知するためのティータ・トォター型として作られた差分加速度センサを備えてもよい。第1試験質量のアンカーシステムの枢動要素は回転軸に物理的に配置されるため、回転軸からオフセットした枢動要素を有するいくつかの従来技術のデザインに見られる二次非線形結果が大幅に削除される。第1試験質量は、開口と、該開口に存在する第2試験質量とを備える。第2試験質量は、下にある基板と実質的に平行であるが、第2及び/または第3の相互直交方向の加速に応答して変位が可能なアンカーシステムを有する差分変位加速度センサでもある。第1試験質量の開口形成によって、第1第1方向の検知感度を犠牲にしなくても、第1方向のロールオフ周波数は増加できる。また、開口への第2試験質量の配置は、コンパクトサイズ及び安価パッケージングを必要とするMEMSセンサアプリケーションに対する要求を満たすためのコンパクトな多軸トランスデューサデザインを達成する。各試験質量の異なるアンカーシステムは、交差軸検知を省くと同時に、相当するねじれ及び線形バネ要素の最適化を可能にする。
本発明の代表的な実施形態に関して説明してきたが、本技術分野の当業者は本発明がその精神を逸脱することなく上述した以外の具体的な形式で用いることが可能 であることを容易に理解するであろう。上述の実施形態は例示であって、いかなる意味においても限定的に解釈すべき物ではない。本発明の範囲は上述の説明では なく、添付の請求項によって与えられ、請求項の範囲に含まれる全ての変形及び等価物は本発明に包含されることが意図されている。

Claims (5)

  1. 少なくとも二つの相互に直交する方向の加速を検知するトランスデューサであって、
    基板と、
    前記基板の表面の上に基板と離間した関係で配置され、回転軸に対して移動される第1試験質量であって、前記第1試験質量を貫通する開口を有する第1試験質量と、
    前記基板の表面に形成され、相互直交方向の第1方向の加速に応答して前記第1試験質量が回転軸の周囲を回転可能なように、前記回転軸の位置で前記第1試験質量を前記基板に枢動可能に接続する第1アンカーシステムと、
    前記開口内で、前記基板の表面の上に基板と離間した関係で存在する第2試験質量と、
    前記基板の表面に形成され、相互直交方向の第2方向の加速に応答して前記第2試験質量が前記基板の表面と実質的に平行に移動できるように前記第2試験質量に接続された第2アンカーシステムと、を備え
    前記第2試験質量は前記回転軸と合致する中心線を有するトランスデューサ。
  2. 請求項1記載のトランスデューサにおいて、
    前記第1試験質量の前記開口は、内部周辺壁によって区画形成され、
    前記第1アンカーシステムは、
    前記内部周辺壁の第1側で前記第1試験質量に取り付けられた第1枢動要素と、
    前記内部周辺壁の第1側の反対側の前記内部周辺壁の第2側で前記第1試験質量に取り付けられた第2枢動要素と、
    を備えることを特徴とするトランスデューサ。
  3. 請求項1記載のトランスデューサにおいて、
    前記第1試験質量は第1端部及び第2端部を有し、
    前記回転軸と前記第1端部との間に第1部分が形成され、
    前記回転軸と前記第2端部との間に第2部分が形成され、
    前記第1部分は前記第2部分より大きな質量を示すことを特徴とするトランスデューサ。
  4. 請求項1記載のトランスデューサにおいて、
    前記第2アンカーシステムは、回転軸よりオフセットされ、前記回転軸に対して対称的に配置された複数のバネ要素を有する第2アンカーシステムであって、同第2アンカーシステムは、前記相互直交方向における第3方向の加速に応答して、前記第2試験質量が前記基板表面と平行に移動することを可能にすることを特徴とするトランスデューサ。
  5. 少なくとも二つの相互に直交する方向の加速度を検知するトランスデューサであって、
    基板と、
    前記基板の表面上に基板と離間した関係で配置され、回転軸に対して移動される第1試験質量であって、前記第1試験質量を貫通する開口を有し、同開口が前記回転軸と同軸の第1中心線を有する第1試験質量と、
    前記基板の表面に形成され、相互直交方向の第1方向の加速に応答して前記第1試験質量が回転軸周囲を回転可能なように、前記回転軸の位置で前記第1試験質量を前記基板に枢動可能に接続する第1アンカーシステムと、
    前記開口内で、基板の表面上に基板に離間した関係で存在する第2試験質量であって、前記回転軸と合致し且つ前記第1中心線と同軸の第2中心線を示す第2試験質量と、
    前記基板の表面に形成され、相互直交方向の第2方向の加速に応答して前記第2試験質量が前記基板表面に対して実質的に平行に移動できるように、前記第2試験質量に接続された第2アンカーシステムと、
    を備えたトランスデューサ。
JP2011534580A 2008-10-30 2009-10-05 相互直交方向で分離的検知を有するトランスデューサ Expired - Fee Related JP5627590B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/262,042 US8020443B2 (en) 2008-10-30 2008-10-30 Transducer with decoupled sensing in mutually orthogonal directions
US12/262,042 2008-10-30
PCT/US2009/059499 WO2010056435A2 (en) 2008-10-30 2009-10-05 Transducer with decoupled sensing in mutually orthogonal directions

Publications (3)

Publication Number Publication Date
JP2012507716A JP2012507716A (ja) 2012-03-29
JP2012507716A5 JP2012507716A5 (ja) 2012-11-15
JP5627590B2 true JP5627590B2 (ja) 2014-11-19

Family

ID=42129819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011534580A Expired - Fee Related JP5627590B2 (ja) 2008-10-30 2009-10-05 相互直交方向で分離的検知を有するトランスデューサ

Country Status (5)

Country Link
US (1) US8020443B2 (ja)
JP (1) JP5627590B2 (ja)
CN (1) CN102203001B (ja)
TW (1) TWI494263B (ja)
WO (1) WO2010056435A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217772A (ja) * 2012-04-09 2013-10-24 Seiko Epson Corp 物理量センサーおよび電子機器
JP2016125849A (ja) * 2014-12-26 2016-07-11 株式会社東芝 センサおよびその製造方法
JP2017538100A (ja) * 2014-10-03 2017-12-21 アナログ ディヴァイスィズ インク Z軸アンカートラッキングを備えたmems加速度計
US10203352B2 (en) 2016-08-04 2019-02-12 Analog Devices, Inc. Anchor tracking apparatus for in-plane accelerometers and related methods
US10261105B2 (en) 2017-02-10 2019-04-16 Analog Devices, Inc. Anchor tracking for MEMS accelerometers

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040855B4 (de) * 2008-07-30 2022-05-25 Robert Bosch Gmbh Dreiachsiger Beschleunigungssensor
DE102008041327B4 (de) * 2008-08-19 2021-12-30 Robert Bosch Gmbh Dreiachsiger Beschleunigungssensor
DE102008043788A1 (de) * 2008-11-17 2010-05-20 Robert Bosch Gmbh Mikromechanisches Bauelement
JP2011022137A (ja) * 2009-06-15 2011-02-03 Rohm Co Ltd Mems装置及びその製造方法
ITTO20090597A1 (it) * 2009-07-31 2011-02-01 St Microelectronics Srl Struttura di rilevamento microelettromeccanica ad asse z con ridotte derive termiche
DE102009028343B4 (de) * 2009-08-07 2022-12-15 Robert Bosch Gmbh Sensorelement und Verfahren zum Betrieb eines Sensorelements
DE102009029202B4 (de) * 2009-09-04 2017-05-24 Robert Bosch Gmbh Verfahren zum Herstellen eines mikromechanischen Systems
US8516886B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric X-Axis gyroscope
IT1401001B1 (it) * 2010-06-15 2013-07-05 Milano Politecnico Accelerometro capacitivo triassiale microelettromeccanico
US8839670B2 (en) 2010-11-24 2014-09-23 Invensense, Inc. Anchor-tilt cancelling accelerometer
JP2012112817A (ja) * 2010-11-25 2012-06-14 Japan Aviation Electronics Industry Ltd 加速度センサ
US8539836B2 (en) * 2011-01-24 2013-09-24 Freescale Semiconductor, Inc. MEMS sensor with dual proof masses
US20130042686A1 (en) * 2011-08-17 2013-02-21 Sitronix Technology Corp. Inertia sensing apparatus
DE102012200740B4 (de) * 2011-10-27 2024-03-21 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
US8991251B1 (en) * 2011-11-21 2015-03-31 Western Digital (Fremont), Llc Hybrid capacitive and piezoelectric motion sensing transducer
JP2013117396A (ja) * 2011-12-01 2013-06-13 Denso Corp 加速度センサ
CA2860505A1 (en) 2012-01-12 2013-07-18 Murata Electronics Oy A vibration tolerant accelaration sensor structure
SG11201403697YA (en) 2012-01-12 2014-07-30 Murata Electronics Oy Accelerator sensor structure and use thereof
US8689632B2 (en) 2012-01-17 2014-04-08 Freescale Semiconductor, Inc. Fully decoupled lateral axis gyroscope with thickness-insensitive Z-axis spring and symmetric teeter totter sensing element
TWI461693B (zh) * 2012-07-20 2014-11-21 Upi Semiconductor Corp 微機電感測裝置與其製造方法
US9290067B2 (en) * 2012-08-30 2016-03-22 Freescale Semiconductor, Inc. Pressure sensor with differential capacitive output
JP5799929B2 (ja) * 2012-10-02 2015-10-28 株式会社村田製作所 加速度センサ
US9316666B2 (en) * 2012-11-27 2016-04-19 Murata Manufacturing Co., Ltd. Acceleration sensor having a capacitor array located in the center of an inertial mass
US9470709B2 (en) 2013-01-28 2016-10-18 Analog Devices, Inc. Teeter totter accelerometer with unbalanced mass
US9190937B2 (en) * 2013-02-06 2015-11-17 Freescale Semiconductor, Inc. Stiction resistant mems device and method of operation
US9297825B2 (en) 2013-03-05 2016-03-29 Analog Devices, Inc. Tilt mode accelerometer with improved offset and noise performance
US20150268268A1 (en) * 2013-06-17 2015-09-24 Freescale Semiconductor, Inc. Inertial sensor with trim capacitance and method of trimming offset
US9927459B2 (en) 2013-11-06 2018-03-27 Analog Devices, Inc. Accelerometer with offset compensation
GB2523320A (en) * 2014-02-19 2015-08-26 Atlantic Inertial Systems Ltd Accelerometers
JP6274413B2 (ja) * 2014-02-25 2018-02-07 セイコーエプソン株式会社 機能素子、電子機器、および移動体
US20150268269A1 (en) * 2014-03-20 2015-09-24 Freescale Semiconductor, Inc. Sensor with combined sense elements for multiple axis sensing
TWI614208B (zh) * 2014-04-09 2018-02-11 立錡科技股份有限公司 微機電元件
CN105319393A (zh) * 2014-07-31 2016-02-10 立锜科技股份有限公司 具有共构微机电感测单元的微机电系统元件
CN205090976U (zh) * 2014-12-11 2016-03-16 意法半导体股份有限公司 微机电检测结构、微机电传感器和电子器件
US10073113B2 (en) 2014-12-22 2018-09-11 Analog Devices, Inc. Silicon-based MEMS devices including wells embedded with high density metal
US10436812B2 (en) 2015-03-20 2019-10-08 Nxp Usa, Inc. Micro-electro-mechanical acceleration sensor device
US10078098B2 (en) 2015-06-23 2018-09-18 Analog Devices, Inc. Z axis accelerometer design with offset compensation
US9720012B2 (en) * 2015-07-21 2017-08-01 Nxp Usa, Inc. Multi-axis inertial sensor with dual mass and integrated damping structure
ITUB20154667A1 (it) 2015-10-14 2017-04-14 St Microelectronics Srl Dispositivo sensore microelettromeccanico con ridotta sensibilita' agli stress
US10393770B2 (en) * 2016-04-28 2019-08-27 Semiconductor Components Industries, Llc Multi-axis accelerometer with reduced stress sensitivity
DE102016209241A1 (de) * 2016-05-27 2017-11-30 Robert Bosch Gmbh Mikromechanisches Bauteil für eine Drucksensorvorrichtung
DE102016220510A1 (de) 2016-10-19 2018-04-19 Robert Bosch Gmbh Mikromechanischer z-Beschleunigungssensor
US10247753B2 (en) * 2017-02-14 2019-04-02 Nxp Usa, Inc. MEMS device with off-axis shock protection
US10866258B2 (en) 2018-07-20 2020-12-15 Honeywell International Inc. In-plane translational vibrating beam accelerometer with mechanical isolation and 4-fold symmetry
US11733263B2 (en) * 2018-09-21 2023-08-22 Analog Devices, Inc. 3-axis accelerometer
WO2020145202A1 (en) * 2019-01-08 2020-07-16 Panasonic Intellectual Property Management Co., Ltd. Sensing device
IT201900009651A1 (it) * 2019-06-20 2020-12-20 St Microelectronics Srl Sensore inerziale mems con elevata resistenza al fenomeno di adesione
US11415595B2 (en) 2019-06-28 2022-08-16 Analog Devices, Inc. Multiple anchor high frequency accelerometer
EP3792637B1 (en) * 2019-09-11 2023-05-03 Murata Manufacturing Co., Ltd. Low-noise multi-axis mems accelerometer
CN112748258A (zh) * 2019-10-31 2021-05-04 美新半导体(无锡)有限公司 基于单质量块的三轴加速度计
JP2022014567A (ja) * 2020-07-07 2022-01-20 セイコーエプソン株式会社 慣性センサー及び慣性計測装置
DE112021006521T5 (de) 2020-12-18 2023-12-07 Analog Devices, Inc. Beschleunigungsmesser mit translationsbewegung von massen
US12055927B2 (en) * 2021-02-26 2024-08-06 Honeywell International Inc. Thermal metamaterial for low power MEMS thermal control
CN114609413A (zh) * 2022-05-11 2022-06-10 绍兴圆方半导体有限公司 三轴加速度计
CN115356507A (zh) * 2022-10-14 2022-11-18 成都本原聚能科技有限公司 一种三轴加速度计

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178952A (ja) * 1994-12-20 1996-07-12 Zexel Corp 加速度センサ
JPH10239347A (ja) * 1997-02-28 1998-09-11 Japan Aviation Electron Ind Ltd 運動センサ
US6955086B2 (en) * 2001-11-19 2005-10-18 Mitsubishi Denki Kabushiki Kaisha Acceleration sensor
JP2005534016A (ja) * 2002-07-19 2005-11-10 アナログ・デバイスズ・インク 加速度計におけるオフセットの低減
US20040231420A1 (en) 2003-02-24 2004-11-25 Huikai Xie Integrated monolithic tri-axial micromachined accelerometer
US6845670B1 (en) * 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
US7146856B2 (en) * 2004-06-07 2006-12-12 Honeywell International, Inc. Dynamically balanced capacitive pick-off accelerometer
US7121141B2 (en) * 2005-01-28 2006-10-17 Freescale Semiconductor, Inc. Z-axis accelerometer with at least two gap sizes and travel stops disposed outside an active capacitor area
US7140250B2 (en) * 2005-02-18 2006-11-28 Honeywell International Inc. MEMS teeter-totter accelerometer having reduced non-linearty
CA2595755C (en) * 2005-11-22 2012-02-07 Kionix, Inc. A tri-axis accelerometer
JP4600345B2 (ja) * 2006-04-28 2010-12-15 パナソニック電工株式会社 静電容量式センサ
JP4605087B2 (ja) * 2006-04-28 2011-01-05 パナソニック電工株式会社 静電容量式センサ
JP2007298405A (ja) * 2006-04-28 2007-11-15 Matsushita Electric Works Ltd 静電容量式センサ
US7409862B2 (en) * 2006-10-18 2008-08-12 Honeywell International Inc. Systems and methods for isolation of torque and sense capacitors of an accelerometer
US7624638B2 (en) * 2006-11-09 2009-12-01 Mitsubishi Electric Corporation Electrostatic capacitance type acceleration sensor
US7610809B2 (en) * 2007-01-18 2009-11-03 Freescale Semiconductor, Inc. Differential capacitive sensor and method of making same
JP2008258087A (ja) 2007-04-09 2008-10-23 Mitsubishi Electric Corp 加速度スイッチ
US7578190B2 (en) * 2007-08-03 2009-08-25 Freescale Semiconductor, Inc. Symmetrical differential capacitive sensor and method of making same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217772A (ja) * 2012-04-09 2013-10-24 Seiko Epson Corp 物理量センサーおよび電子機器
JP2017538100A (ja) * 2014-10-03 2017-12-21 アナログ ディヴァイスィズ インク Z軸アンカートラッキングを備えたmems加速度計
US10203351B2 (en) 2014-10-03 2019-02-12 Analog Devices, Inc. MEMS accelerometer with Z axis anchor tracking
JP2016125849A (ja) * 2014-12-26 2016-07-11 株式会社東芝 センサおよびその製造方法
US10203352B2 (en) 2016-08-04 2019-02-12 Analog Devices, Inc. Anchor tracking apparatus for in-plane accelerometers and related methods
US10261105B2 (en) 2017-02-10 2019-04-16 Analog Devices, Inc. Anchor tracking for MEMS accelerometers

Also Published As

Publication number Publication date
JP2012507716A (ja) 2012-03-29
CN102203001B (zh) 2014-02-12
WO2010056435A3 (en) 2010-07-08
TW201026590A (en) 2010-07-16
WO2010056435A2 (en) 2010-05-20
US20100107763A1 (en) 2010-05-06
TWI494263B (zh) 2015-08-01
CN102203001A (zh) 2011-09-28
US8020443B2 (en) 2011-09-20

Similar Documents

Publication Publication Date Title
JP5627590B2 (ja) 相互直交方向で分離的検知を有するトランスデューサ
JP5924521B2 (ja) ジグザグ形のねじりばねを有するmemsセンサ
JP4787746B2 (ja) トランスデューサの製造方法
JP5852437B2 (ja) デュアルプルーフマスを有するmemsセンサ
JP5965934B2 (ja) 改善されたオフセットおよびノイズ性能を有する傾斜モード加速度計
US7610809B2 (en) Differential capacitive sensor and method of making same
US6705167B2 (en) Accelerometer
US7578190B2 (en) Symmetrical differential capacitive sensor and method of making same
US8096182B2 (en) Capacitive sensor with stress relief that compensates for package stress
EP3151018B1 (en) Mems sensor with reduced cross-axis sensitivity
EP1913405A2 (en) Multi-axis micromachined accelerometer
EP3792638B1 (en) Low-noise multi axis mems accelerometer
JP2005529336A (ja) 多軸モノリシック加速度センサ
TWI616656B (zh) 微機電系統感測器和半導體封裝
JP5292600B2 (ja) 加速度センサ
US11499987B2 (en) Z-axis inertial sensor with extended motion stops
US20220050124A1 (en) Inertial sensor with split anchors and flexure compliance between the anchors

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5627590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees