CN114388322A - Plasma processing device and manufacturing method of gas spraying ring thereof - Google Patents

Plasma processing device and manufacturing method of gas spraying ring thereof Download PDF

Info

Publication number
CN114388322A
CN114388322A CN202011118203.2A CN202011118203A CN114388322A CN 114388322 A CN114388322 A CN 114388322A CN 202011118203 A CN202011118203 A CN 202011118203A CN 114388322 A CN114388322 A CN 114388322A
Authority
CN
China
Prior art keywords
gas
electrode assembly
plasma processing
wafer
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011118203.2A
Other languages
Chinese (zh)
Inventor
杨金全
王正友
段蛟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Fabrication Equipment Inc Shanghai
Original Assignee
Advanced Micro Fabrication Equipment Inc Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fabrication Equipment Inc Shanghai filed Critical Advanced Micro Fabrication Equipment Inc Shanghai
Priority to CN202011118203.2A priority Critical patent/CN114388322A/en
Priority to TW110129096A priority patent/TWI808459B/en
Publication of CN114388322A publication Critical patent/CN114388322A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • H01J2237/3343Problems associated with etching

Abstract

The invention discloses a plasma processing device and a manufacturing method of a gas spray ring thereof, wherein the device comprises: a vacuum reaction chamber; the upper electrode assembly is positioned at the top of the vacuum reaction chamber; the lower electrode assembly is positioned at the bottom of the vacuum reaction cavity, the lower electrode assembly and the upper electrode assembly are oppositely arranged, and the lower electrode assembly comprises a bearing surface for bearing a wafer; the gas spray ring is arranged on the outer side of the lower electrode assembly in a surrounding mode and comprises a plurality of gas supply holes, and the gas supply holes are connected with a reaction gas conveying device and used for conveying reaction gas to the interior of the vacuum reaction cavity so as to generate plasma between the upper electrode assembly and the lower electrode assembly. The advantages are that: the device realizes the transport of reaction gas through the gas spray ring, can not make reaction gas's transport inhomogeneous and then influence the sculpture effect because of the installation error of last electrode assembly etc. the great degree promotion plasma processing apparatus's stability in use.

Description

Plasma processing device and manufacturing method of gas spraying ring thereof
Technical Field
The invention relates to the field of semiconductor equipment, in particular to a plasma processing device and a manufacturing method of a gas spray ring of the plasma processing device.
Background
In the manufacturing process of semiconductor devices, plasma etching is a critical process for processing a wafer into a design pattern. In the whole wafer processing process, the cleanness of an upper electrode assembly and a vacuum reaction cavity of the plasma processing device and the uniformity of reaction gas and plasma environment have great influence on the etching effect of the wafer.
In the existing plasma processing apparatus, due to the requirement of the equipment structure, the reaction gas delivery channel is generally composed of gaps between parts inside the upper electrode assembly, and the structure is widely applied to the field of wafer etching, especially wafer edge etching (wafer etching). In general, the reaction gas delivery channel of the device is located inside the upper electrode assembly and above the wafer, and the gas outlet of the reaction gas delivery channel is a gap between two parts of the upper electrode assembly. However, in the actual installation process, there are often some installation errors between the parts, and the uniformity of the gap on the whole circumference, that is, the uniformity of the width of the reaction gas delivery channel, cannot be guaranteed to be uniform, thereby causing the problem of uneven etching.
Disclosure of Invention
The invention aims to provide a plasma processing device and a manufacturing method of a gas spray ring thereof, the plasma processing device conveys reaction gas into a vacuum reaction cavity through the gas spray ring, uses a part as a gas supply part, ensures the output uniformity of the reaction gas in the circumferential direction of a wafer through machining, does not influence the etching effect due to the uneven conveying of the reaction gas caused by the installation error of an upper electrode assembly, and greatly improves the use stability of the plasma processing device.
In order to achieve the purpose, the invention is realized by the following technical scheme:
a plasma processing apparatus, comprising:
a vacuum reaction chamber;
the upper electrode assembly is positioned at the top of the vacuum reaction chamber;
the lower electrode assembly is positioned at the bottom of the vacuum reaction cavity, the lower electrode assembly and the upper electrode assembly are oppositely arranged, and the lower electrode assembly comprises a bearing surface for bearing a wafer;
the gas spray ring is arranged on the outer side of the lower electrode assembly in a surrounding mode and comprises a plurality of gas supply holes, and the gas supply holes are connected with a reaction gas conveying device and used for conveying reaction gas to the interior of the vacuum reaction cavity so as to generate plasma between the upper electrode assembly and the lower electrode assembly.
Optionally, the reaction gas conveying device is arranged at the bottom of the vacuum reaction chamber.
Optionally, the outlet of the gas supply hole is inclined toward the wafer direction.
Optionally, the gas supply holes are uniformly or non-uniformly distributed along the circumferential direction of the wafer.
Optionally, the gas spray ring is made of an insulating material.
Optionally, the insulating material includes a ceramic or quartz material.
Optionally, the inner wall and/or the outlet of the gas supply hole is provided with a coating resistant to plasma corrosion.
Optionally, the plasma corrosion resistant coating material is a teflon coating or an yttria film layer or an anodic aluminum oxide layer.
Optionally, the outlet of the gas supply hole is in a rounded structure.
Optionally, the diameter of the fillet is more than or equal to 2 times of the diameter of the gas supply hole.
Optionally, the plasma is used for etching the edge of the wafer.
Optionally, a gas injection hole is disposed in the center of the upper electrode assembly and used for providing a non-reactive gas, and the non-reactive gas forms a protective gas curtain on the central region of the wafer or cleans the central region of the wafer.
Optionally, a method for manufacturing a gas shower ring in the plasma processing apparatus includes:
processing a plurality of gas supply holes on the gas spray ring base material;
plating a plasma corrosion resistant plating layer on the gas supply hole from bottom to top by adopting a physical vapor deposition mode;
and plating a plasma corrosion resistant coating on the gas supply hole by adopting a chemical vapor deposition mode from top to bottom.
Optionally, the outlet of the gas supply hole is inclined toward the wafer direction.
Compared with the prior art, the invention has the following advantages:
according to the plasma processing device and the manufacturing method of the gas spraying ring of the plasma processing device, the gas spraying ring component is adopted for conveying the reaction gas into the vacuum reaction cavity, the reaction gas is conveyed by adopting the single part, the output uniformity of the circumferential reaction gas of the wafer is ensured, the etching effect cannot be influenced due to the fact that the conveying of the reaction gas is not uniform due to installation errors of the upper electrode assembly and the like, and the use stability of the plasma processing device is improved to a large extent;
furthermore, the outlet of the gas supply hole of the gas spraying ring is inclined towards the wafer direction, and the gas flow direction of the reaction gas is inclined from bottom to top, so that the possibility that particle pollutants fall on the surface of the wafer in the process is reduced, the problem of particle pollution is improved, and the environment in the vacuum reaction chamber is further ensured;
furthermore, the inner wall and the outlet of the gas supply hole are provided with plating layers resistant to plasma corrosion, so that the service life of the gas spray ring is prolonged, the gas spray ring does not need to be frequently replaced after the plasma processing device is put into use, and the occupation of a working machine of the plasma processing device is avoided;
furthermore, the outlet of the gas supply hole is of a fillet structure, so that the impact of reaction gas on the side wall of the outlet of the gas supply hole when the reaction gas flows out of the outlet of the gas supply hole is reduced, the fluidity of the reaction gas is improved, the generation of redundant particle pollutants is avoided, the cleanness of an etching environment is ensured, and the optimal etching effect is achieved.
Drawings
In order to more clearly illustrate the technical solution of the present invention, the drawings used in the description will be briefly introduced, and it is obvious that the drawings in the following description are an embodiment of the present invention, and other drawings can be obtained by those skilled in the art without creative efforts according to the drawings:
FIG. 1 is a plasma processing apparatus of the present invention;
FIG. 2 is a schematic view of a gas shower ring of the present invention;
FIG. 3 is a schematic cross-sectional view A-A of the gas shower ring of FIG. 2;
fig. 4 is an enlarged schematic view of the region B of the gas shower ring in fig. 3.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are some, but not all, embodiments of the present invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
It should be noted that, in this document, the terms "comprises," "comprising," "includes," "including," "has" or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or terminal that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or terminal. Without further limitation, an element defined by the phrases "comprising … …" or "comprising … …" does not exclude the presence of additional elements in a process, method, article, or terminal that comprises the element.
It is to be noted that the drawings are in a very simplified form and employ non-precise ratios for the purpose of facilitating and distinctly facilitating the description of one embodiment of the present invention.
As shown in fig. 1, a plasma processing apparatus according to the present invention includes: the vacuum reaction chamber 100 is formed by surrounding a reaction chamber body 101 and a chamber body end cover 102, wherein a wafer transmission port 103 is arranged on the reaction chamber body 101, and the wafer transmission port 103 is used for realizing the transmission of wafers between the inside and the outside of the vacuum reaction chamber 100. The vacuum reaction chamber 100 includes a lower electrode assembly 110 disposed at a bottom of the vacuum reaction chamber 100, the lower electrode assembly 110 having a carrying surface, and a wafer W to be processed introduced into the vacuum reaction chamber 100 is placed on the carrying surface. The vacuum reaction chamber 100 further includes an upper electrode assembly 120 disposed opposite to the lower electrode assembly 110, the upper electrode assembly 120 is disposed at the top of the vacuum reaction chamber 100, and at least one rf power source (not shown) is applied to at least one of the lower electrode assembly 110 and the upper electrode assembly 120 through a matching network to dissociate the reaction gas into plasma, so that plasma is generated between the upper electrode assembly 120 and the edge region of the lower electrode assembly 110, and the plasma is used for etching the edge of the wafer W. Specifically, the plasma contains a large number of active particles such as electrons, ions, excited atoms, molecules, radicals and the like, and the active particles can perform various physical and/or chemical reactions with the surface of the wafer W to be processed, so that the appearance of the edge of the wafer W to be processed is changed, and the edge of the wafer W to be processed is processed. A vacuum pump is disposed at the bottom of the vacuum reaction chamber 100 to exhaust gaseous waste generated by the reaction.
In this embodiment, the plasma processing apparatus is suitable for the field of etching the edge of the wafer W. In the process of processing the wafer W into the designed pattern by plasma etching, some extra films, such as a polysilicon layer, a nitride layer, and a metal layer, may be deposited on the outer edge region of the wafer W and the outer edge region of the back surface of the wafer W, and the extra films may contaminate subsequent processes and equipment, so that the extra films need to be removed by a bevel edge etching process. In the edge etching processThe reaction gas generally contains an etching gas containing F, Cl or the like and O2Etc. cleaning gases and other auxiliary etching gases to perform the edge etching process.
As shown in fig. 1, the upper electrode assembly 120 includes an insulating spacer 121 and an upper electrode ring 122. The insulating isolation portion 121 is disposed at the bottom of the movable upper electrode assembly 120 and opposite to the central region of the wafer W, and the insulating isolation portion 121 may have a layer structure or a bulk structure. The upper electrode ring 122 is disposed around the insulating isolation portion 121, and the upper electrode ring 122 is disposed opposite to the edge region of the wafer W. The lower electrode assembly 110 includes a lower electrode ring 111. The lower electrode ring 111 is disposed around the edge region of the wafer W (the lower electrode ring 111 may also be flush with the lower surface of the wafer W), and the lower electrode ring 111 and the upper electrode ring 122 are disposed opposite to each other. During the process, plasma is generated between the upper electrode ring 122 and the lower electrode ring 111 to etch the edge of the wafer W.
As shown in fig. 1, 2 and 3, a plasma processing apparatus for processing the edge of a wafer W in the present embodiment includes a gas shower ring 140. The gas shower ring 140 is disposed around the lower electrode assembly 110, and the gas shower ring 140 includes a plurality of gas supply holes 141, and the gas supply holes 141 are connected to a reaction gas delivery device 150 for delivering a reaction gas into the vacuum reaction chamber 100 to generate plasma between the upper electrode assembly 120 and the lower electrode assembly 110. In the invention, the gas spray ring 140 is used as a gas supply part to convey reaction gas, and the uniformity of the pipeline of the single gas spray ring 140 can be ensured by machining, so that the problem of uneven gas outlet of the reaction gas conveyed in the circumferential direction is relieved, the uniformity of gas conveying is further ensured, and the effect of etching the edge of the wafer W is ensured.
In this embodiment, the gas spray ring 140 is made of an insulating material, and the gas spray ring 140 made of the insulating material does not interfere with the plasma environment in the process, and does not generate ignition and the like under the influence of plasma or radio frequency. Optionally, the insulating material includes a ceramic or quartz material. In this embodiment, the gas spray ring 140 is made of a ceramic material, and the raw material thereof is made by sintering, so that the material with low price is easily available.
The inner wall and the outlet of the gas supply hole 141 are provided with a plating layer resistant to plasma corrosion. Optionally, the plasma corrosion resistant coating material is a teflon coating or an yttria film layer or an anodic aluminum oxide layer. The plasma-resistant coating may reduce the effects of physical bombardment or chemical reactions experienced by the gas shower ring 140 during the plasma etching process, reducing the likelihood of damage to its surface structure. In addition, the plasma corrosion resistant coating also prevents the plasma and the conveyed reaction gas from damaging the surface structures of the inner wall and the outlet of the gas supply hole 141 of the gas spray ring 140, and prevents the body components from being separated out from the surface to separate from the surface to form solid particles to pollute the wafer W and influence the edge etching effect of the wafer W. Therefore, the plasma corrosion resistant coating material of the gas spray ring 140 further prolongs the service life of the gas spray ring 140, reduces the loss cost of the plasma processing device, does not need to frequently replace the gas spray ring 140 after the plasma processing device is put into use, and avoids occupying the working machine of the plasma processing device.
In the present embodiment, the reaction gas delivery device 150 is disposed at the bottom of the vacuum reaction chamber 100, the gas shower ring 140 is disposed around the outer side of the lower electrode assembly 110, and the reaction gas is delivered without the aid of the upper electrode assembly 120. Whether the splicing of the parts in the upper electrode assembly 120 has no installation error does not affect the uniformity of the reaction gas delivery, and the stability of the plasma processing apparatus is improved. In addition, the gas spray ring 140 and the reaction gas delivery device 150 are located at the bottom of the vacuum reaction chamber 100, so that particle pollutants can be prevented from being injected into the vacuum reaction chamber 100 from top to bottom, the possibility of particle pollution is reduced, and the environment for etching the wafer W is ensured.
Further, as shown in fig. 4, the outlet of the gas supply hole 141 of the gas shower ring 140 is inclined toward the wafer W, and the flow direction of the reactive gas is inclined from bottom to top. In the present embodiment, the outlet of the gas supply hole 141 is located below the wafer, specifically between the wafer W and the vacuum pump. Even if the surface structure of the gas spray ring 140 is damaged in the plasma environment for a long time, so that micro particles are separated out from the surface, because the gas flow direction of the reaction gas is from bottom to top, even if the micro particles exist, the micro particles are difficult to be conveyed from bottom to top in the inclined gas supply hole 141, and therefore the inclined structure reduces the possibility that the micro particles fall on the surface of the wafer W in the process, the problem of particle pollution is solved, the environment in the vacuum reaction chamber 100 is further ensured, and the etching effect of the edge of the wafer W is improved. In addition, since the outlet of the gas supply hole 141 is located between the wafer W and the vacuum pump, if a small amount of particles are output from the gas supply hole 141, the vacuum pump can easily discharge the particles out of the vacuum reaction chamber 100. Of course, the outlet position of the gas supply hole 140 is not limited thereto, and in another embodiment, the outlet of the gas supply hole 141 is close to the edge of the wafer.
Alternatively, the gas supply holes 141 are uniformly or non-uniformly distributed along the circumferential direction of the wafer W. In the present embodiment, the gas supply holes 141 are uniformly distributed along the circumferential direction of the wafer W, and the reaction gas is uniformly injected into the vacuum reaction chamber 100 through the gas supply holes 141 of the gas shower ring 140 and is uniformly distributed in the edge region of the wafer W, so that the plasma is formed between the upper electrode assembly 120 and the lower electrode assembly 110 through capacitive coupling. The gas supply holes 141 are uniformly distributed along the circumferential direction, so that the reaction gas at the circumferential direction of the edge of the wafer W is uniformly distributed, and the etching effect of the edge of the wafer W is favorably ensured.
Further, the outlet of the gas supply hole 141 is a rounded structure 142 (see fig. 4). In the process, the reaction gas enters the vacuum reaction chamber 100 from the reaction gas conveying device 150 through the gas supply hole 141 and the outlet of the gas supply hole 141, and the rounded structure 142 reduces the impact of the reaction gas on the side wall of the outlet of the gas supply hole 141 when the reaction gas flows out from the outlet of the gas supply hole 141, improves the fluidity of the reaction gas, avoids generating redundant particle pollutants, and ensures the cleanness of the etching environment to achieve the optimal etching effect. Further, the outlet of the gas supply hole 141 is closer to the wafer W, and the fillet structure 142 reduces the contact range or frequency of the outlet side wall and the reaction gas, so that the possibility of corrosion of the reaction gas on the outlet side wall is reduced, the service life of the gas spray ring 140 is prolonged, and the gas spray ring 140 does not need to be replaced for many times, so that the experimental work progress is influenced. Specifically, in the present embodiment, the radius diameter is 2 times or more the diameter of the gas supply hole 141.
In addition, in the present embodiment, a gas injection hole 123 is disposed in the center of the upper electrode assembly 120. In an edge etch process, the gas injection holes 123 are used to provide a non-reactive gas, which typically includes a buffer gas or a cleaning gas, during the process. The buffer gas is used for maintaining high pressure above the wafer W during edge processing of the wafer W, and a protective gas curtain is formed on the central area of the wafer W, so that the central area of the wafer W is prevented from being etched in a plasma environment. The flow rate or pressure of the non-reactive gas may be adjusted during the process to protect the central region of the wafer W from the plasma environment. The cleaning gas is used for cleaning the vacuum reaction chamber 100 when there is no wafer W in the vacuum reaction chamber 100.
In addition, the present invention also provides a method for manufacturing the gas shower ring 140 in the plasma processing apparatus, the method comprising: processing a plurality of gas supply holes 141 on the gas spray ring 140 substrate; plating a plasma corrosion resistant plating layer on the gas supply hole 141 from bottom to top by Physical Vapor Deposition (PVD); the gas supply hole 141 is coated with a plasma corrosion resistant coating by chemical vapor deposition CVD from top to bottom.
In this embodiment, the substrate of the gas shower ring 140 is a ceramic substrate, and the raw material is made by sintering, so the manufacturing method is simple and the cost is low. The plating layer with the plasma corrosion resistance is Y2O3A plating to enhance the corrosion resistance of the gas shower ring 140. In the present embodiment, the outlet of the gas supply hole 141 is inclined toward the wafer W to supply the reaction gas.
In summary, in the plasma processing apparatus and the method for manufacturing the gas spray ring 140 thereof of the present invention, the plasma processing apparatus combines the upper electrode assembly 120, the lower electrode assembly 110, the gas spray ring 140, and the reaction gas delivery device 150, so as to achieve the delivery of the reaction gas, the apparatus uses the single gas spray ring 140 structure that can be machined as a gas supply component, so as to ensure the output uniformity of the reaction gas in the circumferential direction of the wafer W by machining, so that the etching effect is not affected by the uneven delivery of the reaction gas due to the installation error of the upper electrode assembly 120, and the use stability of the plasma processing apparatus is greatly improved.
Further, the outlet of the gas supply hole 141 of the gas shower ring 140 is inclined toward the wafer W, and the gas flow direction of the reaction gas is inclined from bottom to top, so that the possibility that particle pollutants fall on the surface of the wafer W in the process is reduced, the problem of particle pollution is improved, and the environment in the vacuum reaction chamber 100 is further ensured.
Further, the inner wall and the outlet of the gas supply hole 141 are provided with a plating layer resistant to plasma corrosion, so that the service life of the gas spray ring 140 is prolonged, the gas spray ring 140 does not need to be frequently replaced after the plasma processing device is put into use, and the occupation of a working machine of the plasma processing device is avoided.
Further, the outlet of the gas supply hole 141 is a rounded structure 142, which reduces the impact of the reaction gas on the sidewall of the outlet of the gas supply hole 141 when flowing out of the outlet of the gas supply hole 141, improves the fluidity of the reaction gas, avoids the generation of redundant particle pollutants, and ensures the cleanness of the etching environment to achieve the optimal etching effect.
It should be noted that the gas shower ring 140 of the present invention is applicable to both a capacitively-coupled plasma processing apparatus and an inductively-coupled plasma processing apparatus, i.e., the plasma processing apparatus of the present invention may be either a capacitively-coupled plasma processing apparatus or an inductively-coupled plasma processing apparatus.
While the present invention has been described in detail with reference to the preferred embodiments, it should be understood that the above description should not be taken as limiting the invention. Various modifications and alterations to this invention will become apparent to those skilled in the art upon reading the foregoing description. Accordingly, the scope of the invention should be determined from the following claims.

Claims (14)

1. A plasma processing apparatus, comprising:
a vacuum reaction chamber;
the upper electrode assembly is positioned at the top of the vacuum reaction chamber;
the lower electrode assembly is positioned at the bottom of the vacuum reaction cavity, the lower electrode assembly and the upper electrode assembly are oppositely arranged, and the lower electrode assembly comprises a bearing surface for bearing a wafer;
the gas spray ring is arranged on the outer side of the lower electrode assembly in a surrounding mode and comprises a plurality of gas supply holes, and the gas supply holes are connected with a reaction gas conveying device and used for conveying reaction gas to the interior of the vacuum reaction cavity so as to generate plasma between the upper electrode assembly and the lower electrode assembly.
2. The plasma processing apparatus according to claim 1,
the reaction gas conveying device is arranged at the bottom of the vacuum reaction cavity.
3. The plasma processing apparatus according to claim 1,
the outlet of the gas supply hole is inclined toward the wafer direction.
4. The plasma processing apparatus according to claim 1,
the gas supply holes are uniformly or non-uniformly distributed along the circumferential direction of the wafer.
5. The plasma processing apparatus according to claim 1,
the gas spray ring is made of insulating materials.
6. The plasma processing apparatus according to claim 5,
the insulating material comprises a ceramic or quartz material.
7. The plasma processing apparatus according to claim 1,
the inner wall and/or the outlet of the gas supply hole is/are provided with a coating resistant to plasma corrosion.
8. The plasma processing apparatus according to claim 7,
the plasma corrosion resistant coating material is a Teflon coating or an yttrium oxide film layer or an anodic aluminum oxide layer.
9. The plasma processing apparatus according to claim 1,
the outlet of the gas supply hole is in a rounded structure.
10. The plasma processing apparatus according to claim 9,
the diameter of the fillet is more than or equal to 2 times of the diameter of the gas supply hole.
11. The plasma processing apparatus according to claim 1,
the plasma is used for etching the edge of the wafer.
12. The plasma processing apparatus according to claim 1,
and the center of the upper electrode assembly is provided with a gas injection hole for providing non-reaction gas, and the non-reaction gas forms a protective gas curtain for the central area of the wafer or cleans the central area of the wafer.
13. A method for forming a gas shower ring in a plasma processing apparatus according to any one of claims 1 to 12, comprising:
processing a plurality of gas supply holes on the gas spray ring base material;
plating a plasma corrosion resistant plating layer on the gas supply hole from bottom to top by adopting a physical vapor deposition mode;
and plating a plasma corrosion resistant coating on the gas supply hole by adopting a chemical vapor deposition mode from top to bottom.
14. The method of claim 13, wherein the gas shower ring is formed by a process comprising,
the outlet of the gas supply hole is inclined toward the wafer direction.
CN202011118203.2A 2020-10-19 2020-10-19 Plasma processing device and manufacturing method of gas spraying ring thereof Pending CN114388322A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011118203.2A CN114388322A (en) 2020-10-19 2020-10-19 Plasma processing device and manufacturing method of gas spraying ring thereof
TW110129096A TWI808459B (en) 2020-10-19 2021-08-06 Plasma treatment device and manufacturing method of gas spray ring thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011118203.2A CN114388322A (en) 2020-10-19 2020-10-19 Plasma processing device and manufacturing method of gas spraying ring thereof

Publications (1)

Publication Number Publication Date
CN114388322A true CN114388322A (en) 2022-04-22

Family

ID=81192676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011118203.2A Pending CN114388322A (en) 2020-10-19 2020-10-19 Plasma processing device and manufacturing method of gas spraying ring thereof

Country Status (2)

Country Link
CN (1) CN114388322A (en)
TW (1) TWI808459B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110064A (en) * 2022-07-15 2022-09-27 长鑫存储技术有限公司 Gas input equipment and gas input method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399484B1 (en) * 1998-10-26 2002-06-04 Tokyo Electron Limited Semiconductor device fabricating method and system for carrying out the same
JP3886424B2 (en) * 2001-08-28 2007-02-28 鹿児島日本電気株式会社 Substrate processing apparatus and method
JP5591585B2 (en) * 2010-05-17 2014-09-17 東京エレクトロン株式会社 Plasma processing equipment
US8470127B2 (en) * 2011-01-06 2013-06-25 Lam Research Corporation Cam-locked showerhead electrode and assembly
US20200111669A1 (en) * 2018-10-04 2020-04-09 Asm Ip Holding B.V. Method for depositing oxide film by peald using nitrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110064A (en) * 2022-07-15 2022-09-27 长鑫存储技术有限公司 Gas input equipment and gas input method

Also Published As

Publication number Publication date
TWI808459B (en) 2023-07-11
TW202217914A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
KR102556603B1 (en) Components such as edge rings including chemical vapor deposition (cvd) diamond coating with high purity sp3 bonds for plasma processing systems
US11521830B2 (en) Ceramic coated quartz lid for processing chamber
JP2006100305A (en) Plasma processing apparatus
US10622243B2 (en) Planar substrate edge contact with open volume equalization pathways and side containment
US20090314435A1 (en) Plasma processing unit
WO2017074700A1 (en) High productivity pecvd tool for wafer processing of semiconductor manufacturing
KR100564168B1 (en) Plasma processing device and plasma processing method
US20240084450A1 (en) Shower head structure and plasma processing apparatus using the same
CN114388322A (en) Plasma processing device and manufacturing method of gas spraying ring thereof
JP2021077808A (en) Plasma processing apparatus
TWI756670B (en) Plasma processing device
CN212750803U (en) Plasma processing device
CN109961999B (en) Gas spray header and method for preventing polymer accumulation
CN116024544A (en) Plasma CVD apparatus having bevel mask with in-plane edges
JP4089873B2 (en) Plasma processing apparatus and initialization method thereof
US20220301827A1 (en) Substrate processing apparatus including shower head and edge ring and related methods of manufacturing semiconductor devices
KR20040090151A (en) Apparatus for forming a thin film
KR20230005107A (en) How to regenerate inner wall members
JP2007295001A (en) Plasma processing apparatus
JP2007251223A (en) Plasma processing device
KR20080072261A (en) Apparatus for processing semiconductor wafer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination