JP5591585B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5591585B2
JP5591585B2 JP2010113262A JP2010113262A JP5591585B2 JP 5591585 B2 JP5591585 B2 JP 5591585B2 JP 2010113262 A JP2010113262 A JP 2010113262A JP 2010113262 A JP2010113262 A JP 2010113262A JP 5591585 B2 JP5591585 B2 JP 5591585B2
Authority
JP
Japan
Prior art keywords
processing apparatus
plasma processing
annular member
upper electrode
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010113262A
Other languages
Japanese (ja)
Other versions
JP2011243688A (en
Inventor
八城 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010113262A priority Critical patent/JP5591585B2/en
Priority to TW100116405A priority patent/TWI517281B/en
Priority to KR1020110045776A priority patent/KR101755313B1/en
Priority to US13/109,365 priority patent/US20110284165A1/en
Priority to CN201110127888.1A priority patent/CN102254847B/en
Publication of JP2011243688A publication Critical patent/JP2011243688A/en
Application granted granted Critical
Publication of JP5591585B2 publication Critical patent/JP5591585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus.

従来から、半導体装置の製造分野等においては、半導体ウエハ等の基板に向けてガスをシャワー状に供給するためのシャワーヘッドが用いられている。すなわち、例えば半導体ウエハ等の基板にプラズマエッチング処理を施すプラズマ処理装置では、処理チャンバー内に、基板を載置するための載置台が設けられており、この載置台と対向するように、シャワーヘッドが設けられている。このシャワーヘッドには、載置台と対向する対向面に、ガス吐出孔が複数設けられており、これらのガス吐出孔から基板に向けてガスをシャワー状に供給する。   2. Description of the Related Art Conventionally, in the field of manufacturing semiconductor devices, shower heads for supplying gas in a shower shape toward a substrate such as a semiconductor wafer have been used. That is, for example, in a plasma processing apparatus that performs a plasma etching process on a substrate such as a semiconductor wafer, a mounting table for mounting the substrate is provided in the processing chamber, and a shower head is provided so as to face the mounting table. Is provided. This shower head is provided with a plurality of gas discharge holes on a surface facing the mounting table, and gas is supplied from the gas discharge holes toward the substrate in a shower shape.

上記したプラズマ処理装置では、処理チャンバー内のガスの流れを均一化するため、載置台の周囲から下方に排気を行う構成としたものが知られている。また、シャワーヘッドの周囲から処理チャンバーの上方に向けて排気を行うよう構成されたプラズマ処理装置も知られている(例えば、特許文献1参照。)。   In the plasma processing apparatus described above, there is known a configuration in which exhaust is performed downward from the periphery of the mounting table in order to make the gas flow in the processing chamber uniform. There is also known a plasma processing apparatus configured to exhaust air from the periphery of the shower head toward the upper side of the processing chamber (see, for example, Patent Document 1).

また、処理チャンバーの中に設けられた対向電極と、処理チャンバーの外側の側壁部分に設けられた誘導結合プラズマ(ICP)を発生させるためのコイルとを有するプラズマ処理装置が知られている(例えば、特許文献2参照。)。さらに、誘導結合型プラズマを発生させるためのコイルを、誘電体で囲まれた状態として処理チャンバー内に配置したプラズマ処理装置が知られている(例えば、特許文献3参照。)。   There is also known a plasma processing apparatus having a counter electrode provided in a processing chamber and a coil for generating inductively coupled plasma (ICP) provided on an outer side wall portion of the processing chamber (for example, , See Patent Document 2). Furthermore, a plasma processing apparatus is known in which a coil for generating inductively coupled plasma is disposed in a processing chamber in a state surrounded by a dielectric (for example, see Patent Document 3).

特許第2662365号公報Japanese Patent No. 2663365 特開平8−64540号公報JP-A-8-64540 特開平10−98033号公報JP-A-10-98033

上記の従来の技術では、載置台(基板)の周囲から処理チャンバーの下方へ排気するか、又はシャワーヘッドの周囲から処理チャンバーの上方に向けて排気する構成となっている。このため、シャワーヘッドから供給されたガスが基板の中央部から周辺部に向けて流れる流れが形成され、基板の中央部と周辺部とで処理の状態に差が生じ易く、処理の面内均一性が低下するという問題があった。また、載置台(基板)の周囲又はシャワーヘッドの周囲に排気流路を設ける必要があるため、処理チャンバー内部の容積が、収容する基板よりもかなり大型になり、無駄な空間が多くなり装置全体の小型化を図ることが難しいという問題があった。また、このような装置の大型化に伴い、立ち上げ時の待機時間が長くなるとともに、初期に発生する処理変動が大きくなり、処理効率が低下するという問題があった。   In the above-described conventional technology, exhaust is performed from the periphery of the mounting table (substrate) to the lower portion of the processing chamber, or from the periphery of the shower head toward the upper portion of the processing chamber. For this reason, a flow is formed in which the gas supplied from the shower head flows from the central part to the peripheral part of the substrate, and a difference in the processing state easily occurs between the central part and the peripheral part of the substrate. There was a problem that the performance decreased. In addition, since it is necessary to provide an exhaust flow path around the mounting table (substrate) or around the shower head, the volume inside the processing chamber becomes considerably larger than the substrate to be accommodated, resulting in an increase in wasted space and the entire apparatus. There was a problem that it was difficult to reduce the size of the device. Further, along with the increase in the size of such an apparatus, there has been a problem that the standby time during startup becomes longer, the processing fluctuations that occur in the initial stage become larger, and the processing efficiency decreases.

さらに、シャワーヘッドが上部電極、載置台が下部電極を兼ねた容量結合型のプラズマ処理装置では、この上部電極(シャワーヘッド)と下部電極(載置台)との間隔を可変とすることが望まれる。しかし、処理チャンバー内が減圧雰囲気とされるため、処理チャンバー内外の圧力差に抗して、上部電極(シャワーヘッド)又は下部電極(載置台)を上下動させるには、駆動源に大きな力が必要となり、駆動に要するエネルギーも多くなるという問題があった。   Further, in a capacitively coupled plasma processing apparatus in which the shower head serves as the upper electrode and the mounting table also serves as the lower electrode, it is desired that the distance between the upper electrode (shower head) and the lower electrode (mounting table) be variable. . However, since the inside of the processing chamber is a reduced pressure atmosphere, a large force is applied to the drive source to move the upper electrode (shower head) or the lower electrode (mounting table) up and down against the pressure difference between inside and outside the processing chamber. There is a problem that the energy required for driving increases.

本発明は、上記従来の事情に対処してなされたもので、従来に比べて処理の面内均一性の向上を図ることができるとともに、装置の小型化と処理効率の向上を図ることができ、かつ、上部電極と下部電極との間隔を容易に変更することのできるプラズマ処理装置を提供しようとするものである。   The present invention has been made in response to the above-described conventional circumstances, and can improve the in-plane uniformity of processing as compared with the conventional case, and can reduce the size of the apparatus and improve the processing efficiency. An object of the present invention is to provide a plasma processing apparatus capable of easily changing the interval between the upper electrode and the lower electrode.

