JP5568960B2 - ナノインプリントによるパターン形成方法 - Google Patents

ナノインプリントによるパターン形成方法 Download PDF

Info

Publication number
JP5568960B2
JP5568960B2 JP2009261668A JP2009261668A JP5568960B2 JP 5568960 B2 JP5568960 B2 JP 5568960B2 JP 2009261668 A JP2009261668 A JP 2009261668A JP 2009261668 A JP2009261668 A JP 2009261668A JP 5568960 B2 JP5568960 B2 JP 5568960B2
Authority
JP
Japan
Prior art keywords
resin layer
mold
resin
pattern
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009261668A
Other languages
English (en)
Other versions
JP2011108805A (ja
Inventor
祐樹 有塚
倫子 山田
宏之 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009261668A priority Critical patent/JP5568960B2/ja
Publication of JP2011108805A publication Critical patent/JP2011108805A/ja
Application granted granted Critical
Publication of JP5568960B2 publication Critical patent/JP5568960B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、光ナノインプリントを用いて基材表面の樹脂層にパターンを形成するナノインプリントによるパターン形成方法に関する。
近年、ナノオーダーの微細加工技術としてナノインプリント技術が注目されている。このナノインプリント技術は、微細な凹凸構造を形成した型部材(以下、モールドと呼ぶ)を用いて、凹凸構造を基材表面に形成した樹脂層に押し当てた状態で被加工物を硬化させ、モールドと被加工物とを引き離し(以下、離型と呼ぶ)、微細構造を等倍転写するパターン形成技術である。なお、本明細書では、パターンが形成される領域をパターン領域と呼ぶものとする。
従来のナノインプリントによるパターン形成方法として、例えば、特許文献1に記載された基材の加工方法がある。この基材の加工方法では、パターン領域以外に遮光部材を設けたモールドを基材上に形成された光硬化樹脂に接触させ、光照射により光硬化樹脂を硬化させてパターンを形成している。このパターン形成の際に、モールドの遮光部材によりパターン領域からはみ出した領域の光硬化樹脂は硬化されないため、はみ出した領域の光硬化樹脂の除去を容易にしている。
特開2009−60085号公報
しかしながら、特許文献1に記載された基材の加工方法では、モールドに遮光部材を形成することが不可欠である。遮光部材を形成すると、モールドのその部分を保持することができず、以下のような不具合が発生する。すなわち、モールドの遮光部材形成部分を保持すると、保持部材の接触により遮光部材が剥がれて、異物の原因となる虞がある。
また、光硬化樹脂のスピン塗布や、光硬化樹脂のはみ出し量が多い場合、これらの光硬化樹脂の硬化を阻害するためには、遮光部材を大きく形成しなければならない。このため、パターンを転写する基材やモールドの大きさに応じて、遮光部材の大きさを変更しなければならず、モールドの製造コストを増大させる。
本発明は上記実情に鑑み、光硬化樹脂のパターン領域外にはみ出した部分の除去を容易にするナノインプリントによるパターン形成方法を提供することを目的とする。
本発明の一実施形態に係るナノインプリントによるパターン形成方法は、基材上に光硬化樹脂により樹脂層を形成し、前記樹脂層に凹凸パターンを有するモールドを接触させ、前記光硬化樹脂の硬化を阻害する気体を含む雰囲気下で、遮光部材を用いることなく前記樹脂層の全面に光を照射して、少なくとも前記凹凸パターン下にある前記樹脂層を硬化させ、前記モールドの外縁よりはみ出した前記樹脂層を未硬化の状態で残存させ、前記樹脂層から前記モールドを離型し、硬化させた前記樹脂層の周囲に残存する未硬化の樹脂層を除去することを特徴とする。
本発明によれば、光硬化樹脂の硬化を阻害する気体を含む雰囲気下でモールドを押し当てた部分の樹脂層を硬化させてパターンを形成し、パターンを含むパターン領域より外側の樹脂層の一部の硬化を阻害して、樹脂層の未硬化部分の除去を容易にするナノインプリントによるパターン形成方法を提供することができる。
第1の実施の形態に係るナノインプリント装置の概略構成を示す図である。 第1の実施の形態に係るナノインプリントによるパターン形成方法の一例を示す断面図であり、(A)は樹脂層の形成工程を示す図、(B)はモールドと樹脂層の接触工程を示す図、(C)は樹脂層の硬化工程を示す図、(D)は離型工程を示す図、(E)未硬化の樹脂層を除去する工程を示す図である。 実施例に係る酸素濃度と溶剤による洗浄を実施した後の光硬化樹脂膜厚との関係を示すグラフである。 図3に示すグラフ内の各プロットのデータを示す図である。 実施例に係る樹脂層の粘度を測定する装置の一例を示す図である。 実施例に係るPAK−01の粘度を測定した結果を示す図である。 実施例に係るモールドからはみ出した樹脂層の幅の測定に用いるモールドの構成を示す平面図である。 実施例に係るモールドからはみ出した樹脂層の幅の測定方法の一例を示す図であり、(A)はシリコン基材上に光硬化樹脂を滴下する工程を示す図、(B)は酸素濃度を調整してモールドパターンを転写する工程を示す図、(C)は離型後に基材ごと樹脂層を洗浄液に浸漬させた後、パターン領域からはみ出した樹脂層を計測する工程を示す図である。 実施例に係る樹脂層のはみ出し幅の測定結果を示す図であり、(A)は本案の樹脂層のはみ出し幅測定箇所の顕微鏡写真、(B)は従来の樹脂層のはみ出し幅測定箇所の顕微鏡写真である。 酸素濃度を変化させて光硬化樹脂NIF−A−1及びPAK−01のはみ出し幅を測定した結果を示す図である。 (A)は本案の樹脂層のはみ出し部分を除去して複数のパターンを転写した状態を示す断面図、(B)は従来の樹脂層のはみ出し部分を除去せずに複数のパターンを転写した状態を示す断面図である。
以下、図面を参照して、本発明の実施の形態を詳細に説明する。
<ナノインプリント装置の構成>
第1の実施の形態に係るナノインプリント装置100の概略構成について、図1を参照して説明する。図1は、ナノインプリント装置100の概略構成を示す図である。図1において、ナノインプリント装置100は、チャンバ101と、酸素供給装置102と、排気ポンプ103と、光源104と、基材チャック105と、基材ステージ106と、モールドチャック107と、モールドステージ108と、を備える。
チャンバ101は、酸素供給装置102から酸素が供給される酸素供給路101Aと、チャンバ101内の気体が排気ポンプ103により排気される排気路101Bと、を備える。チャンバ101内には、基材201を保持する基材チャック105と、基材チャック105をXYZ軸方向に移動させて基材201の位置決めを行う基材ステージ106と、が配置されている。また、チャンバ101内には、モールド203を保持するモールドチャック107と、モールドチャック107をXYZ軸方向に移動させてモールド203の位置決めを行うモールドステージ108と、が配置されている。但し、基材201とモールド203の両方を移動させる必要はなく、基材201とモールド203のうち、一方を移動させるようにしても良い。
酸素供給装置102は、チャンバ101内に酸素を供給してチャンバ101内の酸素濃度を調整する。酸素供給装置102にはバルブ(図示せず)が配置されており、バルブの開閉制御により必要なタイミングで樹脂層202の硬化を阻害する酸素をチャンバ101内に供給することができる。また、チャンバ101には、流量センサ(図示せず)が配置されており、酸素の供給量を適宜制御することもできる。酸素の供給は、チャンバ101内全体に略均一な濃度となるように調整してもよいし、樹脂層202の硬化させたくない部分に対してノズル等により局所的に吹き付けるようにしてもよい。本実施の形態では、紫外線を照射した際に、樹脂層202に発生したラジカルを失活させる能力(ラジカル失活態)を有する気体として酸素を用いる。
排気ポンプ103は、チャンバ101内の気体を排気してチャンバ101内の圧力を調整する。光源104は、基材201上に塗布された樹脂層202に対して光を照射する。
基材201としては、石英、ソーダガラスやホウ珪酸ガラス等のガラス、シリコン、ガリウム砒素や窒化ガリウム等の半導体、ポリカーボネート、ポリプロピレンやポリエチレン等の樹脂基材、あるいは、これらの材料の組み合わせからなる複合材料等を用いる。基材201の厚み、大きさ、形状は用途に応じて適宜設定することができる。
モールド203は、所期の凹凸パターン203Aが形成されている。モールド203は、光インプリント用である場合には、石英ガラス、珪酸系ガラス、フッ化カルシウム、青板ガラス、ソーダガラス、BK−7等の透明基材を用いる。なお、これらの材料だけでなく、透明樹脂フィルム、陽極酸化法により形成されたポーラスアルミナ等からなる透光性を有するフレキシブル基材を用いてもよい。モールド203の厚み、大きさ、形状は用途に応じて適宜設定することができる。凹凸パターン203Aは、例えば、モールド203となる基材にレジスト等をマスクとして形成しておき、そのマスクの露出部にエッチング等を施して形成されたマイクロ(μm)〜ナノ(nm)オーダーの凹凸構造である。
樹脂層202は、光硬化性の樹脂あるいはレジスト等であり、重合性化合物を少なくとも1種類含有する光ラジカル硬化性樹脂を用いる。光ラジカル硬化性樹脂としては、例えば、紫外線の照射で速やかにラジカル重合して硬化するアクリレート類、メタクリレート類、ビニルエステル類、ビニルアミド類等を含む液状モノマーに光ラジカル開始剤を混合したものを用いることができる。また、必要に応じて芳香族カルボニル化合物、ケトン類やフォスフィンオキサイド類等の硬化剤を添加する。なお、これらの材料に限定するものではない。樹脂層202は、スピンコート法等の塗布法を用いて形成することができる。また、ナノインプリント装置100内にインクジェット式吐出部(図示せず)を備える場合は、インクジェット法により樹脂層202を形成することも可能である。
光源104は、上記光硬化樹脂を硬化させる紫外線を発生する紫外線光源を用いる。紫外線光源としては、i線、g線、h線の混線を発生するものを用いる。
<ナノインプリントによる構造体の製造方法>
次に、ナノインプリントの構造体200を製造する工程について、図1及び図2を参照して説明する。図2(A)〜(E)は、基材201上にパターン202Aを形成する工程を順に示す図である。なお、図2(A)〜(E)では、説明を簡略化するため、基材201上に形成されるパターン202Aの形状を簡略化して示している。
(1)樹脂層の形成
まず、図2(A)において、基材201上に、例えば、スピンコート法、インクジェット法等により光硬化樹脂を塗布して樹脂層202を形成する。そし、樹脂層202を形成した基材201をチャンバ101内の基材チャック105に設置する。また、樹脂層202をインクジェット方式で基材201上に形成する場合は、基材201を基材チャック105に設置した後、図示しない塗布ヘッドから樹脂を吐出して樹脂層202を形成する。次いで、チャンバ101内にモールド203を設置する。次いで、チャンバ101内を排気ポンプ103により排気してチャンバ101内の圧力を調整する。この排気により、モールド203の表面を脱泡することができ、凹凸パターン203A中に欠陥が発生することを防止できる。
なお、本実施の形態では、チャンバ101内の圧力を大気圧より低い状態にしてナノインプリントを行う場合を説明するが、チャンバ101内の圧力を大気圧よりも高い状態にして樹脂層202の溶剤が揮発することを防止し、樹脂層202の膜厚変動を抑制するナノインプリント処理を行ってもよいし、チャンバ101外部の圧力と等圧のままナノインプリントを実施してもよい。
(2)モールドと樹脂層の接触
次に、図2(B)において、モールド203を下方に移動させ、モールド203を樹脂層202に接触させる。この時、モールド203の押圧条件を調整して、凹凸パターン203A内に漏れなく光硬化樹脂を充填する。この場合、図2(B)に示すように、モールド203の外縁部からはみ出した樹脂層202がチャンバ101内の雰囲気に曝される。このとき、チャンバ101内の酸素濃度は上げられておらず、図2(A)におけるチャンバ101内の圧力と同様である。ここで、酸素濃度とは、体積濃度(vol%)を指す。
(3)樹脂層の硬化及び酸素濃度の上昇
次に、図2(C)において、モールド203を樹脂層202に接触させた状態で光源104により紫外線を基材201上に照射して、樹脂層202を硬化させる。このとき、本実施の形態では、酸素供給装置102からチャンバ101内に酸素を供給して、チャンバ101内の酸素濃度を上昇させる。この酸素濃度の上昇により、チャンバ101内の酸素と接する樹脂層202は硬化が阻害される。チャンバ101内における酸素濃度は、モールド203と樹脂層202の接触時よりも高い濃度が設定される。なお、先の図2(B)において、酸素濃度が低い場合には、凹凸パターン203Aの凹部に酸素を抱き込まないのでパターン部分の硬化不良を防ぐことができるので、より望ましい。
樹脂層202の紫外線硬化を阻害する酸素を含む雰囲気中で、モールド203を樹脂層202に接触させた状態で光源104により紫外線を照射して少なくとも凹凸パターン下にある樹脂層202を硬化させる。このとき、モールド203と樹脂層202はほぼ隙間なく接触しているため、紫外線硬化を阻害する酸素はモールド203からはみ出した樹脂層202にのみ作用する。すなわち、凹凸パターン203Aを含むモールド203下面と接触する樹脂層202は硬化され(図2(C)に示す硬化部202A)、モールド203からはみ出した樹脂層202の部分は、硬化部202Aに比べて、硬化が不充分な部分となる。この硬化が不充分な部分は図2(C)において未硬化部202Bとして示している。未硬化部202Bは、モールド203の外縁部からはみ出した樹脂層202である。
(4)離型
次に、図2(D)において、所定量の紫外線を照射した後、チャンバ101内の圧力を大気圧に戻す。次いで、モールド203を樹脂層202から離型し、基材201をチャンバ101から外部へ取り出す。この圧力開放によりチャンバ101内における酸素濃度は低下する。
(5)未硬化部の除去
次に、図2(E)において、硬化が阻害された未硬化部202Bをアセトン等の薬品により除去する。使用する薬品は樹脂材料によって異なるが、硬化した樹脂をおかすことがなく、未硬化部202Bのみを除去可能なものを用いることが望ましい。また、本実施の形態では、離型後に未硬化部202Bの除去を行っているが、離型前に行ってもよい。未硬化部202Bの除去は離型の前後いずれでもよい。
未硬化部202Bは、硬化部202Aに比べてモールド203との密着度が低いため、離型しやすくなる。さらに、モールド203と樹脂層202との離型は、モールド203の外周部から開始するため、未硬化部202Bが離型開始点となり、スムーズに離型作業を行うことが可能になる。モールド203と樹脂層202との離型がスムーズに行えることにより、離型時にモールド203あるいは樹脂層202の破損を防ぐことができ、歩留まりを向上させることが可能になる。
(実施例)
本実施例では、チャンバ101内の酸素濃度(vol%)を変化させた場合に、光硬化樹脂の硬化の度合いがどの程度変化するかについて実験した内容を、図3及び図4を参照して説明する。図3は、酸素濃度(vol%)と、溶剤による洗浄を実施した後の光硬化樹脂膜厚(μm)と、の関係を示すグラフである。図4は図3に示すグラフ内の各プロットのデータを示す図である。本実施例では、ラジカル重合型の光硬化樹脂が気体に接触している場合、その気体に含有される酸素濃度によって硬化の度合いが異なる測定結果を例示する。本実施例では、測定対象の光硬化樹脂としてPAK−01(東洋合成工業株式会社製)とNIF−A−1(旭硝子株式会社製)を用い、基材としてシリコン基材を用い、図1に示したナノインプリント装置100を用いる。
まず、測定対象の光硬化樹脂を硬化させるまでの手順を以下に説明する。
(1)シリコン基材上に光硬化樹脂を条件(回転数:2000rpm、回転時間:30sec)でスピンコート法により形成する。
(2)光硬化樹脂を塗布したシリコン基材を図1のチャンバ101内の基材チャック105に設置する。
(3)チャンバ101内を排気、又は、チャンバ101内に酸素を供給する。このとき、チャンバ101内の酸素濃度を酸素濃度計(XO−326ALB:新コスモス電機株式会社製)を用いて計測し、目的の酸素濃度に達した時点でチャンバ101内を気密にし、チャンバ101内の雰囲気を一定にする。
(4)設定した照射量(300mJ/cm)で光源104から紫外線をシリコン基材上の光硬化樹脂に照射する。
(5)紫外線照射後にシリコン基材をチャンバ101内から取り出し、シリコン基材を光硬化樹脂ごとアセトンに5分間浸漬させた後、アセトンを乾燥させ十分に除去した。このとき、完全に硬化した光硬化樹脂はアセトンにより溶解しない。すなわち、このとき未硬化の光硬化樹脂は除去されることになる。
(6)シリコン基材上に残った光硬化樹脂の膜厚をエリプソメトリを用いて計測する。
本実施例では、光硬化樹脂を塗布したシリコン基材のサンプル毎に上記手順(3)において酸素供給量を調整して酸素濃度を0,10,21,30,40,100(vol%)に変化させて、上記手順(4)から(6)を繰り返し実行して、変化させた酸素濃度毎にシリコン基材上に残った光硬化樹脂の膜厚を測定した。この測定結果を図3に示す。
図3に示す酸素濃度と光硬化樹脂膜厚の関係を示すグラフにおいて、図中に□で示すプロットは光硬化樹脂としてNIF−A−1を用いた場合を示し、図中に◇で示すプロットはPAK−01を用いた場合を示す。図3に示すグラフ内の各プロットのデータを表にしたものを図4に示す。
酸素濃度が0(vol%)の場合は、モールド203とほぼ隙間なく接触する樹脂層202の状態と同一とみなせる。すなわち、モールド203と樹脂層202との間には気体が存在しない状態である。
図3及び図4に示すように、酸素濃度が高くなるに従ってシリコン基材上に残った光硬化樹脂NIF−A−1及びPAK−01は共に膜厚が薄くなっている。これは、酸素濃度が高くなるに従って光硬化樹脂の硬化率が低下し、未硬化である部分の樹脂が増えていることを示している。すなわち、酸素濃度が高くなるに従って光硬化樹脂の硬化が阻害されるためである。
ここで、光硬化樹脂の硬化が阻害されるメカニズムについて説明する。ラジカル重合性を有する液状モノマーに光ラジカル開始剤を混合して紫外線を照射すると、光ラジカル開始剤が紫外線を吸収し、光ラジカル開始剤が電子励起状態を形成し、重合開始反応が始まる。ラジカルは、光硬化樹脂が設置された雰囲気中の酸素と反応するため、樹脂の硬化に必要なラジカルが酸素によって消費され、樹脂の硬化が十分に促進されずに硬化不足になる。
基材201上に塗布あるいは滴下する光硬化樹脂の容積が、基材201とモールド203下の空間の体積よりも大きい場合には、モールド203と接触した樹脂層202は、その外周部がモールド203からはみ出す。このはみ出した樹脂層202の膜厚は、モールド203と基材201との間に挟まれた樹脂層202の膜厚よりも厚くなる。このため、モールド203と基材201との間に挟まれた樹脂層202の膜厚の倍の膜厚がはみ出すとすると、硬化を阻害する酸素濃度は、少なくとも今回の実施例で用いた光硬化樹脂の場合は、20(vol%)より高い酸素濃度(大気の酸素濃度より高い濃度)の雰囲気における紫外線照射が必要となり、好ましくは30(vol%)以上の酸素濃度とする。
また、酸素濃度の上限は、酸素濃度が高いほど硬化が阻害されるため、100%に近いことが好ましい。しかし生産性やプロセスの安定性を考慮した場合、上限が考えられる。これはチャンバ101を減圧するのに必要な時間、チャンバ101の耐圧性能、酸素の供給可能な量、また供給する酸素ガスの濃度に左右される。一般に入手可能な酸素ガスの濃度は99%である。もしチャンバ101内を同等の酸素濃度としたい場合、チャンバ101内を減圧するか、酸素ガスを流入させてチャンバ101内の酸素濃度を薄める必要がある。しかしこれらの方法はそれぞれに考慮すべき問題がある。すなわち、減圧を行う場合は、過度に真空度を高くしてしまうと、光硬化樹脂の揮発を招く虞がある。また、低圧とするためにはチャンバ101の容量、排気ポンプ103の性能にも依存するが、所定の時間が必要となる。よってスループットを考慮するならば、過度な減圧は避けるべきである。また、酸素ガスをチャンバ101内に流入させる場合は、チャンバ101の高圧容器としての耐圧性能を確保しつつ、酸素を大量に導入しなければならない。よって以上の実情を踏まえると、酸素濃度は90(vol%)よりも低い状態で実施することが工業的には好ましい。
次に、モールド203と基材201との間に挟まれた樹脂層202が、雰囲気中の酸素濃度によって硬化の進行に影響を受けるか否かを検証した例を図5及び図6を参照して説明する。
今回の検証では、レオメータを用いて図5に示すコーンプレート301を樹脂層202で回転させたときの抵抗により、樹脂層202の粘度を測定した。図5に示す構成では、基材201として石英ガラスを用い、樹脂層202の光硬化樹脂としてPAK−01を用い、光源103として高圧UVランプ(ウシオ電機株式会社製)を用いた。また、レオメータとしてMCR−300(アントンパール株式会社製)を用いた。
次に、粘度測定の手順について以下に説明する。
(1)石英ガラス上に光硬化樹脂を滴下し、アルミニウム製のコーンプレート301を光硬化樹脂に接触させる。このとき、石英ガラスとコーンプレート301の間のギャップは10μmである。
(2)周囲の酸素濃度を0(vol%)又は30(vol%)とし、コーンプレート301を回転させながら、石英ガラス側から紫外線を照射し、レオメータを用いて樹脂層202の粘度を測定した。
上記測定手順によりPAK−01の粘度を測定した結果を図6に示す。図6は、PAK−01を用いて、酸素濃度を0(vol%)と30(vol%)に調整して、紫外線照射中の粘度の経時変化を示すグラフである。
図6に示すように、PAK−01の粘度の上昇曲線は、酸素濃度を0(vol%)と30(vol%)においてほぼ一致し、誤差は小さい。したがって、モールド203と基材201との間に挟まれた樹脂層202は、周囲の酸素濃度によって硬化の進行が阻害されていないことが判明した。
次に、モールド203の外縁部からはみ出す樹脂層202のはみ出し量の変化を測定する例について説明する。
今回の測定では、光硬化樹脂のはみ出し量を測定するためのモールド203を用意し、酸素濃度を30(vol%)の雰囲気中で光硬化樹脂NIF−A−1及びPAK−01に対してモールド203の凹凸パターン203Aを転写して、各光硬化樹脂のはみ出し量を測定した。光硬化樹脂のはみ出し量の測定には顕微鏡としてD300(株式会社ニコン製)を用い、この顕微鏡に付帯のスケールバーを用いて測定した。また、基材201としてシリコン基材を用い、図1に示したナノインプリント装置100を用いた。
図7は、今回の測定に用いたモールド203の構成を示す平面図である。このモールド203は、外形が25mm×25mmの正方形であり、その正方形の各辺の端部からそれぞれ2mm内側に入った位置に凹パターン203Aを目印として形成している。このモールド203は石英製である。
次に、光硬化樹脂のはみ出し量を測定する手順について図8を参照して説明する。
(1)シリコン基材上に光硬化樹脂1.0(μl)をモールド203の中心に滴下する(図8(A)参照)。
(2)ナノインプリント装置100において、モールド203を光硬化樹脂に1.0kNの力で押し付け、その状態で10分間保持させる。
(3)保持させた後、チャンバ101を閉じ、酸素濃度30(vol%)雰囲気又は真空雰囲気(酸素濃度0(vol%))として、光源104により300(mJ/cm)照射し(図8(B)参照)、モールド203を引き剥がす(図8(C)参照)。このとき、紫外線はモールド203と接触している樹脂層202の部分だけでなく、モールド203からはみ出し樹脂層202の部分も含めて照射している。
(4)基材101をアセトンに5分間浸漬させた後、乾燥させる。
(5)モールド203からはみ出した樹脂層202の量を、モールド203の端(転写された目印から特定する)から、樹脂層202が最もはみ出している端までの長さ(図8(C)に示す計測箇所)を、顕微鏡に付帯のスケールバーを用いて計測する。
上記樹脂層202のはみ出し量の測定の結果を図9及び図10に示す。図9は、光硬化樹脂PAK−01のはみ出し量を本案と従来で比較して示す顕微鏡写真である。図10は、酸素濃度(vol%)を変化させて光硬化樹脂NIF−A−1及びPAK−01のはみ出し幅(mm)を測定した結果を示す図である。
図9において、(A)は本案の酸素濃度30(vol%)雰囲気により凹パターンを転写した光硬化樹脂の目印近傍の顕微鏡写真であり、(B)は従来の酸素濃度を上げずに凹パターンを転写した樹脂の目印近傍の顕微鏡写真である。これらの写真から明らかなように、本案の光硬化樹脂のはみ出しは殆どなく、従来の光硬化樹脂のはみ出しが認められた。また、図10に示すはみ出し幅の測定結果では、光硬化樹脂NIF−A−1及びPAK−01は共に酸素濃度(vol%)を上げていくことで凹パターンを転写した光硬化樹脂のはみ出し幅が小さくなることが判明した。PAK−01を用いた場合は、酸素濃度0(vol%)の時のはみ出し幅は3.2mmであり、酸素濃度30(vol%)の時のはみ出し幅は0.4mmであり、はみ出し幅が1/8に小さくなった。NIF−A−1を用いた場合は、5.6mmから0.1mmと更にはみ出し幅が小さくなった。但し、NIF−A−1は、大気中であっても、はみ出し幅が小さくなることを確認した。このことから、酸素濃度30(vol%)雰囲気でモールドパターンを転写することは、そのモールドパターンの外周からはみ出す樹脂のはみ出し幅を減少させる点で有効であることが判明した。
以上の測定の結果、酸素濃度30(vol%)雰囲気中でモールドパターンを光硬化樹脂に転写することにより、はみ出し量が少なくなることが判明した。また、モールドパターンを転写した光硬化樹脂のはみ出し部分は、アセトンに浸漬させることで除去できることを確認した。また、酸素濃度を上げずにパターン203Aを転写した樹脂のはみ出し部分は、アセトンに浸漬しても除去できないことを確認した。
したがって、酸素濃度30(vol%)雰囲気中でモールドパターンを光硬化樹脂に転写することにより、その外周部にはみ出した部分の光硬化樹脂の硬化を阻害して、はみ出した部分をアセトンにより容易に除去できる。このため、上記特許文献1のようにレジストの硬化を阻害するための遮光部材をモールドに設ける必要がなく、ナノインプリント装置100のチャンバ101内の酸素濃度を調整するだけで、パターン203Aを転写する領域からはみ出した部分の樹脂の硬化を阻害することが容易にできる。また、モールドに遮光部材を設ける必要がなくなるため、モールドを保持する箇所を自由に設計することが可能になる。
さらに、基材上に同様のパターンを転写した樹脂層を繰り返し形成する、いわゆる、ステップアンドリピート方式の場合、上記樹脂層202のはみ出し部分を除去することにより、パターンを転写した樹脂層の間隔を詰めて密に形成することが可能になる。すなわち、図11(A)に示すように、本実施の形態のナノインプリント製造方法を繰り返し実行して、基材201上にパターンを転写する樹脂層202を形成する工程を繰り返し実行することにより、各樹脂層のはみ出し部分を除去して、パターンを有する樹脂層202の間隔を詰めて密に形成することが可能になる。また、図11(B)に示すように、基材201上に従来のパターンを転写する樹脂層202を形成する工程を繰り返し実行した場合は、各樹脂層のはみ出し部分が残った状態でパターンを有する樹脂層202が形成されるため、樹脂層202の形成間隔は拡がる。したがって、本実施の形態のナノインプリント製造方法を適用することにより、基材の面積を有効に利用して複数のパターンを有する樹脂層を形成することが可能になり、ナノインプリントの構造体200の製造効率の向上を図ることができる。なお、図11(A)に示したパターンを有する樹脂層202は、横方向に配置した場合を示したが、二次元(行方向及び列方向)に複数配置する場合も同様に間隔を詰めて密に形成することが可能になる。
なお、本実施形態では、光硬化樹脂としてNIF−A−1及びPAK−01を用いた場合を示したが、酸素により硬化を阻害することが可能な光ラジカル重合性を有する光ラジカル硬化樹脂であればよい。
100…ナノインプリント装置、101…チャンバ、102…酸素供給装置、103…排気ポンプ、104…光源、200…ナノインプリントの構造体、201…基材、202…樹脂層、202A…硬化部、202B…未硬化部、203…モールド、203A…凹凸パターン。

Claims (7)

  1. 基材上に光硬化樹脂により樹脂層を形成し、
    前記樹脂層に凹凸パターンを有するモールドを接触させ、
    前記光硬化樹脂の硬化を阻害する気体を含む雰囲気下で、遮光部材を用いることなく前記樹脂層の全面に光を照射して、少なくとも前記凹凸パターン下にある前記樹脂層を硬化させ、前記モールドの外縁よりはみ出した前記樹脂層を未硬化の状態で残存させ、
    前記樹脂層から前記モールドを離型し、
    硬化させた前記樹脂層の周囲に残存する未硬化の樹脂層を除去することを特徴とするナノインプリントによるパターン形成方法。
  2. 請求項1記載のパターン形成方法を繰り返し実行して、前記凹凸パターンを転写して硬化した前記樹脂層を前記基材上に繰り返し形成する、ことを特徴とする請求項1に記載のナノインプリントによるパターン形成方法。
  3. 前記モールドの外縁よりはみ出した前記樹脂層を除去することを特徴とする請求項1又は2記載のナノインプリントによるパターン形成方法。
  4. 前記樹脂層を硬化させる際の前記硬化を阻害する気体の濃度は、前記凹凸パターンが前記樹脂層に接触する際の前記硬化を阻害する気体の濃度よりも高いことを特徴とする請求項1乃至3の何れか一項に記載のナノインプリントによるパターン形成方法。
  5. 前記硬化を阻害する気体は、酸素であることを特徴とする請求項1乃至4の何れか一項に記載のナノインプリントによるパターン形成方法。
  6. 前記樹脂層を硬化させる際の雰囲気は30(vol%)以上、90(vol%)以下の酸素濃度を含むことを特徴とする請求項1乃至5の何れか一項に記載のナノインプリントによるパターン形成方法。
  7. 前記樹脂層は、光ラジカル硬化樹脂からなることを特徴とする請求項1乃至6の何れか一項に記載のナノインプリントによるパターン形成方法。
JP2009261668A 2009-11-17 2009-11-17 ナノインプリントによるパターン形成方法 Expired - Fee Related JP5568960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261668A JP5568960B2 (ja) 2009-11-17 2009-11-17 ナノインプリントによるパターン形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261668A JP5568960B2 (ja) 2009-11-17 2009-11-17 ナノインプリントによるパターン形成方法

Publications (2)

Publication Number Publication Date
JP2011108805A JP2011108805A (ja) 2011-06-02
JP5568960B2 true JP5568960B2 (ja) 2014-08-13

Family

ID=44231979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261668A Expired - Fee Related JP5568960B2 (ja) 2009-11-17 2009-11-17 ナノインプリントによるパターン形成方法

Country Status (1)

Country Link
JP (1) JP5568960B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172755A1 (ja) * 2011-06-16 2012-12-20 パナソニック株式会社 シートおよびモールドならびにその製造方法
JP5710436B2 (ja) 2011-09-26 2015-04-30 株式会社東芝 パターン形成方法
JP5949430B2 (ja) * 2012-10-18 2016-07-06 富士通株式会社 インプリント装置及びインプリント方法
JP5971561B2 (ja) * 2013-01-29 2016-08-17 株式会社東芝 パターン形成方法およびパターン形成装置
JP6111783B2 (ja) * 2013-03-27 2017-04-12 大日本印刷株式会社 インプリント方法およびインプリント装置
US10895806B2 (en) * 2017-09-29 2021-01-19 Canon Kabushiki Kaisha Imprinting method and apparatus
JP6976884B2 (ja) * 2018-02-28 2021-12-08 キヤノン株式会社 露光装置、および物品の製造方法
JP7566614B2 (ja) 2020-12-18 2024-10-15 キヤノン株式会社 インプリント装置および物品の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191608A (ja) * 1987-02-04 1988-08-09 Dai Ichi Kogyo Seiyaku Co Ltd 反応硬化性液状樹脂の成形方法
JPH0215438A (ja) * 1988-07-04 1990-01-19 Hitachi Ltd 光デイスクの製造方法
US7490547B2 (en) * 2004-12-30 2009-02-17 Asml Netherlands B.V. Imprint lithography
JP2007152724A (ja) * 2005-12-05 2007-06-21 Nikon Corp 樹脂の成型方法、及び光学素子の製造方法
JP5274128B2 (ja) * 2007-08-03 2013-08-28 キヤノン株式会社 インプリント方法および基板の加工方法
JP5243887B2 (ja) * 2008-02-12 2013-07-24 富士フイルム株式会社 ナノインプリント用硬化性組成物およびパターン形成方法
JP5065101B2 (ja) * 2008-03-05 2012-10-31 東洋合成工業株式会社 パターン形成方法

Also Published As

Publication number Publication date
JP2011108805A (ja) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5568960B2 (ja) ナノインプリントによるパターン形成方法
JP5065101B2 (ja) パターン形成方法
KR101622818B1 (ko) 나노임프린팅 방법 및 나노임프린팅 방법을 실행하기 위한 나노임프린팅 장치
JP4892025B2 (ja) インプリント方法
US10101663B2 (en) Imprint apparatus and method of manufacturing article
US8679357B2 (en) Nanoimprinting method and method for producing substrates utilizing the nanoimprinting method
JP4536157B1 (ja) 単一位相流体インプリント・リソグラフィ法
TWI479277B (zh) 移除附著於模具的異物的方法
KR101374001B1 (ko) 임프린트 장치 및 제품 제조 방법
JP5653864B2 (ja) ナノインプリント用のモールドの離型処理方法およびそれを用いた製造方法並びにモールド、ナノインプリント方法およびパターン化基板の製造方法
JP2008091782A (ja) パターン形成用テンプレート、パターン形成方法、及びナノインプリント装置
JP5480530B2 (ja) 微細構造転写方法及び微細構造転写装置
JP5397054B2 (ja) ナノインプリント方法およびナノインプリント装置
JP2013074115A (ja) ナノインプリント装置およびナノインプリント方法、並びに、歪み付与デバイスおよび歪み付与方法
JP2011116032A (ja) インプリント用モールドおよび該モールドを用いたパターン形成方法
JP5644906B2 (ja) ナノインプリント方法
JP6445772B2 (ja) インプリント装置及び物品の製造方法
JP5993230B2 (ja) 微細構造転写装置及び微細構造転写スタンパ
JP5481438B2 (ja) インプリント用モールドおよびパターン形成方法
US20210072640A1 (en) Imprinting method, semiconductor device manufacturing method and imprinting apparatus
WO2021065393A1 (ja) インプリント用モールド、インプリント方法および物品の製造方法
JP6942487B2 (ja) インプリント装置、インプリント方法、および物品製造方法
JP7149872B2 (ja) インプリント方法、インプリント装置、および物品の製造方法
JP2024110808A (ja) 液状材料、モールド、形成方法、形成装置、インプリント装置、平坦化装置、および物品製造方法
JP2015056548A (ja) インプリント装置及びインプリント方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5568960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees