JP5568160B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP5568160B2
JP5568160B2 JP2013102591A JP2013102591A JP5568160B2 JP 5568160 B2 JP5568160 B2 JP 5568160B2 JP 2013102591 A JP2013102591 A JP 2013102591A JP 2013102591 A JP2013102591 A JP 2013102591A JP 5568160 B2 JP5568160 B2 JP 5568160B2
Authority
JP
Japan
Prior art keywords
temperature
image forming
forming apparatus
outside air
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013102591A
Other languages
English (en)
Other versions
JP2013152495A (ja
Inventor
俊明 酒向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013102591A priority Critical patent/JP5568160B2/ja
Publication of JP2013152495A publication Critical patent/JP2013152495A/ja
Application granted granted Critical
Publication of JP5568160B2 publication Critical patent/JP5568160B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)

Description

本発明は、一般に、設置環境の気温を検知して利用する電子機器に係り、とりわけ、記録媒体上に画像を形成する画像形成装置に関する。
一般に、複写機、レーザプリンタ等の画像形成装置は、設置環境の気温に応じて画像形成条件(転写条件、定着条件、帯電条件など)を最適化している。これは、記録媒体に含まれる水分量に応じて、適切な画像形成条件が異なるからである。
特許文献1によれば、画像形成装置の内部に設置した環境検知手段により得られた機内温度や機内湿度に基づいて水分量を演算し、求められた水分量に基づいて定着処理条件を決定する方法が開示されている。特許文献1の方法は、良好な出力画像を形成するためには極めて有効な方法と考えられる。
特開2006−195422号公報
ところで、画像形成装置に対しては、高速化、高画質化、小型化や省電力化が同時に求められている。一般に、画像形成装置を高速化することにより、画像形成装置内の発熱量は増加する。増加した発熱量に起因するさまざまな悪影響を抑制するため、画像形成装置の内部に外気を取り入れ、内気を排出するための換気手段が必要となる。また、省電力化のために、換気手段をより細かく制御する必要もあろう。
画像形成装置を小型化すると、画像形成装置内の発熱による温度上昇の影響を完全に排除する冷却能力を有した換気手段を設けることが難しくなる。そのため、画像形成装置内の温度が所定温度以上にならないように、画像形成動作の一時的な停止など、過熱抑制制御が必要となる。
さらに、画像形成装置の小型化が進むことにより、外気に直接触れる位置に環境検知手段を配置することも困難となりつつある。画像形成装置内の発熱の影響を受ける位置に配置された環境検知手段によって検知された環境情報は、実際の外気温を正確に反映していないおそれがある。
仮に、換気用のダクトなど、外気が通過する位置に環境検知手段を配置すれば、実際の外気温を正確に取得できる可能性が高まるであろう。しかし、上述したように換気手段の吸気量を細かく制御すれば、ダクト内での外気の通過速度が変化してしまうため、実際の外気温を正確に測定できなくなる。また、省電力モードへ移行してしまうと換気手段も停止するため、外気が全く導入されなくなる可能性もある。
このように、環境検知手段を用いて転写処理や定着処理、過熱防止制御の各条件を適切に設定する手段を備えていたとしても、画像形成装置に対する高画質化の要求に対して、十分に答えられない状況となっている。
そこで、本発明は、このような課題および他の課題のうち、少なくとも1つを解決することを目的とする。たとえば、本発明は、従来よりも精度良く環境情報を検知して、画像形成装置の高画質化を図ることを目的とする。なお、他の課題については明細書の全体を通して理解できよう。
本発明によれば、外気導入部を備えた画像形成装置において、
前記外気導入部における温度を検知する温度検知手段と、
前記温度検知手段により検知された温度を用いて外気温を求める外気温推定手段と、を有し、
前記画像形成装置の稼働状況が省電力状態へ移行した状況である場合に、前記外気温推定手段は、前記温度検知手段で検知した温度が所定温度変化すると、この温度変化が増加変化か減少変化かを判定し当該温度変化が増加変化である場合は、前記画像形成装置が前記省電力状態に移行する直前に推定した温度を外気温とし、当該温度変化が減少変化である場合は、前記温度検知手段によって検知した温度が所定温度低下する迄の時間を求め、求めた時間に応じた補正温度を求め、前記検知した温度と求めた補正温度を用いて外気温を求めることを特徴とする画像形成装置が提供される。
本発明は、稼働状況に応じて選択された決定規則にしたがって環境情報が決定されるため、従来よりも精度の良い環境情報が得られ、画像形成装置の高画質化を図ることができる。
実施形態に係るカラーレーザープリンタの全体構成図である。 実施形態のファンダクトを画像形成装置の外側から見た図である。 画像形成装置100内の温度分布を模式的に示した図である。 画像形成装置100内の温度分布を模式的に示した図である。 画像形成装置100内の温度分布を模式的に示した図である。 画像形成装置100内の温度分布を模式的に示した図である。 画像形成装置100内の温度分布を模式的に示した図である。 実施形態の画像形成装置に備えられた情報処理部のブロック図である。 実施形態における外気温推定処理の概要を表すフローチャートである。 実施形態における電源投入時温度推定処理の一例を示したフローチャートである。 温度の変化量tdを換算温度tcに換算するための換算表の一例を示した図である。 実施形態における稼動中温度推定処理の一例を示したフローチャートである。 実施形態における過熱抑制制御の一例を示した図である。 実施形態における過熱抑制制御の一例を示したフローチャートである。 実施形態における外気温推定処理の一例を示したフローチャートである。 実施形態における電源投入時温度推定処理の一例を示したフローチャートである。 経過時間Tdから換算温度tc2へ換算するための換算表の一例を示した図である。 実施形態における省電力状態温度推定処理の一例を示したフローチャートである。 経過時間Td2から換算温度tc3へ換算するための換算表の一例を示した図である。 実施形態における外気温推定処理の一例を示したフローチャートである。 実施形態における電源投入時温度推定処理の一例を示したフローチャートである。 経過時間Td3を換算温度tc4へ換算するための換算表の一例を示した図である。