本発明のプラズマ処理装置は、処理チャンバー内に設けられ、基板を載置するための載置台を兼ねた下部電極と、前記下部電極と対向するように前記処理チャンバー内に設けられ、前記下部電極と対向する対向面に複数設けられたガス吐出孔から前記基板に向けてガスをシャワー状に供給するシャワーヘッドとしての機能を備え、かつ、上下動可能とされ前記下部電極との間隔を変更可能とされた上部電極と、前記上部電極の上側に設けられ前記処理チャンバーの上部開口を気密に閉塞する蓋体と、前記対向面に形成された複数の排気孔と、前記上部電極の周縁部に沿って下方に突出するように設けられ前記上部電極と連動して上下動可能とされた環状部材であって、下降位置において前記下部電極と前記上部電極と当該環状部材とによって囲まれた処理空間を形成する環状部材と、前記環状部材の内壁に沿って全体形状が円環状とされた誘電体製の容器内に収容され前記処理空間と気密に隔離された状態で配設され、高周波電力を印加することによって誘導プラズマを発生させる全体形状が円環状のコイルとを具備したことを特徴とする。 The plasma processing apparatus of the present invention is provided in the processing chamber, and is provided in the processing chamber so as to face the lower electrode, and a lower electrode that also serves as a mounting table for mounting a substrate, and the lower electrode It has a function as a shower head that supplies gas in a shower-like manner toward the substrate from a plurality of gas discharge holes provided on the opposing surface, and can be moved up and down to change the distance from the lower electrode An upper electrode, a lid provided above the upper electrode and hermetically closing the upper opening of the processing chamber, a plurality of exhaust holes formed in the opposing surface, and a peripheral portion of the upper electrode An annular member provided so as to protrude downward along the upper electrode and movable up and down in conjunction with the upper electrode, and in the lowered position by the lower electrode, the upper electrode, and the annular member An annular member forming a Mareta processing space, are disposed such that the overall shape along the inner wall is isolated in the processing space and hermetically housed in an annular shape and dielectric made of container of the annular member An overall shape for generating induction plasma by applying high frequency power is provided with an annular coil.

本発明によれば、従来に比べて処理の面内均一性の向上を図ることができるとともに、装置の小型化と処理効率の向上を図ることができ、かつ、上部電極と下部電極との間隔を容易に変更することのできるプラズマ処理装置を提供することができる。   According to the present invention, it is possible to improve the in-plane uniformity of processing as compared with the prior art, to reduce the size of the apparatus and improve processing efficiency, and to provide a space between the upper electrode and the lower electrode. It is possible to provide a plasma processing apparatus capable of easily changing the above.

本発明の一実施形態に係るプラズマ処理装置の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the plasma processing apparatus which concerns on one Embodiment of this invention. 図1のプラズマ処理装置の要部構成を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the principal part structure of the plasma processing apparatus of FIG. 図1のプラズマ処理装置の要部構成を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the principal part structure of the plasma processing apparatus of FIG. 図1のプラズマ処理装置のシャワーヘッドを上昇させた状態を示す縦断面図。The longitudinal cross-sectional view which shows the state which raised the shower head of the plasma processing apparatus of FIG.

以下、本発明の詳細を、図面を参照して実施形態について説明する。   Hereinafter, details of the present invention will be described with reference to the drawings.

図1は、本発明のプラズマ処理装置の一実施形態に係るプラズマエッチング装置200の断面構成を模式的に示す図であり、図2は、図1のプラズマエッチング装置200に設けられたシャワーヘッド100の構成を模式的に示す断面図である。本実施形態のプラズマエッチング装置200は、電極板が上下平行に対向し、プラズマ形成用電源(図示せず。)が接続された容量結合型平行平板プラズマエッチング装置としてその主要部が構成されている。   FIG. 1 is a diagram schematically showing a cross-sectional configuration of a plasma etching apparatus 200 according to an embodiment of the plasma processing apparatus of the present invention, and FIG. 2 is a shower head 100 provided in the plasma etching apparatus 200 of FIG. It is sectional drawing which shows the structure of no. The main part of the plasma etching apparatus 200 of the present embodiment is configured as a capacitively coupled parallel plate plasma etching apparatus in which electrode plates are opposed in parallel in the vertical direction and a power source for plasma formation (not shown) is connected. .

図2に示すように、シャワーヘッド100は、下側部材1と、この下側部材1の上側に配置された上側部材2の2枚の板状部材を積層させた積層体10から構成されている。これらの下側部材1及び上側部材2は、例えば、表面に陽極酸化処理を施したアルミニウム等から構成されている。このシャワーヘッド100は、図1に示すように、プラズマエッチング装置200の処理チャンバー201に、半導体ウエハ(基板)が載置される載置台202と対向するように配設される。すなわち、図2に示す下側部材1側が図1に示す載置台202と対向する対向面14を形成するように配設される。   As shown in FIG. 2, the shower head 100 is composed of a laminated body 10 in which two plate-like members of a lower member 1 and an upper member 2 arranged on the upper side of the lower member 1 are laminated. Yes. These lower member 1 and upper member 2 are made of, for example, aluminum whose surface is anodized. As shown in FIG. 1, the shower head 100 is disposed in a processing chamber 201 of a plasma etching apparatus 200 so as to face a mounting table 202 on which a semiconductor wafer (substrate) is mounted. That is, the lower member 1 side shown in FIG. 2 is disposed so as to form the facing surface 14 facing the mounting table 202 shown in FIG.

上記積層体10のうち、載置台202と対向する対向面14を形成する下側部材1には、ガス吐出孔11が多数形成されており、下側部材1と上側部材2との間には、これらのガス吐出孔11に連通するガス流路12が形成されている。これらのガス吐出孔11は、図2中に矢印で示すように、基板(図2中下側)に向けてガスをシャワー状に供給するためのものである。なお、積層体10の周縁部には、ガス流路12内にガスを導入するためのガス導入部(図示せず。)が設けられている。   In the laminated body 10, a number of gas discharge holes 11 are formed in the lower member 1 that forms the facing surface 14 that faces the mounting table 202, and between the lower member 1 and the upper member 2. A gas flow path 12 communicating with these gas discharge holes 11 is formed. These gas discharge holes 11 are for supplying gas in a shower shape toward the substrate (lower side in FIG. 2) as indicated by arrows in FIG. A gas introduction part (not shown) for introducing gas into the gas flow path 12 is provided at the peripheral edge of the laminate 10.

また、上記積層体10には、この積層体10、すなわち、下側部材1と上側部材2とを貫通して、多数の排気孔13が形成されている。これらの排気孔13は、図2中に点線の矢印で示すように、基板側(図2中下側)から基板と反対側(図2中上側)に向けてガスの流れが形成されるように排気を行う排気機構を構成している。   In addition, a large number of exhaust holes 13 are formed in the laminate 10 through the laminate 10, that is, the lower member 1 and the upper member 2. These exhaust holes 13 are configured so that a gas flow is formed from the substrate side (lower side in FIG. 2) to the opposite side (upper side in FIG. 2) from the substrate side (lower side in FIG. 2), as indicated by dotted arrows in FIG. An exhaust mechanism for exhausting air is configured.

これらの排気孔13は、直径が例えば1.2mm程度とされており、シャワーヘッド100の周縁部(後述する環状部材220を固定するための固定部となる)を除き、その全領域に亘って略均等に設けられている。排気孔13の数は、例えば12インチ(300mm)径の半導体ウエハを処理するためのシャワーヘッド100の場合、2000〜2500個程度である。排気孔13の形状は、円形に限らず例えば楕円形状等としてもよく、これらの排気孔13は、反応生成物を排出する役目も果たす。なお、本実施形態では、シャワーヘッド100の外形は、被処理基板である半導体ウエハの外形に合わせて円板状に構成されている。   These exhaust holes 13 have a diameter of, for example, about 1.2 mm, and cover the entire area except for the peripheral part of the shower head 100 (which becomes a fixing part for fixing the annular member 220 described later). They are provided approximately evenly. The number of exhaust holes 13 is, for example, about 2000 to 2500 in the case of the shower head 100 for processing a semiconductor wafer having a diameter of 12 inches (300 mm). The shape of the exhaust hole 13 is not limited to a circular shape, and may be, for example, an elliptical shape. These exhaust holes 13 also serve to discharge reaction products. In the present embodiment, the outer shape of the shower head 100 is configured in a disc shape in accordance with the outer shape of the semiconductor wafer that is the substrate to be processed.

図1に示されるプラズマエッチング装置200の処理チャンバー(処理容器)201は、例えば表面が陽極酸化処理されたアルミニウム等から円筒形状に形成されており、この処理チャンバー201は接地されている。処理チャンバー201内には、被処理基板としての半導体ウエハを載置し、かつ、下部電極を構成する載置台202が設けられている。この載置台202には、図示しない高周波電源等の高周波電力印加装置が接続されている。   The processing chamber (processing container) 201 of the plasma etching apparatus 200 shown in FIG. 1 is formed in a cylindrical shape from aluminum or the like whose surface is anodized, for example, and this processing chamber 201 is grounded. In the processing chamber 201, there is provided a mounting table 202 for mounting a semiconductor wafer as a substrate to be processed and constituting a lower electrode. A high-frequency power application device such as a high-frequency power source (not shown) is connected to the mounting table 202.

載置台202の上側には、その上に半導体ウエハを静電吸着するための静電チャック203が設けられている。静電チャック203は、絶縁材の間に電極を配置して構成されており、この電極に直流電圧を印加することにより、クーロン力によって半導体ウエハを静電吸着する。また、載置台202には、温調用媒体を循環させるための流路(図示せず。)が形成されており、静電チャック203上に吸着された半導体ウエハを所定の温度に温度調整できるようになっている。また、図4に示すように、処理チャンバー201の側壁部には、半導体ウエハを処理チャンバー201内に搬入、搬出するための開口215が形成されている。   On the upper side of the mounting table 202, an electrostatic chuck 203 for electrostatically adsorbing the semiconductor wafer is provided. The electrostatic chuck 203 is configured by disposing an electrode between insulating materials. By applying a DC voltage to the electrode, the semiconductor wafer is electrostatically attracted by Coulomb force. Further, the mounting table 202 is formed with a flow path (not shown) for circulating the temperature adjustment medium so that the temperature of the semiconductor wafer adsorbed on the electrostatic chuck 203 can be adjusted to a predetermined temperature. It has become. As shown in FIG. 4, an opening 215 for carrying a semiconductor wafer into and out of the processing chamber 201 is formed in the side wall portion of the processing chamber 201.

載置台202の上方に、載置台202と間隔を隔てて対向するように、図2に示したシャワーヘッド100が配置されている。そして、シャワーヘッド100が上部電極となり、載置台202が下部電極となる一対の対向電極が形成されている。シャワーヘッド100のガス流路12内には、図示しないガス供給源から所定の処理ガス(エッチングガス)が供給される。   The shower head 100 shown in FIG. 2 is arranged above the mounting table 202 so as to face the mounting table 202 with a space therebetween. A pair of counter electrodes is formed in which the shower head 100 serves as an upper electrode and the mounting table 202 serves as a lower electrode. A predetermined processing gas (etching gas) is supplied into the gas flow path 12 of the shower head 100 from a gas supply source (not shown).

また、シャワーヘッド100の上部には、処理チャンバー201の上部開口を気密に閉塞し、処理チャンバー201の天井部を構成する蓋体205が設けられており、この蓋体205の中央部には、筒状の排気管210が配設されている。この排気管210には、開閉制御弁及び開閉機構等を介してターボ分子ポンプ等の真空ポンプ(図示せず。)が接続されている。   Further, an upper opening of the processing chamber 201 is hermetically closed at the upper portion of the shower head 100, and a lid 205 that constitutes a ceiling portion of the processing chamber 201 is provided. A cylindrical exhaust pipe 210 is provided. A vacuum pump (not shown) such as a turbo molecular pump is connected to the exhaust pipe 210 via an open / close control valve and an open / close mechanism.

シャワーヘッド100の下面には、その周縁部に沿って下方に突出するように円環状(円筒状)に形成された環状部材220が設けられている。この環状部材220は、例えば絶縁性の被膜(陽極酸化被膜等)で覆われたアルミニウム等から構成されており、上部電極としてのシャワーヘッド100と電気的に導通した状態で固定されている。   An annular member 220 formed in an annular shape (cylindrical shape) is provided on the lower surface of the shower head 100 so as to protrude downward along the peripheral edge portion thereof. The annular member 220 is made of, for example, aluminum covered with an insulating film (anodized film or the like), and is fixed in a state of being electrically connected to the shower head 100 as an upper electrode.

図3に示すように、環状部材220は、環状部材220の側壁の主要分を構成する上側部材221と、この上側部材221の下部に取り付けられた下側部材222とを具備している。上側部材221の内壁の上端部には、内側に向けて突出する突出部221aが設けられている。そして、この突出部221aと下側部材222の上面との間に狭持されるように、環状部材220の内壁に沿って、全体形状が円環状であり、縦断面形状が逆U字状とされた誘電体製の容器、本実施形態では石英から構成された石英容器230が設けられている。   As shown in FIG. 3, the annular member 220 includes an upper member 221 that constitutes a main portion of the side wall of the annular member 220, and a lower member 222 attached to the lower portion of the upper member 221. A protruding portion 221 a that protrudes inward is provided at the upper end portion of the inner wall of the upper member 221. Then, the entire shape is annular along the inner wall of the annular member 220 so as to be sandwiched between the protruding portion 221a and the upper surface of the lower member 222, and the longitudinal sectional shape is an inverted U-shape. In this embodiment, a dielectric container made of quartz is provided.

石英容器230の下端部と、下側部材222の上面との間には、気密封止部材としてのOリング231が配置されている。一方、石英容器230の上端部は、上側部材221の突出部221aによって下方に向けて押圧された状態に維持されており、これによって、石英容器230内部と処理チャンバー201内部の処理空間とが気密に隔離された状態で石英容器230が環状部材220に固定されている。   An O-ring 231 serving as an airtight sealing member is disposed between the lower end portion of the quartz container 230 and the upper surface of the lower member 222. On the other hand, the upper end portion of the quartz container 230 is maintained in a state of being pressed downward by the protruding portion 221a of the upper member 221, so that the inside of the quartz container 230 and the processing space inside the processing chamber 201 are hermetically sealed. The quartz container 230 is fixed to the annular member 220 while being isolated from each other.

石英容器230の内部には、ICPコイル240が配設されている。このICPコイル240は、全体形状が円環状とされており、本実施形態では、処理空間の周囲を複数回巻回するように設けられている。本実施形態では、ICPコイル240は、中空のパイプ状の金属から構成されている。このICPコイル240には、図示しない温調用媒体循環機構が接続されており、その内部の中空の空間に温調用媒体を循環させることができるよう構成されている。   An ICP coil 240 is disposed inside the quartz container 230. The ICP coil 240 has an annular shape as a whole. In this embodiment, the ICP coil 240 is provided so as to be wound around the processing space a plurality of times. In this embodiment, the ICP coil 240 is made of a hollow pipe-shaped metal. The ICP coil 240 is connected to a temperature adjusting medium circulation mechanism (not shown) so that the temperature adjusting medium can be circulated in a hollow space inside the ICP coil 240.

また、このICPコイル240は、図示しない高周波電源に接続されている。そして、この高周波電源から所定周波数(例えば、450KHz〜2MHzの範囲)の高周波電力を印加することによって、石英容器230よりも内側の処理空間212内にICPプラズマを発生させることができるよう構成されている。石英容器230の内部は、大気又は不活性ガスで置換された雰囲気とされており、内部で放電が発生しない圧力(例えば、1330Pa(10Torr)以上大気圧以下の圧力)とされている。   The ICP coil 240 is connected to a high frequency power source (not shown). And it is comprised so that ICP plasma can be generated in the process space 212 inside the quartz container 230 by applying the high frequency electric power of predetermined frequency (for example, the range of 450 KHz-2 MHz) from this high frequency power supply. Yes. The inside of the quartz container 230 is an atmosphere or an atmosphere substituted with an inert gas, and is set to a pressure (for example, a pressure not lower than 1330 Pa (10 Torr) and not higher than atmospheric pressure) in which no discharge occurs.

上記のICPコイル240によって、処理空間212内の周辺部にICPプラズマを発生させ、処理空間212内の周辺部のプラズマ密度を制御することができる。この時、ICPコイル240の温度が上昇する傾向があり、このICPコイル240の温度上昇を、内部に温調用媒体を循環させることによって防止することができる。   With the ICP coil 240 described above, ICP plasma can be generated in the peripheral portion in the processing space 212, and the plasma density in the peripheral portion in the processing space 212 can be controlled. At this time, the temperature of the ICP coil 240 tends to increase, and the temperature increase of the ICP coil 240 can be prevented by circulating a temperature adjusting medium inside.

また、メンテナンス等のために一旦処理チャンバー201内部を大気開放した後に、再度処理を開始する場合には、処理を開始するための準備の工程において、ICPコイル240によってプラズマを発生させることによって、処理チャンバー201内の部品に吸着している水分等を脱離させることができる。これによって、待機時間を短縮することができるとともに、立ち上げ時の初期に発生する処理変動を低減することができる。   In addition, when the processing is started again after the inside of the processing chamber 201 is opened to the atmosphere for maintenance or the like, plasma is generated by the ICP coil 240 in the preparation step for starting the processing, whereby the processing is performed. Water or the like adsorbed on the components in the chamber 201 can be desorbed. As a result, the standby time can be shortened, and processing fluctuations that occur at the beginning of startup can be reduced.

環状部材220は、昇降機構270に接続されており、シャワーヘッド100と共に上下動可能とされている。この環状部材220の内径は、載置台202の外径より僅かに大きく設定されており、その下側部分が載置台202の周囲を囲む状態となる位置に下降させることができるようになっている。図1は、環状部材220及びシャワーヘッド100を下降位置とした状態を示している。この下降位置では、載置台202の上方には、載置台(下部電極)202と、シャワーヘッド(上部電極)100と、環状部材220とによって囲まれた処理空間212が形成されるようになっている。このように、上下動可能な環状部材220によって処理空間212を仕切ることにより、処理空間212を載置台202の上方のみに形成し、載置台202の周縁部から外側に向かって水平方向に拡がった無駄な空間が形成されることを抑制することができる。   The annular member 220 is connected to an elevating mechanism 270 and can move up and down together with the shower head 100. The inner diameter of the annular member 220 is set to be slightly larger than the outer diameter of the mounting table 202, and can be lowered to a position where the lower portion surrounds the periphery of the mounting table 202. . FIG. 1 shows a state where the annular member 220 and the shower head 100 are in the lowered position. In the lowered position, a processing space 212 surrounded by the mounting table (lower electrode) 202, the shower head (upper electrode) 100, and the annular member 220 is formed above the mounting table 202. Yes. In this way, by dividing the processing space 212 by the annular member 220 that can move up and down, the processing space 212 is formed only above the mounting table 202, and spreads in the horizontal direction from the periphery of the mounting table 202 toward the outside. It is possible to suppress the formation of a useless space.

一方、図4は、環状部材220及びシャワーヘッド100を上昇位置とした状態を示している。この上昇位置では、半導体ウエハを処理チャンバー201内に搬入、搬出するための開口215が開いた状態となっており、この状態で半導体ウエハの処理チャンバー201への搬入、搬出が行われるようになっている。この開口215は、図1に示すように、環状部材220及びシャワーヘッド100を下降位置とした際には、環状部材220によって覆われ閉塞した状態となっている。   On the other hand, FIG. 4 shows a state in which the annular member 220 and the shower head 100 are in the raised position. At this raised position, an opening 215 for loading and unloading the semiconductor wafer into and from the processing chamber 201 is open, and loading and unloading of the semiconductor wafer into and from the processing chamber 201 is performed in this state. ing. As shown in FIG. 1, the opening 215 is covered and closed by the annular member 220 when the annular member 220 and the shower head 100 are in the lowered position.

昇降機構270の駆動源として、本実施形態では電動シリンダー260を用いている。そして、複数の昇降機構270を処理チャンバー201の周方向に沿って等間隔で設けた多軸駆動方式とされている。このように、電動シリンダー260を用いた多軸駆動方式とすることにより、例えば、空気圧駆動の駆動機構とした場合に比べて環状部材220及びシャワーヘッド100の位置を精度よく制御することができる。また、多軸駆動方式としても、その協調制御を電気的に容易に行うことができる。   In this embodiment, an electric cylinder 260 is used as a drive source for the lifting mechanism 270. In addition, a multi-axis drive system is provided in which a plurality of lifting mechanisms 270 are provided at equal intervals along the circumferential direction of the processing chamber 201. As described above, by adopting the multi-axis drive system using the electric cylinder 260, for example, the positions of the annular member 220 and the shower head 100 can be accurately controlled as compared with the case of using a pneumatic drive mechanism. Further, even in the multi-axis drive system, the cooperative control can be easily performed electrically.

図1に示すように、電動シリンダー260の駆動軸は昇降軸261に接続されており、この昇降軸261は、処理チャンバー201の底部から処理チャンバー201内の上部に向けて延在するように立設された円筒状の固定軸262内を貫通するように配設されている。そして、気密封止部263において、例えば2重のOリング等によって昇降軸261の駆動部分の気密封止がなされている。   As shown in FIG. 1, the drive shaft of the electric cylinder 260 is connected to an elevating shaft 261, and the elevating shaft 261 stands so as to extend from the bottom of the processing chamber 201 toward the upper portion in the processing chamber 201. The cylindrical fixed shaft 262 is provided so as to penetrate therethrough. In the hermetic sealing portion 263, the driving portion of the elevating shaft 261 is hermetically sealed by, for example, double O-rings.

本実施形態では、シャワーヘッド100が、処理チャンバー201の上部開口を気密に閉塞する蓋体205の内側の減圧雰囲気内に配置されており、シャワーヘッド100自体に減圧雰囲気と大気雰囲気との間の圧力差が加わることがなく、昇降軸261の部分のみに圧力差が加わる。このため、シャワーヘッド100を少ない駆動力で、容易に上下動させることができ、省エネルギー化を図ることができる。また、駆動機構の機械的強度を軽減することができるので、装置コストの低減を図ることができる。   In this embodiment, the shower head 100 is disposed in a reduced pressure atmosphere inside the lid 205 that airtightly closes the upper opening of the processing chamber 201, and the shower head 100 itself has a space between the reduced pressure atmosphere and the atmospheric atmosphere. No pressure difference is applied, and a pressure difference is applied only to the lift shaft 261. For this reason, the shower head 100 can be easily moved up and down with a small driving force, and energy saving can be achieved. In addition, since the mechanical strength of the drive mechanism can be reduced, the device cost can be reduced.

環状部材220と、載置台202下部の高周波側ラインの接地側には、これらの間を電気的に接続するためのシートケーブル250が設けられている。このシートケーブル250は、環状部材220の周方向に沿って、等間隔で複数設けられている。シートケーブル250は、銅等からなるシート状の導体の表面を絶縁層で被覆して構成され、その両側端部近傍には、導体が露出しねじ止め用の貫通孔が形成された接続部が設けられている。このシートケーブル250は、厚さが例えば数百ミクロン程度とされており、可撓性を有し、環状部材220及びシャワーヘッド100の上下動に応じて自在に変形するよう構成されている。   On the ground side of the annular member 220 and the high frequency side line below the mounting table 202, a seat cable 250 for electrically connecting them is provided. A plurality of the seat cables 250 are provided at equal intervals along the circumferential direction of the annular member 220. The sheet cable 250 is configured by covering the surface of a sheet-like conductor made of copper or the like with an insulating layer, and in the vicinity of both ends thereof, there is a connection portion where the conductor is exposed and a through hole for screwing is formed. Is provided. The seat cable 250 has a thickness of, for example, about several hundred microns, has flexibility, and is configured to be freely deformed according to the vertical movement of the annular member 220 and the shower head 100.

シートケーブル250は、環状部材220及び上部電極としてのシャワーヘッド100の高周波のリターンを目的としたものであり、上部電極としてのシャワーヘッド100と環状部材220がシートケーブル250によって電気的に接続され、高周波側ラインの接地側に電気的に接続されている。   The seat cable 250 is for the purpose of high-frequency return of the annular member 220 and the shower head 100 as the upper electrode. The shower head 100 as the upper electrode and the annular member 220 are electrically connected by the seat cable 250, It is electrically connected to the ground side of the high frequency side line.

このように、本実施形態では、処理チャンバー壁等ではなく、シートケーブル250によって、短い経路で環状部材220及び上部電極としてのシャワーヘッド100が高周波側ラインの接地側に電気的に接続されている。これによってプラズマによる各部位の電位差を極めて低く抑えることができるようになっている。   As described above, in the present embodiment, the annular member 220 and the shower head 100 as the upper electrode are electrically connected to the ground side of the high frequency side line through the short path by the sheet cable 250, not the processing chamber wall or the like. . As a result, the potential difference between the parts due to the plasma can be kept extremely low.

また、環状部材220及び上部電極としてのシャワーヘッド100が上下動する構成でありながら、これらがシートケーブル250によって常に高周波側ラインの接地側に電気的に接続された構成となっており、電気的にフローティング状態となることがないように構成されている。   Further, while the annular member 220 and the shower head 100 as the upper electrode are configured to move up and down, they are always electrically connected to the ground side of the high frequency side line by the seat cable 250. It is configured not to be in a floating state.

上記の通り、プラズマエッチング装置200では、上下動可能とされた環状部材220を具備しているので、処理空間212を載置台202の上方のみに形成することができ、水平方向外側に拡がった無駄な空間が形成されることを抑制することができる。これによって消費される処理ガスの削減等を図ることができる。また、環状部材220に配設されたICPコイル240によって、処理空間内の周辺部にICPプラズマを発生させ、処理空間内の周辺部のプラズマ密度を制御することができるので、処理空間212内のプラズマの状態を、より細かく制御することができ、均一な処理を行うことができる。さらに、上部電極としてのシャワーヘッド100と載置台202との間の距離を、処理の条件等によって変更することができる。   As described above, since the plasma etching apparatus 200 includes the annular member 220 that can move up and down, the processing space 212 can be formed only above the mounting table 202, and is wasted spreading outward in the horizontal direction. Formation of a large space can be suppressed. As a result, it is possible to reduce the processing gas consumed. Further, the ICP plasma 240 disposed in the annular member 220 can generate ICP plasma in the peripheral portion in the processing space and control the plasma density in the peripheral portion in the processing space. The state of plasma can be controlled more finely and uniform processing can be performed. Furthermore, the distance between the shower head 100 as the upper electrode and the mounting table 202 can be changed according to the processing conditions and the like.

さらに、処理空間212の物理的な形状が対称となり、半導体ウエハを処理チャンバー201内に搬入、搬出するための開口215が存在することによる非対称な形状の影響がプラズマに加わることを抑制することができるので、より均一な処理を行うことができる。   Furthermore, the physical shape of the processing space 212 is symmetric, and it is possible to suppress the influence of the asymmetrical shape due to the presence of the opening 215 for carrying the semiconductor wafer into and out of the processing chamber 201 from the plasma. As a result, more uniform processing can be performed.

上記構成のプラズマエッチング装置200によって、半導体ウエハのプラズマエッチングを行う場合、まず、図4に示すように、環状部材220及びシャワーヘッド100を上昇させ、開口215を開ける。この状態で、半導体ウエハを、開口215から処理チャンバー201内へと搬入し、半導体ウエハを静電チャック203上に載置して、静電チャック203上に静電吸着する。   When plasma etching of a semiconductor wafer is performed by the plasma etching apparatus 200 having the above configuration, first, as shown in FIG. 4, the annular member 220 and the shower head 100 are raised to open the opening 215. In this state, the semiconductor wafer is carried into the processing chamber 201 through the opening 215, and the semiconductor wafer is placed on the electrostatic chuck 203 and electrostatically adsorbed on the electrostatic chuck 203.

次いで、環状部材220及びシャワーヘッド100を下降させるとともに、開口215を閉じ、半導体ウエハの上方に処理空間212を形成した状態とする。そして、真空ポンプ等によって、排気孔13を介して処理チャンバー201内の処理空間212を所定の真空度まで真空引する。   Next, the annular member 220 and the shower head 100 are lowered, the opening 215 is closed, and the processing space 212 is formed above the semiconductor wafer. Then, the processing space 212 in the processing chamber 201 is evacuated to a predetermined degree of vacuum through the exhaust hole 13 by a vacuum pump or the like.

その後、所定流量の所定の処理ガス(エッチングガス)を、図示しないガス供給源から供給する。この処理ガスは、シャワーヘッド100のガス流路12を経てガス吐出孔11からシャワー状に載置台202上の半導体ウエハに供給される。   Thereafter, a predetermined processing gas (etching gas) at a predetermined flow rate is supplied from a gas supply source (not shown). This processing gas is supplied to the semiconductor wafer on the mounting table 202 in a shower shape from the gas discharge hole 11 through the gas flow path 12 of the shower head 100.

そして、処理チャンバー201内の圧力が、所定の圧力に維持された後、載置台202に所定の周波数,例えば13.56MHzの高周波電力が印加される。これにより、上部電極としてのシャワーヘッド100と下部電極としての載置台202との間に高周波電界が生じ、エッチングガスが解離してプラズマ化する。さらに、例えば、処理空間212の周縁部におけるプラズマ密度を上昇させたい場合等には、必要に応じてICPコイル240に高周波電力が印加され、処理空間内の周辺部にICPプラズマを発生させる。そして、これらのプラズマによって、半導体ウエハに所定の均一なエッチング処理が行われる。   Then, after the pressure in the processing chamber 201 is maintained at a predetermined pressure, a high frequency power of a predetermined frequency, for example, 13.56 MHz is applied to the mounting table 202. As a result, a high-frequency electric field is generated between the shower head 100 as the upper electrode and the mounting table 202 as the lower electrode, and the etching gas is dissociated into plasma. Furthermore, for example, when it is desired to increase the plasma density at the peripheral edge of the processing space 212, high frequency power is applied to the ICP coil 240 as necessary to generate ICP plasma in the peripheral portion within the processing space. A predetermined uniform etching process is performed on the semiconductor wafer by these plasmas.

上記エッチング処理において、シャワーヘッド100のガス吐出孔11から供給された処理ガスは、シャワーヘッド100に分散して多数形成された排気孔13から排気されるので、処理チャンバー201の下部から排気を行う場合のように、半導体ウエハの中央部から周辺部に向かうようなガスの流れが形成されることがない。このため、半導体ウエハに供給される処理ガスをより均一化することができる。これによって、プラズマの状態を均一化することができ、半導体ウエハの各部に均一なエッチング処理を施すことができる。すなわち、処理の面内均一性を向上させることができる。   In the etching process, the processing gas supplied from the gas ejection holes 11 of the shower head 100 is exhausted from the lower part of the processing chamber 201 because the processing gas is exhausted from the exhaust holes 13 that are dispersed and formed in the shower head 100. As in the case, there is no gas flow from the central part to the peripheral part of the semiconductor wafer. For this reason, the processing gas supplied to the semiconductor wafer can be made more uniform. As a result, the plasma state can be made uniform, and a uniform etching process can be performed on each part of the semiconductor wafer. That is, the in-plane uniformity of processing can be improved.

そして、所定のプラズマエッチング処理が終了すると、高周波電力の印加及び処理ガスの供給が停止され、上記した手順とは逆の手順で、半導体ウエハが処理チャンバー201内から搬出される。   Then, when the predetermined plasma etching process is completed, the application of the high frequency power and the supply of the processing gas are stopped, and the semiconductor wafer is unloaded from the processing chamber 201 by a procedure reverse to the procedure described above.

上記したとおり、本実施形態のプラズマエッチング装置200によれば、シャワーヘッド100から処理ガスの供給及び排気を行う構成となっているので、半導体ウエハに供給される処理ガスをより均一化することができる。これによって、半導体ウエハの各部に均一なエッチング処理を施すことができる。   As described above, according to the plasma etching apparatus 200 of the present embodiment, since the processing gas is supplied and exhausted from the shower head 100, the processing gas supplied to the semiconductor wafer can be made more uniform. it can. Thereby, a uniform etching process can be performed on each part of the semiconductor wafer.

また、上記のプラズマエッチング装置200では、シャワーヘッド100に設けた排気孔13から排気を行うので、従来の装置のように、載置台202の周囲又はシャワーヘッド100の周囲に排気経路を設ける必要がない。このため、処理チャンバー201の径をより被処理基板である半導体ウエハの外径に近づけることが可能となり、装置の小型化を図ることができる。また、真空ポンプを、処理チャンバー201の上方に設けることができ、処理チャンバー201の処理空間により近い部分から排気することができるので、効率良く排気することができる。   Further, in the plasma etching apparatus 200 described above, exhaust is performed from the exhaust hole 13 provided in the shower head 100. Therefore, it is necessary to provide an exhaust path around the mounting table 202 or around the shower head 100 as in the conventional apparatus. Absent. Therefore, the diameter of the processing chamber 201 can be made closer to the outer diameter of the semiconductor wafer that is the substrate to be processed, and the apparatus can be downsized. In addition, a vacuum pump can be provided above the processing chamber 201, and exhaust can be performed from a portion closer to the processing space of the processing chamber 201. Therefore, exhaust can be performed efficiently.

また、シャワーヘッド(上部電極)100と載置台(下部電極)202との間隔を処理に応じて変更することができ、かつ、シャワーヘッド100を少ない駆動力で容易に上下動させることができるので、省エネルギー化や装置コストの低減を図ることができる。   In addition, the distance between the shower head (upper electrode) 100 and the mounting table (lower electrode) 202 can be changed according to processing, and the shower head 100 can be easily moved up and down with a small driving force. , Energy saving and reduction of equipment cost can be achieved.

なお、本発明は上記実施形態に限定されるものではなく、各種の変形が可能であることは勿論である。例えば、上記実施形態では、載置台(下部電極)に1つの周波数の高周波電力を供給する場合について説明したが、下部電極に周波数の異なった複数の高周波電力を印加するタイプの装置等に対しても同様にして適用することができる。   In addition, this invention is not limited to the said embodiment, Of course, various deformation | transformation are possible. For example, in the above-described embodiment, the case where high frequency power of one frequency is supplied to the mounting table (lower electrode) has been described. However, for a device of a type that applies a plurality of high frequency power having different frequencies to the lower electrode, etc. Can be applied in the same manner.

11……ガス吐出孔、13……排気孔、100……シャワーヘッド(上部電極)、200……プラズマエッチング装置、201……処理チャンバー、202……載置台(下部電極)、205……蓋体、212……処理空間、220……環状部材、230……石英容器、240……ICPコイル、270……昇降機構。   DESCRIPTION OF SYMBOLS 11 ... Gas discharge hole, 13 ... Exhaust hole, 100 ... Shower head (upper electrode), 200 ... Plasma etching apparatus, 201 ... Processing chamber, 202 ... Mounting table (lower electrode), 205 ... Cover Body 212 .. processing space 220. Annular member 230. Quartz container 240. ICP coil 270 lifting mechanism

Claims (8)

処理チャンバー内に設けられ、基板を載置するための載置台を兼ねた下部電極と、
前記下部電極と対向するように前記処理チャンバー内に設けられ、前記下部電極と対向する対向面に複数設けられたガス吐出孔から前記基板に向けてガスをシャワー状に供給するシャワーヘッドとしての機能を備え、かつ、上下動可能とされ前記下部電極との間隔を変更可能とされた上部電極と、
前記上部電極の上側に設けられ前記処理チャンバーの上部開口を気密に閉塞する蓋体と、
前記対向面に形成された複数の排気孔と、
前記上部電極の周縁部に沿って下方に突出するように設けられ前記上部電極と連動して上下動可能とされた環状部材であって、下降位置において前記下部電極と前記上部電極と当該環状部材とによって囲まれた処理空間を形成する環状部材と、
前記環状部材の内壁に沿って全体形状が円環状とされた誘電体製の容器内に収容され前記処理空間と気密に隔離された状態で配設され、高周波電力を印加することによって誘導プラズマを発生させる全体形状が円環状のコイルと
を具備したことを特徴とするプラズマ処理装置。
A lower electrode provided in the processing chamber and also serving as a mounting table for mounting a substrate;
A function as a shower head that is provided in the processing chamber so as to face the lower electrode, and supplies gas in a shower shape toward the substrate from a plurality of gas discharge holes provided on a facing surface facing the lower electrode. And an upper electrode that can be moved up and down and can change a distance from the lower electrode,
A lid provided above the upper electrode and hermetically closing the upper opening of the processing chamber;
A plurality of exhaust holes formed in the facing surface;
An annular member provided so as to protrude downward along the peripheral edge of the upper electrode and capable of moving up and down in conjunction with the upper electrode, wherein the lower electrode, the upper electrode, and the annular member at a lowered position An annular member forming a processing space surrounded by
It is accommodated in a dielectric container having an annular shape as a whole along the inner wall of the annular member, and is arranged in a state of being hermetically isolated from the processing space. A plasma processing apparatus comprising: a coil having an annular shape as a whole to be generated.
請求項1記載のプラズマ処理装置であって、
前記処理チャンバー側壁の、前記下部電極と前記上部電極との間の位置に前記基板を搬入・搬出するための開閉自在な開口部が設けられ、前記環状部材を上昇させた状態で前記基板の搬入・搬出を行うよう構成されている
ことを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
An openable and closable opening for loading and unloading the substrate is provided at a position between the lower electrode and the upper electrode on the side wall of the processing chamber, and the substrate is loaded while the annular member is raised. -A plasma processing apparatus configured to carry out.
請求項1又は2記載のプラズマ処理装置であって、
前記環状部材が絶縁性の被膜に覆われたアルミニウムから構成されている
ことを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1 or 2,
The plasma processing apparatus, wherein the annular member is made of aluminum covered with an insulating film.
請求項1〜3いずれか1項記載のプラズマ処理装置であって、
前記誘電体製の容器内は、大気又は不活性ガス雰囲気で、1330Pa以上大気圧以下の圧力とされている
ことを特徴とするプラズマ処理装置。
The plasma processing apparatus according to any one of claims 1 to 3,
The plasma processing apparatus is characterized in that the inside of the dielectric container is an atmosphere or an inert gas atmosphere and has a pressure of 1330 Pa or more and atmospheric pressure or less.
請求項1〜4いずれか1項記載のプラズマ処理装置であって、
前記コイルは、パイプ状の中空の導体から構成され、その内部に温調用媒体が導入されている
ことを特徴とするプラズマ処理装置。
A plasma processing apparatus according to any one of claims 1 to 4,
The said coil is comprised from the pipe-shaped hollow conductor, The temperature control medium is introduce | transduced into the inside. The plasma processing apparatus characterized by the above-mentioned.
請求項1〜5いずれか1項記載のプラズマ処理装置であって、
前記コイルに印加される高周波電力の周波数は、450KHz〜2MHzの範囲であることを特徴とするプラズマ処理装置。
A plasma processing apparatus according to any one of claims 1 to 5,
The plasma processing apparatus, wherein the frequency of the high frequency power applied to the coil is in a range of 450 KHz to 2 MHz.
請求項1〜6いずれか1項記載のプラズマ処理装置であって、
前記環状部材と前記上部電極は電気的に導通した状態で固定され、前記環状部材は、表面が絶縁層で覆われた金属シートからなり可撓性を有するシートケーブルで接地電位に接続されている
ことを特徴とするプラズマ処理装置。
The plasma processing apparatus according to any one of claims 1 to 6,
The annular member and the upper electrode are fixed in an electrically conductive state, and the annular member is made of a metal sheet whose surface is covered with an insulating layer, and is connected to a ground potential by a flexible sheet cable. A plasma processing apparatus.
請求項1〜7いずれか1項記載のプラズマ処理装置であって、
前記環状部材と前記上部電極の上下動を行う駆動手段は、電動シリンダーによる多軸駆動である
ことを特徴とするプラズマ処理装置。
The plasma processing apparatus according to any one of claims 1 to 7,
The plasma processing apparatus, wherein the driving means for vertically moving the annular member and the upper electrode is multi-axis driving by an electric cylinder.
JP2010113262A 2010-05-17 2010-05-17 Plasma processing equipment Expired - Fee Related JP5591585B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010113262A JP5591585B2 (en) 2010-05-17 2010-05-17 Plasma processing equipment
TW100116405A TWI517281B (en) 2010-05-17 2011-05-10 Plasma processing device
KR1020110045776A KR101755313B1 (en) 2010-05-17 2011-05-16 Plasma processing apparatus
US13/109,365 US20110284165A1 (en) 2010-05-17 2011-05-17 Plasma processing apparatus
CN201110127888.1A CN102254847B (en) 2010-05-17 2011-05-17 Plamsa processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113262A JP5591585B2 (en) 2010-05-17 2010-05-17 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2011243688A JP2011243688A (en) 2011-12-01
JP5591585B2 true JP5591585B2 (en) 2014-09-17

Family

ID=44971468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113262A Expired - Fee Related JP5591585B2 (en) 2010-05-17 2010-05-17 Plasma processing equipment

Country Status (5)

Country Link
US (1) US20110284165A1 (en)
JP (1) JP5591585B2 (en)
KR (1) KR101755313B1 (en)
CN (1) CN102254847B (en)
TW (1) TWI517281B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432686B2 (en) * 2009-12-03 2014-03-05 東京エレクトロン株式会社 Plasma processing equipment
JP5444044B2 (en) * 2010-03-02 2014-03-19 東京エレクトロン株式会社 Plasma processing apparatus and shower head
US8869742B2 (en) * 2010-08-04 2014-10-28 Lam Research Corporation Plasma processing chamber with dual axial gas injection and exhaust
JP2014056987A (en) * 2012-09-13 2014-03-27 Tokyo Electron Ltd Plasma processing apparatus
US9490149B2 (en) * 2013-07-03 2016-11-08 Lam Research Corporation Chemical deposition apparatus having conductance control
US9349605B1 (en) * 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
JP7121446B2 (en) * 2018-08-22 2022-08-18 アプライド マテリアルズ インコーポレイテッド High density plasma chemical vapor deposition chamber
CN112309807B (en) * 2019-08-02 2022-12-30 中微半导体设备(上海)股份有限公司 Plasma etching equipment
TWI731463B (en) * 2019-11-06 2021-06-21 聚昌科技股份有限公司 Method for manufacturing a lateral spoiler high uniformity inductively coupled plasma etcher and a structure thereof
CN112863982A (en) * 2019-11-12 2021-05-28 聚昌科技股份有限公司 Manufacturing method and structure of lateral turbulence type inductively coupled plasma etching machine
CN113745081B (en) * 2020-05-27 2024-03-12 中微半导体设备(上海)股份有限公司 Isolation ring assembly, plasma processing device and processing method
CN113972124B (en) * 2020-07-23 2023-09-29 中微半导体设备(上海)股份有限公司 Grounding assembly, plasma processing device and working method thereof
CN114388322A (en) * 2020-10-19 2022-04-22 中微半导体设备(上海)股份有限公司 Plasma processing device and manufacturing method of gas spraying ring thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209357A (en) * 1979-05-18 1980-06-24 Tegal Corporation Plasma reactor apparatus
JPS6012735A (en) * 1983-07-01 1985-01-23 Hitachi Ltd Etching device
US4579618A (en) * 1984-01-06 1986-04-01 Tegal Corporation Plasma reactor apparatus
JP3121524B2 (en) * 1995-06-07 2001-01-09 東京エレクトロン株式会社 Etching equipment
TW327236B (en) * 1996-03-12 1998-02-21 Varian Associates Inductively coupled plasma reactor with faraday-sputter shield
JPH09306896A (en) * 1996-03-15 1997-11-28 Sumitomo Metal Ind Ltd Plasma processor and plasma processing method
US6210539B1 (en) * 1997-05-14 2001-04-03 Applied Materials, Inc. Method and apparatus for producing a uniform density plasma above a substrate
US6537418B1 (en) * 1997-09-19 2003-03-25 Siemens Aktiengesellschaft Spatially uniform gas supply and pump configuration for large wafer diameters
JP3002448B1 (en) * 1998-07-31 2000-01-24 国際電気株式会社 Substrate processing equipment
US6471830B1 (en) * 2000-10-03 2002-10-29 Veeco/Cvc, Inc. Inductively-coupled-plasma ionized physical-vapor deposition apparatus, method and system
AU2002211730A1 (en) * 2000-10-16 2002-04-29 Tokyo Electron Limited Plasma reactor with reduced reaction chamber
US20050103265A1 (en) * 2003-11-19 2005-05-19 Applied Materials, Inc., A Delaware Corporation Gas distribution showerhead featuring exhaust apertures
US20070080141A1 (en) * 2005-10-07 2007-04-12 Applied Materials, Inc. Low-voltage inductively coupled source for plasma processing
US20070202701A1 (en) * 2006-02-27 2007-08-30 Tokyo Electron Limited Plasma etching apparatus and method
JP5202050B2 (en) * 2008-03-14 2013-06-05 東京エレクトロン株式会社 Shower head and substrate processing apparatus
JP5179389B2 (en) * 2008-03-19 2013-04-10 東京エレクトロン株式会社 Shower head and substrate processing apparatus
TWI495402B (en) * 2008-10-09 2015-08-01 Applied Materials Inc Plasma processing chamber having rf return path
JP5432686B2 (en) * 2009-12-03 2014-03-05 東京エレクトロン株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
CN102254847B (en) 2014-04-02
JP2011243688A (en) 2011-12-01
TWI517281B (en) 2016-01-11
KR101755313B1 (en) 2017-07-07
TW201216395A (en) 2012-04-16
KR20110126556A (en) 2011-11-23
US20110284165A1 (en) 2011-11-24
CN102254847A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
JP5591585B2 (en) Plasma processing equipment
JP5432686B2 (en) Plasma processing equipment
JP5323628B2 (en) Plasma processing equipment
JP5294669B2 (en) Plasma processing equipment
JP5188385B2 (en) Plasma processing apparatus and method of operating plasma processing apparatus
KR101850355B1 (en) Plasma processing apparatus
JP6199638B2 (en) Plasma processing equipment
JP2011035266A (en) Plasma processing apparatus and plasma processing method
JP5367522B2 (en) Plasma processing apparatus and shower head
JP2009239014A (en) Electrode structure and substrate processing device
KR101892958B1 (en) Plasma processing apparatus
JP2010267708A (en) Device and method for vacuum processing
JP2020115519A (en) Mounting table and substrate processing device
JP5661513B2 (en) Plasma processing equipment
JP7446145B2 (en) Substrate processing equipment
TW202412559A (en) Apparatus for treating substrate and method for treating a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees