JP5549181B2 - リチウムイオン電池用外装材 - Google Patents

リチウムイオン電池用外装材 Download PDF

Info

Publication number
JP5549181B2
JP5549181B2 JP2009247767A JP2009247767A JP5549181B2 JP 5549181 B2 JP5549181 B2 JP 5549181B2 JP 2009247767 A JP2009247767 A JP 2009247767A JP 2009247767 A JP2009247767 A JP 2009247767A JP 5549181 B2 JP5549181 B2 JP 5549181B2
Authority
JP
Japan
Prior art keywords
layer
resin layer
lithium ion
aluminum foil
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009247767A
Other languages
English (en)
Other versions
JP2011096445A (ja
Inventor
直人 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2009247767A priority Critical patent/JP5549181B2/ja
Publication of JP2011096445A publication Critical patent/JP2011096445A/ja
Application granted granted Critical
Publication of JP5549181B2 publication Critical patent/JP5549181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用外装材に関する。
携帯電話、ノート型パソコンなどの携帯端末装置、ビデオカメラ、衛星、電気自動車などに用いられる電池としては、超薄型化、小型化が可能なリチウムイオン電池が盛んに開発されている。リチウムイオン電池の外装材には、金属板などをプレス成形し、円柱状もしくは直方体状などの形状に加工した金属製の缶タイプのものと、アルミニウム箔を利用したラミネートフィルム(例えば、耐熱性基材層/アルミニウム箔層/シーラント層のような構成)タイプのものの2種類がある。電池の外装材に金属製の缶を用いた場合には、電池自体の形状に制約が多くなる。これに対し、アルミニウム箔を利用したラミネートフィルムタイプの外装材は、形状を自由に選択でき、更に軽量化が図れる点で注目を集めている。
リチウムイオン電池は、電池内容物として正極材、負極材、及び正極材と負極材の短絡を防止するセパレーターと共に、炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルなどの浸透力を有する非プロトン性の溶媒に電解質(リチウム塩)を溶解した電解液、もしくは該電解液を含浸させたポリマーゲルからなる電解質層を含んでいる。このような浸透力を有する溶媒がリチウムイオン電池用外装材のシーラント層を通過すると、アルミニウム箔層とシーラント層間のラミネート強度が低下し、最終的に電解液が漏れ出すという問題があった。
また、電解質であるリチウム塩としては、LiPF、LiBFなどの塩が用いられるが、これらの塩は加水分解反応によりフッ酸を発生する。そのため、リチウムイオン電池内に水が浸入すると電池内でフッ酸が発生し、外装材において金属面が腐食されたり、多層フィルムの各層間のラミネート強度が低下したりする問題がある。一方、ラミネートタイプのリチウムイオン電池用外装材は、その構成上、外部から水分が浸透するのを防ぐことが困難である。そのため、リチウムイオン電池用外装材には、アルミニウム箔にフッ酸による腐食を防止する機能を付与すること、アルミニウム箔層と耐熱性基材層もしくはアルミニウム箔層とシーラント層との層間密着強度を強める機能を付与することにより、内容物耐性(耐電解液性や耐フッ酸性)を持たせることが求められる。
そこで、電解液や、電解質であるリチウム塩の加水分解により発生するフッ酸の影響による、アルミニウム箔層とシーラント層間におけるデラミネーションを抑制するために、下記リチウムイオン電池用外装材が示されている。
(1)酸変性ポリオレフィン樹脂にイソシアネート樹脂硬化剤を添加した接着剤層と、ベーマイト処理されたアルミニウム箔層との組み合わせを用いるリチウムイオン電池用外装材(特許文献1)。
(2)厚さ9〜200μmのアルミニウム箔層の少なくともシーラント層側が表面処理され、該アルミニウム箔層とシーラント層の間に、イオン高分子錯体を有するアンカーコート層と、熱可塑性樹脂からなるサンド樹脂層を有するリチウムイオン電池用外装材(特許文献2)。
(3)厚さ9〜200μmのアルミニウム箔層の少なくともシーラント層側が表面処理され、該アルミニウム箔層とシーラント層の間に、カップリング剤からなるアンカーコート層と、熱可塑性樹脂からなるサンド樹脂層を有するリチウムイオン電池用外装材(特許文献3)。
ところで、近年、ハイブリット車や電気自動車などの大型車載用途にリチウムイオン電池を採用する動きが活発になっており、より高エネルギー密度、高出力密度の電池性能が求められるようになってきている。それに伴い、リチウムイオン電池用外装材に対する要求性能も高まってきている。リチウムイオン電池用外装材のシーラント層は電解液に直接触れる部分である。そのため、電池性能が高エネルギー密度、高出力密度となった場合、シーラント層は、電解液と下地のアルミニウム箔層の短絡を防止するために高い絶縁性が求められる。
また、リチウムイオン電池用外装材をエンボス成形して凹部を形成し、該凹部にリチウムイオン電池を収納するエンボスタイプのものは、エンボス成形の際に凹部のコーナー部分のシーラント層に亀裂が入ることがある。さらにシーラント層は、ヒートシール時の熱や圧力、或いは電解液注入工程などで加わる外力によって亀裂が入ることもある。シーラント層に亀裂が入ると、電池内部でアルミニウム箔面と電解液が短絡し、リチウムイオン電池自体の特性が保持できなくなる。
また、大型車載用途では、要求される耐用年数も十年以上となるため、長期間の使用においてもリチウムイオン電池としての性能を保持できる高い信頼性が必要となっている。前述したリチウムイオン電池用外装材(1)〜(3)は、そのような大型用途での長期間の使用についてはまだ信頼性が充分とは言えず、さらなる性能の向上が望まれている。
特許第3755372号公報 特開2004−42477号公報 特開2004−142302号公報
本発明は、車載などの大型用途にも適用可能な優れた絶縁性を有し、リチウムイオン電池における外装材のシーラント層に亀裂が入ったとしても、電解液とアルミニウム箔との短絡を抑制できるリチウムイオン電池用外装材の提供を目的とする。
本発明は、前記課題を解決するために以下の構成を採用した。
[1]基材層の一方の面に少なくとも、接着剤層、アルミニウム箔層、アルミニウム保護層、接着樹脂層、シーラント層を順次積層したリチウムイオン電池用外装材において、前記シーラント層が、ポリイミド樹脂、ポリアミドイミド樹脂及びポリエーテルイミド樹脂からなる群から選ばれる1種以上を含むイミド系樹脂層を有する多層構造であり、前記アルミニウム保護層が、アニオン性ポリマー、該アニオン性ポリマーを架橋する架橋剤、リン化合物及び3価クロム化合物を含有する化成処理層であることを特徴とするリチウムイオン電池用外装材。
[2]前記シーラント層が、前記接着樹脂層側から順に、前記イミド系樹脂層とポリオレフィン樹脂層を有する多層構造である、前記[1]に記載のリチウムイオン電池用外装材。
[3]前記シーラント層が、前記接着樹脂層側から順に、ポリオレフィン樹脂層、前記イミド系樹脂層及びポリオレフィン樹脂層を有する多層構造である、前記[1]に記載のリチウムイオン電池用外装材
本発明のリチウムイオン電池用外装材は、車載などの大型用途にも適用可能な優れた絶縁性を有しており、万一、リチウムイオン電池における外装材のシーラント層に亀裂が入ったとしても、電解液とアルミニウム箔との短絡を抑制できる。
本発明のリチウムイオン電池用外装材の実施形態の一例を示した断面図である。 本発明のリチウムイオン電池用外装材の他の実施形態例を示した断面図である。
以下、本発明のリチウムイオン電池用外装材の実施形態の一例を示して詳細に説明する。
<第1実施形態>
本実施形態のリチウムイオン電池用外装材1は、図1に示すように、基材層11の一方の面に、接着剤層12、アルミニウム箔層13、アルミニウム保護層14、接着樹脂層15、シーラント層16Aが順次積層されている。
(基材層)
基材層11は、リチウムイオン電池を製造する際のシール工程における耐熱性を付与し、加工や流通の際に起こりうるピンホールの発生を抑制する役割を果たす。
基材層11としては、絶縁性を有する樹脂層が好ましい。該樹脂層としては、例えば、ポリエステルフィルム、ポリアミドフィルム、ポリプロピレンフィルムなどの延伸又は未延伸フィルムが挙げられる。なかでも、成形性、耐熱性、耐ピンホール性、絶縁性を向上させる点から、延伸ポリアミドフィルムや延伸ポリエステルフィルムが好ましい。
基材層11は、単層であってもよく、複数層であってもよい。
基材層11は、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤などの添加剤が配合されていてもよい。スリップ剤としては、脂肪酸アミド(例えば、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、ベヘニン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミドなど。)などが挙げられる。アンチブロッキング剤としては、シリカなどの各種フィラー系のアンチブロッキング剤が好ましい。添加剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
基材層11の厚さは、6〜40μmが好ましく、10〜25μmがより好ましい。基材層11の厚さが6μm以上であれば、耐ピンホール性、絶縁性が向上する。基材層の厚さが40μm以下であれば、成形性が向上する。前記厚さは、基材層11が多層フィルムである場合、その全体の厚さである。
(接着剤層)
接着剤層12は、基材層11とアルミニウム箔層13を接着する層である。
接着剤層12を構成する接着剤としては、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオールなどのポリオールを主剤とし、芳香族系や脂肪族系のイソシアネートを硬化剤とした2液硬化型のポリウレタン系接着剤が好ましい。該接着剤は塗工後に40℃で4日以上のエージング処理を行うことで、主剤のポリオールのOH基と、硬化剤のイソシアネートのNCO基が反応し、基材層11とアルミニウム箔層13を強固に接着する。
主剤のOH基に対する硬化剤のNCO基のモル比(NCO/OH)は、1〜10が好ましく、2〜5がより好ましい。
接着剤層12の厚さは、1〜10μmが好ましく、3〜7μmがより好ましい。
(アルミニウム箔層)
アルミニウム箔層13としては、一般の軟質アルミニウム箔を用いることができ、さらに耐ピンホール性、及び成形時の延展性を付与できる点から、鉄を含むアルミニウム箔を用いることが好ましい。
アルミニウム箔(100質量%)中の鉄の含有量は、0.1〜9.0質量%が好ましく、0.5〜2.0質量%がより好ましい。鉄の含有量が0.1%以上であれば耐ピンホール性、延展性が向上する。鉄の含有量が9.0%以下であれば、柔軟性が向上する。
アルミニウム箔層13の厚さは、バリア性、耐ピンホール性、加工性の点から9〜200μmが好ましく、15〜150μmがより好ましい。
従って、アルミニウム箔層13は、厚さ15〜150μmの軟質アルミニウム箔からなることが好ましい。
アルミニウム箔層13は、耐電解液性の点から、脱脂処理を施したアルミニウム箔を用いることが好ましい。また、脱脂処理により、表面をエッチングしたアルミニウム箔を用いてもよいが、製造工程の簡便化の観点から、表面をエッチングしていないアルミニウム箔を用いることが好ましい。
脱脂処理としては、大きく区分するとウェットタイプとドライタイプに分けられ、製造工程の簡便化の点から、ドライタイプが好ましい。
ドライタイプの脱脂処理としては、例えば、アルミニウムを焼鈍処理する工程において、その処理時間を長くすることで脱脂処理を行う方法が挙げられる。また、該脱脂処理のほかにも、フレーム処理やコロナ処理などが挙げられる。さらには、特定波長の紫外線を照射して発生する活性酸素により、汚染物質を酸化分解・除去する脱脂処理も挙げられる。
ウェットタイプの脱脂処理としては、例えば、酸脱脂やアルカリ脱脂などが挙げられる。
酸脱脂に使用する酸としては、例えば、硫酸、硝酸、塩酸、フッ酸などの無機酸が挙げられる。これらの酸は、1種を単独で使用してもよく、2種以上を併用してもよい。
アルカリ脱脂に使用するアルカリとしては、例えば、エッチング効果が高いものとして水酸化ナトリウムなどが挙げられる。また、弱アルカリ系や界面活性剤を配合したものが挙げられる。
ウェットタイプの脱脂処理は、浸漬法やスプレー法で行われる。
本発明においては、前述したウェットタイプの脱脂処理や、エッチングレベルまでの処理を施さなくても、ドライタイプの脱脂処理で充分な耐電解液性が得られる。すなわち、アルミニウムを軟質化するために施される焼鈍処理の際に、同時に行われる脱脂処理程度でも充分な耐電解液性が得られる。
(アルミニウム保護層)
アルミニウム保護層14は、アルミニウム箔層13と接着樹脂層15を強固に密着させると共に、アルミニウム箔層13を、電解液や電解液から発生するフッ酸から保護する役割を果たす
アルミニウム保護層14は、アニオン性ポリマー、該アニオン性ポリマーを架橋する架橋剤、リン化合物及び3価クロム化合物を含有する化成処理層であることが好ましい。
アニオン性ポリマーとしては、カルボキシル基を有するポリカルボン酸ポリマーが好ましい。ポリカルボン酸ポリマーとしては、例えば、ポリカルボン酸もしくはその塩、又はポリカルボン酸もしくはその塩を主成分とする共重合体が挙げられる。前記「ポリカルボン酸もしくはその塩を主成分とする」とは、ポリカルボン酸ポリマーの重合に用いる全モノマー100モル%に対して、ポリカルボン酸もしくはその塩のモノマーが50モル%以上であることを意味する。
ポリカルボン酸もしくはその塩としては、例えば、ポリ(メタ)アクリル酸もしくはその塩などが挙げられる。塩としては、例えば、アンモニウム塩、ナトリウム塩などが挙げられる。
アニオン性ポリマーは、1種を単独で使用してもよく、2種以上を併用してもよい。
共重合体の重合に用いられる他の成分としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基などのアルキル基を有するアルキル(メタ)アクリレート系モノマー;(メタ)アクリルアミド、N−アルキル(メタ)アクリルアミドやN,N−ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、2−エチルヘキシル基、シクロヘキシル基など)、N−アルコキシ(メタ)アクリルアミドやN,N−ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基など)、N−メチロール(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミドなどのアミド基含有モノマー;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテルなどのグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシランなどのシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネートなどのイソシアネート基含有モノマーなどが挙げられる。
架橋剤は、アニオン性ポリマーを架橋する架橋剤である。
架橋剤としては、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物の1種以上が挙げられる。
イソシアネート基を有する化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート又はその水素添加物;ヘキサメチレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート又はその水素添加物;イソホロンジイソシアネートなどのジイソシアネート類、又はこれらイソシアネート類をトリメチロールプロパンなどの多価アルコールと反応させたアダクト体や、水と反応させることで得られたビューレット体;三量体であるイソシアヌレート体などのポリイソシアネート類、又はこれらポリイソシアネート類をアルコール類、ラクタム類、オキシム類などでブロック化させたブロックポリイソシアネートなどが挙げられる。
グリシジル基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコールなどのグリコール類とエピクロルヒドリンを作用させたエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなどの多価アルコール類とエピクロルヒドリンを作用させたエポキシ化合物;フタル酸テレフタル酸、シュウ酸、アジピン酸などのジカルボン酸とエピクロルヒドリンとを作用させたエポキシ化合物などが挙げられる。
カルボキシル基を有する化合物としては、例えば、各種脂肪族あるいは芳香族ジカルボン酸などが挙げられる。具体的には、ポリ(メタ)アクリル酸やポリ(メタ)アクリル酸が挙げられ、それらのアルカリ(土類)金属塩を用いてもよい。
オキサゾリン基を有する化合物は、例えば、オキサゾリン基含有ポリマー、オキサゾリンユニットを2つ以上有する低分子化合物が挙げられる。前記低分子化合物とは、分子量が1000以下の化合物を意味する。
オキサゾリン基含有ポリマーとしては、イソプロペニルオキサゾリンなどのオキサゾリン基含有モノマーを重合したポリマー、該オキサゾリン基含有モノマーと他の重合性モノマーとの共重合体が挙げられる。同様に、オキサゾリンユニットを2つ以上有する低分子化合物は、前記オキサゾリン基含有モノマーに由来するユニットを2つ以上有する低分子化合物、前記オキサゾリン基含有モノマーに由来するユニットを2つ以上と、他の重合性モノマーに由来するユニットを1つ以上有する低分子化合物が挙げられる。
前記他の重合性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルなどのアクリル系モノマーが挙げられる。
架橋剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
架橋剤には、架橋点をシロキサン結合にすることができる点から、シランカップリング剤を併用することが好ましい。
シランカップリング剤としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−イソシアナートプロピルトリエトキシシランが挙げられる。
アルミニウム保護層14は、アニオン性ポリマーと架橋剤を組み合わせることで、接着樹脂層15とアルミニウム箔層13の密着性を確保した上で、耐電解液性、耐フッ酸性を向上させることができる。
電解液と接触した場合の接着樹脂層15とアルミニウム箔層13との密着性は、アルミニウム保護層14と接着樹脂層15間での密着力が特に重要である。接着樹脂層15は、シーラント層16Aとの密着性、水分透過性の低さなどの要求特性から、ポリオレフィン系の接着樹脂が好適に用いられるが、該接着樹脂は金属との密着力があまり高くない。しかし、アルミニウム保護層14を前述の化成処理層とすれば、極性基を有するアニオン性ポリマーを用いることで、接着樹脂層15との密着力を向上させることができる。また、アニオン性ポリマーに架橋剤を組み合わせることで、三次元網目構造が構築される。これにより、耐水性が向上し、また電解液、フッ酸の浸透を遅らせることで耐電解液性、耐フッ酸性が向上する。特に、カルボン酸とオキサゾリン基は反応性が良く、副生成物も発生しないため、緻密な架橋構造を形成できる点で有効である。
リン化合物としては、リン酸又はリン酸塩などが挙げられる。具体的には、例えば、オルトリン酸、ピロリン酸、メタリン酸、又はこれらのアルカリ金属塩やアンモニウム塩が挙げられる。また、その他にも、リン酸アルミニウムやリン酸チタンなどの各種塩を用いてもよい。リン化合物は、機能発現の点から、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、ウルトラメタリン酸などの縮合リン酸、又はこれらのアルカリ金属塩やアンモニウム塩(縮合リン酸塩)が好ましい。また、リン化合物は、水溶性の塩であることが好ましい。
リン化合物は、アルミニウムに対するキレート作用があるため、アルミニウム保護層14とアルミニウム箔層13との密着性を向上させる。また、フッ酸の影響で溶出したアルミニウムイオンを捕獲(すなわち、不動態の形成)できるため耐電解液性が向上する。また、低温でもリン酸の脱水縮合が起こりやすいため、アルミニウム保護層14の凝集力が向上し、リチウム電池用包材1の強度物性が向上する。
3価クロム化合物としては、硝酸クロム(III)、フッ化クロム(III)、硫酸クロム(III)、酢酸クロム(III)、シュウ酸クロム(III)、重リン酸クロム(III)、塩化クロム(III)、硫酸カリウムクロム(III)などが挙げられる。なかでも、アルミニウム保護層14を形成する際に、アルミニウム箔層13のエッチング作用を担うことができる点から、フッ化クロム(III)、硫酸クロム(III)、硫酸カリウムクロム(III)が好ましい。
(接着樹脂層)
接着樹脂層15は、シーラント層16Aと、アルミニウム保護層14が形成されたアルミニウム箔層13とを接着する層である。接着樹脂層15を構成する樹脂としては、ポリオレフィン樹脂を酸でグラフト変性させた酸変性ポリオレフィン系樹脂が好ましい。
ポリオレフィン樹脂としては、例えば、低密度、中密度、高密度のポリエチレン;エチレン−αオレフィン共重合体;ホモ、ブロック、又はランダムポリプロピレン;プロピレン−αオレフィン共重合体などが挙げられる。該ポリオレフィン樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
グラフト変性する酸としては、カルボン酸、エポキシ化合物、酸無水物などが挙げられ、無水マレイン酸が好ましい。
接着樹脂層15としては、ポリオレフィン樹脂を無水マレイン酸でグラフト変性させた、無水マレイン酸変性ポリオレフィン樹脂が好ましい。
接着樹脂層15は、前記樹脂を有機溶媒に分散させたディスパージョンタイプの接着樹脂液を用いて形成してもよい。該接着樹脂液を用いれば、接着に有効な各種添加剤、イソシアネート化合物又はその誘導体、及びシランカップリング剤を配合することが可能になる。
接着樹脂層15の厚さは1〜40μmが好ましく、5〜20μmがより好ましい。
(シーラント層)
シーラント層16Aは、リチウムイオン電池用外装材1の内層となる。本実施形態のシーラント層16Aは、接着樹脂層15側から順に、イミド系樹脂層16aとポリオレフィン樹脂層16bを有する多層構造である。
イミド系樹脂層16aは、ポリイミド樹脂、ポリアミドイミド樹脂及びポリエーテルイミド樹脂からなる群から選ばれる1種以上を含む樹脂層である。すなわち、イミド系樹脂層16aは、絶縁性に優れ、また融点が高い樹脂層である。
イミド系樹脂層16aは、ヒートシールの際の熱などで溶けることがないように、融点が250℃以上であることが好ましい。
また、イミド系樹脂層16aは、亀裂が入ることをより高度に抑制するため、機械強度が高いことが好ましい。
ポリオレフィン樹脂層16bは、熱溶着性のフィルムからなる層である。ポリオレフィン樹脂としては、接着樹脂層15の説明において例示した各種ポリオレフィン樹脂の中から、1種以上を選択して使用できる。熱溶着性フィルム16bは、単層フィルムであってもよく、多層フィルムであってもよい。また、例えば、防湿性を付与する目的で、エチレン−環状オレフィン共重合体やポリメチルペンテンなどの樹脂を介在させた多層フィルムを用いてもよい。
さらに、ポリオレフィン樹脂層16bは、各種添加剤、例えば、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤などが配合されていてもよい。
シーラント層16Aは、前述したように、絶縁性に優れ、高融点であるイミド系樹脂層16aと、熱溶着性を有するポリオレフィン樹脂層16bを有する多層構造を有しているため、ヒートシール性を保持しつつ、外装材のアルミニウム箔と電池の内容物との絶縁性を保持することができる。これは、イミド系樹脂層16aに亀裂が入りにくいためである。つまり、ポリオレフィン樹脂層16bに外力などによって亀裂が入った場合でも、イミド系樹脂層16aには亀裂が入ることが抑制されるため、外装材のアルミニウム箔と電池内容物との短絡を抑制できる。
シーラント層16Aの厚さは、イミド系樹脂層16aとポリオレフィン樹脂層16bの合計で、10〜100μmが好ましく、20〜50μmがより好ましい。
イミド系樹脂層16aの厚さは、1〜99μmが好ましく、10〜40μmがより好ましい。
ポリオレフィン樹脂層16bの厚さは、1〜99μmが好ましく、10〜40μmがより好ましい。
(製造方法)
次に、前記リチウムイオン電池用外装材1の製造方法について記載する。ただし、リチウムイオン電池用外装材1の製造方法は、以下に示す方法には限定されない。リチウムイオン電池用外装材1の製造方法としては、例えば、下記工程(I)〜(III)を有する方法が挙げられる。
(I)アルミニウム箔層13上にアルミニウム保護層14を形成する工程。
(II)アルミニウム箔層13のアルミニウム保護層14と反対側に、接着剤層12を介して基材層11を積層する工程。
(III)アルミニウム箔層13のアルミニウム保護層14側に、接着樹脂層15を介してシーラント層を積層する工程。
工程(I)(アルミニウム箔層へのアルミニウム保護層の積層工程):
前述したアニオン性ポリマー、架橋剤、リン化合物及び3価クロム化合物を含有する組成物を、アルミニウム箔層13上に塗工し、乾燥・硬化・焼き付けを行い、アルミニウム保護層14を形成する。
前記組成物の塗工方法としては、公知の塗工方法が用いられ、例えば、グラビアコーター、グラビアリバースコーター、ロールコーター、リバースロールコーター、ダイコーター、バーコーター、キスコーター、コンマコーターなどが挙げられる。
なお、アルミニウム箔層13は、未処理のアルミニウム箔を用いても充分機能を満足することができるが、ウェットタイプ又はドライタイプにて脱脂もしくはエッチング処理を施したアルミニウム箔を用いてもよい。
工程(II)(基材層とアルミニウム箔層の貼り合わせ工程):
アルミニウム保護層14を積層したアルミニウム箔層13のアルミニウム保護層14とは反対側に、接着剤層12を介して基材層11を貼り合わせる。貼り合わせの方法としては、ドライラミネーション、ノンソルベントラミネーション、ウェットラミネーションなどの手法が挙げられる。また、接着剤層12を形成する接着剤としては、前述したようにポリウレタン系接着剤が好ましい。
これにより、基材層11、接着剤層12、アルミニウム箔層13及びアルミニウム保護層14からなる積層体が得られる。
工程(III)(シーラント層の積層工程):
前記積層体のアルミニウム保護層14上に、接着樹脂層15を介してシーラント層16Aを積層する。シーラント層16Aの積層は、アルミニウム保護層14上にイミド系樹脂層16aを積層した後、該イミド系樹脂層16a上にポリオレフィン樹脂層16bを順次積層する方法であってもよく、予めイミド系樹脂層16aとポリオレフィン樹脂層16bを積層した積層フィルムを作成し、該積層フィルムをアルミニウム保護層14上に積層する方法であってもよい。
積層方法は、特に限定されず、ウェットラミネーション、共押し出しラミネーション、押し出しラミネーション、ドライラミネーション、ホットメルトラミネーション、ノンソルベントラミネーション、ヒートラミネーションなどが挙げられる。例えば、フィルム同士を加熱ラミネート融着させる方法、前述したポリウレタン系接着剤やホットメルト接着剤を用いて積層する方法、それぞれの樹脂層を形成するポリマー溶融体を順次キャスト又は押し出し成膜する方法、などが挙げられる。
<第2実施形態>
次に、本発明のリチウムイオン電池用外装材の他の実施形態例であるリチウムイオン電池用外装材2について説明する。リチウムイオン電池用外装材2においてリチウムイオン電池用外装材1と同じ部分については、同符号を付して説明を省略する。
本実施形態のリチウムイオン電池用外装材2は、図2に示すように、基材層11の一方の面に、接着剤層12、アルミニウム箔層13、アルミニウム保護層14、接着樹脂層15、シーラント層16Bが順次積層されている。すなわち、リチウムイオン電池用外装材2は、シーラント層16B以外は、リチウムイオン電池用外装材1と同様の構成である。
(シーラント層)
シーラント層16Bは、リチウムイオン電池用外装材2の内層となる。本実施形態のシーラント層16Bは、接着樹脂層15側から順に、ポリオレフィン樹脂層16b、イミド系樹脂層16a及びポリオレフィン樹脂層16bの3層の多層構造を有している。イミド系樹脂層16a及びポリオレフィン樹脂層16bは、リチウムイオン電池用外装材1で説明したとおりである。
シーラント層16Bの厚さは、イミド系樹脂層16aと2つのポリオレフィン樹脂層16bの合計で、10〜100μmが好ましく、20〜50μmがより好ましい。
(製造方法)
リチウムイオン電池用外装材2の製造方法としては、シーラント層16Bの積層以外は、前述したリチウムイオン電池用外装材1の製造方法と同じ方法が使用できる。ただし、該方法には限定されない。
リチウムイオン電池用外装材2の製造方法としては、前述した工程(III)において、アルミニウム保護層14上に、ポリオレフィン樹脂層16b、イミド系樹脂層16a及びポリオレフィン樹脂層16bを順次積層する方法であってもよく、予めポリオレフィン樹脂層16b、イミド系樹脂層16a及びポリオレフィン樹脂層16bが積層された積層フィルムを作成し、該積層フィルムをアルミニウム保護層14上に積層する方法であってもよい。積層方法は、前記工程(III)で挙げた積層方法と同じ方法が使用できる。
以上説明したように、本発明のリチウムイオン電池用外装材は、シーラント層が、絶縁性に優れかつ高融点のイミド系樹脂層を有している。該イミド系樹脂層は亀裂が生じ難いため、シーラント層の最表層のポリオレフィン樹脂層に亀裂が生じた場合でもイミド系樹脂層に亀裂が生じることが抑制され、電解液とアルミニウム箔との短絡が抑制される。
なお、本発明のリチウムイオン電池用外装材は、前述したリチウムイオン電池用外装材1、2には限定されない。例えば、アルミニウム保護層は、アルミニウム箔層の両面に形成されていてもよい。アルミニウム保護層を、電解液に接するシーラント層側に形成することは必須である。しかし、基材層側にさらに別の電池を複数スタックさせて使用する場合などは、ひとつのセルから電解液が漏れ出したときに他のセルに電解液が付着し、基材層側から腐食が起こる可能性がある。そのため、基材層側にアルミニウム保護層を形成しておくことも有効である。また、基材層側にアルミニウム保護層を形成することは、アルミニウム箔層と接着剤層の密着をより強固にする効果もある。
以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
[使用材料]
本実施例に用いた共通材料は以下に示すとおりである。( )内は、各層の厚さである。
(基材層)
基材フィルムA:2軸延伸ポリアミドフィルム(25μm)。
(接着剤層)
接着剤B:ポリウレタン系接着剤(4μm)。
(アルミニウム箔層)
アルミニウム箔C:焼鈍処理した軟質アルミニウム箔8079材(40μm)。
(アルミニウム保護層)
化成処理液D:下記比率で各成分を含有する組成物を水に溶解した化成処理液。
アニオン性ポリマー:ポリアクリル酸アンモニウム塩(固形分比27質量%)
架橋剤:アクリル−イソプロペニルオキサゾリン共重合体(固形分比3質量%)
リン化合物:ヘキサメタリン酸ナトリウム(固形分比20質量%)
3価クロム化合物:フッ化クロム(III)(固形分比50質量%)
(接着樹脂層)
接着樹脂E:無水マレイン酸変性ポリプロピレン樹脂(20μm)。
(シーラント層)
樹脂F1:ポリプロピレン樹脂(20μm)
フィルムF2:ポリイミドフィルム(12.5μm)
[実施例1]
アルミニウム箔C上に、アルミニウム保護層を形成する化成処理液Dをマイクログラビアコートにより塗工し、乾燥ユニットにて150〜250℃で焼き付け処理を施し、アルミニウム保護層を積層した。次いで、アルミニウム箔層の、前記アルミニウム保護層とは反対側の面に、ドライラミネート手法により、接着剤Bを用いて基材フィルムAを積層し、基材層を設けて積層体を得た。該積層体を押出ラミネート機の巻出し部に設置し、さらにフィルムF2をサンド基材部に設置し、290℃、80m/分の加工条件で接着樹脂Eを20μmの厚みでサンドラミネートして、アルミニウム保護層上に接着樹脂層を介して、フィルムF2を積層した。その後、さらにフィルムF2上に、290℃、80m/分の加工条件で樹脂F1を20μmの厚みで押し出し、前記積層体と押し出しラミネートすることで、フィルムF2からなるイミド系樹脂層と樹脂F1からなるポリオレフィン樹脂層が積層されたシーラント層を設け、図1に例示した構成のリチウムイオン電池用外装材を作成した。
[実施例2]
フィルムF2の両側に、実施例1と同じ樹脂F1を押し出しラミネートし、ポリプロピレン(10μm)/ポリイミド(12.5μm)/ポリプロピレン(10μm)の3層構成のフィルムFを作製した。
基材層を設けるまでの工程を実施例1と同様に実施して積層体を得た後、該積層体を押出ラミネート機の巻出し部に設置し、さらに前記フィルムFをサンド基材部に設置し、290℃、80m/分の加工条件で接着樹脂Eを20μmの厚みでサンドラミネートして、アルミニウム保護層上に接着樹脂層を介してフィルムFを積層してシーラント層を設け、図2に例示した構成のリチウムイオン電池用外装材を作成した。
[評価方法]
各例で得られたリチウムイオン電池用外装材をエンボス成形(成型深さ:7mm)し、シーラント層が内側となっている2つの凹部を形成し、それら凹部内に電池内容物を挿入した後にヒートシールを行って密封し、電池を作製した。このとき、実施例1及び実施例2のいずれのリチウムイオン電池用外装材も、前記エンボス成形時及びヒートシール時においてシーラント層に亀裂は生じないことを確認した。
次いで、エンボス成形時に過剰に深絞り(成型深さ:13mm)を行った以外は前述と同様にして電池を作製し、シーラント層のヒートシール部分に亀裂を発生させた。該電池を用いて充放電特性測定装置で充放電サイクル試験を行った。充放電サイクル試験は、以下の条件で実施した。
(1)1C(定電流500mA、定電圧4.2V充電、定電圧時間1.5時間)。
(2)10分間放置。
(3)1C(定電流500mA放電。カットオフ電圧2.7V)。
(4)10分間放置。
前記「C」という単位は、電池分野で一般的に用いられるものである。1.0Cとは、公称容量値の容量を有するセルを定電流放電して、ちょうど1時間で放電終了となる電流値のことである。例えば、0.5Ahの公称容量値のセルにおける「1C充電」とは、0.5Aで充電することを意味する。
前記充放電サイクル試験において、実施例1及び実施例2のリチウムイオン電池外装材を用いた電池では、共に外装材のアルミニウム箔層と電池内容物で短絡が発生することはなかった。
このように、本発明のリチウムイオン電池用外装材は、特に車載などの大型用途で求められる優れた絶縁性を有しており、シーラント層のヒートシール部分に亀裂が入っても電解液とアルミニウム箔の短絡を抑制できる。
1、2 リチウムイオン電池用外装材 11 基材層 12 接着剤層 13 アルミニウム箔層 14 アルミニウム保護層 15 接着樹脂層 16A、16B シーラント層 16a イミド系樹脂層 16b ポリオレフィン樹脂層

Claims (3)

  1. 基材層の一方の面に少なくとも、接着剤層、アルミニウム箔層、アルミニウム保護層、接着樹脂層、シーラント層を順次積層したリチウムイオン電池用外装材において、
    前記シーラント層が、ポリイミド樹脂、ポリアミドイミド樹脂及びポリエーテルイミド樹脂からなる群から選ばれる1種以上を含むイミド系樹脂層を有する多層構造であり、
    前記アルミニウム保護層が、アニオン性ポリマー、該アニオン性ポリマーを架橋する架橋剤、リン化合物及び3価クロム化合物を含有する化成処理層であることを特徴とするリチウムイオン電池用外装材。
  2. 前記シーラント層が、前記接着樹脂層側から順に、前記イミド系樹脂層とポリオレフィン樹脂層を有する多層構造である、請求項1に記載のリチウムイオン電池用外装材。
  3. 前記シーラント層が、前記接着樹脂層側から順に、ポリオレフィン樹脂層、前記イミド系樹脂層及びポリオレフィン樹脂層を有する多層構造である、請求項1に記載のリチウムイオン電池用外装材。
JP2009247767A 2009-10-28 2009-10-28 リチウムイオン電池用外装材 Active JP5549181B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247767A JP5549181B2 (ja) 2009-10-28 2009-10-28 リチウムイオン電池用外装材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247767A JP5549181B2 (ja) 2009-10-28 2009-10-28 リチウムイオン電池用外装材

Publications (2)

Publication Number Publication Date
JP2011096445A JP2011096445A (ja) 2011-05-12
JP5549181B2 true JP5549181B2 (ja) 2014-07-16

Family

ID=44113169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247767A Active JP5549181B2 (ja) 2009-10-28 2009-10-28 リチウムイオン電池用外装材

Country Status (1)

Country Link
JP (1) JP5549181B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495195B2 (ja) * 2011-03-04 2014-05-21 住友電気工業株式会社 電気部品、非水電解質電池およびそれに用いるリード線及び封入容器
JP5834483B2 (ja) * 2011-05-12 2015-12-24 凸版印刷株式会社 蓄電デバイス用外装材
JP6040901B2 (ja) * 2013-09-20 2016-12-07 Dic株式会社 ラミネート積層体用接着剤組成物、これを使用した積層体、および二次電池
WO2016111182A1 (ja) * 2015-01-06 2016-07-14 凸版印刷株式会社 蓄電デバイス用外装材
JP6179576B2 (ja) * 2015-11-05 2017-08-16 凸版印刷株式会社 蓄電デバイス用外装材
JP7222215B2 (ja) * 2018-10-24 2023-02-15 大日本印刷株式会社 電池用外装材及び電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580405B2 (ja) * 1998-08-21 2004-10-20 日本製箔株式会社 二次電池用外装材料の製造方法
JP4972816B2 (ja) * 1999-05-25 2012-07-11 大日本印刷株式会社 ポリマー電池用包装材料
JP4831268B2 (ja) * 1999-05-25 2011-12-07 大日本印刷株式会社 二次電池用包装材料
KR20010048325A (ko) * 1999-11-26 2001-06-15 김순택 전지의 외장재
JP4551539B2 (ja) * 2000-07-28 2010-09-29 株式会社東芝 非水電解質二次電池
JP2002245983A (ja) * 2001-02-19 2002-08-30 Dainippon Printing Co Ltd リチウムイオン電池用包装材料
JP5205691B2 (ja) * 2005-09-28 2013-06-05 大日本印刷株式会社 リチウムイオン電池
JP4641239B2 (ja) * 2005-09-30 2011-03-02 大日本印刷株式会社 積層体
JP5211462B2 (ja) * 2006-03-31 2013-06-12 大日本印刷株式会社 電池用包装材料及びその製造方法

Also Published As

Publication number Publication date
JP2011096445A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
KR101877594B1 (ko) 리튬 이온 전지용 외장재, 리튬 이온 전지, 및 리튬 이온 전지의 제조 방법
JP5577653B2 (ja) 電池外装用包材及びその製造方法、並びに二次電池
JP5211622B2 (ja) リチウム電池用包材およびその製造方法
JP4379544B2 (ja) リチウム電池用包材およびその製造方法
JP5782889B2 (ja) 電池用容器及びそれを具備したリチウムイオン電池
KR102189026B1 (ko) 리튬 이온 전지용 외장재
JP2011065834A (ja) リチウムイオン電池用外装材及びその製造方法
CN105849932B (zh) 锂电池用封装材料
JP6672586B2 (ja) リチウム電池用外装材
JP5549181B2 (ja) リチウムイオン電池用外装材
JP5772412B2 (ja) リチウムイオン電池外装材、リチウムイオン電池
CN114696014A (zh) 蓄电装置用封装材料、及使用其的蓄电装置
CN108604649B (zh) 蓄电装置用封装材料以及蓄电装置用封装材料的制造方法
CN108140749B (zh) 蓄电装置用封装材料、及使用其的蓄电装置
CN108140751B (zh) 蓄电装置用封装材料以及蓄电装置用封装材料的制造方法
JP5998597B2 (ja) リチウムイオン電池用外装材
CN110998895A (zh) 蓄电装置用外包装材料
KR20180133245A (ko) 축전 디바이스용 외장재, 및 축전 디바이스용 외장재의 제조 방법
JP6728600B2 (ja) 蓄電装置用外装材
WO2015099144A1 (ja) リチウム電池用外装材
JP2017168355A (ja) 蓄電装置用外装材
JP7240081B2 (ja) 蓄電装置用外装材及び蓄電装置用外装材の製造方法
JP6507645B2 (ja) 蓄電デバイス用外装材
JP6194577B2 (ja) リチウムイオン電池用外装材
JP6183032B2 (ja) リチウムイオン電池用外装材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250