JP5568260B2 - Soi基板の作製方法 - Google Patents

Soi基板の作製方法 Download PDF

Info

Publication number
JP5568260B2
JP5568260B2 JP2009169736A JP2009169736A JP5568260B2 JP 5568260 B2 JP5568260 B2 JP 5568260B2 JP 2009169736 A JP2009169736 A JP 2009169736A JP 2009169736 A JP2009169736 A JP 2009169736A JP 5568260 B2 JP5568260 B2 JP 5568260B2
Authority
JP
Japan
Prior art keywords
substrate
film
bond substrate
bond
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009169736A
Other languages
English (en)
Other versions
JP2010050446A (ja
Inventor
良太 今林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2009169736A priority Critical patent/JP5568260B2/ja
Publication of JP2010050446A publication Critical patent/JP2010050446A/ja
Application granted granted Critical
Publication of JP5568260B2 publication Critical patent/JP5568260B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、SOI(Silicon on Insulator)基板の作製方法に関する。
近年、バルク状のシリコンウエハに代わり、絶縁表面に薄い単結晶半導体層が設けられたSOI(Silicon on Insulator)基板を使った集積回路が開発されている。絶縁表面上に形成された薄い単結晶シリコン膜の特長を活かすことで、集積回路中のトランジスタ同士を完全に分離して形成することができる。またトランジスタを完全空乏型とすることができるため、高集積、高速駆動、低消費電力など付加価値の高い半導体集積回路を実現することができる。
SOI基板を製造する方法の1つとして、スマートカット(登録商標)が挙げられる。スマートカットを用いることにより、シリコン基板上だけでなく、ガラス基板等の絶縁基板上に単結晶シリコン膜を有するSOI基板も作製できる。(例えば、特許文献1参照)。スマートカットを用いた、ガラス基板上に単結晶シリコン薄膜を有するSOI基板の作製方法の概要は以下のようになる。まず、単結晶シリコン片表面に二酸化珪素膜を形成する。次に、単結晶シリコン片に水素イオンを注入することによって単結晶シリコン片中の所定の深さに水素イオン打ち込み面を形成する。それから、二酸化珪素膜を介して、水素イオンを注入した単結晶シリコン片をガラス基板に接合させる。しかる後熱処理を施すことで、該水素イオン打ち込み面が劈開面となり、水素イオンを注入した単結晶シリコン片が薄膜状に分離し、接合させたガラス基板上に単結晶シリコン薄膜を形成することができる。このスマートカットは水素イオン注入剥離法と呼ぶこともある。
特開2004−87606号公報
スマートカットを用いてSOI基板を作製すると、ボンド基板(単結晶半導体基板)をガラス基板に貼り合わせた後、ボンド基板を分離することによってガラス基板上に薄膜の半導体膜が形成される。貼り合わせたボンド基板の大部分はガラス基板から分離されてしまう。しかし、ガラス基板と分離したボンド基板(分離ボンド基板)は、再生処理を施すことによって、再びSOI基板作製用のボンド基板に使用することができる。以上の工程を繰り返すことによって、1枚のボンド基板から複数枚のSOI基板用の半導体膜を形成することができるので、SOI基板作製のコスト削減と高効率化を図ることができる。
しかし、スマートカットによって薄膜の半導体膜が分離された分離ボンド基板表面は、結晶欠陥が多く形成され、平坦性も大きく損なわれている。特に、ベース基板としてガラス基板、ボンド基板として単結晶シリコン基板というように、互いに熱膨張係数の異なる基板を用いる場合は、ガラス基板に貼り合わせられた半導体膜及び分離ボンド基板の分離面に膜厚ムラが現れるという問題がある。この膜厚ムラは10nm〜100nm程度の厚さであり、例えば、矩形状のボンド基板の場合、膜厚ムラはL字状又はコの字状に現れる。表面に膜厚ムラのあるボンド基板をSOI基板作製に再利用した場合、ガラス基板とボンド基板がうまく貼り合わせられない等の問題が発生する恐れがある。
ここで、ボンド基板表面の膜厚ムラを除去し、平坦化するための方法としては、化学的機械的研磨法(Chemical Mechanical Polishing:CMP法)が挙げられる。しかし、CMP法は基板表面を機械的に研磨する方法のため、ボンド基板の研磨代(研磨量)が大きくなるという問題がある。つまり、再生処理工程におけるボンド基板の取り代が大きくなり、1枚のボンド基板を再生使用できる回数が減るためにコスト増大につながる。
特に、市販の単結晶シリコンウエハ等のボンド基板は、角を面取りした面取り部が周辺部に存在するので、ボンド基板の周辺部をガラス基板にうまく貼り合わせることができない。よって、ボンド基板を分離したときに、本来ガラス基板と貼り合わせられる半導体膜の周辺部が分離ボンド基板の周辺部に残存してしまう。この半導体層などからなる凸部がボンド基板周辺部に存在することにより、CMP法を用いるときの研磨代がさらに増大する。
上記の問題を鑑み、本発明の一態様は、半導体膜が分離された後の分離ボンド基板を、SOI基板作製に用いることが可能な再生ボンド基板に再生する方法を提供することを課題とする。
本発明の一態様は、ボンド基板上に絶縁膜を形成し、ボンド基板の表面からイオンを添加することによって脆化層を形成し、ボンド基板を、絶縁膜を介してガラス基板と貼り合わせ、脆化層においてボンド基板を、ガラス基板上に絶縁膜を介して貼り合わせられた半導体膜と、分離ボンド基板と、に分離することを特徴とするSOI基板の作製方法であって、分離ボンド基板にウェットエッチングを行い、分離ボンド基板を酸化雰囲気下でハロゲンを含むガスを添加して熱酸化処理を行って、分離ボンド基板表面に酸化膜を形成し、酸化膜にウェットエッチングを行い、分離ボンド基板に研磨を行って再生ボンド基板を形成し、再生ボンド基板を再びボンド基板として用いることを特徴とするSOI基板の作製方法である。
本発明の他の一態様は、ボンド基板上に絶縁膜を形成し、ボンド基板の表面からイオンを添加することによって脆化層を形成し、ボンド基板を、絶縁膜を介してガラス基板と貼り合わせ、脆化層においてボンド基板を、ガラス基板上に絶縁膜を介して貼り合わせられた半導体膜と、分離ボンド基板と、に分離することを特徴とするSOI基板の作製方法であって、分離ボンド基板にフッ酸を含む溶液をエッチャントとする第1のウェットエッチングを行い、分離ボンド基板に有機アルカリ水溶液をエッチャントとする第2のウェットエッチングを行い、分離ボンド基板を酸化雰囲気下でハロゲンを含むガスを添加して熱酸化処理を行って、分離ボンド基板表面に酸化膜を形成し、酸化膜にフッ酸を含む溶液をエッチャントとする第3のウェットエッチングを行い、分離ボンド基板に研磨を行って再生ボンド基板を形成し、再生ボンド基板を再びボンド基板として用いることを特徴とするSOI基板の作製方法である。
なお、分離ボンド基板にフッ酸を含む溶液をエッチャントとする第1のウェットエッチングを行い、分離ボンド基板に有機アルカリ水溶液をエッチャントとする第2のウェットエッチングを行い、分離ボンド基板を酸化雰囲気下でハロゲンを含むガスを添加して熱酸化処理を行って分離ボンド基板表面に酸化膜を形成し、酸化膜にフッ酸を含む溶液をエッチャントとする第3のウェットエッチングを行い、ボンド基板分離の際に、分離ボンド基板の分離面に生じる膜厚ムラを除去することが好ましい。
また、分離ボンド基板にフッ酸を含む溶液をエッチャントとする第1のウェットエッチングを行い、分離ボンド基板に有機アルカリ水溶液をエッチャントとする第2のウェットエッチングを行い、分離ボンド基板を酸化雰囲気下でハロゲンを含むガスを添加して熱酸化処理を行って分離ボンド基板表面に酸化膜を形成し、酸化膜にフッ酸を含む溶液をエッチャントとする第3のウェットエッチングを行い、分離ボンド基板に研磨を行って、ボンド基板分離の際に、分離ボンド基板の周辺部に残存した半導体膜及び絶縁膜を除去することが好ましい。
また、絶縁膜は、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜若しくは窒化酸化シリコン膜から選ばれた単数の膜又は複数の膜の積層であることが好ましい。また、酸化シリコン膜は、有機シランガスを用いた化学気相成長法により形成されたものであることが好ましい。また、酸化シリコン膜は、ボンド基板を熱酸化して形成されたものであることが好ましい。
また、ガラス基板上に接して第2の絶縁膜を形成することが好ましい。また、第2の絶縁膜は、窒化シリコン膜又は窒化酸化シリコン膜であることが好ましい。
また、ボンド基板は、単結晶シリコン基板であることが好ましい。また、ガラス基板は、アルミノシリケートガラス、バリウムホウケイ酸ガラス、又はアルミノホウケイ酸ガラスであることが好ましい。
また、フッ酸を含む溶液は、フッ酸とフッ化アンモニウムと界面活性剤とを含む混合溶液であることが好ましい。また、有機アルカリ水溶液は、テトラメチルアンモニウムヒドロキシドを含む水溶液であることが好ましい。また、ハロゲンを含むガスとして、HClを用いることが好ましい。また、酸化膜は、ハロゲンを含むことが好ましい。
また、研磨として、化学的機械的研磨法(CMP法:Chemical Mechanical Polishing)を用いることが好ましい。
本発明の一態様は、半導体膜が分離された後の分離ボンド基板を、SOI基板作製に用いることが可能な再生ボンド基板に再生する方法を提供することができる。
本発明の一態様に係るSOI基板の作製方法を示す図。 本発明の一態様に係るSOI基板の作製方法を示す図。 本発明の一態様に係るSOI基板の作製方法を示す図。 本発明の一態様に係るSOI基板の作製方法を示す図。 本発明の一態様に係るSOI基板の分離ボンド基板の分離面を示す図。 本発明の一態様に係るSOI基板の作製工程を示す図。 本発明の一態様に係るSOI基板を用いた半導体装置の作製方法を示す図。 本発明の一態様に係るSOI基板を用いた半導体装置の作製方法を示す図。 本発明の一態様に係るSOI基板を用いた半導体装置を示す図。 本発明の一態様に係るSOI基板を用いた半導体装置を示す図。 本発明の一態様に係るSOI基板を用いた表示装置を示す図。 本発明の一態様に係るSOI基板を用いた表示装置を示す図。 本発明の一態様に係るSOI基板を用いた電子機器を示す図。 本発明の一態様に係るSOI基板を用いた電子機器を示す図。 本発明の一態様に係るSOI基板の分離ボンド基板の分離面の写真 本発明の一態様に係るSOI基板の分離ボンド基板の分離面の写真 本発明の一態様に係るSOI基板の分離ボンド基板の分離面の写真
以下、本発明の実施の形態について図面を参照しながら説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本実施の形態の記載内容に限定して解釈されるものではない。なお、本明細書中の図面において、同一部分または同様な機能を有する部分には同一の符号を付し、その説明は省略する場合がある。
(実施の形態1)
本実施の形態に係るSOI基板の製造方法は、ボンド基板である半導体基板から分離させた半導体膜をベース基板に接合してSOI基板を製造する。そして、半導体膜が分離された分離ボンド基板に再生処理を施して、ボンド基板として再利用する。以下、図1〜図5と図6のSOI基板作製工程図を参照して、本形態に係るSOI基板の製造方法の一つについて説明する。
最初に、ボンド基板100に脆化層104を形成し、ベース基板となるガラス基板120との貼り合わせの準備を行う工程について説明する。以下の工程は、図6において工程A(ボンド基板工程)に該当する。
まず図1(A)のような、ボンド基板100を準備する(図6の工程A−1に対応)。ボンド基板100としては、市販の半導体基板を用いることができ、例えば、シリコン、ゲルマニウムなどの単結晶半導体基板または多結晶半導体基板を用いることができる。その他に、ガリウムヒ素、インジウムリンなどの化合物半導体で形成された単結晶半導体基板または多結晶半導体基板を、ボンド基板100として用いることができる。市販のシリコン基板としては、直径5インチ(125mm)、直径6インチ(150mm)、直径8インチ(200mm)、直径12インチ(300mm)、直径16インチ(400mm)サイズの円形のものが代表的である。また、市販のシリコン基板の周辺部には、図1(A)に示すような、欠けやひび割れを防ぐための面取り部が存在する。なお、形状は円形に限られず矩形状等に加工したシリコン基板を用いることも可能である。以下の説明では、ボンド基板100として、矩形状の単結晶シリコン基板を用いる場合について示す。
次に図1(B)に示すように、ボンド基板100の表面を洗浄した後、ボンド基板100上に絶縁膜102を形成する(図6の工程A−2に対応)。絶縁膜102は、単数の絶縁膜を用いたものであっても、複数の絶縁膜を積層して用いたものであっても良い。例えば本実施の形態では、酸化シリコンを絶縁膜102として用いる。絶縁膜102を構成する膜には、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜などのシリコンを組成に含む絶縁膜を用いることができる。なお、ボンド基板100の表面は、硫酸過水(SPM)、アンモニア過水(APM)、塩酸過水(HPM)、希フッ酸(DHF)などを用いて洗浄しておくのが好ましい。
なお、本明細書において、酸化窒化シリコン膜とは、その組成として、窒素原子よりも酸素原子の数が多く、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)及び水素前方散乱法(HFS:Hydrogen Forward Scattering)を用いて測定した場合に、濃度範囲として酸素が50〜70原子%、窒素が0.5〜15原子%、Siが25〜35原子%、水素が0.1〜10原子%の範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成として、酸素原子より窒素原子の数が多く、RBS及びHFSを用いて測定した場合に、濃度範囲として酸素が5〜30原子%、窒素が20〜55原子%、Siが25〜35原子%、水素が10〜30原子%の範囲で含まれるものをいう。但し、酸化窒化シリコンまたは窒化酸化シリコンを構成する原子の合計を100原子%としたとき、窒素、酸素、Si及び水素の含有比率が上記の範囲内に含まれるものとする。
酸化シリコンを絶縁膜102として用いる場合、絶縁膜102はシランと酸素、TEOS(テトラエトキシシラン)と酸素等の混合ガスを用い、熱CVD、プラズマCVD、常圧CVD、バイアスECRCVD等の気相成長法によって形成することができる。この場合、絶縁膜102の表面を酸素プラズマ処理で緻密化しても良い。
また、有機シランガスを用いて化学気相成長法により作製される酸化シリコンを、絶縁膜102として用いても良い。有機シランガスとしては、テトラエトキシシラン(TEOS:化学式Si(OC)、テトラメチルシラン(TMS:化学式Si(CH)、テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘキサメチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC)、トリスジメチルアミノシラン(SiH(N(CH)等のシリコン含有化合物を用いることができる。
また、ボンド基板100を酸化することで得られる酸化膜で、絶縁膜102を形成することもできる。上記酸化膜を形成するための、熱酸化処理には、ドライ酸化を用いても良いが、酸化雰囲気中にハロゲンを含むガスを添加しても良い。ハロゲンを含むガスとしては、HCl、HF、NF、HBr、Cl、ClF、BCl、F、Brなどから選ばれた一種又は複数種ガスを用いることができる。なお、図1(B)では、ボンド基板100の一方の面にしか絶縁膜102が形成されていないが、本実施の形態はこれに限定されない。ボンド基板100を酸化することで得られる酸化膜によって絶縁膜102を形成する場合、ボンド基板100を覆うように絶縁膜102が形成されていても良い。
例えば、酸素に対しHClを0.5〜10体積%(好ましくは3体積%)の割合で含む雰囲気中で、700℃以上1100℃以下の温度で熱処理を行う。例えば950℃程度で熱処理を行うとよい。処理時間は0.1〜6時間、好ましくは2.5〜3.5時間とすればよい。形成される酸化膜の膜厚は、15nm〜1100nm(好ましくは50nm〜150nm)、例えば100nmとすることができる。
このハロゲンを含む雰囲気での熱酸化処理により、酸化膜にハロゲンを含ませることができる。ハロゲン元素を1×1017atoms/cm〜1×1021atoms/cmの濃度で酸化膜に含ませることにより、外因性不純物である重金属(例えば、Fe、Cr、Ni、Mo等)を酸化膜が捕獲するので、後に形成される半導体膜の汚染を防止することができる。
また、絶縁膜102に、HCl酸化などによって膜中に塩素等のハロゲンを含ませることにより、ボンド基板100に悪影響を与える不純物(例えば、Na等の可動イオン)をゲッタリングすることができる。具体的には、絶縁膜102を形成した後に行われる熱処理により、ボンド基板100に含まれる不純物が絶縁膜102に析出し、ハロゲン原子(例えば塩素原子)と反応して捕獲されることとなる。それにより絶縁膜102中に捕集した当該不純物を固定してボンド基板100の汚染を防ぐことができる。また、絶縁膜102はガラス基板と貼り合わせた場合に、ガラスに含まれるNa等の不純物を固定する膜として機能しうる。
また、酸化処理に含まれるハロゲン元素により、ボンド基板100の表面の欠陥が終端化されるため、酸化膜とボンド基板100との界面の局在準位密度を低減することができる。
ベース基板として、アルカリ金属若しくはアルカリ土類金属などの半導体装置の信頼性を低下させる不純物を含むようなガラス基板を用いる場合、上記不純物がベース基板からSOI基板の半導体膜に拡散することを防止できるような膜を、少なくとも1層以上、絶縁膜102が有することが好ましい。このような膜には、窒化シリコン膜、窒化酸化シリコン膜などがある。このような膜を絶縁膜102が有することで、絶縁膜102をバリア膜として機能させることができる。
窒化シリコンを絶縁膜102として用いる場合、シランとアンモニアの混合ガスを用い、プラズマCVD等の気相成長法によって形成することができる。また、窒化酸化シリコンを絶縁膜102として用いる場合、シランとアンモニアの混合ガス、またはシランと一酸化二窒素の混合ガスを用い、プラズマCVD等の気相成長法によって形成することができる。
例えば、絶縁膜102を単層構造のバリア膜として形成する場合、厚さ15nm以上300nm以下の窒化シリコン膜、窒化酸化シリコン膜で形成することができる。
絶縁膜102を、バリア膜として機能する2層構造の膜とする場合は、上層は、バリア機能の高い絶縁膜で構成する。上層の絶縁膜は、例えば厚さ15nm〜300nmの窒化シリコン膜、窒化酸化シリコン膜で形成することができる。これらの膜は、不純物の拡散を防止するブロッキング効果が高いが、内部応力が高い。そのため、ボンド基板100と接する下層の絶縁膜には、上層の絶縁膜の応力を緩和する効果のある膜を選択することが好ましい。上層の絶縁膜の応力を緩和する効果のある絶縁膜として、酸化シリコン膜、酸化窒化シリコン膜およびボンド基板100を熱酸化して形成した熱酸化膜などがある。下層の絶縁膜の厚さは5nm以上200nm以下とすることができる。
例えば、絶縁膜102をブロッキング膜として機能させるために、酸化シリコン膜と窒化シリコン膜、酸化窒化シリコン膜と窒化シリコン膜、酸化シリコン膜と窒化酸化シリコン膜、酸化窒化シリコン膜と窒化酸化シリコン膜などの組み合わせで絶縁膜102を形成すると良い。
次に図1(C)に示すように、ボンド基板100に、電界で加速されたイオンでなるイオンビームを、矢印で示すように絶縁膜102を介してボンド基板100に照射し、ボンド基板100の表面から一定の深さの領域に、微小ボイドを有する脆化層104を形成する(図6の工程A−3に対応)。脆化層104が形成される領域の深さは、イオンビームの加速エネルギーとイオンビームの入射角によって調節することができる。加速エネルギーは加速電圧、ドーズ量などにより調節できる。イオンの平均侵入深さとほぼ同じ深さの領域に脆化層104が形成される。イオンを添加する深さで、後にボンド基板100から分離される半導体膜124の厚さが決定される。脆化層104が形成される深さは、例えばボンド基板100の表面から50nm以上500nm以下とすることができ、好ましい深さの範囲は50nm以上200nm以下、例えば100nm程度とすると良い。なお、本実施の形態では、イオンの照射を絶縁膜102の形成後に行っているが、これに限られず、絶縁膜102の形成前にイオンの照射を行っても良い。
イオンをボンド基板100に添加するには、質量分離を伴わないイオンドーピング法で行うことがタクトタイムを短縮するという点で望ましい。ただし、イオンドーピング法でイオンを添加する場合、質量分離を伴うイオン注入法と比較すると、イオンの添加される深さに多少バラツキが出るため、ボンド基板100の表面から300nm乃至700nm程度、例えば500nm程度の深さまで、水素イオンにより損傷することがある。
ソースガスに水素(H)を用いる場合、水素ガスを励起してH、H 、H を生成することができる。ソースガスから生成されるイオン種の割合は、プラズマの励起方法、プラズマを発生させる雰囲気の圧力、ソースガスの供給量などを調節することで、変化させることができる。イオンドーピング法でイオン照射を行う場合、イオンビームに、H、H 、H の総量に対してH が70%以上含まれるようにすることが好ましく、H の割合は80%以上がより好ましい。H の割合を70%以上とすることで、イオンビームに含まれるH イオンの割合が相対的に小さくなり、イオンビームに含まれる水素イオンの平均侵入深さのばらつきが小さくなるので、イオンの添加効率が向上し、タクトタイムを短縮することができる。
また、H はH、H に比べて質量が大きい。そのため、イオンビームにおいて、H の割合が多い場合と、H、H の割合が多い場合とでは、ドーピングの際の加速電圧が同じであっても、前者の場合の方が、ボンド基板100の浅い領域に水素を添加することができる。また前者の場合、ボンド基板100に添加される水素の、厚さ方向における濃度分布が急峻となるため、脆化層104の厚さ自体も薄くすることができる。
水素ガスを用いて、イオンドーピング法でイオン照射を行う場合、加速電圧10kV以上200kV以下、ドーズ量1×1016ions/cm以上6×1016ions/cm以下とすることが好ましい。そのようにイオン照射を行うことによって、イオンビームに含まれるイオン種及びその割合や絶縁膜102の膜厚にもよるが、脆化層104をボンド基板100の表面から深さ50nm以上500nm以下、好ましくは、50nm以上200nm以下、例えば100nm程度の領域に形成することができる。
次に、絶縁膜102が形成されたボンド基板100を洗浄する。この洗浄工程は、純水による超音波洗浄や純水と窒素による2流体ジェット洗浄で行うことができる。超音波洗浄はメガヘルツ超音波洗浄(メガソニック洗浄)が好ましい。超音波洗浄や2流体ジェット洗浄の後、ボンド基板100をオゾン水で洗浄してもよい。オゾン水で洗浄することで、有機物の除去と、絶縁膜102表面の親水性を向上させる表面の活性化処理を行うことができる。
絶縁膜102の表面の活性化処理には、オゾン水による洗浄の他原子ビーム若しくはイオンビームの照射処理、紫外線処理、オゾン処理、プラズマ処理、バイアス印加プラズマ処理若しくはラジカル処理で行うことができる(図6の工程A−4に対応)。原子ビーム若しくはイオンビームを利用する場合には、アルゴン等の不活性ガス中性原子ビーム若しくは不活性ガスイオンビームを用いることができる。
ここで、オゾン処理の一例を説明する。例えば、酸素を含む雰囲気下で紫外線(UV)を照射することにより、被処理体表面にオゾン処理を行うことができる。酸素を含む雰囲気下で紫外線を照射するオゾン処理は、UVオゾン処理または紫外線オゾン処理などとも言われる。酸素を含む雰囲気下において、紫外線のうち200nm未満の波長を含む光と200nm以上の波長を含む光を照射することにより、オゾンを生成させるとともに、オゾンから一重項酸素を生成させることができる。紫外線のうち180nm未満の波長を含む光を照射することにより、オゾンを生成させるとともに、オゾンから一重項酸素を生成させることもできる。
酸素を含む雰囲気下で、200nm未満の波長を含む光および200nm以上の波長を含む光を照射することにより起きる反応例を示す。
+hν(λnm)→O(P)+O(P) (1)
O(P)+O→O (2)
+hν(λnm)→O(D)+O (3)
上記反応式(1)において、酸素(O)を含む雰囲気下で200nm未満の波長(λnm)を含む光(hν)を照射することにより基底状態の酸素原子(O(P))が生成される。次に、反応式(2)において、基底状態の酸素原子(O(P))と酸素(O)とが反応してオゾン(O)が生成される。そして、反応式(3)において、生成されたオゾン(O)を含む雰囲気下で200nm以上の波長(λnm)を含む光が照射されることにより、励起状態の一重項酸素O(D)が生成される。酸素を含む雰囲気下において、紫外線のうち200nm未満の波長を含む光を照射することによりオゾンを生成させるとともに、200nm以上の波長を含む光を照射することによりオゾンを分解して一重項酸素を生成する。上記のようなオゾン処理は、例えば、酸素を含む雰囲気下での低圧水銀ランプの照射(λ=185nm、λ=254nm)により行うことができる。
また、酸素を含む雰囲気下で、180nm未満の波長を含む光を照射することにより起きる反応例を示す。
+hν(λnm)→O(D)+O(P) (4)
O(P)+O→O (5)
+hν(λnm)→O(D)+O (6)
上記反応式(4)において、酸素(O)を含む雰囲気下で180nm未満の波長(λnm)を含む光を照射することにより、励起状態の一重項酸素O(D)と基底状態の酸素原子(O(P))が生成する。次に、反応式(5)において、基底状態の酸素原子(O(P))と酸素(O)とが反応してオゾン(O)が生成する。反応式(6)において、生成されたオゾン(O)を含む雰囲気下で180nm未満の波長(λnm)を含む光が照射されることにより、励起状態の一重項酸素と酸素が生成される。酸素を含む雰囲気下において、紫外線のうち180nm未満の波長を含む光を照射することによりオゾンを生成させるとともにオゾンまたは酸素を分解して一重項酸素を生成する。上記のようなオゾン処理は、例えば、酸素を含む雰囲気下でのXeエキシマUVランプの照射(λ=172nm)により行うことができる。
200nm未満の波長を含む光により被処理体表面に付着する有機物などの化学結合を切断し、オゾンまたはオゾンから生成された一重項酸素により被処理体表面に付着する有機物、または化学結合を切断した有機物などを酸化分解して除去することができる。上記のようなオゾン処理を行うことで、被処理体表面の親水性および清浄性を高めることができ、接合を良好に行うことができる。
酸素を含む雰囲気下で紫外線を照射することによりオゾンが生成される。オゾンは、被処理体表面に付着する有機物の除去に効果を奏する。また、一重項酸素も、オゾンと同等またはそれ以上に、被処理体表面に付着する有機物の除去に効果を奏する。オゾン及び一重項酸素は、活性状態にある酸素の例であり、総称して活性酸素とも言われる。上記反応式等で説明したとおり、一重項酸素を生成する際にオゾンが生じる、またはオゾンから一重項酸素を生成する反応もあるため、ここでは一重項酸素が寄与する反応も含めて、便宜的にオゾン処理と称する。
次に、ベース基板となるガラス基板120のボンド基板100との貼り合わせの準備を行う工程について説明する。以下の工程は、図6における工程B(ガラス基板工程)に該当する。
まず、ガラス基板120を準備する(図6の工程B−1に対応)。ガラス基板120としては、アルミノシリケートガラス、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどの電子工業用に使われる各種ガラス基板を用いることが出来る。なお、ガラス基板120としては、熱膨張係数が25×10−7/℃以上50×10−7/℃以下(好ましくは、30×10−7/℃以上40×10−7/℃以下)であり、歪み点が580℃以上680℃以下(好ましくは、600℃以上680℃以下)である基板を用いることが好ましい。また、ガラス基板120として無アルカリガラス基板を用いると、不純物による半導体装置の汚染を抑えることができる。
また、ガラス基板120として、液晶パネルの製造用に開発されたマザーガラス基板を用いることが好ましい。マザーガラスとしては、例えば、第3世代(550mm×650mm)、第3.5世代(600mm×720mm)、第4世代(680mm×880mmまたは、730mm×920mm)、第5世代(1100mm×1300mm)、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2850mm×3050mm)などのサイズの基板が知られている。大面積のマザーガラス基板をガラス基板120として用いてSOI基板を製造することで、SOI基板の大面積化が実現できる。SOI基板の大面積化が実現すれば、一度に多数のIC、LSI等のチップを製造することができ、1枚の基板から製造されるチップ数が増加するので、生産性を飛躍的に向上させることができる。
また、ガラス基板120上に絶縁膜122を形成しておくのが好ましい(図6の工程B−2に対応)。ただし、ガラス基板120は、その表面に絶縁膜122が必ずしも形成されていなくとも良い。しかし、ガラス基板120の表面に絶縁膜122として、バリア膜として機能する窒化シリコン膜、窒化酸化シリコン膜、窒化アルミニウム膜、または窒化酸化アルミニウム膜などを形成しておくことで、ガラス基板120からボンド基板100に、アルカリ金属やアルカリ土類金属などの不純物が入り込むのを防ぐことができる。
貼り合わせを行う前に、ガラス基板120の表面を洗浄する。ガラス基板120の表面の洗浄は、塩酸と過酸化水素水を用いた洗浄や、メガヘルツ超音波洗浄や、2流体ジェット洗浄や、オゾン水による洗浄で行うことができる。また、絶縁膜102と同様に、絶縁膜122の表面に、原子ビーム若しくはイオンビームの照射処理、紫外線処理、オゾン処理、プラズマ処理、バイアス印加プラズマ処理若しくはラジカル処理などの表面活性化処理を行ってから貼り合わせを行うと良い(図6の工程B−3に対応)。
次に、ボンド基板100とガラス基板120を貼り合わせ、ボンド基板100を、SOI基板となるガラス基板120に貼り合わせられた半導体膜124と、再生処理工程に廻されて再生ボンド基板として再生される分離ボンド基板121と、に分離する工程について説明する。以下の工程は、図6における工程C(貼り合わせ工程)に該当する。
次に図2(A)に示すように、絶縁膜102がガラス基板120側を向くように、絶縁膜102及び絶縁膜122を介してボンド基板100とガラス基板120を貼り合わせる(図6の工程C−1に対応)。
貼り合わせは、ガラス基板120の端の一箇所に1N/cm〜500N/cm、好ましくは1N/cm〜20N/cm程度の圧力を加える。ガラス基板120の圧力をかけた部分から絶縁膜102とガラス基板120とが接合し始め、自発的に接合が全面におよび、1枚のガラス基板120とボンド基板100とが貼り合わされる。
しかし、本実施の形態のようにボンド基板100の周辺部が面取りされている場合、面取り部ではガラス基板120とボンド基板100が接触しない。
また、ボンド基板100を作製する際には、仕上げ研磨としてCMP法などが用いられる。CMP法では、スラリー(研磨剤)がボンド基板100と研磨布との間に入り込み、遠心力によってボンド基板100と研磨布との間から出てくることによって、ボンド基板100を研磨する。しかし、このときスラリーの入り込みが少ないと、ボンド基板100周辺の研磨が中央部より早く進み、ボンド基板100周辺にエッジロールオフ(Edge Roll Off:E.R.O.)と呼ばれる中央部より基板の厚さが薄く、平坦性の低い領域が形成される。ボンド基板100の端部が面取りされていない場合でも、ボンド基板100周辺部のE.R.O.領域によって、ボンド基板100周辺部においてガラス基板120とボンド基板100が貼り合わせられないことがある。
また、ボンド基板100を移送する際に、キャリアなどでボンド基板100周辺部に傷が入ってしまった場合も、ボンド基板100の周辺部において、ガラス基板120とボンド基板100が貼り合わせられないことがある。
接合はファン・デル・ワールス力を用いて行われているため、室温でも強固に接合が行われる。ボンド基板100とガラス基板120に圧力を加えることで水素結合により強固に接合することが可能である。なお、上記接合は低温で行うことが可能であるため、上述したようにガラス基板120は様々なものを用いることが可能である。
なお、ベース基板と、複数のボンド基板100とを貼り合わせる場合、ボンド基板100の厚さの違いにより、絶縁膜102の表面がガラス基板120と接触しないボンド基板100が生じる場合がある。そのため、圧力をかける場所は一箇所ではなく、各ボンド基板100に圧力をかけるようにすることが好ましい。また、絶縁膜102表面の高さが多少違っていても、ガラス基板120のたわみにより絶縁膜102の一部分がガラス基板120と密着すれば、絶縁膜102表面全体に接合を進行させることが可能である。
ガラス基板120にボンド基板100を貼り合わせた後、ガラス基板120と絶縁膜102との接合界面での結合力を増加させるための加熱処理を行うことが好ましい(図6の工程C−2に対応)。この処理温度は、脆化層104に亀裂を発生させない温度とし、200℃以上450℃以下の温度範囲で処理することができる。また、この温度範囲で加熱しながら、ガラス基板120にボンド基板100を貼り合わせることで、ガラス基板120と絶縁膜102と間における接合の結合力を強固にすることができる。接合界面での結合力を増加させるための加熱処理は、貼り合わせを行った装置或いは場所で、そのまま連続して行うことが好ましい。また、接合界面での結合力を増加させるための加熱処理からそのまま連続して、脆化層104を境としたボンド基板100を分離する熱処理を行ってもよい。
なお、ボンド基板100とガラス基板120とを貼り合わせるときに、接合面にパーティクルなどが付着してしまうと、付着部分は接合されなくなる。接合面へのパーティクルの付着を防ぐために、ボンド基板100とガラス基板120との貼り合わせは、気密な処理室内で行うことが好ましい。さらに、ボンド基板100とガラス基板120との貼り合わせるとき、処理室内を5.0×10−3Pa程度の減圧状態とし、接合処理の雰囲気を清浄にするようにしても良い。
次いで図2(B)に示すように、加熱処理を行うことで、脆化層104において隣接する微小ボイドどうしが結合して、微小ボイドの体積が増大する。その結果、脆化層104において、爆発的な反応を伴って、ボンド基板100から半導体膜124が分離する(図6の工程C−3に対応)。絶縁膜102はガラス基板120に接合しているので、ガラス基板120上にはボンド基板100から分離された半導体膜124が固定される。半導体膜124をボンド基板100から分離するための加熱処理の温度は、ガラス基板120の歪み点を越えない温度とする。
この加熱処理には、RTA(Rapid Thermal Anneal)装置、抵抗加熱炉、マイクロ波加熱装置を用いることができる。RTA装置には、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置を用いることができる。
GRTA装置を用いる場合は、加熱温度550℃以上650℃以下、処理時間0.5分以上60分以内とすることができる。抵抗加熱装置を用いる場合は、加熱温度200℃以上650℃以下、処理時間2時間以上4時間以内とすることができる。
また、上記加熱処理は、マイクロ波などの高周波による誘電加熱を用いて行っても良い。誘電加熱による加熱処理は、高周波発生装置において生成された周波数300MHz乃至3THzの高周波をボンド基板100に照射することで行うことができる。具体的には、例えば、2.45GHzのマイクロ波を900W、14分間照射することで、脆化層において微小ボイドを膨張させて、隣接する微小ボイドどうしを結合させ、最終的にボンド基板100を分離させることができる。
しかし、加熱処理によって薄膜の半導体膜124が分離された分離ボンド基板121の表面は、結晶欠陥が多く形成され、平坦性も大きく損なわれている。特に、半導体からなるボンド基板100と、ボンド基板100と熱膨張係数が異なるガラス基板120とを貼り合わせ、ボンド基板100から半導体膜124を分離させると、半導体膜124の分離面133に膜厚ムラ134が、ボンド基板100から半導体膜124が分離した分離ボンド基板121の分離面129には膜厚ムラ130が現れる。膜厚ムラ130及び膜厚ムラ134は、ボンド基板100が分離する際に、分離面129及び分離面133が露呈するにつれて、段階的に形成される。膜厚ムラ130及び膜厚ムラ134は10nm〜100nm程度の厚さであり、例えば、矩形状の分離ボンド基板121の場合、図(5)のようにL字状又はコの字状に膜厚ムラ130が現れる。図(5)は、図2(B)の分離ボンド基板121の分離面129の平面図であり、図5の破線A−Bは、図2(B)の破線A−Bに対応している。
また、ボンド基板100の周辺部は、面取り部、E.R.O.領域及びボンド基板100移送時の傷などによって、ガラス基板120と接合されていないことが多い。その状態でボンド基板100から半導体膜124を分離させると、ガラス基板120と接合されていないボンド基板100の周辺部がボンド基板100に残存し、分離ボンド基板121の周辺部に凸部126が形成される。凸部126は、残存した脆化層127、残存した半導体層125、残存した絶縁膜123によって構成されている。ガラス基板120には、ボンド基板100よりもサイズの小さい半導体膜124が貼り付けられる。
次に、ガラス基板120に貼り合わせられた半導体膜124の表面を平坦化し、結晶性を回復する工程について説明する。以下の工程は、図6における工程D(SOI基板仕上げ工程)に該当する。
次に図2(C)に示すように、半導体膜124の表面を研磨により平坦化しても良い(図6の工程D−1に対応)。平坦化は必ずしも必須ではないが、平坦化を行うことで、半導体膜と後に形成されるゲート絶縁膜の界面の特性を向上させることが出来る。具体的に研磨は、化学的機械的研磨(CMP:Chemical Mechanical Polishing)または液体ジェット研磨などにより、行うことができる。半導体膜124の厚さは、上記平坦化により薄膜化される。
また、半導体膜124の表面をエッチングすることでも、半導体膜124の表面を平坦化することができる。エッチングには、例えば反応性イオンエッチング(RIE:Reactive Ion Etching)法、ICP(Inductively Coupled Plasma)エッチング法、ECR(Electron Cyclotron Resonance)エッチング法、平行平板型(容量結合型)エッチング法、マグネトロンプラズマエッチング法、2周波プラズマエッチング法またはヘリコン波プラズマエッチング法等のドライエッチング法を用いれば良い。なお、上記研磨と上記エッチングの両方を用いて、半導体膜124の表面を平坦化してもよい。
上記エッチングにより、後に形成される半導体素子にとって最適となる膜厚まで半導体膜124を薄膜化できるのみならず、半導体膜124の表面を平坦化することができる。また、分離面133に形成された膜厚ムラ134を除去することもできる。
なお、ガラス基板120に密着された半導体膜124は、脆化層104の形成及び脆化層104における分離によって、結晶欠陥が形成され、半導体膜124の表面は平坦性が損なわれている。結晶欠陥の低減及び平坦性向上のために、半導体膜124にレーザ光を照射しても良い(図6の工程D−2に対応)。
なお、レーザ光を照射する前にドライエッチングにより半導体膜124の表面を平坦化している場合、ドライエッチングにより半導体膜124の表面付近で結晶欠陥などの損傷が生じていることがある。しかし上記レーザ光の照射により、ドライエッチングにより生じる損傷も補修することが可能である。
このレーザ光の照射工程では、ガラス基板120の温度上昇が抑えられるため、耐熱性の低い基板をガラス基板120として用いることが可能になる。レーザ光の照射によって半導体膜124は部分溶融させることが好ましい。完全溶融させると、液相となった半導体膜124での無秩序な核発生によって半導体膜124が再結晶化することとなり、半導体膜124の結晶性が低下するからである。部分溶融させることで、半導体膜124では、溶融されていない固相部分から結晶成長が進行する、いわゆる縦成長が起こる。縦成長による再結晶化によって、半導体膜124の結晶欠陥が減少され、結晶性が回復される。なお、半導体膜124が完全溶融状態であるとは、半導体膜124が絶縁膜102との界面まで溶融され、液体状態になっていることをいう。他方、半導体膜124が部分溶融状態であるとは、上層が溶融して液相であり、下層が固相である状態をいう。
次に、レーザ光を照射した後に、半導体膜124の表面をエッチングしても良い。レーザ光の照射後に半導体膜124の表面をエッチングする場合は、必ずしもレーザ光の照射を行う前に半導体膜124の表面をエッチングする必要はない。また、レーザ光の照射を行う前に半導体膜124の表面をエッチングした場合は、必ずしもレーザ光の照射後に半導体膜124の表面をエッチングする必要はない。また、レーザ光の照射前と照射後の両方のタイミングでエッチングを行っても良い。
上記エッチングにより、後に形成される半導体素子にとって最適となる膜厚まで半導体膜124を薄膜化できるのみならず、半導体膜124の表面を平坦化することができる。
レーザ光を照射した後、半導体膜124に500℃以上650℃以下の加熱処理を行うことが好ましい(図6の工程D−3に対応)。この加熱処理によって、レーザ光の照射で回復されなかった、半導体膜124の欠陥を消滅させ、半導体膜124の歪みを緩和させることができる。この加熱処理には、RTA(Rapid Thermal Anneal)装置、抵抗加熱炉、マイクロ波加熱装置を用いることができる。RTA装置には、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置を用いることができる。例えば、抵抗加熱炉を用いた場合は、600℃で4時間程度加熱するとよい。
このようにして作製されたSOI基板は、実施の形態2で説明する工程F(デバイス工程)で半導体装置へと加工される。
なお本実施の形態で示されたSOI基板は、マイクロプロセッサ、画像処理回路などの集積回路や、質問器とデータの送受信が非接触でできるRFタグ、半導体表示装置等、ありとあらゆる半導体装置の作製に用いることができる。半導体表示装置には、液晶表示装置、有機発光素子(OLED)に代表される発光素子を各画素に備えた発光装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)等や、半導体膜を用いた回路素子を駆動回路に有しているその他の半導体表示装置がその範疇に含まれる。
次に、分離ボンド基板121に再生処理を施し、再生ボンド基板として繰り返し利用する工程について説明する。以下の工程は、図6における工程E(ボンド基板再生処理工程)に該当する。
まず、図3(A)で示される分離ボンド基板121を取り出す。分離ボンド基板121の周辺部には凸部126が形成されている。凸部126は、半導体基板側から順に残存した脆化層127、残存した半導体層125、残存した絶縁膜123によって構成されている。分離ボンド基板121の分離面129には結晶欠陥が形成され、平坦性が損なわれており、膜厚ムラ130が形成されている。また、分離ボンド基板121は、脆化層を形成するための水素イオン照射によって、残存した半導体層125の上面から300nm〜700nm、例えば500nm程度の深さまで損傷している。
次に、図3(B)に示すように、凸部126の残存した絶縁膜123を除去する(図6の工程E−1に対応)。残存した絶縁膜123は、フッ酸を含む溶液をエッチャントとしてウェットエッチング処理を行うことで除去することができる。フッ酸を含む溶液としては、フッ酸とフッ化アンモニウムと界面活性剤を含む混合溶液(例えば、ステラケミファ社製、商品名:LAL500)を用いるのが望ましい。このウェットエッチングは、120秒〜1200秒行うのが好ましく、例えば600秒程度行うのが望ましい。また、ウェットエッチングは分離ボンド基板121を処理槽内の溶液に浸漬することによって行われるので、複数の分離ボンド基板121を一括処理することが可能である。残存した絶縁膜123をウェットエッチングで除去することにより、後の工程で行うCMP法による研磨レートの高い研磨工程を省き、研磨レートを低くし、研磨時間を短くすることができる。
次に、図3(C)に示すように、分離面129の膜厚ムラ130と凸部126の残存した半導体層125の段差を低減する(図6の工程E−2に対応)。膜厚ムラ130と残存した半導体層125は、有機アルカリ水溶液をエッチャントとしてウェットエッチング処理を行うことで、段差を低減することができる。有機アルカリ水溶液としては、TMAH(Tetra Methyl Ammonium Hydroxide、テトラメチルアンモニウムヒドロキシド)を0.2%〜5.0%含む水溶液(例えば、東京応化工業株式会社製、商品名:NMD3)を用いるのが好ましい。また、有機アルカリ水溶液の液温は、40℃〜70℃とするのが好ましく、例えば、液温を50℃程度にするのが望ましい。このウェットエッチングは、30秒〜600秒行うのが好ましく、例えば、60秒程度行うのが望ましい。ただし、ウェットエッチングの時間が長すぎると、残存した半導体層125を含む分離ボンド基板121の表面の凹凸が激しくなる。また、ウェットエッチングは分離ボンド基板121を処理槽内の溶液に浸漬することによって行われるので、複数の分離ボンド基板121を一括処理することが可能である。
このウェットエッチングにより、膜厚ムラ130を大幅に低減することができる。同時に分離面129に形成されている結晶欠陥を有する半導体層も除去することができる。また、残存した半導体層125による段差を10nm〜70nm程度に低減することができる。膜厚ムラ130を低減し、分離面129に形成されている結晶欠陥を除去し、残存した半導体層125の段差を低減することにより、後の工程で行うCMP法による研磨レートの高い研磨工程を省き、研磨レートを低くし、研磨時間を短くすることができる。
また、分離ボンド基板121の側面もウェットエッチングすることによって、移送する際などに側面に付いた傷も除去することができる。分離ボンド基板121の側面部の傷を残したまま再生処理を行い、再びボンド基板として熱処理を行うと、側面部の傷を中心にスリップ転位、又はひび割れが発生しやすくなる。
次に図4(A)に示すように、分離ボンド基板121を、酸化雰囲気下でハロゲンを含むガスを添加して熱酸化することによって、酸化膜128を形成する(図6の工程E−3に対応)。ハロゲンを含むガスとしては、HClを用いるのが好ましい。ハロゲンを含む酸化雰囲気下での熱酸化処理により、酸化膜128にハロゲンを含ませることができる。ハロゲン元素を酸化膜128に含ませることにより、外因性不純物である重金属(例えば、Fe、Cr、Ni、Mo等)や可動イオン(Na等)を酸化膜128が捕獲するので、後の工程で酸化膜128を除去することにより、分離ボンド基板121から重金属や可動イオンを除去することができる。なお、酸化雰囲気下では、酸素の体積を100体積%程度とするのが好ましく、ハロゲンを含む酸化雰囲気下では、酸素とハロゲンの体積の和を100体積%程度とするのが好ましい。
本実施の形態では、HClを用いて酸化膜128を形成する。このとき、HClが酸素に対して0.5体積%〜10体積%の割合で含まれる雰囲気が好ましく、例えば、3体積%程度の割合で含まれるのが望ましい。また、熱処理は、700℃〜1100℃の温度で、処理時間は、0.1時間〜6時間の処理時間で行うのが好ましく、例えば、950℃で2.5時間〜3時間で熱処理を行うのが望ましい。このとき形成される熱酸化膜は15nm〜1100nmとすることができ、好ましくは50nm〜150nmとし、例えば、90nmとするのが望ましい。また、熱酸化では、複数の分離ボンド基板121を一括処理することが容易である。
分離ボンド基板121にHClを含む酸化雰囲気下で酸化膜128を形成することで、分離面129上の膜厚ムラ130は、酸化膜128の上には現れなくなる。同時に、水素イオンによって残存した半導体層125の上面から500nm程度の深さまで汚染されている、分離ボンド基板121を脱水素化することができる。このとき、特に水素イオンが多く含まれる残存した脆化層127も脱水素化される。分離ボンド基板121を脱水素化することによって、後の工程で行うCMP法における研磨レートの高い研磨工程を省き、研磨レートを低くし、研磨時間を短くすることができる。また、HClを含む酸化雰囲気下で酸化膜128を形成することにより、Cl原子によるゲッタリング効果を得ることができる。ゲッタリングとしては、特に、金属不純物などを除去する効果がある。すなわち、Cl原子の作用により金属などの不純物を捕獲し、酸化膜128に固定することができるので、後に酸化膜128を除去することによって、分離ボンド基板121から金属不純物を除去することができる。また、金属などの不純物を捕獲したCl原子が揮発性の塩化物となって気相中へ離脱して、分離ボンド基板121から除去される場合もある。
次に図4(B)に示すように、酸化膜128を除去する(図6の工程E−4に対応)。酸化膜128の除去は、残存した絶縁膜123の除去と同様に行い、エッチャントにはフッ酸を含む溶液を用い、好ましくは、フッ酸とフッ化アンモニウムと界面活性剤を含む混合溶液(例えば、ステラケミファ社製、商品名:LAL500)を用いる。このウェットエッチングも、120秒〜1200秒行うのが好ましく、例えば600秒程度行うのが望ましい。また、ウェットエッチングは分離ボンド基板121を処理槽内の溶液に浸漬することによって行われるので、複数の分離ボンド基板121を一括処理することが可能である。このとき、分離面129に形成されていた膜厚ムラ130は、完全に除去される。なお、本実施の形態では、酸化膜128を形成する前に有機アルカリ水溶液によるウェットエッチングを行っているが、本実施の形態はこれに限られるものではない。酸化膜128を形成し、ウェットエッチングした後で、有機アルカリ水溶液によるウェットエッチングを行っても良い。
次に、図4(C)に示すように、分離ボンド基板121に研磨を行い、再生ボンド基板132を形成する(図6の工程E−5に対応)。研磨方法としては、化学的機械的研磨法(Chemical Mechanical Polishing:CMP法)を用いるのが好ましい。ここで、CMP法とは、被加工物の表面を基準にし、それにならって表面を化学・機械的な複合作用により、平坦化する手法である。一般的に研磨ステージの上に研磨布を貼り付け、被加工物と研磨布との間にスラリー(研磨剤)を供給しながら研磨ステージと被加工物とを各々回転または揺動させて被研磨物の表面を、スラリーと被研磨物表面との間での化学反応と、研磨布と被研磨物との機械的研磨の作用により、被加工物の表面を研磨する方法である。本実施の形態では、低い研磨レートでCMP法を行うのが好ましい。このとき、研磨布はスウェード地の研磨布を用いるのが好ましく、スラリーの粒径は30nm〜90nmとするのが好ましく、例えば、60nm程度とするのが望ましい。このように分離ボンド基板121に研磨を行うことによって、研磨代200nm〜1000nm程度で、平均表面粗さ0.2nm〜0.5nm程度に平坦化及び鏡面化された再生ボンド基板132を形成することができる。
上述の工程で、ウェットエッチングにより、膜厚ムラ130と残存した絶縁膜123を除去し、残存した半導体層125の段差を低減し、熱酸化により、残存した脆化層127を含むボンド基板中の水素イオンを除去しているので、研磨レートの高い研磨を省いて研磨レートの低い研磨だけで、十分に分離ボンド基板121の表面を平坦化及び鏡面化することができる。CMP法による研磨工程において、研磨レートの高い研磨工程を省き、研磨レートの低い研磨工程とすることによって、分離ボンド基板121を平坦化及び鏡面化するのに必要な研磨代を低減することができる。故に1回の再生処理工程におけるボンド基板の取り代を削減することができるため、1枚のボンド基板を繰り返し使用する回数を増やすことができ、SOI基板作製のコストダウンに大きく貢献できる。
また、CMP法では、スラリーが被研磨物と研磨布との間に入り込み、遠心力によって被研磨物と研磨布との間から出てくることによって、被研磨物を研磨する。しかし、このときスラリーの入り込みが少ないと、被研磨物周辺の研磨が中央部より早く進み、被研磨物周辺にエッジロールオフ(Edge Roll Off:E.R.O.)と呼ばれる中央部より基板の厚さが薄く、平坦性の低い領域が形成される。E.R.O.領域は、研磨レートが高く、研磨時間が長いほどE.R.O.領域の面積が広くなるので、研磨レートの高い研磨工程を省き、研磨レートの低い研磨工程とすることによって、E.R.O.領域を狭めることができる。
また、上述のウェットエッチング処理及びHClを含む酸化雰囲気下での熱酸化処理は、複数の分離ボンド基板121を一括処理するバッチ式の処理で容易に行うことができるが、CMP法による研磨工程は、分離ボンド基板121を1枚ずつ処理する枚葉式の処理でしか行うことができない。そのため、ウェットエッチング処理及びHCl熱酸化処理を行ってからCMP法を用いることで、再生処理工程におけるCMP法による研磨工程の割合が低減されるので、分離ボンド基板121再生処理のスループット改善が見込まれる。同時に、CMP法で用いられるスラリーや研磨布などの消耗品の浪費を抑え、コストダウンを図ることができる。
以上の工程により、分離ボンド基板121は、再生ボンド基板132へと再生される。得られた再生ボンド基板132は工程Aにおいてボンド基板100として再度利用する。
本実施の形態で示したように、ボンド基板の再生処理工程によりボンド基板を繰り返し利用することによって、コストダウンを図ることができる。ガラス基板をベース基板として用いる場合に生じる、分離ボンド基板表面の膜厚ムラを、2種類のウェットエッチングとハロゲンを含む雰囲気下での熱酸化膜形成とその除去によって、除去することができる。これによって分離ボンド基板を、SOI基板作製に用いることが可能な再生ボンド基板として再生することができる。特に、本実施の形態で示したボンド基板の再生処理工程を用いることにより、CMP法による研磨における研磨レートの高い研磨工程を省き、研磨レートの低い研磨工程だけにし、研磨時間を低減することができるので、分離ボンド基板表面の膜厚ムラを取り除くのと同時にボンド基板の取り代を低減することができる。よって、SOI基板作製に用いることが可能な再生ボンド基板を低コストで再生することができる。
(実施の形態2)
本実施の形態では、上記実施の形態で作製したSOI基板を用いて、半導体装置を作製する方法を説明する。なお、本実施の形態で示す工程は、図6における工程F(デバイス工程)に該当する。
まず、図7および図8を参照して、nチャネル型薄膜トランジスタ、およびpチャネル型薄膜トランジスタを作製する方法を説明する。複数の薄膜トランジスタ(TFT)を組み合わせることで、各種の半導体装置を形成することができる。
SOI基板として、上記実施の形態1の方法で作製したSOI基板を用いる場合について説明する。図7(A)は、図2(C)のSOI基板の断面図である。
エッチングにより、半導体膜124を素子分離して、図7(B)に示すように半導体膜251、252を形成する。半導体膜251はnチャネル型のTFTを構成し、半導体膜252はpチャネル型のTFTを構成する。
図7(C)に示すように、半導体膜251、252上に絶縁膜254を形成する。次に、絶縁膜254を介して半導体膜251上にゲート電極255を形成し、半導体膜252上にゲート電極256を形成する。
なお、半導体膜124のエッチングを行う前に、TFTのしきい値電圧を制御するために、ホウ素、アルミニウム、ガリウムなどのアクセプタとなる不純物元素、またはリン、ヒ素などのドナーとなる不純物元素を半導体膜124に添加することが好ましい。例えば、nチャネル型TFTが形成される領域にアクセプタとなる不純物元素を添加し、pチャネル型TFTが形成される領域にドナーとなる不純物元素を添加する。
次に、図7(D)に示すように半導体膜251にn型の低濃度不純物領域257を形成し、半導体膜252にp型の高濃度不純物領域259を形成する。具体的には、まず、半導体膜251にn型の低濃度不純物領域257を形成する。このため、pチャネル型TFTとなる半導体膜252をレジストでマスクし、不純物元素を半導体膜251に添加する。不純物元素としてリンまたはヒ素を添加すればよい。イオンドーピング法またはイオン注入法により不純物元素を添加することにより、ゲート電極255がマスクとなり、半導体膜251に自己整合的にn型の低濃度不純物領域257が形成される。半導体膜251のゲート電極255と重なる領域はチャネル形成領域258となる。
次に、半導体膜252を覆うマスクを除去した後、nチャネル型TFTとなる半導体膜251をレジストマスクで覆う。次に、イオンドーピング法またはイオン注入法により不純物元素を半導体膜252に添加する。不純物元素として、ホウ素、アルミニウム、ガリウム等を添加することができる。不純物元素の添加工程では、ゲート電極256がマスクとして機能して、半導体膜252にp型の高濃度不純物領域259が自己整合的に形成される。高濃度不純物領域259はソース領域またはドレイン領域として機能する。半導体膜252のゲート電極256と重なる領域はチャネル形成領域260となる。ここでは、n型の低濃度不純物領域257を形成した後、p型の高濃度不純物領域259を形成する方法を説明したが、先にp型の高濃度不純物領域259を形成することもできる。
次に、半導体膜251を覆うレジストを除去した後、プラズマCVD法等によって窒化シリコン等の窒素化合物や酸化シリコン等の酸化物からなる単層構造または積層構造の絶縁膜を形成する。この絶縁膜を垂直方向の異方性エッチングすることで、図8(A)に示すように、ゲート電極255、256の側面に接するサイドウォール絶縁膜261、262を形成する。この異方性エッチングにより、絶縁膜254もエッチングされる。
次に、図8(B)に示すように、半導体膜252をレジスト265で覆う。半導体膜251にソース領域またはドレイン領域として機能する高濃度不純物領域を形成するため、イオン注入法またはイオンドーピング法により、半導体膜251に高ドーズ量で不純物元素を添加する。ゲート電極255およびサイドウォール絶縁膜261がマスクとなり、n型の高濃度不純物領域267が形成される。次に、不純物元素の活性化のための加熱処理を行う。
活性化の加熱処理の後、図8(C)に示すように、水素を含んだ絶縁膜268を形成する。絶縁膜268を形成後、350℃以上450℃以下の温度による加熱処理を行い、絶縁膜268中に含まれる水素を半導体膜251、252中に拡散させる。絶縁膜268は、プロセス温度が350℃以下のプラズマCVD法により窒化シリコンまたは窒化酸化シリコンを堆積することで形成できる。半導体膜251、252に水素を供給することで、半導体膜251、252中および絶縁膜254との界面での捕獲中心となるような欠陥を効果的に補償することができる。
その後、層間絶縁膜269を形成する。層間絶縁膜269は、酸化シリコン膜、BPSG(Boron Phosphorus Silicon Glass)膜などの無機材料でなる絶縁膜、または、ポリイミド、アクリルなどの有機樹脂膜から選ばれた単層構造の膜、積層構造の膜で形成することができる。層間絶縁膜269にコンタクトホールを形成した後、図8(C)に示すように配線270を形成する。配線270の形成には、例えば、アルミニウム膜またはアルミニウム合金膜などの低抵抗金属膜をバリアメタル膜で挟んだ3層構造の導電膜で形成することができる。バリアメタル膜は、モリブデン、クロム、チタンなどの金属膜で形成することができる。
以上の工程により、nチャネル型TFTとpチャネル型TFTを有する半導体装置を作製することができる。本実施の形態の半導体装置に用いるSOI基板の作製過程で、分離ボンド基板の再生処理工程を行い、1枚のボンド基板から複数枚の半導体膜を形成しているので、製造コストの低減及び生産性の向上を図ることができる。
図7及び図8を参照してTFTの作製方法を説明したが、TFTの他、容量、抵抗などTFTと共に各種の半導体素子を形成することで、高付加価値の半導体装置を作製することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができることとする。
(実施の形態3)
本実施の形態では、上記実施の形態で示されたSOI基板を適用して作製した半導体装置の具体的な態様について、図9及び図10を参照しながら、説明する。
まず、半導体装置の一例として、マイクロプロセッサについて説明する。図9はマイクロプロセッサ500の構成例を示すブロック図である。
マイクロプロセッサ500は、演算回路501(Arithmetic logic unit。ALUともいう。)、演算回路制御部502(ALU Controller)、命令解析部503(Instruction Decoder)、割り込み制御部504(Interrupt Controller)、タイミング制御部505(Timing Controller)、レジスタ506(Register)、レジスタ制御部507(Register Controller)、バスインターフェース508(Bus I/F)、読み出し専用メモリ(ROM)509、およびROMインターフェース510を有している。
バスインターフェース508を介してマイクロプロセッサ500に入力された命令は、命令解析部503に入力され、デコードされた後、演算回路制御部502、割り込み制御部504、レジスタ制御部507、タイミング制御部505に入力される。演算回路制御部502、割り込み制御部504、レジスタ制御部507、タイミング制御部505は、デコードされた命令に基づき様々な制御を行う。
演算回路制御部502は、演算回路501の動作を制御するための信号を生成する。また、割り込み制御部504は、マイクロプロセッサ500のプログラム実行中に、外部の入出力装置や周辺回路からの割り込み要求を処理する回路であり、割り込み制御部504は、割り込み要求の優先度やマスク状態を判断して、割り込み要求を処理する。レジスタ制御部507は、レジスタ506のアドレスを生成し、マイクロプロセッサ500の状態に応じてレジスタ506の読み出しや書き込みを行う。タイミング制御部505は、演算回路501、演算回路制御部502、命令解析部503、割り込み制御部504、およびレジスタ制御部507の動作のタイミングを制御する信号を生成する。例えば、タイミング制御部505は、基準クロック信号CLK1を元に、内部クロック信号CLK2を生成する内部クロック生成部を備えている。図9に示すように、内部クロック信号CLK2は他の回路に入力される。
次に、非接触でデータの送受信を行う機能、および演算機能を備えた半導体装置の一例を説明する。図10は、このような半導体装置の構成例を示すブロック図である。図10に示す半導体装置は、無線通信により外部装置と信号の送受信を行って動作するコンピュータ(以下、「RFCPU」という)と呼ぶことができる。
図10に示すように、RFCPU511は、アナログ回路部512とデジタル回路部513を有している。アナログ回路部512として、共振容量を有する共振回路514、整流回路515、定電圧回路516、リセット回路517、発振回路518、復調回路519、変調回路520及び電源管理回路530を有している。デジタル回路部513は、RFインターフェース521、制御レジスタ522、クロックコントローラ523、CPUインターフェース524、中央処理ユニット(CPU)525、ランダムアクセスメモリ(RAM)526、読み出し専用メモリ(ROM)527を有している。
RFCPU511の動作の概要は以下の通りである。アンテナ528が受信した信号は共振回路514により誘導起電力を生じる。誘導起電力は、整流回路515を経て容量部529に充電される。この容量部529はセラミックコンデンサーや電気二重層コンデンサーなどのキャパシタで形成されていることが好ましい。容量部529は、RFCPU511を構成する基板に集積されている必要はなく、他の部品としてRFCPU511に組み込むこともできる。
リセット回路517は、デジタル回路部513をリセットし初期化する信号を生成する。例えば、電源電圧の上昇に遅延して立ち上がる信号をリセット信号として生成する。発振回路518は、定電圧回路516により生成される制御信号に応じて、クロック信号の周波数とデューティー比を変更する。復調回路519は、受信信号を復調する回路であり、変調回路520は、送信するデータを変調する回路である。
例えば、復調回路519はローパスフィルタで形成され、振幅変調(ASK)方式の受信信号を、その振幅の変動をもとに、二値化する。また、送信データを振幅変調(ASK)方式の送信信号の振幅を変動させて送信するため、変調回路520は、共振回路514の共振点を変化させることで通信信号の振幅を変化させている。
クロックコントローラ523は、電源電圧または中央処理ユニット(CPU)525における消費電流に応じてクロック信号の周波数とデューティー比を変更するための制御信号を生成している。電源電圧の監視は電源管理回路530が行っている。
アンテナ528からRFCPU511に入力された信号は復調回路519で復調された後、RFインターフェース521で制御コマンドやデータなどに分解される。制御コマンドは制御レジスタ522に格納される。制御コマンドには、読み出し専用メモリ(ROM)527に記憶されているデータの読み出し、ランダムアクセスメモリ(RAM)526へのデータの書き込み、中央処理ユニット(CPU)525への演算命令などが含まれている。
中央処理ユニット(CPU)525は、CPUインターフェース524を介して読み出し専用メモリ(ROM)527、ランダムアクセスメモリ(RAM)526、制御レジスタ522にアクセスする。CPUインターフェース524は、中央処理ユニット(CPU)525が要求するアドレスより、読み出し専用メモリ(ROM)527、ランダムアクセスメモリ(RAM)526、制御レジスタ522のいずれかに対するアクセス信号を生成する機能を有している。
中央処理ユニット(CPU)525の演算方式は、読み出し専用メモリ(ROM)527にOS(オペレーティングシステム)を記憶させておき、起動とともにプログラムを読み出し実行する方式を採用することができる。また、専用回路で演算回路を構成して、演算処理をハードウェア的に処理する方式を採用することもできる。ハードウェアとソフトウェアを併用する方式では、専用の演算回路で一部の演算処理を行い、プログラムを使って、残りの演算を中央処理ユニット(CPU)525が処理する方式を適用できる。
本実施の形態の半導体装置である、マイクロプロセッサ及びRFCPUに用いるSOI基板の作製過程で、分離ボンド基板の再生処理工程を行い、1枚のボンド基板から複数枚の半導体膜を形成しているので、製造コストの低減及び生産性の向上を図ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができることとする。
(実施の形態4)
本実施の形態では、上記実施の形態で示したSOI基板を適用して作製した表示装置について、図11及び図12を参照しながら、説明する。
まず、液晶表示装置について、図11を参照して説明する。図11(A)は液晶表示装置の画素の平面図であり、図11(B)は、J−K切断線による図11(A)の断面図である。
図11(A)に示すように、画素は、単結晶半導体膜320、単結晶半導体膜320と交差している走査線322、走査線322と交差している信号線323、画素電極324、画素電極324と単結晶半導体膜320を電気的に接続する電極328を有する。単結晶半導体膜320は、ガラス基板120上に設けられた単結晶半導体膜から形成された層であり、画素のTFT325を構成する。
SOI基板には上記実施の形態で示したSOI基板が用いられている。図11(B)に示すように、ガラス基板120上に、第2の絶縁膜122及び第1の絶縁膜102を介して単結晶半導体膜320が積層されている。TFT325の単結晶半導体膜320は、SOI基板の単結晶半導体膜をエッチングにより素子分離して形成された膜である。単結晶半導体膜320には、チャネル形成領域340、不純物元素が添加されたn型の高濃度不純物領域341が形成されている。TFT325のゲート電極は走査線322に含まれ、ソース電極およびドレイン電極の一方は信号線323に含まれている。
層間絶縁膜327上には、信号線323、画素電極324および電極328が設けられている。層間絶縁膜327上には、柱状スペーサ329が形成されている。信号線323、画素電極324、電極328および柱状スペーサ329を覆って配向膜330が形成されている。対向基板332には、対向電極333、対向電極を覆う配向膜334が形成されている。柱状スペーサ329は、ガラス基板120と対向基板332の隙間を維持するために形成される。柱状スペーサ329によって形成される隙間に液晶層335が形成されている。信号線323および電極328と高濃度不純物領域341との接続部は、コンタクトホールの形成によって層間絶縁膜327に段差が生じるので、この接続部では液晶層335の液晶の配向が乱れやすい。そのため、この段差部に柱状スペーサ329を形成して、液晶の配向の乱れを防ぐ。
次に、エレクトロルミネセンス表示装置(以下、EL表示装置という。)について図12を参照して説明する。図12(A)はEL表示装置の画素の平面図であり、図12(B)は、J−K切断線による図12(A)の断面図である。
図12(A)に示すように、画素は、TFTでなる選択用トランジスタ401、表示制御用トランジスタ402、走査線405、信号線406、および電流供給線407、画素電極408を含む。エレクトロルミネセンス材料を含んで形成される層(EL層)が一対の電極間に挟んだ構造の発光素子が各画素に設けられている。発光素子の一方の電極が画素電極408である。また、半導体膜403は、選択用トランジスタ401のチャネル形成領域、ソース領域およびドレイン領域が形成されている。半導体膜404は、表示制御用トランジスタ402のチャネル形成領域、ソース領域およびドレイン領域が形成されている。半導体膜403、404は、ベース基板上に設けられた単結晶半導体膜から形成された層である。
選択用トランジスタ401において、ゲート電極は走査線405に含まれ、ソース電極またはドレイン電極の一方は信号線406に含まれ、他方は電極410として形成されている。表示制御用トランジスタ402は、ゲート電極412が電極411と電気的に接続され、ソース電極またはドレイン電極の一方は、画素電極408に電気的に接続される電極413として形成され、他方は、電流供給線407に含まれている。
表示制御用トランジスタ402はpチャネル型のTFTである。図12(B)に示すように、半導体膜404には、チャネル形成領域451、およびp型の高濃度不純物領域452が形成されている。なお、SOI基板は、実施の形態1で示す方法で作製したSOI基板が用いられている。
表示制御用トランジスタ402のゲート電極412を覆って、層間絶縁膜427が形成されている。層間絶縁膜427上に、信号線406、電流供給線407、電極411、413などが形成されている。また、層間絶縁膜427上には、電極413に電気的に接続されている画素電極408が形成されている。画素電極408は周辺部が絶縁性の隔壁層428で囲まれている。画素電極408上にはEL層429が形成され、EL層429上には対向電極430が形成されている。補強板として対向基板431が設けられており、対向基板431は樹脂層432によりガラス基板120に固定されている。
EL表示装置の階調の制御は、発光素子の輝度を電流で制御する電流駆動方式と、電圧でその輝度を制御する電圧駆動方式とがあるが、電流駆動方式は、画素ごとでトランジスタの特性値の差が大きい場合、採用することは困難であり、そのためには特性のばらつきを補正する補正回路が必要になる。SOI基板の作製工程、およびゲッタリング工程を含む製造方法でEL表示装置を作製することで、選択用トランジスタ401および表示制御用トランジスタ402は画素ごとに特性のばらつきがなくなるため、電流駆動方式を採用することができる。
また、本実施の形態の半導体装置である、液晶表示装置及びEL表示装置に用いるSOI基板の作製過程で、分離ボンド基板の再生処理工程を行い、1枚のボンド基板から複数枚の半導体膜を形成しているので、製造コストの低減及び生産性の向上を図ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができることとする。
(実施の形態5)
本実施の形態では、上記実施の形態で示したSOI基板を適用して作製した電子機器について、図13及び図14を参照しながら、説明する。
SOI基板を用いることで、様々な電気機器を作製することができる。電気機器としては、テレビジョン、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポなど)、コンピュータ、ノート型コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍など)、記録媒体を備えた画像再生装置(具体的にはDVD(digital versatile disc)などの記録媒体に記憶された音声データを再生し、かつ記憶された画像データを表示しうる表示装置を備えた装置などが含まれる。それらの一例を図13、図14に示す。
図13は、携帯電話の一例であり、図13(A)が正面図、図13(B)が背面図、図13(C)が2つの筐体をスライドさせたときの正面図である。携帯電話700は、筐体701及び筐体702二つの筐体で構成されている。携帯電話700は、携帯電話と携帯情報端末の双方の機能を備えており、コンピュータを内蔵し、音声通話以外にも様々なデータ処理が可能な所謂スマートフォンである。
携帯電話700は、筐体701及び筐体702で構成されている。筐体701においては、表示部703、スピーカ704、マイクロフォン705、操作キー706、ポインティングデバイス707、表面カメラ用レンズ708、外部接続端子ジャック709及びイヤホン端子710等を備え、筐体702においては、キーボード711、外部メモリスロット712、裏面カメラ713、ライト714等により構成されている。また、アンテナは筐体701に内蔵されている。
また、携帯電話700には、上記の構成に加えて、非接触型ICチップ、小型記録装置等を内蔵していてもよい。
重なり合った筐体701と筐体702(図13(A)に示す。)は、スライドさせることが可能であり、スライドさせることで図13(C)のように展開する。表示部703には、本実施の形態で説明した表示装置の作製方法を適用した表示パネル又は表示装置を組み込むことが可能である。表示部703と表面カメラ用レンズ708を同一の面に備えているため、テレビ電話としての使用が可能である。また、表示部703をファインダーとして用いることで、裏面カメラ713及びライト714で静止画及び動画の撮影が可能である。
スピーカ704及びマイクロフォン705を用いることで、携帯電話700は、音声記録装置(録音装置)又は音声再生装置として使用することができる。また、操作キー706により、電話の発着信操作、電子メール等の簡単な情報入力操作、表示部に表示する画面のスクロール操作、表示部に表示する情報の選択等を行うカーソルの移動操作等が可能である。
また、書類の作成、携帯情報端末としての使用等、取り扱う情報が多い場合は、キーボード711を用いると便利である。更に、重なり合った筐体701と筐体702(図13(A))をスライドさせることで、図13(C)のように展開させることができる。携帯情報端末として使用する場合には、キーボード711及びポインティングデバイス707を用いて、円滑な操作でマウスの操作が可能である。外部接続端子ジャック709はACアダプタ及びUSBケーブル等の各種ケーブルと接続可能であり、充電及びパーソナルコンピュータ等とのデータ通信が可能である。また、外部メモリスロット712に記録媒体を挿入し、より大量のデータ保存及び移動が可能になる。
また、上記の機能構成に加えて、赤外線通信機能、USBポート、テレビワンセグ受信機能、非接触ICチップ又はイヤホンジャック等を備えたものであってもよい。
図14(A)は表示装置であり、筐体801、支持台802、表示部803、スピーカー部804、ビデオ入力端子805等を含む。なお、表示装置は、パーソナルコンピュータ用、TV放送受信用、広告表示用などの全ての情報表示用装置が含まれる。
図14(B)はコンピュータであり、筐体812、表示部813、キーボード814、外部接続ポート815、マウス816等を含む。
図14(C)はビデオカメラであり、表示部822、外部接続ポート824、リモコン受信部825、受像部826、操作キー829等を含む。
本実施の形態にて説明した各種電子機器は、SOI基板の作製過程で、分離ボンド基板の再生処理工程を行い、1枚のボンド基板から複数枚の半導体膜を形成しているので、製造コストの低減及び生産性の向上を図ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができることとする。
本実施例では、分離ボンド基板について、分離面に形成される膜厚ムラが再生処理工程において除去されていく過程を示す。
本実施例では、ボンド基板として角5インチの矩形状単結晶シリコン基板を用いた。まず、単結晶シリコン基板を、HClを含む酸化雰囲気下で熱酸化し、100nmの厚さで熱酸化膜を成膜した。
次に、熱酸化膜の表面からイオンドーピング装置を用いて単結晶シリコン基板に水素を照射した。本実施例では、水素をイオン化して照射することによって、単結晶シリコン基板に脆化層を形成した。イオンドーピングは加速電圧を40kV、ドーズを2.0×1016ions/cmとして行った。
次に、単結晶シリコン基板を、熱酸化膜を介してガラス基板に貼り合わせた。その後200℃で120分の熱処理を行い、さらに、600℃で120分の熱処理を行って、脆化層において単結晶シリコン基板を薄膜の単結晶シリコン層と残り部分である分離した単結晶シリコン基板に分離した。それによって、ガラス基板上に熱酸化膜を介して単結晶シリコン膜が形成されたSOI基板と、周辺部に残存した絶縁膜と残存した単結晶シリコン層からなる凸部を有する分離した単結晶シリコン基板が作製された。
単結晶シリコン層と分離した単結晶シリコン基板の分離面に膜厚ムラが現れた。このときの分離した単結晶シリコン基板の分離面の写真が図15(A)である。膜厚ムラが、図15(A)に示すように、紙面における基板の下辺に向かって口を開くようなコの字状に形成されているのが見受けられる。
次に、分離した単結晶シリコン基板にフッ酸とフッ化アンモニウムと界面活性剤を含む混合溶液(ステラケミファ社製、商品名:LAL500)をエッチャントとしてウェットエッチング処理を施した。このとき、液温は20℃、エッチング時間は600秒とした。LAL500によるウェットエッチング後の分離面の写真が図15(B)である。図15(A)と比較して、わずかに膜厚ムラが目立たなくなっている。
次に、分離した単結晶シリコン基板にTMAH(Tetra Methyl Ammonium Hydroxide、テトラメチルアンモニウムヒドロキシド)を2.38%含む水溶液(東京応化工業株式会社製、商品名:NMD3)をエッチャントとしてウェットエッチング処理を施した。このとき、液温は50℃、エッチング時間は60秒とした。TMAHによるウェットエッチング後の分離面の写真が図16(A)である。図15(B)と比較すると、ほとんどの膜厚ムラは除去されているが、まだ若干膜厚ムラが見て取れる。
次に、分離した単結晶シリコン基板を、HClを含む酸化雰囲気下で熱酸化した。このとき、HClが酸素に対して3体積%の割合で含まれる雰囲気とし、950℃の温度で3時間熱酸化を行った。
HCl熱酸化後の分離面の写真が図16(B)である。HCl熱酸化を行ったため、見えているのは酸化膜だが、図16(A)と比較して、熱酸化膜上には膜厚ムラが現れていないのが分かる。
次に、フッ酸とフッ化アンモニウムと界面活性剤を含む混合溶液(ステラケミファ社製、商品名:LAL500)をエッチャントとしてウェットエッチング処理を行い、熱酸化膜を除去した。このとき、液温は20℃、エッチング時間は600秒とした。熱酸化膜除去後の分離面の写真が図17である。分離した単結晶シリコン基板の分離面から膜厚ムラが目視では確認できなくなっている。
以上より、2種類のウェットエッチングとHClを含む酸化雰囲気下での熱酸化膜形成とその除去によって、ベース基板をガラス基板として用いる場合に生じる、分離ボンド基板表面の膜厚ムラを目視では確認できない水準まで低減できることが示された。
100 ボンド基板
102 絶縁膜
104 脆化層
120 ガラス基板
121 分離ボンド基板
122 絶縁膜
123 残存した絶縁膜
124 半導体膜
125 残存した半導体層
126 凸部
127 残存した脆化層
128 酸化膜
129 分離面
130 膜厚ムラ
132 再生ボンド基板
133 分離面
134 膜厚ムラ
251 半導体膜
252 半導体膜
254 絶縁膜
255 ゲート電極
256 ゲート電極
257 低濃度不純物領域
258 チャネル形成領域
259 高濃度不純物領域
260 チャネル形成領域
261 サイドウォール絶縁膜
265 レジスト
267 高濃度不純物領域
268 絶縁膜
269 層間絶縁膜
270 配線

Claims (2)

  1. ボンド基板上に絶縁膜を形成し、
    前記ボンド基板の表面からイオンを添加することによって脆化層を形成し、
    前記ボンド基板を、前記絶縁膜を介してガラス基板と貼り合わせ、
    前記脆化層において前記ボンド基板を、前記ガラス基板上に前記絶縁膜を介して貼り合わせられた半導体膜と、分離ボンド基板と、に分離することを特徴とするSOI基板の作製方法であって、
    前記分離ボンド基板にウェットエッチングを行い、
    前記分離ボンド基板を酸化雰囲気下でハロゲンを含むガスを添加して熱酸化処理を行って、前記分離ボンド基板表面に酸化膜を形成するとともに、前記分離ボンド基板中の水素イオンを除去し、
    前記酸化膜にウェットエッチングを行い、前記分離ボンド基板の膜厚ムラを除去し、
    前記分離ボンド基板に研磨を行って再生ボンド基板を形成し、
    前記再生ボンド基板を再び前記ボンド基板として用いることを特徴とするSOI基板の作製方法。
  2. 請求項1において、
    前記膜厚ムラは、L字状又はコの字状の形状を有することを特徴とするSOI基板の作製方法。
JP2009169736A 2008-07-22 2009-07-21 Soi基板の作製方法 Expired - Fee Related JP5568260B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169736A JP5568260B2 (ja) 2008-07-22 2009-07-21 Soi基板の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008189111 2008-07-22
JP2008189111 2008-07-22
JP2009169736A JP5568260B2 (ja) 2008-07-22 2009-07-21 Soi基板の作製方法

Publications (2)

Publication Number Publication Date
JP2010050446A JP2010050446A (ja) 2010-03-04
JP5568260B2 true JP5568260B2 (ja) 2014-08-06

Family

ID=41569023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169736A Expired - Fee Related JP5568260B2 (ja) 2008-07-22 2009-07-21 Soi基板の作製方法

Country Status (2)

Country Link
US (1) US20100022070A1 (ja)
JP (1) JP5568260B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326941B2 (ja) * 2008-12-19 2013-10-30 旭硝子株式会社 ガラス表面の微細加工方法
SG183670A1 (en) 2009-04-22 2012-09-27 Semiconductor Energy Lab Method of manufacturing soi substrate
US8278187B2 (en) * 2009-06-24 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate by stepwise etching with at least two etching treatments
CN102460642A (zh) * 2009-06-24 2012-05-16 株式会社半导体能源研究所 半导体衬底的再加工方法及soi衬底的制造方法
WO2011024619A1 (en) * 2009-08-25 2011-03-03 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing soi substrate
US8318588B2 (en) * 2009-08-25 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing SOI substrate
WO2011043178A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Reprocessing method of semiconductor substrate, manufacturing method of reprocessed semiconductor substrate, and manufacturing method of soi substrate
FR2953988B1 (fr) * 2009-12-11 2012-02-10 S O I Tec Silicon On Insulator Tech Procede de detourage d'un substrat chanfreine.
FR2971365B1 (fr) * 2011-02-08 2013-02-22 Soitec Silicon On Insulator Méthode de recyclage d'un substrat source
US9123529B2 (en) 2011-06-21 2015-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for reprocessing semiconductor substrate, method for manufacturing reprocessed semiconductor substrate, and method for manufacturing SOI substrate
FR2980916B1 (fr) * 2011-10-03 2014-03-28 Soitec Silicon On Insulator Procede de fabrication d'une structure de type silicium sur isolant
JP5865057B2 (ja) * 2011-12-19 2016-02-17 株式会社半導体エネルギー研究所 半導体基板の再生方法、及びsoi基板の作製方法
US20180033609A1 (en) * 2016-07-28 2018-02-01 QMAT, Inc. Removal of non-cleaved/non-transferred material from donor substrate
US10911261B2 (en) 2016-12-19 2021-02-02 Intel Corporation Method, apparatus and system for hierarchical network on chip routing
US10846126B2 (en) 2016-12-28 2020-11-24 Intel Corporation Method, apparatus and system for handling non-posted memory write transactions in a fabric
CN113549400B (zh) * 2021-08-10 2022-07-12 万华化学集团电子材料有限公司 提高抛光液循环利用率的方法及硅片抛光方法
CN114050123A (zh) * 2021-10-29 2022-02-15 上海新昇半导体科技有限公司 一种soi晶圆及其最终处理方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254532A (ja) * 1988-08-17 1990-02-23 Sony Corp Soi基板の製造方法
JPH1197379A (ja) * 1997-07-25 1999-04-09 Denso Corp 半導体基板及び半導体基板の製造方法
US6534380B1 (en) * 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
JPH11163363A (ja) * 1997-11-22 1999-06-18 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US6660656B2 (en) * 1998-02-11 2003-12-09 Applied Materials Inc. Plasma processes for depositing low dielectric constant films
US6221774B1 (en) * 1998-04-10 2001-04-24 Silicon Genesis Corporation Method for surface treatment of substrates
TW416104B (en) * 1998-08-28 2000-12-21 Kobe Steel Ltd Method for reclaiming wafer substrate and polishing solution composition for reclaiming wafer substrate
JP3943782B2 (ja) * 1999-11-29 2007-07-11 信越半導体株式会社 剥離ウエーハの再生処理方法及び再生処理された剥離ウエーハ
TW578214B (en) * 2000-05-29 2004-03-01 Tokyo Electron Ltd Method of forming oxynitride film or the like and system for carrying out the same
TWI233154B (en) * 2002-12-06 2005-05-21 Soitec Silicon On Insulator Method for recycling a substrate
US7176528B2 (en) * 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
JP2005079389A (ja) * 2003-09-01 2005-03-24 Sumitomo Mitsubishi Silicon Corp 貼り合わせウェーハの分離方法及びその分離用ボート
JP2005093869A (ja) * 2003-09-19 2005-04-07 Mimasu Semiconductor Industry Co Ltd シリコンウエーハの再生方法及び再生ウエーハ
JP4319078B2 (ja) * 2004-03-26 2009-08-26 シャープ株式会社 半導体装置の製造方法
US7402520B2 (en) * 2004-11-26 2008-07-22 Applied Materials, Inc. Edge removal of silicon-on-insulator transfer wafer
JP2006216826A (ja) * 2005-02-04 2006-08-17 Sumco Corp Soiウェーハの製造方法
JP2006294737A (ja) * 2005-04-07 2006-10-26 Sumco Corp Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。
FR2888663B1 (fr) * 2005-07-13 2008-04-18 Soitec Silicon On Insulator Procede de diminution de la rugosite d'une couche epaisse d'isolant
JP4715470B2 (ja) * 2005-11-28 2011-07-06 株式会社Sumco 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
US8153513B2 (en) * 2006-07-25 2012-04-10 Silicon Genesis Corporation Method and system for continuous large-area scanning implantation process
JP5022828B2 (ja) * 2006-09-14 2012-09-12 富士フイルム株式会社 基板用水切り剤、これを使用する水切り方法及び乾燥方法
JP5446160B2 (ja) * 2008-07-31 2014-03-19 株式会社Sumco 再生シリコンウェーハの製造方法
EP2219208B1 (en) * 2009-02-12 2012-08-29 Soitec Method for reclaiming a surface of a substrate

Also Published As

Publication number Publication date
JP2010050446A (ja) 2010-03-04
US20100022070A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5568260B2 (ja) Soi基板の作製方法
KR101574138B1 (ko) Soi 기판의 제조방법
JP5917595B2 (ja) Soi基板の作製方法
JP5478166B2 (ja) 半導体装置の作製方法
JP5500833B2 (ja) Soi基板の作製方法
JP5354900B2 (ja) 半導体基板の作製方法
JP6154926B2 (ja) Soi基板の作製方法
JP2011029619A (ja) 半導体基板の再生処理方法及びsoi基板の作製方法
JP2009212503A (ja) Soi基板の作製方法
JP2009260315A (ja) Soi基板の作製方法及び半導体装置の作製方法
JP2014179644A (ja) Soi基板の作製方法
JP2010109353A (ja) Soi基板の作製方法
US8383491B2 (en) Method for manufacturing semiconductor substrate
US7989315B2 (en) Method for manufacturing semiconductor device
JP5438945B2 (ja) ボンド基板の作製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5568260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees