JP5571701B2 - 高濃度no2の生成装置および該生成装置を用いた高濃度no2の生成方法 - Google Patents

高濃度no2の生成装置および該生成装置を用いた高濃度no2の生成方法 Download PDF

Info

Publication number
JP5571701B2
JP5571701B2 JP2011553074A JP2011553074A JP5571701B2 JP 5571701 B2 JP5571701 B2 JP 5571701B2 JP 2011553074 A JP2011553074 A JP 2011553074A JP 2011553074 A JP2011553074 A JP 2011553074A JP 5571701 B2 JP5571701 B2 JP 5571701B2
Authority
JP
Japan
Prior art keywords
concentration
gas
chamber
pressure
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011553074A
Other languages
English (en)
Other versions
JP2012519644A (ja
Inventor
秀高 松内
智之 廣瀬
龍一 岩崎
正明 三毛
滋 増田
博史 林
透 谷端
キム、ジョングソー
ハン リー、サン
クー、ジェモ
ウェイへ、オライオン
ウェイ、アンドリュー
Original Assignee
ノクシライザー インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノクシライザー インコーポレーテッド filed Critical ノクシライザー インコーポレーテッド
Priority to JP2011553074A priority Critical patent/JP5571701B2/ja
Publication of JP2012519644A publication Critical patent/JP2012519644A/ja
Application granted granted Critical
Publication of JP5571701B2 publication Critical patent/JP5571701B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/36Nitrogen dioxide (NO2, N2O4)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0896Cold plasma

Description

本発明は、高濃度NO2の生成装置および該生成装置を用いた高濃度NO2の生成方法に関する。さらに詳しくは、空気を原料とした、簡便かつ選択的に高濃度のNO2を得るための高濃度NO2の生成装置および該生成装置を用いた高濃度NO2の生成方法に関する。
従来、医療器具の滅菌方法としては、高圧蒸気滅菌(以下、単に「AC」という)、エチレンオキサイドガス滅菌(以下、単に「EOG滅菌」という)が広く使用されている。
ACは、135℃程度の高温に滅菌対象物を曝すことによって滅菌する方法であり、金属製の医療器具に広く用いられている。しかしながら、その高温条件で処理を行うため、滅菌対象物に制約があるという欠点がある。例えば、プラスチック類のように熱に弱い対象物はACの滅菌対象にできないという問題がある。
一方、EOG滅菌は70℃以下の低温で滅菌が行えるため、プラスチック類にも適用できる。しかしながら、EOGはその毒性および、爆発の危険性から衛生面、安全面に問題がないよう確実に保管する必要があると共に、その取り扱いに充分な注意が必要であるという欠点がある。また、EOGをタンク(ボンベ)から滅菌装置に配管で供給する場合には、配管類からの想定外の漏れを防止するために、ボンベの重量を測定し、重量軽減発生を常時監視する必要がある。
これらの滅菌方法以外には、過酸化水素(H22)を使用した滅菌方法が使用されている。過酸化水素はEOGに比べて利用や管理が容易であり、安全面においては有効である。しかしながら、過酸化水素は水溶液での使用であることから、チューブ内などの細部への浸透性がACやEOG滅菌には及ばない。
AC、EOG滅菌に代わる他の滅菌方法として、特許文献1に示されるように、オゾンタンクの下流側で、オゾナイザの上流である位置に循環ポンプを備え、オゾンを循環させることによって生成した高濃度のオゾン(O3)を使用した滅菌方法も使用されている。該方法においては、オゾンの生成が容易であると共に、使用後の分解も容易であるというメリットが存在する。しかしながら、高濃度のオゾンは爆発性があると共に、プラスチックへのダメージが大きいという欠点が存在する。
また、上記各種の滅菌方法に比べて、爆発による危険性の低いものとして、窒素酸化物ガス(以下、単に「NOx」ということもある)を利用した滅菌方法が提案されている。たとえば特許文献2に記載の方法では、食品等の表面に付着した大腸菌を殺菌する目的で、酸素および窒素の混合ガスに対してプラズマ処理を施して得た混合気体が用いられている。かかる方法は、酸素ボンベ、窒素ボンベから導入される混合気体にプラズマ処理を施すことにより窒素酸化物およびオゾンの混合気体を調製するものであり、調製した混合気体を食品表面に噴射して表面の大腸菌を殺菌するものである。そして、温和な温度で滅菌処理が可能であることから多様な滅菌対象物に使用可能であると共に、オンデマンドにて窒素酸化物を作成するため滅菌ガスを保管する必要がないという利点がある。
特開昭63−240864号公報 特開昭58−162276号公報
しかしながら、特許文献2の滅菌装置においては、酸素および窒素の混合ガスに対するプラズマ処理が一度のみ、いわゆる「ワンパス」で窒素酸化物を調製している。しかも、食品表面への窒素酸化物の噴射が開放空間で行われ、さらに処理後の窒素酸化物はそのまま大気中に放出している。そのため窒素酸化物を含む殺菌ガスの濃度は、せいぜい数ppm程度であり、大腸菌の殺菌(それも食品表面に存在するもののみを対象とした殺菌)に有効な程度に留まる。従って、より高い信頼性が求められる高度な滅菌用途(たとえば細菌で汚染された医療器具、より具体的には、はさみの間や、チューブの中のような微細空間の滅菌など)には到底用いることができないという問題がある。
本願発明は、かかる従来の問題に鑑みてなされたものであり、窒素酸化物を含む殺菌ガスのなかでも特に二酸化窒素(以下、単に「NO2」ということもある)の滅菌効果が高いことに着目し、医療器具の滅菌など高度な滅菌工程に求められる高濃度(約500ppm以上)のNO2が簡便かつ選択的に得ることのできる高濃度NO2の生成装置および該生成装置を用いた高濃度NO2の生成方法を提供することを目的とする。また、原料として室内空気を使用するため、原料の管理が不要であり安全性が高く、かつ、簡便かつ選択的に、オンデマンドで高濃度のNO2を調製することを可能とする高濃度NO2の生成装置および該生成装置を用いた高濃度NO2の生成方法を提供することを目的とする。
本発明の高濃度NO2の生成装置は、図1に示すものである。
この装置は、チャンバー、NO2センサー、流動抵抗器、流量計、プラズマ発生器、圧力計、循環ポンプ、ドライエアー供給装置、排気ポンプから構成されている。
循環手段は、加圧装置であって、循環経路は、チャンバーの経路下流側にプラズマ発生器を接続し、該プラズマ発生器の経路下流側に前記加圧装置を接続し、該加圧装置の経路下流側にチャンバーを接続して構成されることが好ましい。
前記チャンバーとプラズマ発生器との間に、流動抵抗部を接続することが好ましい。
前記循環経路は、さらにNO2濃度測定手段を備えることが好ましい。
前記NO2濃度測定手段が、前記チャンバー内、またはチャンバーと前記流動抵抗部との間に配置されてなることが好ましい。
前記循環経路は、さらに混合気体を取り込む吸気部を備え、該吸気部は、閉止手段とガス乾燥手段とを備えることが好ましい。
前記閉止手段は、減圧下の循環経路内に混合気体が供給されて昇圧する循環経路内の内圧を検知して閉止することが好ましい。
前記流動抵抗部がオリフィスであることが好ましい。
また、本発明は、前記高濃度NO2ガスの生成装置を用い、チャンバー、プラズマ発生器、および循環手段により形成される循環経路に、NO2濃度が500ppm〜100,000ppmに至る迄NOx混合ガスを循環することを特徴とする高濃度NO2ガスの生成方法である。
前記混合気体は、雰囲気空気を採用することが好ましい。
前記混合気体は、露点0〜−90℃の乾燥空気を用いることが好ましい。
前記プラズマ発生器のプラズマ生成部の内部圧力が、20〜90kPa(絶対圧)であることが好ましい。
安全性を重視する場合、加圧装置と、該加圧装置の経路下流側に接続されたチャンバーと、該チャンバーの経路下流側に接続された流動抵抗部に至る区間の内部の圧力は、大気圧と比べた圧力差が約−1〜−50kPa(相対圧)であることが好ましい。
装置の小型化を重視する場合、加圧装置と、該加圧装置の経路下流側に接続されたチャンバーと、該チャンバーの経路下流側に接続された流動抵抗部に至る区間の内部の圧力は、大気圧と比べて正圧に維持されることが好ましい。
前記循環経路内を循環する前記NOx混合ガスの流量は、5LPM以上であることが好ましい。
本発明の一実施形態にかかる高濃度NO2の生成装置を説明するための説明図である。 本発明の一実施形態にかかる高濃度NO2の生成装置におけるプラズマ生成部を説明するための説明図である。 本発明の一実施形態にかかる高濃度NO2の生成装置におけるプラズマ発生器を説明するための説明図である。 本発明の一実施形態(実施例1〜3および比較例4)において使用した循環経路を説明するための説明図である。 実施例1〜3の結果を説明するためのグラフである。 本発明の一実施形態(実施例4〜6)において使用した循環経路を説明するための説明図である。 実施例4〜6の結果を説明するためのグラフである。 本発明の一実施形態(比較例1および2)において使用した循環経路を説明するための説明図である。 比較例1および2の結果を説明するためのグラフである。 本発明の一実施形態(実施例7〜13および比較例3)において使用した循環経路を説明するための説明図である。 本発明の一実施形態(比較例5〜7)において使用した循環経路を説明するための説明図である。 実施例8〜13の結果を説明するための説明図である。 実施例14の結果を説明するためのグラフである。
本形態の高濃度NO2ガスの生成装置は、図1に示されるように、チャンバー1と、プラズマ発生器2と、循環装置3とを接続した循環経路4を具備している。該循環経路4はより具体的には、チャンバー1と、該チャンバー1の経路下流側に配管を介して接続された流動抵抗部5と、該流動抵抗部5の経路下流側に配管を介して接続されたプラズマ発生器2と、該プラズマ発生器2の経路下流側に配管を介して接続された循環装置3とを含んで構成される。さらに該循環装置3は、前記チャンバー1の経路上流側に配管を介して接続され、その結果チャンバー1、流動抵抗部5、プラズマ発生器2、および循環装置3によりサイクル状の循環経路4を形成している。そして循環装置3の作用により、窒素と酸素とを含む混合気体が循環経路4内を循環してNO2を生成する。
前記チャンバー1は、生成される高濃度NO2ガスを収容するための気密性を有する収容室であり、本形態では矩形箱状をなしているが、球状、円筒状でもよい。本形態のチャンバー1は、循環経路4を形成するため、流出口と流入口、および高濃度NO2ガスを取り出すための開閉可能なガス供給口とが形成される。
本形態のチャンバー1は、混合気体を取り込むための吸気部1aと、チャンバー1内の気体を排気するガス供給部1bを備える。該吸気部1aは、チャンバー1の吸気口に接続された吸気管1cと、該吸気管1cの通気を開閉する閉止手段1dと、混合気体を乾燥させるためのガス乾燥手段1eとを含む。参照符号fはフィルターである。該ガス乾燥手段1eは、チャンバー1に取り込む混合気体を乾燥させ、プラズマ発生器2等への不純物の付着を防止するとともに、NOxの硝酸化を抑制することにより、電極、パッキン等の構成部品の腐食を防止する。なお本形態では、ガス乾燥手段1eとしてエアードライヤーを採用している。
前記閉止手段1dとして、本形態ではエア駆動弁を用いている。このエア駆動弁は、減圧下に制御された循環経路4内に混合気体を供給することによって上昇する循環経路4内の圧力を圧力検知手段8(圧力センサー)で検知し、外気との差圧が−1〜−50kPa程度(相対圧)で電気的に駆動されて閉止するように制御されている。この他に閉止手段1dとして、所定の内圧で自動的に閉止するエア駆動弁、電磁弁等を採用しても良い。さらには閉止手段1dは、動作停止と同時に通気を遮断する弁を備えたガス乾燥手段1eによって、構成することもできる。
なお、混合気体を取り込む吸気部1aは、チャンバー1以外の循環経路中に設けることもでき、例えばプラズマ発生器2の上流側配管に接続しても良い。
前記混合気体は、高濃度NO2ガスの生成原料である窒素と酸素とを含む気体であり、本形態では混合気体として空気を採用している。従って本形態では吸気管1cの先端は空気取り入れ口として開口し、エアフィルタを備えている。混合気体は、空気のほか、窒素:酸素を、95:5〜5:95の比率で配合しボンベに充填したものを採用することもでき、この場合前記吸気管の先端はボンベに接続される。
該ガス供給部1bは、排出管1fと、閉止手段1g、排出ポンプ1hとを含む。閉止手段1gを開閉すると共に、排出ポンプ1hを駆動させることによって、循環経路4を含んだチャンバー1内に貯留した高濃度NO2ガスや、不純物、水蒸気等の気体を後述する排気工程において排出することができる。高濃度NO2ガスの場合、該ガス供給部1bを医療器具の滅菌など高度な滅菌を行う滅菌室に接続し、排気すれば、オンデマンドで高濃度のNO2ガスを利用した滅菌装置を形成することができる。
なお本明細書において、高濃度NO2の生成装置に原料として外部から供給される、窒素と酸素とを含む気体を混合気体と称し、プラズマ発生器2を少なくとも一度循環して発生したNOxを含む気体をNOx混合ガスと称し、上記循環を繰返すことにより所望のNO2濃度に達した気体を高濃度NO2ガスと称している。
チャンバー1は、オンデマンドでNO2を高濃度化する所要時間が長時間になりすぎないよう、その内容積は1〜300L程度が好ましく、20〜150L程度がさらに好ましく、30〜70L程度が特に好ましい。本形態のチャンバー1は、40Lの内容積を有する。
チャンバー1は、NO2、或いは硝酸に浸蝕されにくいステンレス、ニッケル−クロム系合金、不飽和ポリエステル樹脂(FRP)等を用いて形成され、架台(図示せず)に固定することにより、安定して支持される。
前記流動抵抗部5は、本形態では、オリフィス5aにより形成されている。該オリフィス5aは、前記チャンバー1下流側の配管に設けられ、オリフィス流量計を構成している。このように本形態では、オリフィス流量計によって、チャンバー1から出て循環するガス流量を計測できる点で好ましい。流動抵抗部5は、オリフィス5aのほか、チャンバー1下流側の配管の一部区間を細径のパイプで構成し、該区間の流動抵抗を高めて構成することもできる。
図2および図3に示されるように、前記プラズマ発生器2は、マイクロ波を利用し、常温常圧でのプラズマ発生が可能なユニットであって、大略的に、所定波長のマイクロ波を発生するマイクロ波発生装置2aと、このマイクロ波発生装置2aに接続され、前記マイクロ波を伝搬させる導波管2bと、該導波管2bと一体に設けられたプラズマ生成部2cとを備えて構成されている。
マイクロ波発生装置2aは、例えば2.45GHzのマイクロ波を発生し、該マイクロ波を導波管2bの内部へ伝搬させる。このためマイクロ波発生装置2aは、マイクロ波を発生するマグネトロン等のマイクロ波発生源と、このマイクロ波発生源にて発生したマイクロ波の強度を所定の出力強度に調整するアンプと、マイクロ波を導波管2bの内部へ放出するマイクロ波送信アンテナとを備える。プラズマ発生器2に用いるマイクロ波発生装置2aとしては、例えば1W〜3kWのマイクロ波エネルギーを出力できる連続可変型のものが好適である。
前記導波管2bは、例えば非磁性金属(アルミニウム等)からなり、断面矩形の管状を呈し、マイクロ波発生装置2aにより発生されたマイクロ波をプラズマ生成部2cへ向けて伝搬させる。本形態の導波管2bは、金属平板からなる上面板、下面板および2枚の側面板を用いた角筒状の組み立て体にて構成している。このような平板の組み立てによらず、押し出し成形や板状部材の折り曲げ加工等により形成しても良い。また、断面矩形の導波管2bに限らず、断面楕円の導波管2bを用いることも可能である。さらに、非磁性金属に限らず、導波作用を有する各種の部材で導波管を構成することもできる。そして導波管2bは、本形態では接地している。
前記プラズマ生成部2cは、上記導波管2bに対して一体的に構成され、導波管2bに挿通するロッド状の導電軸2dと、筒状の導電管2eとを備える。さらに該導電軸2dは、導波管2b内に挿入され上記マイクロ波を受信するアンテナ部2fと、導波管2bの外部へ突出する中心電極2gとで構成され、本形態では、導波管2bに対し電気絶縁部を介して挿通している。本形態の導電軸2dは、断面円形であるが、この他卵形断面、楕円形断面、または長楕円形断面のものを採用できる。本形態の導電軸2dは、チタンを用いて形成しているが、この他チタン合金、銅、白金、金、銀等のマイクロ波を伝導できる材料を用いることができる。なお、導電軸2d(中心電極2g)の先端に、アーク放電防止、電極保護のため、セラミック製のシールド膜2hが形成されている。
前記導電管2eは、本形態では、略円筒状をなし、その内径は、前記導電軸2dの外径に比して大きく形成されている。そして上記導波管2bから外部に突出した中心電極2gを中心にこれを覆って配され、中心電極2gと導電管2eとの間で環状空間2iが形成される。また導電管2eの基端部は、前記導波管2bに対し、電気的に導通して固定され、その結果本形態の導電管2eは、導波管2bを介して接地している。なお導電管2eは、断面円形の他、矩形断面、楕円形断面等としても良い。但し、その先端が、前記中心電極2gの先端と略同位置にて終端する長さに形成される。なお本形態の導電管2eは、ステンレスを用いて形成しているが、この他アルミニウム等を用いることができる。
本形態の導電管2eは、その基端寄りに通気開口が設けられ、該通気開口に前記流動抵抗部5からのびる配管2jを接続することにより、流動抵抗部5乃至プラズマ発生器2につながる循環経路4が構成される。そして循環経路4を流れる前記混合気体が環状空間2i内を、中心電極2g端部に向けて移動する。さらに導電管2eの縁端には、中心電極2gとの間のアーク放電防止のため、セラミック製のシールド筒2kが内挿されている。そして該シールド筒2kの縁端は、さらに経路下流に向かう配管2jに繋がり、循環経路4が形成されている。
このように構成されたプラズマ生成部2cでは、マイクロ波発生装置2a(マグネトロン)により発生した2.45GHzのマイクロ波(出力は調整可能)が、導波管2bの一端に配されたマイクロ波発生装置2aのマイクロ波送信アンテナから、前記プラズマ生成部2cに向け放出される。該放出されたマイクロ波は、導波管2b内を伝搬し、前記プラズマ生成部2cにおける該導電軸2dのアンテナ部2fがこれを受信する。このようにアンテナ部2fで受信されたマイクロ波は、導電軸2dの表面を伝搬し、中心電極2g先端に到達する。中心電極2g先端は、導波管2bと電気的に結合され接地電位である導電管2eの先端に近接し、中心電極2g先端に到達したマイクロ波により、この導電管2e先端と中心電極2g先端の間、特に中心電極2g先端近傍に、強電界部が形成される。なお、導電管2eは2.45GHz帯に共振点を持つように形成されており、これにより中心電極2g先端部に効率よく強電界が形成される。
このように形成される強電界により、循環経路4を経て供給される前記混合気体に含まれる窒素および酸素に部分電離が発生し、その結果数万℃の電子、ほぼ常温のイオン、ほぼ常温の中性原子、およびほぼ常温の中性分子の集合体が構成される。この状態は、総合的には電気的に中性の状態であり、言い換えるとプラズマ状態、より詳細には低温プラズマ(非平衡プラズマ)状態が形成される。
すなわち中心電極2g端部近傍の混合気体の窒素と酸素とが、マイクロ波によって形成された強電界に励起されて絶縁破壊を生じ、分子の状態から低温プラズマ(非平衡プラズマ)状態に変位する。そしてこの低温プラズマ状態のガスは、他の低温プラズマ状態のガスまたは分子状態のガスとの反応性が高い。そのため、窒素と酸素を主とする混合気体をプラズマ生成部2cに導入すると、その一部が、一酸化窒素、二酸化窒素などの窒素酸化物、或いはオゾンへと変換される。
1.N2+O2→2NO
2.N2+2O2→2NO2
3.3O2→2O3
なおこのとき、式1による変換の比率が最も多い。そして、式1で生成した一酸化窒素の一部は、プラズマ生成部2cにおいて低温プラズマ状態の酸素と結合して二酸化窒素に変換される。
4.2NO+O2→2NO2
このようにして生成されたNO2を含むNOx混合ガスは、循環経路4を循環し、或いはチャンバー1に滞留する。そしてその間に、式1で生成された一酸化窒素は、段階的にNOx混合ガス中の酸素、或いは上記式3で生成されたオゾンと反応し、下記5、6式の如くさらに二酸化窒素へと変換され、その結果NO2濃度が向上する。
5.2NO+O2→2NO2
6.NO+O3→NO2+O2
さらに上記式3で生成されたオゾンは、NOx混合ガス中の窒素と反応し、一酸化窒素を生成する。
7.N2+2O3→2NO+2O2
そして、この一酸化窒素も、式5、6の反応によって二酸化窒素に変換される。
このようにして、NOx混合ガスが循環経路の循環を繰り返すことによって、次第に二酸化窒素の濃度が濃くなってゆき、所望のNO2濃度の高濃度NO2ガスが得られる。ただし、生成された一酸化窒素や二酸化窒素が再度プラズマ発生器2を通過する際、その一部が解離反応によって、再度低温プラズマ状態になり、窒素や酸素に逆戻りする現象が生じる。従って循環の繰り返しにより、NOx混合ガス濃度が一定レベルの高濃度NO2ガスに達すると、窒素酸化物の生成と窒素酸化物の解離が均衡化状態となり、所定濃度で更なる高濃度化は進まなくなる。
本形態の高濃度NO2ガスの生成装置では、図1に示すように、プラズマ発生器2を一基備えた循環経路4を例示している。しかし、2基或いは3基以上のプラズマ発生器2を並列接続して、循環経路4を構成することもでき、この場合には短時間で高濃度NO2ガスを生成できる点で好ましい。さらに一基のプラズマ発生器2内で、循環経路4を分岐し、各分岐経路毎にプラズマ生成部2cを設けても良い。
前記循環装置3は、本形態では、加圧装置6を用いて構成される。但し循環装置3として、ファンを用いることもできる。加圧装置6としては、エアーポンプを好適に採用でき、エアーブロアー、エアーコンプレッサー等を用いることもできる。前記エアーポンプとしては、出力が20〜100ワット程度のフッ素系ゴムを用いたダイヤフラムポンプ、セラミック製のプランジャポンプ、ベローズポンプ等を採用することができる。そして該加圧装置6は、前記プラズマ発生器2と前記チャンバー1とをつなぐ配管に設けられ、経路下流側であるチャンバー1側を加圧するよう接続される。
叙上のごとく本形態の高濃度NO2ガスの生成装置は、チャンバー1、流動抵抗部5、プラズマ発生器2、および加圧装置6を配管を介して環状に接続することにより、サイクル状の循環経路4を形成している。そして前記加圧装置6の作用によって、吸気部1aから取り入れた空気(混合気体)が循環経路4を還流し、プラズマ発生器2を通過する際に低温プラズマ(非平衡プラズマ)状態に変位した窒素と酸素とが反応して発生する一酸化窒素、二酸化窒素を含んだNOx混合ガスが生成される。そして前記一酸化窒素が、段階的にNOx混合ガス中の酸素、オゾンと反応することにより二酸化窒素へと変換され、その結果二酸化窒素の濃度が漸増して高濃度NO2ガスを生成できる。
なお、本形態の高濃度NO2ガスの生成装置において、加圧装置6の作用により、NOx混合ガス(混合気体を含む)が循環経路4を循環する際、そのガス圧力は、加圧装置6により昇圧し、循環経路4内を移動する過程で、流動抵抗部5の抵抗、および配管での管路抵抗を含めた各経路における抵抗により漸減して、加圧装置6に還流している。その結果、経路内の各領域間でガス圧の高低差が出来、圧力勾配を生じている。特に高濃度NO2ガスの生成装置では、流動抵抗部5の経路下流側にプラズマ発生器2を接続し、さらにその下流側にチャンバー側の圧を高める加圧装置6を接続していることから、流動抵抗部5にて減圧され経路下流側のプラズマ発生器2の内圧が循環経路4の中で最も低く構成される。そのため、プラズマ生成部2cの中心電極2g近傍を移動するNOx混合ガスのガス圧が低圧に維持されるため、特にガス循環を続けて、NOx混合ガス中の窒素と酸素が減少しても、安定したプラズマ発生を維持することができる。
さらに本形態では、前記循環経路4中にNO2濃度測定手段7を設けている。本形態のNO2濃度測定手段7は、チャンバー1に付設され、該チャンバー1に連通してNOx混合ガスが充填される透明な導光管に、青色光を投光することにより、導光管内のNOx混合ガスの濃度に応じて減衰する透過光量を受光部で計測して、濃度測定するセンサーを採用している。NO2濃度測定手段7はこの他、単一波長レーザ誘起蛍光法を採用したもの、カップリング反応を利用して検知素子を発色させ、当該検知素子の発色量からNO2を検出する方式のセンサー等を用いることができる。
さらに本形態では、チャンバー1にNO2濃度測定手段7を接続し、チャンバー1内に滞留するNOxのNO2濃度を測定している。叙上のごとく、循環経路4を還流するNOx混合ガスの圧力は、各領域間で高低差を生じている。他方、プラズマ生成部2c内でNOx混合ガスの温度が上昇するため、循環経路4上で温度勾配を生じている。従って、NO2濃度測定に際し、測定位置の違いにより、該圧力、温度差による濃度補正が必要となる。しかし、本形態のように生成された高濃度NO2ガスを収容するチャンバー1に滞留するNOx混合ガスのNO2濃度を測定すると、これら圧力、温度を考慮した濃度補正を要することなく、正確な測定ができる点で好ましい。なお、チャンバー1の他、チャンバー1とその経路下流に位置する流動抵抗部5との間にNO2濃度測定手段7を設けることも、同様の理由により好適である。
次に、高濃度NO2ガスの生成方法の実施形態を説明する。本形態の高濃度NO2ガスの生成方法は、叙上の高濃度NO2ガスの生成装置を用いて実施するものであり、チャンバー1、流動抵抗部5、プラズマ発生器2、および加圧装置6により形成される循環経路4に、NO2濃度が500ppm〜100,000ppmに至る迄NOx混合ガスを循環することを特徴とする。より具体的には、該方法は、
(1)チャンバーを含む循環経路4内を排気(真空引き)する工程(排気工程)
(2)チャンバーを含む循環経路4に、乾燥した混合気体(ドライエアー)を充填する工程(給気工程)
(3)プラズマ発生器2を始動し、低温プラズマ(非平衡プラズマ)状態に変位するドライエアーの窒素と酸素とで、NO2を含むNOx混合ガスを生成する工程(始動工程)
(4)NO2濃度が500ppm〜100,000ppmに至る迄NOx混合ガスを循環して高濃度NO2ガスを生成する工程(循環工程)、および
(5)チャンバー1から、高濃度NO2ガスを外に供給する工程(供給工程)
とからなる。
前記排気工程では、排気ポンプ1bを用いてチャンバー1を含んだ循環経路4内に残留する気体を外部に放出し、循環経路4内を略真空状態にする。本工程により、循環経路4内に残留する不純物、水蒸気等を排出する。
次いで前記給気工程において、前記吸気管1cの閉止手段1dを開いて、外部の新たな空気(混合気体)をチャンバー1内に導入する。本形態では、高濃度NO2ガスの生成装置設置空間の雰囲気空気を混合気体として使用している。従って混合空気を充填したガスボンベの管理、操作が不要であることから、作業性、コスト面で優れ、オンデマンドで高濃度NO2ガスを生成する点で好ましい。
このとき、プラズマ発生器2等への不純物付着を防止し、NOx混合ガスの硝酸化を抑制するため、吸気管1cに備えたガス乾燥手段1eを用いて、混合気体の露点を例えば、0〜−90℃、好ましくは−30〜−60℃、本形態では−60℃に乾燥させる。露点が0℃を超えて高くなる場合は、混合気体中の水分により、プラズマ発生器2などへの不純物付着が著しくなるとともに、NOx混合ガスの硝酸化が進んでNO2の減少を招く。逆に−90℃を超えて低くなる場合は、ガス乾燥手段1eを用いた乾燥のための時間、コストが嵩む。ここで、露点と絶対湿度との関係を説明する。すなわち、1分子のH2OがNO2と反応し、HNO3となることから、1mgのH2Oが存在することにより、2.556mgのNO2が硝酸となる。露点が0℃の場合、絶対湿度は4.46mg(mg/L)であるから、11.39(mg/L)のNO2が硝酸に変換されることとなる。一方、露点が−30℃の場合、絶対湿度は0.28mg(mg/L)であるから、0.71(mg/L)のNO2が硝酸に変換されることとなり、水分の影響を1%以下とすることができる。同様に、露点が−40℃の場合、0.24(mg/L)のNO2が硝酸に変換されることとなり、露点が−90℃の場合、0.00018(mg/L)のNO2が硝酸に変換されることとなる。すなわち、露点は低ければ低いほど変換される硝酸の量は少なくなり、生成した高濃度NO2ガスを有効に利用し得る。しかしながら、前述のとおり、乾燥手段1eを用いた乾燥のための時間、コストが嵩む観点から、露点を−30〜−60℃とすることが好ましい。
給気工程では、略真空状態の循環経路4に空気を導入することによって、チャンバー1内部を含む循環経路4内の圧力が上昇するが、該上昇する内圧と外部気圧との差圧が−1〜−50kPa(相対圧)のタイミングで、閉止手段1dとして装備したエア駆動弁を閉止し、給気を停止する。これにより、循環経路4の内圧が、外部よりも低い「始動前マイナス圧状態」を形成する。
次いで循環工程において、プラズマ発生器2のマイクロ波発生装置2aと、加圧装置6とを始動する。これにより、混合気体が循環経路4内を循環するとともに、プラズマ発生器2のプラズマ生成部2cで、混合気体の窒素と酸素とが低温プラズマ状態に変位することにより、一酸化窒素、二酸化窒素などの窒素酸化物、およびオゾンを発生させ、NOx混合ガスが生成される。該NOx混合ガスをさらに循環することにより、叙上のごとくNO2濃度を漸増させる。そしてNO2濃度が例えば、500〜100,000ppm程度、好ましくは20,000〜60,000ppm、本形態では40,000ppmに至る迄、NOx混合ガスの循環を継続して、高濃度NO2ガスを生成する。前記高濃度NO2ガスのNO2濃度が、500ppm未満では、これを殺菌装置に充填して用いる際、被殺菌物の管内部等の細部に対しての滅菌効果が不足する可能性を生じる。逆に100,000ppmを超えると、滅菌効果がそれ以上あがらない上、高濃度NO2ガスの排気処理に手間取り、さらには高濃度NO2ガス生成に多大な時間、コストが嵩む。
加圧装置6が作動して、混合気体、或いはNOx混合ガスが循環経路4内を循環すると、前記流動抵抗部5での抵抗、プラズマ生成部2c内での抵抗、および配管内での抵抗等によって、経路内圧は、加圧装置6の経路下流側が最も高く、順次経路下流側になるに従って、減圧する圧力勾配を形成する。また前記始動前マイナス圧状態から循環を始めることから、前記圧力勾配は始動前マイナス圧を平均値として形成される。しかも本形態では、最も内圧の高い加圧装置6の経路下流においても、大気圧より低圧となるよう、閉止手段1dの動作タイミングを調整して、前記始動前マイナス圧を設定している。具体的には、加圧装置6と、該加圧装置6の経路下流側に接続されたチャンバー1と、該チャンバー1の経路下流側に接続された流動抵抗部5に至る区間の混合気体、或いはNOx混合ガスの圧力の、大気圧と比べた圧力差を、例えば、−1〜−50kPa(相対圧)程度、好ましくは−5〜−40kPa(相対圧)、本形態では−5kPa(相対圧)に設定している。該差圧が−1kPa(相対圧)未満では循環経路の接続部、混合気体を取り込むための吸気部1a、或いは高濃度NO2ガスを取り出すガス供給口等から、NOxガスが漏れる恐れがある。逆に前記差圧が−50kPa(相対圧)を超えると、ガス漏れ効果に対しては過剰となる上、高濃度NO2ガス中のNO2の量が減少する傾向がある。ここで、チャンバー1の内圧と蓄積可能な高濃度NO2ガスの容量について説明する。チャンバー1の容積を40L、大気圧を101.3kPa(絶対圧)とすると、チャンバー1の内圧が0kPa(相対圧)のときは、蓄積可能な高濃度NO2ガスの容量も40Lとなる。内圧が正の場合、蓄積可能な高濃度NO2ガスの容量は大きくなるが、前述のとおりチャンバー内に蓄積された高濃度NO2ガスが漏れるおそれがあるため好ましくない。一方、チャンバー1の内圧を−10kPa(相対圧)とした場合、蓄積可能な高濃度NO2ガスの容量は36.1Lとなる。また、チャンバー1の内圧を−30kPa(相対圧)とした場合、蓄積可能な高濃度NO2ガスの容量は28.2Lとなり、−50kPa(相対圧)とした場合、20.3Lとなる。すなわち、チャンバー1の内圧を低くすればするほど、蓄積可能な高濃度NO2ガスの容量は減少する。そのため、チャンバー1の内圧は、負圧側が好ましく、−1〜−50kPa(相対圧)がさらに好ましい。ただし、蓄積可能な高濃度NO2ガスの容量が減る観点から−50kPa(相対圧)を下限としているが、それよりも低く設定しても、安全面からは問題はない。或いは、前記循環経路4の内圧は、適切なリーク阻止手段によりガス漏れを防止した上で、閉止手段1dの動作タイミングを遅らせて、加圧装置6、チャンバー1、および流動抵抗部5に至る区間の内圧を、大気圧に比べて正圧とすることも良い。高圧下では、同濃度であっても高濃度NO2ガス中のNO2量が増加することから、小さなチャンバー1を用いて多量のNO2を生成できる点で好ましい。
閉止手段1dの動作タイミング調整、流動抵抗部5の抵抗値調整等により、プラズマ発生器2のプラズマ生成部2c内部の圧力を、好ましくは20〜90kPa(絶対圧)程度、より好ましくは40〜80kPa(絶対圧)、本形態では70kPa(絶対圧)に設定する。プラズマを発生させるマイクロ波による絶縁破壊は、ガス圧が低い程活発化する。そこで90kPa(絶対圧)を超えた程度の僅かな負圧下では絶縁破壊によるプラズマ発生の安定性が低下し、特にNOx混合ガスの循環が進み、窒素、酸素の含有量が減った段階では、プラズマ発生が停止する可能性もある。逆に20kPa(絶対圧)未満の低圧になると、絶縁破壊が促進されるものの、混合気体またはNOx混合ガス中の酸素および窒素の量が減少する傾向がある。
循環経路4内を循環するNOx混合ガスの流量は、5LPM以上であることが好ましい。5LPM未満の小さな流量では、プラズマ発生器2の中心電極2gと導電管2eとの間の環状空間2iを流れるガス流速が低下する結果、昇温する中心電極2gに対する冷却効果が不足して、短時間で中心電極2gの破損を招く恐れがある。逆に流量を増加しても特に大きな問題は無いが、加圧装置6に必要以上の負荷を与え、運転コストが嵩む。この点から、上限は200LPM程度とするのが好適である。
前記循環工程において、NO2の高濃度化が進み、前記NO2濃度測定手段7による計測の結果、高濃度NO2ガス(本形態ではNO2濃度が40,000ppm)に至った時点で、プラズマ発生器2と、加圧装置6とを動作停止する。そして次工程の供給工程において、チャンバー1に充満した高濃度NO2ガスを、前記ガス供給口から、本形態では医療器具類を収容して滅菌する滅菌チャンバー1に向けて供給する。なお本形態では、真空引きされた滅菌チャンバー1に吸引させて供給しているが、ポンプを用いて供給することもよい。
以下、実施例により本発明の高濃度NO2の生成装置をより詳細に説明するが、本発明はこれらに限定されるものではない。
(電極(導電軸2d)の本数を変えた場合のNO2生成速度について)
実施例1
図4に示される循環経路において、チャンバー1の内圧を真空(−101kPa(相対圧))とし、チャンバー1の内圧が−5kPa(相対圧)となるよう空気(露点−60℃)を充填した。加圧装置61および加圧装置62により、空気を循環させるとともに、流量計F1および流量計F2が16LPMを指すよう流動抵抗部51および流動抵抗部52をそれぞれ調整した。このときの循環経路内の圧力が60〜70kPa(絶対圧)となるよう圧力計PG1および圧力計PG2で監視した。プラズマ発生器21およびプラズマ発生器22ともに、その導波管2bに2本の電極を挿入し、プラズマ発生器21およびプラズマ発生器22に160Wの電力を印加した。NO2濃度測定手段7により、経時的に高濃度NO2ガスの濃度を測定した。結果を図5に示す。参照符号E1は、実施例1にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
実施例2
プラズマ発生器21に2本の電極を挿入し、160Wの電力を印加した。一方のプラズマ発生器22には電力を印加しなかった。その他は実施例1と同様に、経時的に高濃度NO2ガスの濃度を測定した。結果を図5に示す。参照符号E2は、実施例2にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
実施例3
プラズマ発生器21に1本の電極を挿入し、80Wの電力を印加した。一方のプラズマ発生器22には電力を印加しなかった。その他は実施例1と同様に、経時的に高濃度NO2ガスの濃度を測定した。結果を図5に示す。参照符号E3は、実施例3にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
実施例1〜3より、電極(導電軸2d)の本数を増やすことにより、高濃度NO2ガスの濃度上昇が早くなることが判った。実施例1では約60分で濃度が70mg/Lに達し、実施例2では約120分で70mg/Lに達し、実施例3では、約240分で70mg/Lに達したことから、電極(導電軸2d)の本数は、高濃度NO2ガスの生成速度と比例することが判った。
ここで、実施例1〜3において生成したNO2ガスの濃度は、約70mg/Lであるが、単位をppmに換算すると、36,500ppmである。そして、高濃度NO2ガスでは、NO2とN24が平衡状態で存在するため、実質的には63,600ppmのNO2が理論上存在することとなる。
(循環経路内を循環するNOx混合ガスの流量を変えた場合のNO2生成速度について)
実施例4
図6に示される循環経路において、チャンバー1の内圧を真空(−101kPa(相対圧))とし、チャンバー1の内圧が−5kPa(相対圧)となるよう空気(露点−60℃)を充填した。加圧装置61および加圧装置62により、空気を循環させるとともに、プラズマ発生器2の内圧が60〜70kPa(絶対圧)、ガス流量が8LPM±1LPMとなるように流動抵抗部51、流動抵抗部52および流動抵抗部53を調整した。プラズマ発生器21およびプラズマ発生器22に挿入する電極は各2本とし、プラズマ発生器21およびプラズマ発生器22に印加する電力はそれぞれ160Wとした。NO2濃度測定手段7により、経時的に高濃度NO2ガスの濃度を測定した。結果を図7に示す。参照符号E4は、実施例4にかかる高濃度NO2ガスの電極1本あたりの濃度の経時変化を示すグラフである。
実施例5
ガス流量が5LPM±1LPMとなるように流動抵抗部51、流動抵抗部52および流動抵抗部53を調整した以外は、実施例4と同様に、経時的に高濃度NO2ガスの濃度を測定した。結果を図7に示す。参照符号E5は、実施例5にかかる高濃度NO2ガスの電極1本あたりの濃度の経時変化を示すグラフである。
実施例6
ガス流量が12LPM±1LPMとなるように流動抵抗部51、流動抵抗部52および流動抵抗部53を調整し、加圧装置63および加圧装置64を併用した以外は、実施例4と同様に、経時的に高濃度NO2ガスの濃度を測定した。結果を図7に示す。参照符号E6は、実施例6にかかる高濃度NO2ガスの電極1本あたりの濃度の経時変化を示すグラフである。
実施例4〜6より、ガス流量が8LPM以上の場合には高濃度NO2ガスの生成速度は同程度であり、5LPMの場合であっても、差がわずかであることが判った。
(循環経路内にNOx混合ガスを循環させない場合の高濃度NO2ガスの濃度について)
比較例1
図8に示される循環経路において、チャンバー1の内圧を真空(−101kPa(相対圧))とし、チャンバー1の内圧が−5kPa(相対圧)となるよう空気(露点−60℃)を充填した。加圧装置61および加圧装置62を作動し、流動抵抗部53を開放した。プラズマ発生器21および22の内圧が60〜70kPa(絶対圧)、流量が16LPM±1LPM(電極1本あたり8LPM)、チャンバー1の内圧が−5kPa(相対圧)となるよう流動抵抗部51、流動抵抗部52、流動抵抗部54および流量計F1を調整した。加圧装置61および加圧装置62を停止するとともに流動抵抗部53を閉止し、中間チャンバーMCを真空(−95kPa(相対圧))にした。加圧装置61および加圧装置62を作動し、プラズマ発生器2の流量を5LPMに調節した後、プラズマを点火し、NO2濃度測定手段71およびNO2濃度測定手段72により、高濃度NO2ガスの濃度を測定した。電極の本数は4本とし、160Wの電力を印加した。結果を図9に示す。参照符号CE1aは、プラズマ直後の比較例1にかかる高濃度NO2ガスの電極1本あたりの濃度の経時変化を示すグラフである。参照符号CE1bは、中間チャンバーMC直後の比較例1にかかる高濃度NO2ガスの電極1本あたりの濃度の経時変化を示すグラフである。参照符号Tは、ドライエアー貯留タンクであり、参照符号F3は自動流量調節機構である。
比較例2
中間チャンバーMCを真空にした後に、加圧装置61および加圧装置62を作動し、プラズマ発生器2の流量を8LPMに調整したほかは、比較例1と同様に高濃度NO2ガスの濃度を測定した。結果を図9に示す。参照符号CE2aは、プラズマ直後の比較例2にかかる高濃度NO2ガスの電極1本あたりの濃度の経時変化を示すグラフである。参照符号CE2bは、中間チャンバーMC直後の比較例2にかかる高濃度NO2ガスの電極1本あたりの濃度の経時変化を示すグラフである。
図9より、NO2の濃度は上昇せず、高くとも7mg/L(単位をppmに換算すると、36.50ppmである)であり、循環させることによって、NO2ガスを高濃度化できることが判った。
(プラズマ生成部の内部圧力によるプラズマの点灯安定性について)
実施例7
図10に示される循環経路において、チャンバー1の内圧を真空(−101kPa(相対圧))とし、チャンバー1の内圧が−5kPa(相対圧)となるよう空気(露点−60℃)を充填した。加圧装置6を作動し、プラズマ発生器2の内圧を−20kPa(相対圧)とし、プラズマ発生器2の流量が16LPM±1LPM(電極1本あたり8LPM)となるよう流動抵抗部51、流動抵抗部53および流量計F1を調整した。電極の本数は2本とし、120の電力を印加した。プラズマ点灯時間は1時間とした。実験は3回行い、平均を算出した。結果を表1に示す。
比較例3
図11に示される循環経路において、チャンバー1の内圧を真空(−101kPa(相対圧))とし、チャンバー1の内圧が−5kPa(相対圧)となるよう空気(露点−60℃)を充填した。加圧装置6を作動し、プラズマ発生器2の内圧を0kPa(相対圧)とし、プラズマ発生器2の流量が16LPM±1LPM(電極1本あたり8LPM)となるよう流動抵抗部51、流動抵抗部52および流量計F1を調整した。電極の本数は4本とし、160Wの電力を印加した。プラズマ点灯時間は1時間とした。実験は3回行い、平均を算出した。結果を表1に示す。
比較例4
図11に示される循環経路において、チャンバー1の内圧を真空(−101kPa(相対圧))とし、チャンバー1の内圧が−5kPa(相対圧)となるよう空気(露点−60℃)を充填した。加圧装置6を作動し、プラズマ発生器2の内圧を−20kPa(相対圧)とし、プラズマ発生器2の流量が16LPM±1LPM(電極1本あたり8LPM)となるよう流動抵抗部51、流動抵抗部52および流量計F1を調整した。電極の本数は4本とし、160Wの電力を印加した。プラズマ点灯時間は1時間とした。実験は3回行い、平均を算出した。結果を表1に示す。
Figure 0005571701
表1に示されるように、実施例7では、高濃度NO2ガスの濃度は70mg/Lまで上昇し、プラズマが消灯することはなかった。一方、比較例3および比較例4では、プラズマ点灯時間(1時間)のうちにプラズマが消灯し、その結果、高濃度NO2ガスの濃度は表1中の値までしか上昇しなかった。これにより、プラズマ発生器2の内圧が負圧の場合にはプラズマの点灯は維持されたが、プラズマ発生器2の内圧が0または正圧のときはプラズマが消灯する傾向があることが判った。
(ガス流量を変えた場合の電極の破損について)
比較例5
図4に示される循環経路において、チャンバー1の内圧を真空(−101kPa(相対圧))とし、チャンバー1の内圧が−5kPa(相対圧)となるよう空気(露点−60℃)を充填した。加圧装置61および加圧装置62を作動し、流量計F1および流量計F2が1LPMを指すよう流動抵抗部51および流動抵抗部52を調整してガス流量を調整し、高濃度NO2ガスを生成した。このときの圧力計PG1および圧力計PG2の値は、60〜70kPa(絶対圧)を指すよう調整した。電極の本数は4本とし、160Wの電力を印加した。プラズマ点灯時間は1時間とした。その結果、4本の電極中、2本が破損した。
比較例6
ガス流量が2LPMとなるよう流量計F1、流量計F2および流動抵抗部51、流動抵抗部52を調整した以外は、比較例5と同様に高濃度NO2ガスを生成した。その結果、4本の電極中、1本が破損した。
比較例5および6の結果より、ガス流量が5LPM以下の場合、ガスの流れによる電極体の冷却が不充分となり、その結果、チタンからなる電極の表面になされたアルミナコーティングに破損を生じることが判った。
(原料気体における酸素比率を変えた場合の高濃度NO2ガスの濃度について)
実施例8
図10に示される循環経路において、チャンバー1の内圧を真空(−101kPa(相対圧))とし、チャンバー1の内圧が−5kPa(相対圧)となるよう原料気体(酸素10%、窒素90%)を充填した。循環加圧装置6を作動し、ガス流量を16LPMに調整し、高濃度NO2ガスを生成し、濃度をNO2濃度測定手段7で測定した。このときの圧力計PG1の値は、60〜70kPa(絶対圧)を指すよう調整した。電極の本数は2本とし、120Wの電力を印加した。結果を図12に示す。参照符号E8は、実施例8にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
実施例9
原料気体(酸素20%、窒素80%)を使用した以外は、実施例8と同様に高濃度NO2ガスを生成した。結果を図12に示す。参照符号E9は、実施例9にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
実施例10
原料気体(酸素40%、窒素60%)を使用した以外は、実施例8と同様に高濃度NO2ガスを生成した。結果を図12に示す。参照符号E10は、実施例10にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
実施例11
原料気体(酸素50%、窒素50%)を使用した以外は、実施例8と同様に高濃度NO2ガスを生成した。結果を図12に示す。参照符号E11は、実施例11にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
実施例12
原料気体(酸素60%、窒素40%)を使用した以外は、実施例8と同様に高濃度NO2ガスを生成した。結果を図12に示す。参照符号E12は、実施例12にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
実施例13
原料気体(酸素80%、窒素20%)を使用した以外は、実施例8と同様に高濃度NO2ガスを生成した。結果を図12に示す。参照符号E13は、実施例13にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。
図12に示されるように、実施例8にかかる原料気体(酸素10%、窒素90%)を使用した場合には、高濃度NO2ガスの濃度は約35(mg/L)まで上昇し、実施例9にかかる原料気体(酸素20%、窒素80%)を使用した場合には、高濃度NO2ガスの濃度は約62(mg/L)まで上昇し、実施例13にかかる原料気体(酸素80%、窒素20%)を使用した場合には、高濃度NO2ガスの濃度は最大で約80(mg/L)まで上昇した。また、実施例10にかかる原料気体(酸素40%、窒素60%)、実施例11にかかる原料気体(酸素50%、窒素50%)、実施例12にかかる原料気体(酸素60%、窒素40%)を使用した場合には、高濃度NO2ガスの濃度は最大で約86(mg/L)を超えるまで上昇し、さらに、上昇速度も速いことが判った。
実施例12において生成した高濃度NO2ガスの濃度は、約86mg/Lであるが、単位をppmに換算すると、44,900ppmである。そして、高濃度NO2ガスでは、NO2とN24が平衡状態で存在するため、実質的には85,800ppmのNO2が理論上存在することとなる。よりNO2の濃度を高めるためには、プラズマ発生器2の電力を高くすることで実現することが可能である。従って、本発明によれば、NO2の濃度を100,000ppm程度まで高めることができるのである。
実施例14
160Wの電力をプラズマ発生器2に印加し、プラズマ点灯時間を延長した以外は、実施例11と同様に高濃度NO2ガスを生成した。結果を図13に示す。参照符号E14は、実施例14にかかる高濃度NO2ガスの濃度の経時変化を示すグラフである。図13に示されるように、平衡状態で存在するNO2とN24の合計量は、約100,000ppmであった。
本発明の高濃度NO2の生成装置および該生成装置を用いた高濃度NO2の生成方法によれば、NO2を簡便かつ選択的に高濃度化(約500ppm以上)することが可能であり、また、原料として窒素と酸素とを含む混合気体を使用するための原料の管理が容易であるとともに安全性が高く、かつ、簡便かつ選択的に、オンデマンドで高濃度のNO2を調製することが可能である。
1 チャンバー
1a 吸気部
1b 排気ポンプ
1c 吸気管
1d、1g、V1 閉止手段
1e ガス乾燥手段
1f 排出管
1h 排出ポンプ
2 プラズマ発生器
2a マイクロ波発生装置
2b 導波管
2c プラズマ生成部
2d 導電軸
2e 導電管
2f アンテナ部
2g 中心電極
2h シールド膜
2i 環状空間
2j 配管
2k シールド筒
3 循環装置
4 循環経路
5 流動抵抗部
5a オリフィス
6 加圧装置
7 NO2濃度測定センサー
8 圧力検知手段
CE1a プラズマ直後の比較例1にかかる高濃度NO2ガスの電極1本あたりの経時濃度
CE1b 中間チャンバー直後の比較例1にかかる高濃度NO2ガスの電極1本あたりの経時濃度
CE2a プラズマ直後の比較例2にかかる高濃度NO2ガスの電極1本あたりの経時濃度
CE2b 中間チャンバー直後の比較例2にかかる高濃度NO2ガスの電極1本あたりの経時濃度
E1 実施例1にかかる高濃度NO2ガスの濃度
E2 実施例2にかかる高濃度NO2ガスの濃度
E3 実施例3にかかる高濃度NO2ガスの濃度
E4 実施例4にかかる高濃度NO2ガスの電極1本あたりの濃度
E5 実施例5にかかる高濃度NO2ガスの電極1本あたりの濃度
E6 実施例6にかかる高濃度NO2ガスの電極1本あたりの濃度
E8 実施例8にかかる高濃度NO2ガスの濃度
E9 実施例9にかかる高濃度NO2ガスの濃度
E10 実施例10にかかる高濃度NO2ガスの濃度
E11 実施例11にかかる高濃度NO2ガスの濃度
E12 実施例12にかかる高濃度NO2ガスの濃度
E13 実施例13にかかる高濃度NO2ガスの濃度
F1、F2 流量計
F3 流量調節機構
f フィルター
T ドライエアー貯留タンク
MC 中間チャンバー
PG1、PG2 圧力計

Claims (15)

  1. チャンバーと、プラズマ発生器と、循環手段とを接続して構成した循環経路を備え、
    前記プラズマ発生器は、所定波長のマイクロ波を発生するマイクロ波発生装置と、前記マイクロ波発生装置に接続され、前記マイクロ波を伝搬させる導波管と、前記導波管と一体に設けられ、伝搬された前記マイクロ波により強電解を形成するプラズマ生成部とを備え、
    窒素と酸素とを含む混合気体を前記循環経路内に循環させつつ、前記プラズマ生成部において前記強電解により前記混合気体に含まれる前記窒素および前記酸素の少なくとも一部をプラズマ状態に変位させ、変位された前記窒素および前記酸素と、同じく変位された前記窒素および前記酸素とを反応させるか、または、変位された前記窒素および前記酸素と、循環する前記混合気体に含まれる前記窒素および前記酸素とを反応させることによりNO2を生成し、かつ、NO 2 の濃度を高める高濃度NO2ガスの生成装置。
  2. 前記循環手段は、加圧装置であって、
    前記循環経路は、チャンバーの経路下流側にプラズマ発生器を接続し、該プラズマ発生器の経路下流側に前記加圧装置を接続し、該加圧装置の経路下流側にチャンバーを接続して構成されることを特徴とする請求項1記載の高濃度NO2ガスの生成装置。
  3. 前記チャンバーとプラズマ発生器との間に、流動抵抗部を接続したことを特徴とする請求項1記載の高濃度NO2ガスの生成装置。
  4. 前記循環経路は、さらにNO2濃度測定手段を備えることを特徴とする請求項1記載の高濃度NO2ガスの生成装置。
  5. 前記NO2濃度測定手段が、前記チャンバー内、またはチャンバーと前記流動抵抗部との間に配置されてなる請求項4記載の高濃度NO2ガスの生成装置。
  6. 前記循環経路は、さらに前記混合気体を取り込む吸気部を備え、
    該吸気部は、閉止手段とガス乾燥手段とを備えることを特徴とする請求項1記載の高濃度NO2ガスの生成装置。
  7. 前記閉止手段は、減圧下の循環経路内に混合気体が供給されて昇圧する循環経路内の内圧を検知して閉止することを特徴とする請求項6記載の高濃度NO2ガスの生成装置。
  8. 前記流動抵抗部がオリフィスである請求項3記載の高濃度NO2ガスの生成装置。
  9. 請求項1〜8記載の高濃度NO2ガスの生成装置を用い、チャンバー、プラズマ発生器、および循環手段により形成される循環経路に、NO2濃度が500ppm〜100,000ppmに至る迄NOx混合ガスを循環することを特徴とする高濃度NO2の生成方法。
  10. 前記混合気体は、雰囲気空気を採用することを特徴とする請求項9記載の高濃度NO2の生成方法。
  11. 前記混合気体は、露点0〜−90℃の乾燥空気を用いることを特徴とする請求項9記載の高濃度NO2の生成方法。
  12. 前記プラズマ発生器のプラズマ生成部の内部圧力が、20〜90kPa(絶対圧)であることを特徴とする請求項9記載の高濃度NO2の生成方法。
  13. 加圧装置と、該加圧装置の経路下流側に接続されたチャンバーと、該チャンバーの経路下流側に接続された流動抵抗部に至る区間の内部の圧力は、大気圧と比べた圧力差が約−1〜−50kPa(相対圧)であることを特徴とする請求項9記載の高濃度NO2の生成方法。
  14. 加圧装置と、該加圧装置の経路下流側に接続されたチャンバーと、該チャンバーの経路下流側に接続された流動抵抗部に至る区間の内部の圧力は、大気圧と比べて正圧に維持されることを特徴とする請求項9記載の高濃度NO2ガスの生成方法。
  15. 前記循環経路内を循環する前記NOx混合ガスの流量は、5LPM以上であることを特徴とする請求項9記載の高濃度NO2の生成方法。
JP2011553074A 2009-03-03 2010-03-03 高濃度no2の生成装置および該生成装置を用いた高濃度no2の生成方法 Active JP5571701B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011553074A JP5571701B2 (ja) 2009-03-03 2010-03-03 高濃度no2の生成装置および該生成装置を用いた高濃度no2の生成方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009049282 2009-03-03
JP2009049282 2009-03-03
JP2009057925 2009-03-11
JP2009057925 2009-03-11
JP2011553074A JP5571701B2 (ja) 2009-03-03 2010-03-03 高濃度no2の生成装置および該生成装置を用いた高濃度no2の生成方法
PCT/US2010/026049 WO2010102000A2 (en) 2009-03-03 2010-03-03 High concentration no2 generating system and method for generating high concentration no2 using the generating system

Publications (2)

Publication Number Publication Date
JP2012519644A JP2012519644A (ja) 2012-08-30
JP5571701B2 true JP5571701B2 (ja) 2014-08-13

Family

ID=42710202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553074A Active JP5571701B2 (ja) 2009-03-03 2010-03-03 高濃度no2の生成装置および該生成装置を用いた高濃度no2の生成方法

Country Status (6)

Country Link
US (2) US8425852B2 (ja)
EP (1) EP2429944B1 (ja)
JP (1) JP5571701B2 (ja)
KR (1) KR101683659B1 (ja)
CN (1) CN102341344A (ja)
WO (1) WO2010102000A2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1888424A4 (en) 2005-01-25 2016-09-21 Medical Instill Tech Inc CLOSURE OF A CONTAINER WITH A THERMALLY RESCELLABLE NEEDLE PENETREE-LIKE PART AND AN UNDERLYING PART COMPATIBLE WITH A FATTY LIQUID PRODUCT AND CORRESPONDING METHOD
WO2010104948A1 (en) 2009-03-12 2010-09-16 Saian Corporation Sterilization method
DE102009054922A1 (de) * 2009-12-18 2011-06-22 SB LiMotive Company Ltd., Kyonggi Verfahren und Vorrichtung zur Minderung der Feuchtigkeit eines Gases in einem Gehäuseinnenraum
JP2013111558A (ja) * 2011-11-30 2013-06-10 Panasonic Corp ラジカル発生装置及び窒素酸化物発生装置
CN102774819B (zh) * 2012-04-13 2014-05-28 魏作胜 常压稀硝、加压稀硝与浓硝装置联合生产n2o4的方法
DE102012103777A1 (de) * 2012-05-22 2013-11-28 Reinhausen Plasma Gmbh Verfahren und vorrichtung zur beständigkeitsprüfung eines werkstoffs
JP6085446B2 (ja) * 2012-10-15 2017-02-22 立山マシン株式会社 滅菌方法
US9522380B2 (en) 2013-06-20 2016-12-20 Cem Corporation Control apparatus for dispensing small precise amounts of liquid reagents
JP5901074B2 (ja) * 2013-12-19 2016-04-06 キヤノンマーケティングジャパン株式会社 滅菌装置、滅菌方法、およびプログラム
JP6928761B2 (ja) * 2014-12-22 2021-09-01 ブルーウェーブ テクノロジーズ インコーポレイテッド プラズマ処理装置および物品を処理する方法
WO2018218013A2 (en) 2017-05-24 2018-11-29 Sio2 Medical Products, Inc. Sterilizable pharmaceutical package for ophthalmic formulations
EP3630043A1 (en) 2017-05-24 2020-04-08 Formycon AG Sterilizable pre-filled pharmaceutical packages comprising a liquid formulation of a vegf-antagonist
US11149969B2 (en) * 2018-02-23 2021-10-19 Andersen Corporation Controlled low humidity storage device and methods
US11075877B2 (en) * 2019-01-11 2021-07-27 Charter Communications Operating, Llc System and method for remotely filtering network traffic of a customer premise device
EP4142926A1 (en) * 2020-04-26 2023-03-08 Nitricity Inc. Systems and processes for producing fixed-nitrogen compounds
KR102182655B1 (ko) * 2020-06-26 2020-11-24 한국기초과학지원연구원 질소산화물의 선택성 증대한 마이크로웨이브 플라즈마 장치 및 이를 이용한 질소산화물 함유 수 제조 방법
CN113522205B (zh) * 2021-08-03 2022-05-31 内蒙古子申企业管理有限公司 一种农用新能源气体肥装置
KR20230075679A (ko) * 2021-11-23 2023-05-31 한국핵융합에너지연구원 플라즈마를 이용한 고순도 no2 가스 발생장치 및 플라즈마 이용 질산태 기반의 고농도 활성수 및 비료수 제조장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2451888A1 (fr) * 1979-03-21 1980-10-17 Electricite De France Procede et dispositif pour la preparation d'oxydes azotiques
JPS6036272B2 (ja) * 1982-03-18 1985-08-19 岩谷産業株式会社 食品の表面に付着した大腸菌の殺菌方法
FR2526141B1 (fr) * 1982-04-30 1988-02-26 Electricite De France Procede et installation de chauffage d'un lit fluidise par injection de plasma
JPS63144232A (ja) 1986-12-08 1988-06-16 Kazuo Amaya 二酸化窒素標準ガス発生装置
WO1991009594A1 (en) * 1989-12-28 1991-07-11 Virginia Commonwealth University Sigma receptor ligands and the use thereof
GB9211534D0 (en) * 1992-06-01 1992-07-15 Pgp Ind Inc Foraminous sheets for use in catalysis
JPH08117558A (ja) 1994-10-19 1996-05-14 Tosoh Corp 二酸化窒素を生成する方法
CA2200996A1 (en) * 1996-04-01 1997-10-01 Sandeep Bhatia Oxygen injection in nitric acid production
WO1998037012A1 (en) * 1997-02-20 1998-08-27 Manning Thomas J Apparatus and method for generating ozone
US20040028596A1 (en) * 2002-08-12 2004-02-12 Bela Kleiner Nitrogen dioxide, nitrogen oxide and nitric acid manufacture: Kleiner method
US20060042155A1 (en) 2002-12-02 2006-03-02 Nolen James A Use of nitrogen dioxide (NO2) for insect attraction
JP3642572B2 (ja) * 2003-05-09 2005-04-27 東芝三菱電機産業システム株式会社 オゾン発生装置およびオゾン発生方法
JP2005111434A (ja) * 2003-10-10 2005-04-28 Mykrolis Corp 一酸化窒素ガス中水分除去精製材及び一酸化窒素ガス精製器
JP2007077665A (ja) * 2005-09-14 2007-03-29 Toto Ltd 便器洗浄水生成装置及び便器洗浄システム
GB0612094D0 (en) * 2006-06-19 2006-07-26 Clarizon Ltd Electrode, method of manufacture and use thereof
US8057748B2 (en) * 2007-10-24 2011-11-15 Minimus Spine, Inc. Syringe, system and method for delivering oxygen-ozone
JP5517439B2 (ja) * 2008-12-02 2014-06-11 学校法人トヨタ学園 窒素化合物の製造方法及び製造装置
JP2010201055A (ja) * 2009-03-05 2010-09-16 Noritsu Koki Co Ltd 滅菌装置
US7828061B2 (en) * 2009-04-03 2010-11-09 Nitra-Gen Llc Method and apparatus for on-site nitrate production for a water processing system

Also Published As

Publication number Publication date
EP2429944B1 (en) 2018-11-07
JP2012519644A (ja) 2012-08-30
US20130220793A1 (en) 2013-08-29
WO2010102000A2 (en) 2010-09-10
KR20110139196A (ko) 2011-12-28
CN102341344A (zh) 2012-02-01
US8580086B2 (en) 2013-11-12
EP2429944A4 (en) 2013-03-06
US8425852B2 (en) 2013-04-23
WO2010102000A3 (en) 2011-01-06
KR101683659B1 (ko) 2016-12-07
WO2010102000A8 (en) 2011-03-03
EP2429944A2 (en) 2012-03-21
US20110286908A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5571701B2 (ja) 高濃度no2の生成装置および該生成装置を用いた高濃度no2の生成方法
JP2012519576A (ja) 排気システム、この排気システムを用いた滅菌装置およびこの滅菌装置を用いた滅菌方法
TWI432228B (zh) 微電漿產生裝置及其滅菌系統
Abdelaziz et al. Quantitative analysis of ozone and nitrogen oxides produced by a low power miniaturized surface dielectric barrier discharge: effect of oxygen content and humidity level
Cvelbar et al. Inductively coupled RF oxygen plasma characterization by optical emission spectroscopy
JP2008525141A (ja) 窒素と水素の混合物から形成されたガス状プラズマで滅菌する装置
JP4991801B2 (ja) 医療又は外科器具類である対象物の殺菌装置
Kühn et al. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications
WO2010117452A1 (en) Method of sterilization using plasma generated sterilant gas
WO2010104948A1 (en) Sterilization method
Guivan et al. Comparative inactivation of Bacillus subtilis spores using a DBD-driven xenon iodide excilamp and a conventional mercury lamp
Saloum et al. Diagnostics of N2–Ar plasma mixture excited in a 13.56 MHz hollow cathode discharge system: application to remote plasma treatment of polyamide surface
US20090053101A1 (en) Sterilization Method and Plasma Sterilization Apparatus
JP2010210565A (ja) 二酸化窒素濃度測定装置および滅菌装置
Al Qaseer et al. Optimal Power of Atmospheric Pressure Plasma Jet with a Simple DBD Configuration for Biological Application
JP2013000126A (ja) 滅菌装置
Nascimento et al. Optical measurements of an atmospheric pressure microplasma jet aiming surface treatment
US10596285B2 (en) Sterilizing method
JP2010187966A (ja) 滅菌処理方法及び滅菌装置
JP6501486B2 (ja) 滅菌装置
JP2018153238A (ja) 処理方法
Thiyagarajan et al. Characterization of an atmospheric pressure plasma jet and its applications for disinfection and cancer treatment
ES2342393T3 (es) Procedimiento de descontaminacion que utiliza nitrogeno atomico.
JP2013002809A (ja) ガスセンサ装置およびそれを用いる滅菌システム
Awakowicz et al. Optical emission spectroscopy as a tool for characterization of technical plasmas in medical applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250