JP5611418B2 - ガス化溶融システムの燃焼制御方法及び該システム - Google Patents

ガス化溶融システムの燃焼制御方法及び該システム Download PDF

Info

Publication number
JP5611418B2
JP5611418B2 JP2013111228A JP2013111228A JP5611418B2 JP 5611418 B2 JP5611418 B2 JP 5611418B2 JP 2013111228 A JP2013111228 A JP 2013111228A JP 2013111228 A JP2013111228 A JP 2013111228A JP 5611418 B2 JP5611418 B2 JP 5611418B2
Authority
JP
Japan
Prior art keywords
furnace
melting
gasification
pyrolysis gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013111228A
Other languages
English (en)
Other versions
JP2013190204A (ja
Inventor
佐藤 淳
佐藤  淳
利昌 白井
利昌 白井
芳久 齊藤
芳久 齊藤
静生 保田
静生 保田
西村 宏
宏 西村
良介 石塚
良介 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2013111228A priority Critical patent/JP5611418B2/ja
Publication of JP2013190204A publication Critical patent/JP2013190204A/ja
Application granted granted Critical
Publication of JP5611418B2 publication Critical patent/JP5611418B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、廃棄物を熱分解して熱分解ガスを発生させ、該熱分解ガスの燃焼熱で灰分を溶融するガス化溶融システムに関し、特に、排ガス中のCO濃度を増大させることなく安定した燃焼を行うことができるガス化溶融システムの燃焼制御方法及び該システムに関する。
従来より、都市ごみを始めとして不燃ごみ、焼却残渣、汚泥、埋立ごみ等の廃棄物まで幅広く処理できる技術としてガス化溶融システムが知られている。
ガス化溶融システムの概略を図6に示す。ガス化溶融システムは、廃棄物を熱分解してガス化するガス化炉3と、該ガス化炉3にて生成された熱分解ガスを高温燃焼し、ガス中の灰分を溶融スラグ化する旋回溶融炉6と、該旋回溶融炉6の排ガスが導入され、排ガス中の未燃分を燃焼させる二次燃焼室12と、減温塔14、除塵装置15、蒸気式加熱器16、触媒反応装置17等からなる排ガス処理設備とを備えている。廃棄物の資源化、減容化及び無害化を図るために、旋回溶融炉6からスラグを取り出して路盤材等の土木資材として再利用したり、二次燃焼室12の高温排ガスからボイラ部13にて廃熱を回収して発電を行うなどしている。
このようなシステムにおいて、廃棄物は、ガス化炉3に設けられた給じん機2により炉内に定量供給される。給じん機2としては、例えばスクリューフィーダ等が用いられ、スクリューを回転駆動するモータの回転数制御により所定量の廃棄物を供給する構成となっている。
ガス化炉3では、炉底から供給される燃焼空気により廃棄物が熱分解される。該ガス化炉3で発生したCO、H等の可燃ガス、チャー(炭化物)、灰分を含む熱分解ガスは、熱分解ガスダクト25を介して旋回溶融炉6に供給される。旋回溶融炉6では、この熱分解ガスを燃焼させた燃焼熱により灰分を溶融する。該旋回溶融炉6にて発生した排ガスは、旋回溶融炉上方に連結された二次燃焼室12に送られ、ここでガス中の未燃分が燃焼される。旋回溶融炉6と二次燃焼室12には、燃焼を促進するための燃焼空気が夫々供給されるようになっている。
一般的に溶融炉における燃焼制御方法として、特許文献1(特開平11−351538号公報)等に記載されるように、溶融炉内に設置した温度センサにより炉内温度を検出し、該検出した温度に基づいて溶融炉に供給する燃焼空気量を制御する方法が用いられている。しかし、このようなガス化溶融システムにおいて廃棄物を処理対象とした場合、廃棄物の投入量や発熱量の変動により燃焼が不安定となり、二次燃焼室から排出される排ガスのCO濃度が高くなり、これを原因とする環境への悪影響が問題となっていた。
また、特許文献2(特開2003−269712号公報)では、熱分解炉に圧力検出装置を設け、炉内圧の検出結果に基づいて熱分解炉二次燃焼空気量、灰溶融炉燃焼空気量及び二次燃焼室燃焼空気量の少なくとも1つを制御する構成が開示されている。このように、各部で必要な燃焼空気量を制御して供給することにより、燃焼空気不足から起こる有害ガスの大量発生を防ぐようにしている。
さらに、特許文献3(特開2001−201023号公報)では、熱分解ガス化炉の炉内圧を計測することにより廃棄物の負荷変動を検出し、負荷急増が検出された際に溶融炉に供給する燃焼空気の供給量を増加させることにより、溶融炉内での不完全燃焼を防止する構成を開示している。
一方、特許文献4(特開2007−78239号公報)では、溶融炉へ導入される熱分解ガスのバーナに隣接する種火バーナを設置することにより、低カロリーの熱分解ガスの着火性を改善し、且つ炉内温度を高温に維持して円滑な溶融処理を行うことを可能としている。
特開平11−351538号公報 特開2003−269712号公報 特開2001−201023号公報 特開2007−78239号公報
上記したように、ガス化溶融システムにおいては廃棄物の投入量や発熱量の変動により燃焼が不安定となり、二次燃焼室から排出される排ガスのCO濃度が高くなるという問題があった。しかし、特許文献1に記載されるように、溶融炉の炉内温度に基づき該溶融炉への燃焼空気量を制御するのみではCO濃度を低減することは困難であった。これは、ガス化炉にて熱分解ガスが大量に発生した場合、溶融炉や二次燃焼室への燃焼空気供給量の制御だけではこれを完全燃焼することは不可能であり、また溶融炉へ大量の燃焼空気を供給すると炉内温度が低下して灰分の溶融に支障をきたすためである。
一方、特許文献2及び3はガス化炉の炉内圧に基づいて燃焼空気量を制御する構成であり、この方法によれば熱分解ガスの発生量を適確に検出することができCO濃度低減に効果的な方法であるが、炉内圧の変動に対して一律的な制御のみでは燃焼状態を安定的に維持することが困難であるという問題があった。
また、炉内圧に基づいた制御のみを行う場合、燃焼空気量の制御に伴い炉内圧が変動し、その間正確に熱分解ガスの発生状況を検出することが難しくなるため、CO濃度が高くなる惧れがある。
さらにまた、熱分解ガス発生量の変動を引き起こす要因の一つとして、次の要因が挙げられる。即ち、廃棄物供給量を給じん機のモータ回転数により制御する場合、供給する廃棄物の容量で供給量を調整していることになる。しかし、廃棄物の種類や状態によっては、廃棄物が圧密されて供給されたり空隙が多く存在するなど、嵩密度が一定とはならず、回転数を一定にした制御では、ガス化炉におけるガス発生量が一定とならない可能性がある。
また、CO濃度の増加を抑制するために燃焼空気量の制御を行うと、燃焼空気供給箇所近傍の熱分解ガスダクトまたは溶融炉内の燃焼が活発かつ不安定となり、局所的な高温部の発生により、窒素酸化物(NO)が増大してしまうという問題もあった。特許文献4に記載されるように、溶融炉に種火バーナを設置することは低カロリーの熱分解ガスの場合においては炉内の燃焼状態改善に有効であるが、高カロリーの熱分解ガスが発生した場合には、局所的に高温部が発生することによりNOが生成し、また耐火材が溶損してしまうなどの問題が残る。
従って、本発明は上記従来技術の問題点に鑑み、ガス化炉におけるガス発生量の安定化を図り、且つガス発生量が変動した場合であっても正確にこれを検知し、的確な制御を行うことによりCO発生量を低減し安定運転を可能とし、さらにNOの発生を抑制することを可能としたガス化溶融システムの燃焼制御方法及び該システムを提供することを目的とする。
そこで、本発明はかかる課題を解決するために、給じん機を介してガス化炉内に供給された廃棄物を熱分解し、該ガス化炉にて発生した熱分解ガスを、熱分解ガスダクトを介して燃焼空気とともに溶融炉に導入し、該溶融炉にて熱分解ガスの燃焼熱により灰分を溶融した後、前記溶融炉に連結された二次燃焼室にて燃焼排ガス中の未燃分を燃焼させるガス化溶融システムであって、前記ガス化炉、前記溶融炉、前記二次燃焼室の少なくとも何れかの処理炉における炉内状況を示す検出因子に基づいて、前記処理炉への燃焼空気供給量を制御するガス化溶融システムの燃焼制御方法において、前記二次燃焼室の輝度を測定し、該測定した輝度が予め定めた設定値を超えた場合に、前記熱分解ガスダクトに供給される燃焼空気の一部を分岐させて、前記溶融炉の熱分解ガスダクト接続部とは異なる位置に設けられた補助空気ノズルから溶融炉内に供給するようにしたことを特徴とする。
本発明によれば、熱分解ガスダクトの他に補助空気ノズルからも燃焼空気を分散させて溶融炉内に供給することにより、燃焼空気供給箇所近傍の熱分解ガスダクトまたは溶融炉内に局所的に高温部が発生することを抑制することが可能となり、NOの生成を抑制できるとともに、耐火材の溶損を抑制できる。
また、給じん機を介して供給された廃棄物を熱分解して熱分解ガスを発生させるガス化炉と、該ガス化炉と熱分解ガスダクトで接続され、該熱分解ガスダクトを介して供給される燃焼空気と前記熱分解ガスとを燃焼させ、その燃焼熱により灰分を溶融する溶融炉と、該溶融炉で発生した燃焼排ガス中の未燃分を燃焼させる二次燃焼室とからなり、前記ガス化炉、前記溶融炉、前記二次燃焼室の少なくとも何れかの処理炉における炉内状況を示す検出因子に基づいて、前記処理炉への燃焼空気供給量を制御するようにしたガス化溶融システムにおいて、
前記二次燃焼室の輝度を測定する輝度計と、前記溶融炉の熱分解ガスダクト接続部とは異なる部位に設けられ、前記熱分解ガスダクトに供給される燃焼空気の一部を分岐させて供給する補助空気ノズルと、を有し、
前記輝度計にて測定された輝度が予め定めた設定値を超えた場合に、前記補助空気ノズルから前記溶融炉内に供給する燃焼空気の供給量を制御する制御手段を備えたことを特徴とする。
さらに、前記溶融炉が旋回溶融炉であって、前記補助空気ノズルが、溶融炉内の旋回流により形成される仮想円の接線方向に燃焼空気を吹き込むように配置されることを特徴とする。
これにより、補助空気バーナから吹き込まれる燃焼空気により溶融炉内のガスの流れを阻害することなく炉内に旋回流が形成されることにより温度が均一となり、円滑な溶融処理が可能となる。
以上記載のごとく本発明によれば、熱分解ガスダクトの他に補助空気ノズルからも燃焼空気を分散させて溶融炉内に供給することにより、燃焼空気供給箇所近傍の熱分解ガスダクトまたは溶融炉内に局所的に高温部が発生することを抑制することが可能となり、NOの生成を抑制できるとともに、耐火材の溶損を抑制できる。
本発明の参考例に係るガス化溶融システムの全体構成図である。 図1のガス化溶融システムにおける燃焼制御フローを示す図である。 図1のガス化溶融システムにおける制御方法の一例を示す図である。 本発明の実施形態に係るガス化溶融システムの全体構成図である。 図4のA−A線断面図である。 従来のガス化溶融システムの全体構成図である。
以下、図面を参照して本発明の参考例、及び好適な実施例を例示的に詳しく説明する。但しこの参考例、及び実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は、本発明の参考例に係るガス化溶融システムの全体構成図、図2は図1のガス化溶融システムにおける燃焼制御フローを示す図、図3は図1のガス化溶融システムにおける制御方法の一例を示す図、図4は本発明の実施形態に係るガス化溶融システムの全体構成図、図5は図4のA−A線断面図である。
(参考例)
図1を参照して、本発明の参考例に係るガス化溶融システムの全体構成を説明する。尚、以下に示される数値は一例であり、これらに限定されるものではない。
廃棄物投入ホッパ1から投入された廃棄物40は、給じん機2を介して流動式ガス化炉3へ定量供給される。流動床ガス化炉3では、温度約120〜230℃、空気比0.2〜0.7程度の燃焼空気41が炉下部から風箱4を介して炉内に吹き込まれ、流動層温度が450〜650℃程度に維持されている。
廃棄物40は流動床ガス化炉3で熱分解ガス化され、ガス、タール、チャー(炭化物)に分解される。タールは、常温では液体となる成分であるが、ガス化炉内ではガス状で存在する。ガス化炉3の不燃物は不燃物排出口5より逐次排出される。
チャーは流動層内で徐々に微粉化され、ガス及びタールに同伴して旋回溶融炉6へ導入される。以下、旋回溶融炉6へ導入されるこれらの成分を総称して熱分解ガスと呼ぶ。
尚、本参考例にてガス化炉として流動床式ガス化炉3を例に挙げたが、これに限定されるものではなく、廃棄物を熱分解ガス化する構成を有する炉であれば何れでもよい。
前記流動床ガス化炉3の炉頂部より排出された熱分解ガスは、熱分解ガスダクト25を経て旋回溶融炉6の熱分解ガスバーナへ導入される。該熱分解ガスバーナで、熱分解ガスは燃焼空気42と混合されて炉内に導入され、旋回流を形成する。このとき、燃焼空気は空気比0.9〜1.1、好ましくは1.0程度であると良い。
前記旋回溶融炉6では、熱分解ガスと燃焼空気42の混合ガスが燃焼するとともに、必要に応じて種火バーナ26、補助燃料バーナ27により炉内温度が1300〜1500℃に維持され、熱分解ガス中の灰分が溶融、スラグ化される。溶融したスラグは、旋回溶融炉6の内壁面に付着、流下し、炉底部のスラグ出滓口7からスラグ抜出シュート8を経て排出される。旋回溶融炉6から排出されたスラグは、水砕槽9で急冷され、スラグコンベア10により搬出されて水砕スラグとして回収される。回収された水砕スラグは、路盤材等に有効利用することが可能である。尚、本参考例にて溶融炉として旋回溶融炉6を例に挙げたが、これに限定されるものではなく、灰分を含む熱分解ガスを燃焼溶融する構成を有する炉であれば何れでもよい。
一方、旋回溶融炉6から排出された燃焼排ガスは連結部11を介して二次燃焼室12へ導入される。二次燃焼室12では、燃焼空気43が空気比1.2〜1.5となるように供給されるとともに、必要に応じて補助燃料バーナ32で所定温度まで昇温され、前記燃焼排ガス中の未燃分はここで完全燃焼される。
前記流動床ガス化炉3は、側壁に廃棄物投入ホッパ1と、該ホッパ1の下方に連結された給じん機2とを備えている。該給じん機2は、ケーシング内に挿通された回転軸と、該回転軸に固定されたスクリュー羽根と、回転軸の端部に連結され該回転軸を回転駆動するモータ2aとから構成される。この給じん機は、原則としてモータ2aにより回転軸とスクリュー羽根を回転制御することにより、炉内に供給する廃棄物の供給容量を調整するようになっている。給じん機2の具体的な構成としては、例えば特開2003−42425号公報等が適用できる。
また、流動床ガス化炉3には、炉底部に流動砂が充填された流動層20が形成され、その上方に補助燃料バーナ21が設けられている。炉底部には複数の風箱4が並設されており、該風箱4を介して炉内に燃焼空気41が導入される。通常運転時の流動層20は、450〜650℃程度の温度に維持される。
燃焼空気41は送風機23により供給され、該供給ライン上にはFDFダンパ24が配置されている。FDFダンパ24は、開度制御することにより風箱4に供給する燃焼空気供給量を調整する。FDFダンパ24の開度制御は、制御装置35により行われる。
また、流動床ガス化炉3の上方には、旋回溶融炉6に接続される熱分解ガスダクト25が配設される。該流動床ガス化炉3上方の熱分解ガス出口側には、炉内圧を検出する炉内圧センサ22が設けられており、連続的に検出を行って連続的に検出値を制御装置35に送信する。該制御装置35では、この炉内圧の検出値に基づいて、前記FDFダンパ24の開度制御、及び後述する2次FDFダンパ30、OFAダンパ31の開度制御を行い、各装置内への燃焼空気供給量を調整する。
前記旋回溶融炉6は断面円形状の炉本体を有しており、側壁には、熱分解ガスダクト25から延設され熱分解ガスを炉内に吹き込む一又は複数の熱分解ガスバーナが配設される。熱分解ガスバーナの近傍には、種火バーナ26、補助燃料バーナ27が配設される。さらに、炉上部は絞り構造の連結部11を介して二次燃焼室12に連通しており、旋回溶融炉6で発生した燃焼排ガスは二次燃焼室12に送られる。炉底部にはスラグ出滓口7が設けられており、該スラグ出滓口7から下方に延設されたスラグ抜出シュート8を通って溶融スラグが排出されるようになっている。スラグ抜出シュート8にはスラグ出滓口7へ向けて溶融固化物溶融バーナ28が取り付けられており、スラグ出滓口7から排出される溶融スラグが固化して閉塞しないように加温するようになっている。
熱分解ガスダクト25には燃焼空気42が供給される。燃焼空気42は送風機29により供給され、該供給ライン上には2次FDFダンパ30が配置されている。2次FDFダンパ30は、開度制御することにより旋回溶融炉6に供給する燃焼空気供給量を調整する。2次FDFダンパ30の開度制御は、制御装置35により行われる。
二次燃焼室12の側壁には一又は複数の補助燃料バーナ32が設けられており、必要に応じて二次燃焼室内の温度を維持するようになっている。
さらに、二次燃焼室12には燃焼空気43が供給される。燃焼空気43は、旋回溶融炉6に供給される燃焼空気42と同一の送風機29により供給される。送風機29から供給される燃焼空気は2次FDFダンパ30を経由した後に分岐され、一方はOFAダンパ31を介して二次燃焼室12へ供給され、他方は熱分解ガスダクト25に供給されて溶融炉内に導入される。OFAダンパ31は、開度制御により二次燃焼室12に供給する燃焼空気供給量を調整する。OFAダンパ31の制御は、制御装置35により行われる。
二次燃焼室12の後段側には高温排ガスから廃熱回収を行うボイラ部13が配設され、該二次燃焼室12の後方には減温塔14、除塵装置15、蒸気式加熱器16、触媒反応装置17、ファン18、煙突19等からなる排ガス処理設備が設けられている。
上記したような流動床ガス化炉3では、廃棄物の発熱量や投入量の変動等により熱分解ガスの発生量にも変動が生じる。流動床ガス化炉3にて熱分解ガスが多量に発生すると、後流側の溶融炉6にて熱分解ガスが完全燃焼せずにCOを大量に含む排ガスが生じてしまう。従って、本実施形態では流動床ガス化炉3、及び旋回溶融炉6、二次燃焼室12における燃焼を適正化し、排ガス中のCO濃度を低減する構成を備える。
その第1の構成として、給じん機2が具備するモータ2aの電流値を検出し、該電流値に基づいて給じん量を制御する構成がある。
原則的に、モータ2aは、廃棄物40を定量供給するために回転数制御がなされており、給じん速度が一定に保たれている。本実施形態ではこれに加えて、モータ2aの電流値を検出し、該電流値が基準範囲I内となるようにモータ2aの回転数制御を行い、給じん量を制御するようにしている。前記基準範囲Iは、予め設定された電流値であり、後で図3に基づき説明する。
一般に、廃棄物40を一定供給する設定の場合、電流値は一定となる。しかし、モータにかかる負荷が変動すると電流値は変動する。即ち、廃棄物40が圧密されて重量が大きくなると電流値が高くなり、廃棄物中に空隙が多く存在すると電流値は低くなる。給じん機にて送られる廃棄物の嵩密度が変動すると、これに伴いガス発生量も変動してしまう。
従って、本実施形態では、電流値に基づいて給じん量を制御することにより、廃棄物の重量を一定とした供給が可能となる。これにより、ガス化炉3の供給側にてガス発生量の安定化を図ることが可能となる。
さらに、上記した第1の構成の応用として、二次燃焼室12の後段に設置されたボイラ部13における蒸発量を検出し、該蒸発量に基づいて、電流値の基準範囲Iを補正するようにしてもよい。これにより、運転状態に応じて適正な電流値の基準範囲を設定することができるようになる。
さらにまた、電流値の基準範囲Iを複数段階設けることも好適である。これにより、炉内状況に応じた細やかな制御が可能となる。
また、第2の構成として、従来より用いられているように、炉内圧の変化を炉内圧センサ22により検出し、該検出した炉内圧に基づいて、燃焼空気41、42、43のうち少なくとも何れかの供給量を制御する構成を備えている。流動床ガス化炉3へ供給する燃焼空気41の制御はFDFダンパ24により行う。旋回溶融炉6及び二次燃焼室12へ供給する燃焼空気42、43の制御は、2次FDFダンパ30とOFAダンパ31により行う。
具体的には、以下の制御例が挙げられる。
炉内圧の変動状態に基づく作動条件を複数段階設定しておき、この作動条件に対応した作動内容を設定しておく。作動条件としては、炉内圧の上限値、異常値の継続時間、或いはこれらの組み合わせである。また、作動内容としては、2次FDFダンパ30の開度制御による二次燃焼室12及び旋回溶融炉6への燃焼空気供給量の制御、OFAダンパ31の開度制御による二次燃焼室12への燃焼空気供給量の制御、FDFダンパ24の開度制御によるガス化炉3への燃焼空気供給量の制御などが挙げられる。例えば、炉内圧が第1の上限値を超えたら、2次FDFダンパ30の開度を開側に制御し、二次燃焼室12及び旋回溶融炉6への燃焼空気供給量を増加させて熱分解ガスの燃焼を促進し、第2の上限値を超えたら、FDFダンパ24の開度を閉側に制御し、ガス化炉3への燃焼空気供給量を低減させて熱分解ガス発生量を抑制する。
さらに、第3の構成として、二次燃焼室12の天井部に輝度計33を設け、該輝度計33により二次燃焼室12内の輝度を測定し、該測定した輝度に基づいて廃棄物供給量(給じん量)を制御するようにしている。該輝度計33は、炉内の輝度を測定できる装置であれば何れであってもよいが、例えば、炉内の輝度分布を測定できるもの、炉内の平均輝度を得られるものなどが好適に用いられる。
これは、ガス化炉3にて熱分解ガスが大量発生した場合、二次燃焼室12にて激しい燃焼が起こり、輝度が上昇する。一方、熱分解ガスの発生量が少ない場合、二次燃焼室12の輝度が低下する。従って、輝度を測定することにより、熱分解ガスの変動を的確に且つ迅速に検知することが可能となる。
本実施形態では、測定した輝度に基づいて給じん機2のモータ回転数を制御して給じん量を調整することにより、熱分解ガスの発生量を安定化させることが可能となる。尚、予め、適性な運転範囲に対応した輝度の設定値を定めておき、この設定値を超えた場合に、給じん量を制御する。この設定条件は複数段階定めておいてもよい。
ここで、参考例の制御方法につき、図2のフローを用いて説明する。
通常運転時に、給じん機2のモータ2aの電流値が基準範囲内となるように給じん量を制御しながら(S1)廃棄物を炉内に供給し、熱分解ガス化、溶融及び二次燃焼を行う。さらに、二次燃焼室12では輝度計33により輝度を測定し、輝度が設定値以内に存在するか否かを判定する(S2)。測定した輝度が設定値以内に存在する場合には、続けて電流値に基づく制御を行いながら炉の運転を行う。輝度が設定値を超えた場合には、一旦電流値による制御を停止し(S3)、輝度に基づいた給じん量制御を行う(S4)。そして輝度が設定値以内に回復したか否かを判定し(S5)、回復した場合には熱分解ガス発生量が安定したものと判断し、給じん量を復帰させ(S6)、再度電流値による制御を行いながら運転を続行する。
図3に、制御方法の一例を示す。(a)は輝度計33により測定した輝度の時系列変化を示し、(b)はモータ2aの電流値の時系列変化を示し、(c)はこれらに対応した給じん量の制御を示す。
同図において、A点にて電流値が基準範囲Iを超えており、これは給じん機2にて送られる廃棄物の嵩密度が大きいことを示す。このとき、給じん量を低下させる制御を行い、ガス化炉3における熱分解ガス発生量を減少させる。B点にて、電流値が基準範囲I内まで回復したら、給じん量を通常運転時の値まで復帰させる。尚、給じん量を復帰させる際には、徐々に復帰させることが好ましい。
C点では、電流値は基準範囲I内であるものの、輝度が第1設定値を超えている。これは、二次燃焼室12での激しい燃焼を示す。この場合、給じん量を低下させる制御を行い、熱分解ガスの発生量を低減させる。さらに、D点にて、輝度が第1設定値より高い第2設定値を超えており、ここで給じん量をさらに低下させる制御を行う。E点にて、第1設定値以下まで回復したら、給じん量を元の値まで徐々に復帰させる。
F点では、電流値が基準範囲Iを下回っており、これは給じん機2にて送られる廃棄物の嵩密度が小さいことを示す。従って、給じん量を増やす制御を行うようにしている。さらに、G点にて、電流値が基準範囲Iに戻っているので、給じん量を通常運転時の値まで復帰させる。
本構成によれば、廃棄物40の投入量や発熱量の変動等によりガス化炉3にて大量の熱分解ガスが発生した場合に、給じん機2の電流値及び二次燃焼室12の輝度を検知して廃棄物供給量を制御することで、ガス発生量の安定化を図るとともに、燃焼空気不足に起因する有害ガスの発生を抑制し、安定した運転が可能なガス化溶融システムの燃焼制御方法およびシステムを提供することを可能とする。
(実施形態)
図4及び図5を参照して、本発明の実施形態につき説明する。尚、上記した参考例と同様の構成についてはその詳細な説明を省略する。
図4に示すように、本実施形態のシステム構成は、廃棄物投入ホッパ1を備えた流動床ガス化炉3と、該ガス化炉と熱分解ガスダクト25で接続された旋回溶融炉6と、該旋回溶融炉6と連結部11を介して接続された二次燃焼室12と、その後方に設けられた減温塔14、除塵装置15、蒸気式加熱器16、触媒反応装置17、ファン18、煙突19等からなる排ガス処理設備と、を備えている。
図5に、前記旋回溶融炉6のA−A線断面図を示す。該旋回溶融炉6には、熱分解ガスダクト25の接続部に補助燃料を供給する種火バーナ26が設けられ、必要に応じて補助空気バーナ(図1の符号27)が設けられている。また、熱分解ガスダクト25とは異なる位置に補助空気ノズル51が設けられている。該補助空気ノズル51は、溶融炉6の旋回流により形成される仮想円の接線方向に燃焼空気を吹き込むように配置されることが好ましく、さらに好適には、補助空気ノズル51は熱分解ガスダクト25と同一断面(同一高さ)に取り付けられ、該熱分解ガスダクト25の設置方向に対する補助空気ノズル51の設置角度θを90°以下とする。また、補助空気ノズル51は、複数設けることが好ましい。
補助空気ノズル51に供給される燃焼空気は、送風機29から熱分解ガスダクト25に供給される燃焼空気42の一部が分岐されて導かれる。分岐された燃焼空気の供給ライン上には補助空気ダンパ53が設けられており、該補助空気ダンパ53により補助空気ノズル51から炉内に供給される燃焼空気量が調整されるようになっている。図4に示すように、補助空気ダンパ53の開度制御は、制御装置35によって行われる。
制御装置35では、二次燃焼室12の天井部に設けられた輝度計33により測定された輝度に基づいて補助空気ダンパ53を制御している。具体的には、通常運転時には補助空気ダンパ53を閉の状態にしておき、輝度計33で測定された輝度が、予め定めた設定値を超えた場合に補助空気ダンパ53を開放して所定の燃焼空気量を補助空気ノズル51から供給する。
この補助燃焼空気供給量の制御は、上記した参考例の給じん量制御と組み合わせて行ってもよいし、単独で行ってもよい。
また、本実施形態では、参考例と同様にガス化炉3、旋回溶融炉6、二次燃焼室12の少なくとも何れかの処理炉の炉内状況を示す検出因子に基づいて、処理炉への燃焼空気供給量の制御を行う。これは、ガス化炉3の炉内圧の変化を炉内圧センサ22により検出し、該検出した炉内圧に基づいて、ガス化炉3に供給する燃焼空気41、溶融炉6に供給する燃焼空気42、二次燃焼室12に供給する燃焼空気43のうち少なくとも何れかの供給量を制御する。ガス化炉3へ供給する燃焼空気41の制御はFDFダンパ24により行う。溶融炉6及び二次燃焼室12へ供給する燃焼空気42、43の制御は、2次FDFダンパ30とOFAダンパ31により行う。
具体的には、炉内圧の変動状態に基づく作動条件を複数段階設定しておき、この作動条件に対応した作動内容を設定しておく。作動条件としては、炉内圧の上限値、異常値の継続時間、或いはこれらの組み合わせである。また、作動内容としては、2次FDFダンパ30の開度制御による二次燃焼室12及び溶融炉6への燃焼空気供給量の制御、OFAダンパ31の開度制御による二次燃焼室12への燃焼空気供給量の制御、FDFダンパ24の開度制御によるガス化炉3への燃焼空気供給量の制御などが挙げられる。
制御例としては、以下の例が挙げられる。
FDFダンパ24については、ガス化炉3の炉内圧が第3の上限値以上となったら閉側に制御し、炉内圧が第3の上限値を下回ったらFDFダンパ24の開度を元に戻す。
2次FDFダンパ30については、ガス化炉3の炉内圧が第1の上限値以上となったら開側に制御し、該第1の上限値より高い炉内圧を示す第2の上限値となったら、ダンパの開度を大とする。第1、第2の上限値は、第3の上限値よりも小さいものとする。何れの場合も、炉内圧が第1、第2の上限値を下回り、且つその継続時間が予め設定した時間よりも長い場合に、2次FDFダンパ30の開度を元の状態に戻す。
OFAダンパ31については、ガス化炉3の炉内圧が第1の上限値以上となったら所定の開度まで開側に制御し、第2の上限値以上となったらさらに開側に制御する。測定された炉内圧が第1の上限値を下回った場合、若しくは第2の上限値を下回り且つその継続時間が予め設定した時間よりも長い場合に、OFAダンパ31の開度を元の状態に戻す。
溶融炉6に供給される燃焼空気の全体量は、2次FDFダンパ30と、補助空気ダンパ53とで制御され、ガス化炉3の炉内圧に応じて複数段階の制御が行われる。
このような燃焼空気供給量の制御と並行して、補助空気ノズル51の燃焼空気供給量の制御が行われる。補助空気ノズル51の燃焼空気供給量の制御は、上記したように二次燃焼室12の輝度に基づいて行われる。即ち、溶融炉6に供給される全燃焼空気量が、炉内圧に基づいた2次FDFダンパ30と、OFAダンパ31の制御により決定され、この全燃焼空気量の供給配分(主燃焼空気:補助燃焼空気)が、二次燃焼室12の輝度に基づいて決定される。補助空気ノズル51からの燃焼空気供給量の制御は、二次燃焼室12の輝度が予め定めた設定値を超えた場合に、補助空気ダンパ53を開き、段階的に開度上限値まで開度を増大させていく。輝度が前記設定値を下回り、且つその継続時間が予め設定した時間よりも長くなったら開度を元に戻す。また、二次燃焼室12の輝度の他に、ガス化炉3の炉内圧に基づいて補助空気ノズル51からの燃焼空気供給量を制御するようにしてもよい。
さらに、上記したような炉内圧に基づいた燃焼空気供給量の制御、及び輝度に基づいた補助空気ノズル51の燃焼空気量の制御に加えて、ガス化炉3への給じん量の制御を行うようにしてもよい。給じん量の制御は参考例に記載したように、輝度に基づいて給じん機2のモータ2aの電流値を制御してもよいし、以下に示すように、輝度に加えて炉内圧の変化に基づいて制御してもよい。
通常運転時におけるガス化炉3の基準炉内圧と、これを上回る上限値を予め複数段階設定しておき、炉内圧センサ22で測定された炉内圧がこの上限値を超えた時に、給じん量を所定割合だけ低減させる制御を行う。給じん量の復帰制御は、測定された炉内圧が、予め設定された炉内圧以下まで下がり、且つ所定時間その状態が継続したら給じん量を元に戻す制御を行う。また、この制御とともに、輝度に基づく給じん量の制御を行うとよい。 これは、所定の輝度を予め複数段階設定しておき、輝度に応じた給じん量の制御量も同時に設定しておく。そして、輝度が所定の設定値よりも高くなった場合、これに対応する制御量となるように給じん量を制御する。給じん量の復帰制御は、測定された輝度が、予め設定された値以下まで下がり、且つ所定時間その状態が継続したら給じん量を元に戻す制御を行う。
本構成によれば、熱分解ガスダクトの他に補助空気ノズル51からも燃焼空気を分散させて溶融炉6内に供給することにより、燃焼空気供給箇所近傍の熱分解ガスダクトまたは溶融炉内に局所的に高温部が発生することを抑制することが可能となり、NOの生成を抑制できるとともに、耐火材の溶損を抑制できる。
さらに、補助空気ノズル51が、溶融炉6内の旋回流により形成される仮想円の接線方向に燃焼空気を吹き込むように配置されることにより、補助空気バーナ51から吹き込まれる燃焼空気により溶融炉6内のガスの流れを阻害することなく炉内に旋回流が形成されることにより温度が均一となり、円滑な溶融処理が可能となる。
さらにまた、二次燃焼室12の輝度及び/又はガス化炉3の炉内圧に基づいた給じん量制御と、溶融炉6への燃焼空気供給量の配分制御を組み合わせることにより、CO濃度の低下を図りながらNOの生成抑制が可能となる。
2 給じん機
2a モータ
3 流動床ガス化炉
6 旋回溶融炉
12 二次燃焼室
13 ボイラ部
22 炉内圧センサ
24 FDFダンパ
30 2次FDFダンパ
31 OFAダンパ
33 輝度計
35 制御装置
51 補助空気ノズル
53 補助空気ダンパ

Claims (3)

  1. 給じん機を介してガス化炉内に供給された廃棄物を熱分解し、該ガス化炉にて発生した熱分解ガスを、熱分解ガスダクトを介して燃焼空気とともに溶融炉に導入し、該溶融炉にて熱分解ガスの燃焼熱により灰分を溶融した後、前記溶融炉に連結された二次燃焼室にて燃焼排ガス中の未燃分を燃焼させるガス化溶融システムであって、前記ガス化炉、前記溶融炉、前記二次燃焼室の少なくとも何れかの処理炉における炉内状況を示す検出因子に基づいて、前記処理炉への燃焼空気供給量を制御するガス化溶融システムの燃焼制御方法において、
    前記二次燃焼室の輝度を測定し、該測定した輝度が予め定めた設定値を超えた場合に、前記熱分解ガスダクトに供給される燃焼空気の一部を分岐させて、前記溶融炉の熱分解ガスダクト接続部とは異なる位置に設けられた補助空気ノズルから溶融炉内に供給するようにしたことを特徴とするガス化溶融システムの燃焼制御方法。
  2. 給じん機を介して供給された廃棄物を熱分解して熱分解ガスを発生させるガス化炉と、該ガス化炉と熱分解ガスダクトで接続され、該熱分解ガスダクトを介して供給される燃焼空気と前記熱分解ガスとを燃焼させ、その燃焼熱により灰分を溶融する溶融炉と、該溶融炉で発生した燃焼排ガス中の未燃分を燃焼させる二次燃焼室とからなり、前記ガス化炉、前記溶融炉、前記二次燃焼室の少なくとも何れかの処理炉における炉内状況を示す検出因子に基づいて、前記処理炉への燃焼空気供給量を制御するようにしたガス化溶融システムにおいて、
    前記二次燃焼室の輝度を測定する輝度計と、
    前記溶融炉の熱分解ガスダクト接続部とは異なる部位に設けられ、前記熱分解ガスダクトに供給される燃焼空気の一部を分岐させて供給する補助空気ノズルと、を有し、
    前記輝度計にて測定された輝度が予め定めた設定値を超えた場合に、前記補助空気ノズルから前記溶融炉内に供給する燃焼空気の供給量を制御する制御手段を備えたことを特徴とするガス化溶融システム。
  3. 前記溶融炉が旋回溶融炉であって、前記補助空気ノズルが、溶融炉内の旋回流により形成される仮想円の接線方向に燃焼空気を吹き込むように配置されることを特徴とする請求項2に記載のガス化溶融システム。
JP2013111228A 2007-08-06 2013-05-27 ガス化溶融システムの燃焼制御方法及び該システム Active JP5611418B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013111228A JP5611418B2 (ja) 2007-08-06 2013-05-27 ガス化溶融システムの燃焼制御方法及び該システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007204323 2007-08-06
JP2007204323 2007-08-06
JP2013111228A JP5611418B2 (ja) 2007-08-06 2013-05-27 ガス化溶融システムの燃焼制御方法及び該システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008202464A Division JP5426119B2 (ja) 2007-08-06 2008-08-05 ガス化溶融システムの燃焼制御方法及び該システム

Publications (2)

Publication Number Publication Date
JP2013190204A JP2013190204A (ja) 2013-09-26
JP5611418B2 true JP5611418B2 (ja) 2014-10-22

Family

ID=40554108

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008202464A Active JP5426119B2 (ja) 2007-08-06 2008-08-05 ガス化溶融システムの燃焼制御方法及び該システム
JP2013111228A Active JP5611418B2 (ja) 2007-08-06 2013-05-27 ガス化溶融システムの燃焼制御方法及び該システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008202464A Active JP5426119B2 (ja) 2007-08-06 2008-08-05 ガス化溶融システムの燃焼制御方法及び該システム

Country Status (1)

Country Link
JP (2) JP5426119B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226361B2 (ja) * 2013-06-03 2017-11-08 株式会社タクマ 廃棄物供給量の制御方法及び制御装置
JP6446733B1 (ja) 2018-05-30 2019-01-09 三菱重工環境・化学エンジニアリング株式会社 ガス旋回状態判定システム及びガス化溶融炉
JP6998481B1 (ja) 2021-03-31 2022-02-10 三菱重工業株式会社 燃焼炉設備の制御装置
JP7270193B2 (ja) * 2021-04-15 2023-05-10 株式会社青南商事 ガス化溶融システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260710A (ja) * 1991-02-15 1992-09-16 Mitsui Eng & Shipbuild Co Ltd 廃棄物焼却炉の燃焼制御方法
JP2972454B2 (ja) * 1992-08-27 1999-11-08 川崎重工業株式会社 流動床炉の燃焼制御方法および装置
JPH11351538A (ja) * 1998-06-05 1999-12-24 Kobe Steel Ltd 溶融炉の燃焼制御方法及び装置
JP2000205530A (ja) * 1999-01-13 2000-07-25 Babcock Hitachi Kk ごみガス化溶融発電システム
JP3859926B2 (ja) * 2000-01-24 2006-12-20 株式会社神鋼環境ソリューション 熱分解ガス化溶融システムにおける燃焼用空気の制御方法及びその装置
JP2003262317A (ja) * 2002-03-05 2003-09-19 Ishikawajima Harima Heavy Ind Co Ltd 可燃ガス燃焼室への燃焼用空気供給量調整装置
JP3868315B2 (ja) * 2002-03-13 2007-01-17 三菱重工業株式会社 熱分解ガス化溶融炉の燃焼制御装置及び燃焼制御方法
JP2003287213A (ja) * 2002-03-29 2003-10-10 Mitsubishi Heavy Ind Ltd ごみ焼却炉の燃焼制御装置
JP2006097916A (ja) * 2004-09-28 2006-04-13 Hitachi Metals Ltd 焼却炉の燃焼制御方法
JP4548785B2 (ja) * 2005-09-14 2010-09-22 三菱重工環境・化学エンジニアリング株式会社 廃棄物ガス化溶融装置の溶融炉、並びに該溶融炉における制御方法及び装置

Also Published As

Publication number Publication date
JP5426119B2 (ja) 2014-02-26
JP2013190204A (ja) 2013-09-26
JP2009058216A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4479655B2 (ja) 火格子式廃棄物焼却炉及びその燃焼制御方法
JP2002081624A (ja) 廃棄物ガス化溶融炉と同溶融炉の操業方法
JP4295291B2 (ja) 流動床ガス化炉及びその流動層監視・制御方法
JP4126316B2 (ja) ガス化溶融システムの運転制御方法及び該システム
JP5611418B2 (ja) ガス化溶融システムの燃焼制御方法及び該システム
JP5255510B2 (ja) 廃棄物溶融処理方法および廃棄物溶融処理装置
JP5154094B2 (ja) ガス化溶融システムの燃焼制御方法及び該システム
JP4126317B2 (ja) ガス化溶融システムの運転制御方法及び該システム
JP5510782B2 (ja) 廃棄物溶融処理方法および廃棄物溶融処理装置
JP2017180922A (ja) 廃タイヤガス化溶融装置及び廃タイヤガス化溶融方法
JP3525077B2 (ja) 直結型焼却灰溶融設備及びその運転制御方法
JP2010065932A (ja) 熱分解ガスの二次燃焼炉の燃焼制御装置及び燃焼制御方法
JP4918834B2 (ja) 廃棄物溶融炉および廃棄物溶融炉の操業方法
JP6016196B2 (ja) 廃棄物ガス化溶融装置及び廃棄物ガス化溶融方法
WO2010123444A1 (en) Method and plant for burning solid fuel
JPH08121728A (ja) 廃棄物の溶融炉からの発生ガスの燃焼方法および廃棄物溶融炉の2次燃焼炉
JP2007271205A (ja) 溶融炉の炉内状況監視・制御方法及び該装置
JP3902123B2 (ja) ガス化溶融装置の溶融炉温度補償装置及び溶融炉温度補償方法
JP2005282910A (ja) 廃棄物ガス化溶融炉の燃焼制御方法
JP3840322B2 (ja) ガス化灰溶融方法と装置
JP3789872B2 (ja) 乾燥汚泥を利用する廃棄物焼却炉の運転方法
JP2007271206A (ja) ガス化溶融システムの運転制御方法及び該システム
JP5783078B2 (ja) 廃棄物ガス化溶融炉のクリンカの破壊・発生抑制装置
JP4233212B2 (ja) 高温旋回燃焼方法及び廃棄物処理装置
JP2004263969A (ja) 熱分解ガス化溶融システム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5611418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250