以下に本発明の一実施形態を示す。以下で説明される個別の実施形態は、本発明の上位概念、中位概念および下位概念など種々の概念を理解するために役立つであろう。また、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。
[実施形態1]
図1は、本実施形態に係るカラーレーザープリンタの全体構成図である。ここでは、本発明に係る画像形成装置の一例として多色画像形成装置について説明するが、単色画像形成装置にも本願発明を適用できる。また、画像形成装置は、たとえば、印刷装置、プリンタ、複写機、複合機、ファクシミリとして実現できる。ここでは、一例として本発明を電子写真方式に適用した実施形態を説明する。しかし、本発明は、外気温を制御に使用する画像形成方式であれば、どのような画像形成方式であっても適用可能である。すなわち、画像形成方式は、静電記録方式、磁気記録方式、インクジェット方式、昇華方式、オフセット印刷方式であってもよい。
(全体構成)
画像形成装置100は、4個の像担持体である感光体ドラム1を有している。各感光体ドラム1の周囲には、帯電器2、露光器3、現像器4、転写部材5、クリーニング部6が設けられ値得る。帯電器2は、感光体ドラム1の表面を一様に帯電させる。露光器3は、画像情報に基づいてレーザービームを照射し感光体ドラム1上に静電潜像を形成する。現像器4は、静電潜像に現像剤(例:トナー)を付着させてトナー像として顕像化する。転写部材5は、感光体ドラム1上のトナー像をシートに転写させる。クリーニング部6は、転写後の感光体ドラム1表面に残留した転写後トナーを除去する。これらのユニットによって、画像形成部が構成されている。ここで、感光体ドラム1、帯電器2、現像器4及びクリーニング部6は一体的にカートリッジ化され、プロセスカートリッジ7を形成している。
給送部20から給送されたシートは、搬送ベルト91を中心とした搬送機構によって、画像形成部へ搬送される。画像形成部において、各色のトナー像がシートに順次転写され、多色画像が形成される。その後、シートは、定着器10で加熱定着処理されて、排出ローラ対11によって排出部13に排出される。定着器10は、未定着の現像剤像を定着する定着手段の一例である。
(給送部)
給送部20は、一枚ずつシートを分離給送するカセットピックアップローラ21を備えている。セット搬送ローラ22及びレジストローラ15を介して、
シートは、搬送ベルト91に受け渡される。
レジストローラ15では、レジストセンサ12によりシートの先端が到達したタイミングを検出する。このタイミングは、画像形成部における画像形成動作の垂直同期信号として使用される。なお、シートは、記録材、記録媒体、用紙、転写材、転写紙と呼ばれることもある。
(画像形成部)
感光体ドラム1は、たとえば、アルミニウム製シリンダの外周面に有機光導電体層(OPC)を塗布して構成される。
帯電器2は、たとえば、ローラ状に形成された導電性の帯電ローラを備えている。帯電ローラを感光体ドラム1の表面に当接させると共に、図示しない電源によって帯電バイアス電圧を印加する。これにより、感光体ドラム1の表面を一様に帯電させることができる。なお、帯電バイアス電圧は、環境センサ30によって検出された温度及び湿度などの環境情報に基づいて補正される。
現像器4は、それぞれブラック、シアン、マゼンタ、イエローの各色のトナーを収納したトナー収納部41と、現像バイアス電源により現像バイアス電圧を印可することにより現像を行う現像ローラ42等を備えている。現像バイアス電圧は、環境センサ30によって検出された温度及び湿度などの環境情報に基づいて補正される。
搬送ベルト91の内側には、感光体ドラム1に対向して、搬送ベルト91に当接する転写部材5が設けられている。転写部材5には、転写バイアス用電源から正極性の転写バイアス電圧が印加される。これにより、シートが正極性となり、感光体ドラム1上の負極性の各色トナー像が転写されやすくなる。なお、転写バイアス電圧は、環境センサ30によって検出された温度及び湿度などの環境情報に基づいて補正される。
(シート搬送機構の詳細)
記録材担持体としての搬送ベルト91は、駆動ローラ92と従動コロ93で張架支持されている。搬送ベルト91は、感光体ドラム1に対向する外周面にシートを静電吸着しながら、駆動ローラ92によって循環移動する。搬送ベルト91により転写位置まで搬送されたシートには、感光体ドラム1上のトナー像が転写される。
また、搬送ベルト91の最上流位置には、搬送ベルト91と共にシートを挟持し、かつシートを搬送ベルト91に吸着させる吸着ローラ94が配設されている。吸着バイアス用電源によって、吸着ローラ94に吸着バイアス電圧を印加することで、対向している設置された従動コロ93との間に電界が形成される。吸着バイアス電圧は、環境センサ30によって検出した温度及び湿度などの環境情報に基づいて補正される。
(定着部)
定着器10は、シート上に形成された画像に熱及び圧力を加えてトナー像を定着させるユニットである。定着器10は、定着ベルトと弾性加圧ローラとを有している。定着ベルトと弾性加圧ローラとによって形成される定着ニップ部は、所定の定着温度となるように調整される。なお、定着器10には、定着温度を検出するための定着温度センサ35が設けられている。定着温度センサ35は、定着手段の温度を検出する定着温度検出手段の一例である。なお、定着温度の目標値は、環境センサ30によって検出された温度や湿度などの環境情報に基づいて補正される。
(環境センサ)
上説したように、現像バイアス、転写バイアス、吸着バイアス及び定着温度などの画像形成条件は、環境センサ30によって検出された環境情報に基づいて制御される。環境センサ30は、画像形成装置の内部に外気を導入する外気導入部に設置され、画像形成装置に関する温度を検知する温度検知手段の一例である。
図2は、実施形態のファンダクトを画像形成装置の外側から見た図である。ファンダクト200内に環境センサ30が設置されている。ファンダクト200は、画像形成装置の内部に外気を導入する外気導入部である。このファンダクト200内には、吸気ファン202が設けられている。吸気ファン202の手前側には、ファンダクト200の上側の壁面から下側に向かって突き出すように、環境センサステー201が設けられている。環境センサ30は環境センサステー201上に設置されている。環境センサステー201を設けているのは、画像形成装置の内部温度(機内温度)が環境センサ30へ伝達しにくくするためである。吸気ファン202によって、図2の手前側から奥側へむけて空気が通過する。
(機内温度推移)
図3Aないし図3Eは、画像形成装置100内の温度分布を模式的に示した図である。これらの図は、画像形成装置100の稼働状況に応じた画像形成装置100内の温度推移を示している。とりわけ、図3Aは、画像形成装置100が電力の供給を受けずに(すなわち電源スイッチがオフのまま)長時間放置されたときの温度分布を示している。この状態においては、画像形成装置100の機内温度は外気温と同じである。
図3Bは、電力を供給することで画像形成装置100が稼働を開始して間もない状態を示している。画像形成装置100が稼働を開始すると、電気回路部の損失による発熱や、各部の摩擦による自己発熱、定着器10による発熱などにより、画像形成装置100内の機内温度が上昇する。
一方、吸気ファン202を稼働させることによって、ファンダクト200を通じて外気が導入される。これによって、環境センサステー201及び環境センサ30を含むファンダクト200の近傍は、外気と同じ温度に保たれる。吸気ファン202によって導入された外気は、画像形成装置100内部を通過する過程で画像形成装置100の各部を冷却し、不図示の排気ダクトから排出される。
図3Cは、画像形成装置100が連続的に稼働した後の状態を示している。画像形成装置100内部の発熱と、吸気ファン202から導入された外気による冷却が平衡状態に達した状態である。この状態においては、環境センサ30によって検出される温度は画像形成装置100の発熱部より低い温度を示す。しかし、画像形成装置100内部の部材を通じた熱伝導によって環境センサステー201および環境センサ30自体にも蓄熱する。その結果、環境センサ30が検出する温度は外気温より高い値を示す。
図3Dは、連続稼働した画像形成装置100が稼働を停止してから暫時放置された後の状態を示している。この状態は、画像形成装置100が省電力モードに以降した状態や、画像形成装置100への電力供給が停止された状態などである。画像形成装置100は稼働していないため、画像形成装置100内部での発熱はないものの、吸気ファン202も停止しているため、外気の導入が行われていない。この状態においては、画像形成装置100内部の空気の自然対流、画像形成装置100外部の空気の対流、輻射および熱伝導によってのみ画像形成装置100が冷却される。したがって、画像形成装置100内部では熱勾配の解消が緩慢に進行している。環境センサ30の近傍は画像形成装置100内部の対流、輻射及び熱伝導によって、稼働時よりも温度が上昇する。
図3Eは、画像形成装置100が稼働を再開して間もない状態を示している。吸気ファン202が稼働を再開することによって外気が導入され、ファンダクト200の近傍を中心に画像形成装置100の機内温度が低下する。しかし、環境センサステー201に蓄積された熱の影響によって、環境センサ30自体の温度は顕著には低下しない。よって、図3Eの状態で検出される温度は、図3Cに示した状態で検出される温度よりも高い。
(情報処理部構成)
図4は、本実施形態の画像形成装置に備えられた情報処理部のブロック図である。CPU401はROM402から読み出したプログラムを実行する。CPU401は、プログラムを実行する過程で、一時的に記憶すべき情報をRAM403に格納する。RAM403は、温度検知手段によって検知された温度を示す温度データを記憶する温度記憶手段の一例である。また、RAM403は、温度検知手段によって検知した温度の変化履歴を記憶する温度変化履歴記憶手段と、画像形成装置の稼働状況の履歴を記憶する稼働履歴記憶手段の一例でもある。
CPU401は、プログラムの実行の際に必要であり、変化しない情報は、ROM402から読み出して使用する。画像形成装置100への電源供給が停止している間も保持すべき情報は、不揮発メモリであるNVRAM406に格納される。よって、NVRAM406も上述した記憶手段の一例である。
CPU401は、各種センサ404から取得した情報に基づいて各種アクチュエータ405を制御することで、画像形成装置100を動作させる。環境センサ30、定着温度センサ35および吸気ファン202も同様にCPU401に接続される。
(外気温推定)
本実施形態は、環境情報の一例である外気温を決定するための複数ある決定規則のうち、画像形成装置の稼働状況に応じて1つの決定規則を選択し、選択した決定規則を温度データに適用して外気温を決定することを特徴とする。たとえば、環境センサ30によって検知した温度と、温度変化の履歴と、稼働状況の履歴とに基づいて外気温(外気の温度)が推定される。
図5は、本実施形態における外気温推定処理の概要を表すフローチャートである。外気温推定処理は、画像形成装置100に電力供給が開始されるとCPU401によって開始され、電力供給が停止されるまで継続的に実行される。
ステップS501で、CPU401は、画像形成装置の状態(稼働状況)がいずれの状態にあるかを判定する。CPU401は、稼働状況を示す履歴を作成し、RAM403に格納する。稼働状況には、たとえば、電源投入直後、省電力モードからの復帰直後、稼働中(画像形成中)などがある。CPU401は、RAM403から稼働状況を示す履歴を読み出し、現在の稼働状況を取得する。このように、CPU401は、画像形成装置の稼働状況を取得する取得手段の一例である。
取得した稼働状況が、画像形成装置100への電力供給が開始された直後であり、外気温が確定していないことを示していれば、ステップS502へ進む。ステップS502で、CPU401は、電源投入時温度推定処理を実行する。電源投入時温度推定処理の詳細は、図6Aを用いて後述する。
取得した状況が、省電力モードからの復帰直後であって、外気温が確定していないことを示していれば、ステップS503に進む。ステップS503で、CPU401は、省電力復帰時温度推定処理を実行する。省電力復帰時温度推定処理は、たとえば、電源投入時温度推定処理と同一であってもよいし、異なってもよい。ここでは、両者が同一であるものとする。
取得した稼働状況が、画像形成装置が稼働中であることを示していれば、ステップS504に進む。ステップS504で、CPU401は、稼働時温度推定処理を実行する。稼働時温度推定処理の詳細は、図7を用いて後述する。
ステップS502〜S504が実行されると、ステップS505に進む。ステップS505で、CPU401は、推定した外気温に基づいて画像形成条件の制御(例:現像バイアス電圧の調整や、過熱抑制制御など)を実行する。よって、CPU401は、決定された環境情報に応じて画像形成条件を制御する制御手段の一例といえる。
このように、本実施形態によれば、電源投入時温度推定処理、省電力復帰時温度推定処理、稼働時温度推定処理など、外気温を決定するための決定規則が複数用意されている。そして、画像形成装置の稼働状況に応じて1つの決定規則が選択される(S501)。よって、CPU401は、画像形成装置が設置されている環境を示す環境情報を決定するための複数ある決定規則のうち、取得された稼働状況に応じて1つの決定規則を選択する選択手段の一例である。そして、選択した決定規則を温度データに適用して外気温を決定するため、従来よりも、稼働状況に則した正確な外気温が得られるようになる。よって、CPU401は、選択された決定規則を温度データに適用して環境情報を決定する決定手段の一例である。
図6Aは、実施形態における電源投入時温度推定処理の一例を示したフローチャートである。図6Bは、温度の変化量tdを換算温度tcに換算するための換算表の一例を示した図である。電源投入時温度推定処理は、第1の決定規則の一例である。第1の決定規則では、それぞれ異なる時刻に測定された2つ以上の温度データから、画像形成装置が設置されている環境の気温を推定する規則である。
ステップS601で、CPU401は、環境センサ30から取得したダクト内温度をRAM403上の変数であるt1に格納する。ダクト内温度t1を取得した時刻を、ここでは第1の時刻と呼ぶことにする。CPU401は、内部のタイマーを使用して第1の時刻からの経過時間を計時する。
ステップS602で、CPU401は、タイマーにより計時された経過時間が所定時間になるまで待つ。経過時間が所定時間になると、ステップS603に進む。所定時間は、たとえば、15秒であるが、この値は機種ごとに異なる可能性がある。そのため、機種ごとの実験結果や理論解析に基づいて決定されることが望ましい。
ステップS603で、CPU401は、第1の時刻から所定時間経過後の第2の時刻に、再び環境センサ30からダクト内温度を取得し、RAM403上の変数であるt2に格納する。
ステップS604で、CPU401は、RAM403からt1、t2を読み出し、t1からt2を減算して変化量tdを求める。変化量tdは、第1の時刻から第2の時刻まで(すなわち所定時間内)におけるダクト内温度の変化量を示している。
ステップS605で、CPU401は、ダクト内温度の変化量tdから外気温toutを決定する。たとえば、CPU401は、ダクト内温度t2と変化量tdとを関数f1(t2,td)に代入して外気温toutを演算する。関数f1(t2,td)の一例は以下のとおりである。
tout=f1(t2,td) = t2 − tc
ここで、換算温度tcは、たとえば、図6Aに示した換算表から決定される。換算表の数値は、機種ごとに異なる可能性があるため、機種ごとの実験結果や理論解析に基づいて決定されることが望ましい。この換算表によれば、変化量tdが比較的に小さいときと大きいときとで換算温度tcが小さくなるが、変化量tdが中程度のときには換算温度tcが大きくなる。これは、所定時間における変化量tdが中程度のときに、環境センサ30によって測定された温度と、実際の外気温との差が大きくなる傾向があるからである。
このように本実施形態によれば、CPU401は、2つの温度データから所定時間における温度の変化量を算出し、算出した温度の変化量から気温を推定する推定手段として機能している。ここでは、2つの温度データから外気温を推定しているが、3つ以上の温度データが使用されてもよい。変化量は、一種の勾配(傾き)を示しているため、3つ以上の温度データから変化量を算出することも可能である。
図7は、実施形態における稼動中温度推定処理の一例を示したフローチャートである。ここでは、一例として、画像形成装置の連続稼働時間を監視し、連続稼働時間と環境センサ30によって検知されたダクト内温度とから外気温を推定する第2の決定規則を使用する。
ステップS701で、CPU401は、画像形成装置100が稼働を開始してからの連続稼働時間をタイマーにより監視し、RAM403上の変数であるTcに格納する。このように、CPU401は、画像形成装置の連続稼働時間を監視する監視手段の一例である。
ステップS702で、CPU401は、環境センサ30から取得したダクト内温度をRAM403上の変数であるt3に格納する。
ステップS703で、CPU401は、ダクト内温度t3と連続稼働時間Tcとから外気温toutを推定する。たとえば、CPU401は、t3とTcとを変数とする関数f2(t3,Tc)を使用して外気温を算出する。f2(t3,Tc)の一例を以下のとおりである。
tout=f2(t3,Tc) = tp ( Tc < 4分)
=f2(t3,Tc) = t3 − 1.5 (Tc ≧ 4分)
なお、tpは、電源投入時温度推定処理または省電力復帰時温度推定処理によって推定された最新の外気温である。tpは、予めCPU401によって決定され、RAM403に格納されている。
このように、本実施形態のCPU401は、画像形成装置が稼働中であることを稼働状況が示していることで選択された第2の決定規則を適用して、連続稼働時間と温度検知手段によって検知された温度とから気温を推定する推定手段の一例である。
本実施形態では、連続稼働時間Tcが所定時間(例:4分)未満か否かで、外気温を推定するための関数を切り替えている。これは、連続稼働時間Tcが所定時間未満であれば、画像形成装置100の発熱にともなう外気温への影響が小さいと考えられるからである。逆に、連続稼働時間Tcが所定時間以上となれば、発熱の影響が無視できなくなる。
このように、CPU401は、第2の決定規則を適用して、画像形成装置の連続稼働時間と環境センサによって検知された温度とから外気温を推定するス推定手段として機能している。また、CPU401やその内部のタイマーは、画像形成装置の連続稼働時間を監視する監視手段の一例である。
(過熱抑制制御)
図8は、本実施形態における過熱抑制制御の一例を示した図である。ここでは、現像器4に格納されたトナーの温度が50℃を超えると、トナーの融解が発生する危険性があるものと仮定して説明する。
過熱抑制制御は、現像器4の温度が50℃を超えないようにすることを目標とした制御である。一般には、現像器4の温度を測定するセンサが必要となる。しかし、コスト削減やスペース効率の観点から、現像器4がセンサを備えていないこともある。このような場合、外気温や画像形成装置の稼働履歴を元に現像器4の温度を推定する必要がある。
図8(a)が示すように本実施形態の画像形成装置は、外気温が25℃の状態で連続稼働すると、稼働開始から120分後に現像器4の温度が50℃に達してしまう。一方、図8(b)が示すように本実施形態の画像形成装置は、外気温が30℃の状態で連続稼働すると、稼働開始から90分後に現像器4の温度が50℃に達してしまう。
また、現像器4の温度が50℃に達した場合、外気温によらず1分間にわたり画像形成を停止することで現像器4の温度が2℃降下するものと仮定する。さらに、再度1分間にわたり画像形成を実行すると、再度50℃に達することが分かっているものと仮定する。
図9は、実施形態における過熱抑制制御の一例を示したフローチャートである。
ステップ901で、CPU401は、画像形成装置100の電源投入時または省電力モードからの復帰時に決定された外気温の推定値toutから連続稼働可能時間Tconを算出する。連続稼働可能時間Tconは、たとえば、外気温の推定値との対応表から決定される。なお、実験結果などから導出された関数に推定値toutを代入することで、連続稼働可能時間Tconが算出されてもよい。たとえば、外気温の推定値が25℃の場合、連続稼働可能時間Tconは120分と決定される。また、外気温の推定値が30℃の場合、連続稼働可能時間Tconは110分と決定される。
ステップS902で、CPU401は、タイマーが所定時間(例:1秒)を計時するまで待つ。所定時間が経過すると、ステップS903に進む。ステップS903で、CPU401は、画像形成装置の稼働状況を取得し、画像形成装置が稼動中であるか否かを判定する。稼働中であれば、ステップS904に進む。
ステップS904で、CPU401は、連続稼働可能時間Tconを1秒減算する。ステップS905で、CPU401は、連続稼働可能時間Tconが0秒となったか否かを判定する。連続稼働可能時間Tconが0秒となっていなければ、ステップS907に進む。一方、連続稼働可能時間Tconが0秒となっていれば、ステップS906に進む。
ステップS906で、CPU401は、画像形成を中断する。その後、ステップS907に進む。ステップS907で、CPU401は、省電力モードへの移行が指示されたり、画像形成装置の電源の切断が指示されたりしたか否かを判定する。これらが指示されていれば、本フローチャートに係る一連の処理を終了する。一方、これらの指示がされていなければ、ステップS902へ戻る。
ところで、ステップS903で、画像形成装置100が稼動中でないと判定されると、ステップS908に進む。ステップS908で、CPU401は、連続稼働可能時間Tconが現時点の外気温推定値toutから算出された連続稼働可能時間Tnowよりも小さいか否かを判定する。小さくなければ、ステップS907に進む。一方、小さければ、ステップS909に進む。
ステップS909で、CPU401は、連続稼働可能時間Tconに1秒を加算する。ステップS910で、CPU401は、画像形成装置の稼働状況を取得し、画像形成が引き続き中断中であるか否かを判定する。中断中でなければ、ステップS907に進む。一方、中断中であれば、ステップS911に進む。
ステップS911で、CPU401は、連続稼働可能時間Tconが1分を超えているか否かを判定する。超えていなければ、ステップS907に進む。超えていれば、ステップS912に進む。ステップS912で、CPU401は、画像形成を再開する。その後、ステップS907に進む。
以上説明したように本実施形態によれば、稼働状況に応じて選択された決定規則にしたがって環境情報が決定されるため、従来よりも精度良く環境情報が検知される。その結果、画像形成装置の高画質化を図ることができる。とりわけ、画像形成装置100の稼働状況に依存して環境センサ30による検出値と実際の外気温との間に差異が生じたとしても、従来よりも正確な外気温を取得できるようになる。外気温の推定精度が向上することで過熱抑制制御が適切に実行されるようになり、トナーが融解して画質が低下する事態を回避できよう。
たとえば、実際の外気温が25℃でありながら、環境センサ30による検出値が30℃であったとする。本来であれば120分間は連続稼動が可能であるにもかかわらず、従来は90分間しか連続稼働を行うことができない。これに対して、本実施形態であれば、外気温の推定値を用いることで、従来よりも長時間稼働可能となる。
[実施形態2]
実施形態2では、本発明における外気温推定のための決定規則についてさらに他の例について説明する。とりわけ、第3の決定規則は、第1の時刻に検知された温度から所定温度差だけ変化するのに要した経過時間を計時し、この経過時間から外気温を推定する規則である。第3の決定規則は、画像形成装置が電源投入直後であるときに選択される。第4の決定規則は、画像形成装置が省電力モードへ移行中であることを稼働状況が示しているときに、CPU401によって選択される。また、第4の決定規則は、第1の時刻に検知された温度から所定温度差だけ変化したときに、その変化が減少なのか増加なのかを判定することを基本としている。さらに、第4の決定規則は、変化が減少であれば経過時間から外気温を推定し、変化が増加であれば画像形成装置が省電力モードへ移行する直前に決定された気温を現在の気温として採用する規則である。
図10は、本実施形態における外気温推定処理の一例を示したフローチャートである。既に説明した処理には、同一の参照符号を付与することで、説明を簡潔にする。
ステップS1001で、CPU401は、画像形成装置の稼働状況がいずれの稼働状況であるかを判定する。稼働状況には、たとえば、電源投入直後、省電力モードに移行中、省電力モードからの復帰直後、稼働中(画像形成中)などがある。CPU401は、RAM403から稼働状況を示す履歴を読み出し、現在の稼働状況を取得する。
取得した稼働状況が、画像形成装置100への電力供給が開始された直後であり、外気温が確定していないことを示していれば、ステップS1002へ進む。ステップS1002で、CPU401は、電源投入時温度推定処理を実行する。電源投入時温度推定処理の詳細は、図11Aを用いて後述する。
取得した状況が、省電力モードへの移行中であって外気温が確定していないことを示していれば、ステップS1003に進む。ステップS1003で、CPU401は、省電力状態温度推定処理を実行する。省電力状態温度推定処理の詳細は、図12Aを用いて後述する。
取得した状況が、省電力モードからの復帰直後であって外気温が確定していないことを示していれば、ステップS1004に進む。ステップS1004で、CPU401は、省電力復帰時温度推定処理を実行する。省電力復帰時温度推定処理は、たとえば、省電力状態温度推定処理によって決定された最新の外気温をそのまま採用する処理である。その後、ステップS505に進む。
取得した稼働状況が、画像形成装置が稼働中であることを示していれば、ステップS504に進む。ステップS504の詳細は、図7を用いて説明したとおりである。
ステップS1002〜1004又はS504が実行されると、ステップS505に進む。ステップS505で、CPU401は、推定した外気温に基づいて画像形成条件の制御(例:現像バイアス電圧の調整や、過熱抑制制御など)を実行する。
図11Aは、実施形態における電源投入時温度推定処理の一例を示したフローチャートである。図11Bは、経過時間Tdから換算温度tc2へ換算するための換算表の一例を示した図である。
ステップS1101で、CPU401は、環境センサ30から取得したダクト内温度をRAM403上の変数であるt4に格納する。なお、CPU401は、ダクト内温度の初期値t4を取得した第1の時刻からの経過時間をタイマーにより計時する。このように、CPU401の内部タイマーは、温度検知手段により第1の時刻に検知された温度から所定温度差だけ変化するのに要した経過時間を計時する計時手段の一例である。
ステップS1102で、CPU401は、環境センサ30を用いてダクト内温度を繰り返し測定し、測定したダクト内温度が初期値t4よりも所定温度差(例:1℃)減少するまで待つ。ダクト内温度が初期値t4から所定温度差だけ変化すると、ステップS1103に進む。
ステップS1103で、CPU401は、タイマーにより計時した経過時間をRAM403上の変数であるTdに格納する。経過時間は、測定したダクト内温度が初期値t4よりも所定温度差だけ変化するのに要した時間である。
ステップS1104で、CPU401は、初期値t4と経過時間Tdに第3の決定規則を適用して外気温を推定する。たとえば、CPU401は、初期値t4と経過時間Tdを変数とする関数f3(t4,Td)を使用して外気温を算出する。
tout=f3(t4,Td) = t4 − tc2
ここで、tc2は、図11Bの換算表を用いてTdを温度に換算した値である。図11Bに示した換算表の数値は、たとえば、実験結果や理論解析によって決定される。図11Bに示した換算表では、Tdが増加すればするほど、換算温度tc2が小さくなってゆく。これは、外気温とダクト内温度との差が大きいほど、温度変化に要する経過時間が少なくて済むからである。
このように、CPU401は、画像形成装置が電源投入直後であることを稼働状況が示していることで選択された第3の決定規則を適用して、経過時間から外気温を推定する推定手段の一例である。
図12Aは、実施形態における省電力状態温度推定処理の一例を示したフローチャートである。図12Bは、経過時間Td2から換算温度tc3へ換算するための換算表の一例を示した図である。
ステップS1201で、CPU401は、環境センサ30を用いてダクト内温度を繰り返し測定し、測定したダクト内温度が初期値t4よりも所定温度差(例:1℃)変化するまで待つ。ダクト内温度が初期値t4から所定温度差だけ変化すると、ステップS1202に進む。
ステップS1202で、CPU401は、ダクト内温度の変化が減少なのか増加なのかを判定する。よって、CPU401は、第1の時刻に検知された温度から所定温度差だけ変化したときに、この変化が減少なのか増加なのかを判定する判定手段の一例である。
ダクト内温度が増加したのであれば、ステップS1203に進む。ステップS1203で、CPU401は、省電力状態に遷移する直前に推定した最後の外気温推定値をRAM403から読み出し、今回の外気温として採用する。一方、ダクト内温度が減少したのであれば、ステップS1204に進む。
ステップS1204で、CPU401は、この時点で環境センサ30から取得したダクト内温度をRAM403上の変数であるt5に格納する。なお、CPU401は、ダクト内温度のt5を取得した第1の時刻からの経過時間Td2をタイマーにより計時する。
ステップS1205で、CPU401は、ダクト内温度を繰り返し測定し、ダクト内温度がt5から所定温度(例:1℃)減少するまで待つ。所定温度だけ減少したことを確認すると、ステップS1206に進む。ステップS1206で、CPU401は、ダクト内温度が1℃減少するのに要した経過時間をタイマーから取得し、RAM403上の変数であるTd2に格納する。
ステップS1207で、CPU401は、ダクト内温度t5と経過時間Td2に第4の決定規則を適用して、外気温を推定する。たとえば、CPU401は、ダクト内温度t5と経過時間Td2を変数とする関数f4(t5,Td2)を用いて外気温を算出する。
tout=f4(t5,Td2) = t5 − tc3
ここで、換算温度tc3は、図12Bの換算表を用いて経過時間Td2から換算された値である。図12Bに示した換算表の数値は、たとえば、実験結果や理論解析によって決定される。図12Bに示した換算表では、Td2が増加すればするほど、換算温度tc3が小さくなってゆく。これは、外気温とダクト内温度との差が大きいほど、温度変化に要する経過時間が少なくて済むからである。
本実施形態によれば、稼働状況に応じて選択された決定規則にしたがって環境情報が決定されるため、従来よりも精度良く環境情報が検知される。その結果、画像形成装置の高画質化を図ることができる。とりわけ、画像形成装置100の稼働状況に依存して環境センサ30による検出値と実際の外気温との間に差異が生じたとしても、従来よりも正確な外気温を取得できるようになる。外気温の推定精度が向上することで過熱抑制制御が適切に実行されるようになり、トナーが融解して画質が低下する事態を回避できよう。
[実施形態3]
本実施形態では、環境センサ30により検知された温度と定着器の温度とから外気温を推定することを特徴とする。その際には、第5の決定規則が適用される。この第5の決定規則は、画像形成装置が電源投入直後であるときに選択される。
図13は、実施形態における外気温推定処理の一例を示したフローチャートである。既に説明した処理には、同一の参照符号を付与することで、説明を簡潔にする。
ステップS1301で、CPU401は、画像形成装置の稼働状況がいずれの稼働状況であるかを判定する。稼働状況には、たとえば、電源投入直後、省電力モードに移行中、省電力モードからの復帰直後、稼働中(画像形成中)、電源断などがある。CPU401は、RAM403から稼働状況を示す履歴を読み出し、現在の稼働状況を取得する。
取得した稼働状況が、画像形成装置100への電力供給が開始された直後であり、外気温が確定していないことを示していれば、ステップS1302へ進む。ステップS1302で、CPU401は、電源投入時温度推定処理を実行する。電源投入時温度推定処理の詳細は、図14Aを用いて後述する。
取得した状況が、省電力モードへの移行中であって外気温が確定していないことを示していれば、ステップS1003に進む。ステップS1003の詳細は、すでに説明したとおりである。
取得した状況が、省電力モードからの復帰直後であって外気温が確定していないことを示していれば、ステップS1004に進む。ステップS1004の詳細は、既に説明したとおりである。
取得した稼働状況が、画像形成装置が稼働中であることを示していれば、ステップS504に進む。ステップS504の詳細は、図7を用いて説明したとおりである。
取得した稼働状況が、画像形成装置の電源断が指示されたことを示していれば、ステップS1303に進む。ステップS1303で、CPU401は、最新の外気温の推定値をNVRAM406に格納する。NVRAM406は、不揮発性のメモリであるため、画像形成装置への電力供給が停止されても記憶内容を引き続き保持できる。
ステップS1302、S1003、S1004、S504又はS1303が実行されると、ステップS505に進む。ステップS505で、CPU401は、推定した外気温に基づいて画像形成条件の制御(例:現像バイアス電圧の調整や、過熱抑制制御など)を実行する。
図14Aは、実施形態における電源投入時温度推定処理の一例を示したフローチャートである。図14Bは、経過時間Td3を換算温度tc4へ換算するための換算表の一例を示した図である。
ステップS1401で、CPU401は、環境センサ30から取得したダクト内温度の初期値をRAM上の変数であるt5に格納する。ステップS1402で、定着器10において温度制御に用いる定着温度センサ35から取得した定着温度をRAM上の変数であるt6に格納する。
ステップS1403で、CPU401は、ダクト内温度の初期値t5と定着温度t6との温度差が閾値(例:100℃)を超えているか否かを判別する。これは、画像形成装置100への電力供給を開始した際に電力供給を停止していた時間が短時間であれば、温度差が比較的高くなる。すなわち、電力供給を停止していた時間が短時間であれば、過去に推定した外気温をそのまま利用できる可能性がある。これは、推定処理の時間を短縮できる効果がある。このように、CPU401は、温度検知手段により検知された温度と定着手段の温度との温度差が閾値を超えているか否かを判別する判別手段の一例である。
温度差が100℃を超えていれば、ステップS1404に進む。ステップS1404で、CPU401は、事前にNVRAM406に記憶しておいた外気温の推定値を読み出し、今回の外気温として採用する。このように、CPU401は、温度差が閾値を超えていれば、前回取得された気温を今回の気温として採用する推定手段の一例でもある。
一方、t5とt6の温度差が100℃以下であれば、ステップS1404に進む。ステップS1404で、CPU401は、環境センサ30からダクト内温度を繰り返し取得し、最初(第1の時刻)に取得したダクト内温度t7から所定温度差(例:1℃)だけダクト内温度が減少するまで待つ。なお、CPU401は、第1の時刻からの経過時間をタイマーにより計時する。所定温度差だけ変化すると、ステップS1405に進む。
ステップS1405で、CPU401は、ダクト内温度が所定温度差だけ低下するのに要した経過時間をタイマーから取得し、RAM403上の変数であるTd3に格納する。ステップS1406で、CPU401は、ダクト内温度の初期値t5と経過時間Td3とから外気温を推定する。たとえば、CPU401は、ダクト内温度の初期値t5と経過時間Td3を変数とする関数f5(t5,Td3)により外気温toutを算出する。
tout=f3(t4,Td) = t5 − tc4
ここで、換算温度tc4は、図14Bに示した換算表を用いて経過時間Td3を換算することで決定される。図14Bに示した換算表の数値は、たとえば、実験結果や理論解析によって決定される。図14Bに示した換算表では、Td3が増加すればするほど、換算温度tc4が小さくなってゆく。これは、外気温とダクト内温度との差が大きいほど、温度変化に要する経過時間が少なくて済むからである。
このように、CPU401は、画像形成装置が電源投入直後であることを稼働状況が示していることで選択された第5の決定規則を適用して、温度検知手段により検知された温度と定着手段の温度とから外気温を推定する推定手段の一例である。また、CPU401は、温度差が閾値を超えていなければ、温度検知手段により検知された温度が所定温度差だけ低下するの要した経過時間から外気温を推定する推定手段の一例でもある。
以上説明したように本実施形態によれば、稼働状況に応じて選択された決定規則にしたがって環境情報が決定されるため、従来よりも精度良く環境情報が検知される。その結果、画像形成装置の高画質化を図ることができる。とりわけ、画像形成装置100の稼働状況に依存して環境センサ30による検出値と実際の外気温との間に差異が生じたとしても、従来よりも正確な外気温を取得できるようになる。外気温の推定精度が向上することで過熱抑制制御が適切に実行されるようになり、トナーが融解して画質が低下する事態を回避できよう。
とりわけ、本実施形態では、定着部の温度とダクト内温度との温度差が所定閾値を超えているか否かに応じて、画像形成装置100への電力供給停止時間が短時間か否かを判定している。短時間であれば、直前の外気温の推定値をそのまま採用するため、推定処理に要する時間を短縮することが可能となる。
以上様々な実施形態を説明してきたが、総じて、CPU401は、設置環境気温推定手段として機能している。設置環境気温推定手段は、温度検知手段によって検知した温度と、温度変化の履歴と、稼働状況の履歴とに基づいて、画像形成装置が設置されている環境の気温を推定する手段である。これにより、外気温の推定精度が向上するため、高画質化も達成できよう。
1・・・感光体ドラム
2・・・帯電器
3・・・露光器
4・・・現像器
5・・・転写部材
10・・・定着部
11・・・排紙ローラ対
12・・・レジストセンサ
13・・・排紙トレイ
20・・・給紙部
21・・・ピックアップローラ
22・・・搬送ローラ
30・・・環境センサ
35・・・定着温度センサ
100・・・装置本体
200・・・ファンダクト
201・・・環境センサステー
202・・・吸気ファン
401・・・CPU
402・・・ROM
403・・・RAM
404・・・各種センサ
405・・・各種アクチュエータ
406・・・NVRAM

Claims (3)

  1. 外気導入部を備えた画像形成装置において、
    前記外気導入部における温度を検知する温度検知手段と、
    前記温度検知手段により検知された温度を用いて外気温を求める外気温推定手段と、を有し、
    前記画像形成装置の稼働状況が省電力状態へ移行した状況である場合に、前記外気温推定手段は、前記温度検知手段で検知した温度が所定温度変化すると、この温度変化が増加変化か減少変化かを判定し当該温度変化が増加変化である場合は、前記画像形成装置が前記省電力状態に移行する直前に推定した温度を外気温とし、当該温度変化が減少変化である場合は、前記温度検知手段によって検知した温度が所定温度低下する迄の時間を求め、求めた時間に応じた補正温度を求め、前記検知した温度と求めた補正温度を用いて外気温を求めることを特徴とする画像形成装置。
  2. 前記計時した時間が増加するほど、前記補正温度が小さくなることを特徴とする請求項1記載の画像形成装置。
  3. 前記温度検知手段で検知した温度が所定温度低下した場合に、前記外気温推定手段は、前記求めた時間を前記補正温度に換算し、換算した前記補正温度を、前記所定温度減少する前に検知した温度から減算して外気温を求めることを特徴とする請求項1または2に記載の画像形成装置。
JP2013102591A 2013-05-14 2013-05-14 画像形成装置 Expired - Fee Related JP5568160B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102591A JP5568160B2 (ja) 2013-05-14 2013-05-14 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102591A JP5568160B2 (ja) 2013-05-14 2013-05-14 画像形成装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008113232A Division JP2009265280A (ja) 2008-04-23 2008-04-23 画像形成装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2013152495A JP2013152495A (ja) 2013-08-08
JP5568160B2 true JP5568160B2 (ja) 2014-08-06

Family

ID=49048810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102591A Expired - Fee Related JP5568160B2 (ja) 2013-05-14 2013-05-14 画像形成装置

Country Status (1)

Country Link
JP (1) JP5568160B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938026B2 (ja) * 2013-10-15 2016-06-22 京セラドキュメントソリューションズ株式会社 画像形成装置
JP2020197642A (ja) 2019-06-03 2020-12-10 キヤノン株式会社 画像形成装置
JP7491058B2 (ja) * 2020-05-28 2024-05-28 株式会社リコー 画像形成装置
JP7552342B2 (ja) 2020-12-22 2024-09-18 沖電気工業株式会社 画像形成装置
JP2023160091A (ja) * 2022-04-21 2023-11-02 キヤノン株式会社 画像形成装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250483A (ja) * 1991-01-10 1992-09-07 Minolta Camera Co Ltd 作像装置における定着装置
JP3588381B2 (ja) * 1995-02-16 2004-11-10 株式会社東芝 画像形成装置ならびに画像形成装置の制御方法
JP3740258B2 (ja) * 1997-08-29 2006-02-01 キヤノン株式会社 画像形成装置
JPH11109799A (ja) * 1997-09-30 1999-04-23 Toshiba Tec Corp 電子写真装置
JP2002040581A (ja) * 2000-07-26 2002-02-06 Canon Inc 画像記録装置
JP2002251121A (ja) * 2001-02-27 2002-09-06 Canon Inc 画像記録装置
JP2003323100A (ja) * 2002-05-02 2003-11-14 Canon Inc 画像形成装置
JP4042494B2 (ja) * 2002-08-12 2008-02-06 村田機械株式会社 画像形成装置
JP2004104904A (ja) * 2002-09-09 2004-04-02 Canon Inc 画像形成装置
JP2005091524A (ja) * 2003-09-12 2005-04-07 Ricoh Co Ltd 画像形成装置

Also Published As

Publication number Publication date
JP2013152495A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
JP2009265280A (ja) 画像形成装置及びその制御方法
US20140064756A1 (en) Image forming apparatus and method
JP5568160B2 (ja) 画像形成装置
JP5863011B2 (ja) 画像形成装置
JP6300082B2 (ja) 画像形成装置
JP6103358B2 (ja) 画像形成装置
JP2014119597A (ja) 画像形成装置
JP6422295B2 (ja) 画像形成装置
JP5397362B2 (ja) 画像形成装置
JP2013225108A (ja) 画像形成装置
US10044894B2 (en) Image forming apparatus having timer function related to power consumption modes
JP5243196B2 (ja) 画像形成装置
JP6570338B2 (ja) 画像形成装置
JP2013235260A (ja) 画像形成装置
JP5552850B2 (ja) 定着制御方法、定着装置および画像形成装置
JP5773222B2 (ja) 画像形成装置
JP2016142579A (ja) 人体検知装置、画像形成装置、情報処理装置、及び人体検知装置の制御方法
JP2000075566A (ja) 画像形成装置
JP7512029B2 (ja) 画像形成装置
JP7293861B2 (ja) 画像形成装置および画像形成装置の制御方法
JP7278839B2 (ja) 画像形成装置
JP2019002987A (ja) 画像形成装置
JP6900659B2 (ja) 画像形成装置およびその制御方法
JP5928045B2 (ja) 画像形成装置
JP2015118174A (ja) 画像形成装置、及び、画像形成装置の制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R151 Written notification of patent or utility model registration

Ref document number: 5568160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees