JP5544517B2 - 電気機器おける漏洩電流測定装置及び測定方法 - Google Patents

電気機器おける漏洩電流測定装置及び測定方法 Download PDF

Info

Publication number
JP5544517B2
JP5544517B2 JP2010015474A JP2010015474A JP5544517B2 JP 5544517 B2 JP5544517 B2 JP 5544517B2 JP 2010015474 A JP2010015474 A JP 2010015474A JP 2010015474 A JP2010015474 A JP 2010015474A JP 5544517 B2 JP5544517 B2 JP 5544517B2
Authority
JP
Japan
Prior art keywords
phase
voltage
power supply
switching power
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010015474A
Other languages
English (en)
Other versions
JP2011153910A (ja
Inventor
勝次 武谷
Original Assignee
株式会社三和技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三和技術総合研究所 filed Critical 株式会社三和技術総合研究所
Priority to JP2010015474A priority Critical patent/JP5544517B2/ja
Publication of JP2011153910A publication Critical patent/JP2011153910A/ja
Application granted granted Critical
Publication of JP5544517B2 publication Critical patent/JP5544517B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、配電電源に接続されるインバータなどのスイッチング電源及びこのスイッチング電源に接続される負荷装置の電圧印加部分から接地部分へ流れる漏洩電流を測定する漏洩電流測定装置及び測定方法に関する。
従来、電路及び電気機器の絶縁状態を調べる方法として、被測定部分を停電させて、絶縁抵抗計で測定する方法が広く用いられている。このような方法は、停電が許されない配電線や連続操業の工場等に適用することができない。
特に、インバータなどのスイッチング電源で駆動される電動機、蛍光灯等の負荷装置における漏洩電流の測定については、電子素子で構成されるインバータなどのスイッチング電源を絶縁抵抗測定時に印加される高電圧から保護するため、負荷装置のみを切り離して測定する必要があり、停電手続きや、その結線の開放、再接続などに多くの手間と時間とを必要としている。これにより、連続操業の工場等ではラインの停止時間が制限されるので、絶縁抵抗計の適用が制限される等の問題がある。
そこで、電源に接続された負荷装置を停電させることなく、活線のまま電路及び負荷装置の絶縁状態を調べる技術が提案され、用いられている。この種の技術として、零相変流器を用いて、電路及び負荷装置の電圧印加部分から接地部分へ流れる電流である零相電流I0を検知するようにしたものがある。この零相変流器によって検出される零相電流I0は、電路及び負荷装置の電圧印加部分と接地部分間の絶縁抵抗を介して流れる漏洩電流Igrと、この電圧印加部分と接地部分間に通常存在する対地静電容量を介して流れる漏洩電流Igcとのベクトル和で構成されている。
これらの技術のうち、現在実用化されている200V級三相3線のうちの1線が接地されている配電方式で実用化されている漏洩電流Igrを測定する技術は、一般の配電系統の計測は可能であるがスイッチング電源及びその負荷装置内の計測は不可能とされている。また、零相電流I0のみを検出する方式は、電圧印加部分と接地部分間に通常存在する対地静電容量を介して流れる漏洩電流Igcが大きい場合には実際のIgrの値に対して過大な測定値を示す。
これは、インバータなどのスイッチング電源で駆動される負荷装置にあっては、その機器に印加される電圧及びその周波数が変化し、三相配電変圧器の配電源源側の3組の巻線を三角形又は2組の巻き線をV形に結線しその巻き線の端又は中点を接地した各配電線の対地電圧が等しくない三相配電線又は単相配電線に接続されるスイッチング電源が出力する対地電圧は、前記変化周波数の電圧のほか、各配電線の対地電圧が等しくない状態が原因となって発生する配電線の周波数の電圧や高調波成分の電圧を含む複雑な電圧波形となり、この対地電圧に起因する零相電流I0は複雑な波形になる。また、これらスイッチング電源や負荷装置の対地絶縁抵抗を流れる漏洩電流Igrは、例えば生産現場に多数使用されるロボットや専用機の電動機は比較的容量が小さいので、数mA以下である場合が多く、スイッチング電源やその負荷装置の漏洩電流の計測を困難なものにしている。
また、絶縁状態を測定する他の方法として、配電線に低周波の低電圧を供給して漏洩電流Igrを測定する方法がある。この方法も、供給された低周波の低電圧がスイッチング電源の整流部分で吸収されてしまい、スイッチング電源やその負荷装置の計測はできない。
なお、この種の漏洩電流計測の先行技術として、特開平3−179271号公報(特許文献1)や、特開2002−125313号公報(特許文献2)に記載されるものがある。
特開平3−179271号公報 特開2002−125313号公報
本発明は、変圧器の二次側巻線を三角形に結線し、三相端子のうちの1端子を接地された電源から給電される三相3線の配電線又は2台の単相変圧器の二次側巻線をV形に結線し、上記巻線のうちの1巻線の中点で接地された電源から給電される三相3線の配電線又は単相2線配電線又は単相変圧器の二次側巻線の中点又は一端で接地された単相2線配電線に接続されるインバータなどのスイッチング電源及びスイッチング電源から給電される負荷装置の電圧印加部分から接地部分へ対地絶縁抵抗を通じて流れる漏洩電流Igrを運転状態のままで検出することができる漏洩電流測定装置及びその測定方法を提供することを目的とする。
ところで、スイッチング電源は、負荷装置を動作させるための、変化する電圧及び周波数(以下、運転周波数と称する。)を発生する。このスイッチング電源の端子間の線間電圧は、ほぼ正弦波形であるが、対地電圧は多くの高調波を含み、特にスイッチング電源に電力を供給する配電線の対地電圧が不同であるときは、スイッチング電源が出力する対地電圧は上記運転周波数の電圧のほか配電線周波数(以下商用周波数と称する)の電圧及び高調波電圧も含んでおり、これらの対地電圧に起因する対地漏洩電流の波形も複雑な形状を示し、従来の方法では、スイッチング電源及び負荷装置の電圧印加部分と接地部分間の絶縁抵抗を介して流れる漏洩電流Igrの測定は不可能であるとされている。
そこで、本発明の技術課題は、この複雑な種々の電圧及び漏洩電流の挙動を明確にし、その測定装置及び測定方法を具体化させ実用化することにある。
また、本発明の技術課題は、測定のための電圧要素の入力において、スイッチング電源が出力する高調波を多く含む各相の対地電圧を順次開閉器で切替えて入力する煩雑な方式を採用することなく、スイッチング電源の入力側又は出力側の、波形が殆ど正弦波に近い線間電圧のうちの1つの線間電圧のみを入力する方式を採用し、配電電源からスイッチング電源及びその負荷装置、接地線を貫流する漏洩電流を、その貫流するいずれの部分でも計測が可能な漏洩電流測定装置及び測定方法を提供することにある。
さらに、本発明の技術課題は、接地線を計器に接続して対地電圧を入力して絶縁状態を測定するような従来の方式を採用した装置にあっては、測定場所で有効な接地点が存在しない場合には絶縁状態の測定そのものが不可能となっていた測定を可能とする漏洩電流測定装置及び測定方法を提供することにある。
上述したような技術課題を解決するために提案される本発明は、変圧器の二次側巻線を三角形に結線し、三相の電圧端子をR,S,Tとし、上記三相の電圧端子R,S,Tのうちの1の端子若しくはその近傍で接地された電源から給電される三相3線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとするとき、上記二次側巻線は上記電圧端子R,T間及び上記電圧端子T,Sとの間にそれぞれ存在するものとしたとき、上記二次側巻線の中点のうちの1つで接地された電源から給電される三相3線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとし、上記二次側巻線が上記電圧端子R,T間及び上記電圧端子T,Sとの間にそれぞれ存在するものとしたとき、上記電圧端子R、Tから給電される単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとし、上記V形に結線された二次側巻線の中点Nと上記電圧端子Rとの間若しくは上記中点Nと上記電圧端子Tとの間から給電される単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、又は単相変圧器の二次側巻線の中点若しくは一端で接地された単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrのいずれかを測定する漏洩電流測定装置であって、上記三相の電圧端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記単相2線の配電線の線間電圧及び上記スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを測定する電圧検出手段と、各配電線及びスイッチング電源と上記スイッチング電源に接続される負荷装置に流れる電流のベクトル和である零相電流Iを検出する零相電流検出手段と、上記電圧検出手段によって検出された上記線間電圧ESR,ETS,ERT又は上記単相2線の配電線の線間電圧及び上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は上記単相2線配電線の線間電圧及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧とし、この基準電圧と上記零相電流Iとの位相を比較する位相比較手段と、上記基準電圧に対して、上記零相電流Iを同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記単相2線配電線の線間電圧及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧としたときに得られる上記零相電流Iの有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、U相、V相、W相のうちの2相に発生する上記漏洩電流Igrの合計値、U相、V相、W相のうちの1相に発生する上記漏洩電流Igrの値、U相、V相、W相のうちの2相間若しくは三相間に接続される負荷装置の内部で発生する上記漏洩電流Igrの値を演算する演算手段とを備える。
そして、スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUW又は配電電源とスイッチング電源とを接続する三相の給電線R,S,Tの線間電圧ESR,ETS,ERTのいずれか又は単相配電線の線間電圧を基準電圧とするときには、この基準電圧と上記零相電流Iとの位相比較が行われ、上記漏洩電流Igrの演算が行われる。
ここで、上記演算手段は、より具体的には、上記各端子U,V,W間に発生する線間電圧EVU,EWV,EUW又は上記各給電線R、S、Tの線間電圧ESR,ETS,ERTのいずれか又は単相配電線の線間電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値又は最大の値の倍数を、上記スイッチング電源を含む上記U,V,Wの各端子に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrとして演算する。
本発明に係る漏洩電流測定装置は、表示手段を備え、上記演算手段によって演算された結果を上記表示手段に表示して告知することが望ましい。
さらに、本発明に係る漏洩電流測定装置は、警報手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記警報手段より警報を発することにより、漏洩電流Igrの値が所定の値を超えたことを告知することができる。
さらにまた、本発明に係る漏洩電流測定装置は、さらに遮断手段を備えることにより、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記遮断手段により電路を遮断することを可能とする。
また、本発明は、変圧器の二次側巻線を三角形に結線し、三相の電圧端子をR,S,Tとし、上記三相の電圧端子R,S,Tのうちの1の端子若しくはその近傍で接地された電源から給電される三相3線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとするとき、上記二次側巻線は上記電圧端子R,T間及び上記電圧端子T,Sとの間にそれぞれ存在するものとしたとき、上記二次側巻線の中点のうちの1つで接地された電源から給電される三相3線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとし、上記二次側巻線が上記電圧端子R,T間及び上記電圧端子T,Sとの間にそれぞれ存在するものとしたとき、上記電圧端子R、Tから給電される単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとし、上記V形に結線された二次側巻線の中点Nと上記電圧端子Rとの間若しくは上記中点Nと上記電圧端子Tとの間から給電される単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、又は単相変圧器の二次側巻線の中点若しくは一端で接地された単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrのいずれかを測定する漏洩電流測定測定方法であって、上記三相の電圧端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記単相2線の配電線の線間電圧及び上記スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを測定する電圧検出工程と、各配電線及びスイッチング電源と上記スイッチング電源に接続される負荷装置に流れる電流のベクトル和である零相電流Iを検出する零相電流検出工程と、上記電圧検出工程において検出された上記線間電圧ESR,ETS,ERT又は上記単相2線の配電線の線間電圧及び上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は上記単相2線配電線の線間電圧及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧とし、この基準電圧と上記零相電流Iとの位相を比較する位相比較工程と、上記基準電圧に対して、上記零相電流Iを同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記単相2線配電線の線間電圧及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧としたときに得られる上記零相電流Iの有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、U相、V相、W相のうちの2相に発生する上記漏洩電流Igrの合計値、U相、V相、W相のうちの1相に発生する上記漏洩電流Igrの値、U相、V相、W相のうちの2相間若しくは三相間に接続される負荷装置の内部で発生する上記漏洩電流Igrの値を演算する演算工程とを備える。
そして、スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUW又は配電電源とスイッチング電源とを接続する三相の給電線R,S,Tの線間電圧ESR,ETS,ERTのいずれか又は単相配電線の線間電圧を基準電圧とするときには、この基準電圧と上記零相電流Iとの位相比較が行われ、上記漏洩電流Igrの演算が行われる。
ここで、上記演算工程は、より具体的には、上記各端子U,V,W間に発生する線間電圧EVU,EWV,EUW又は上記各給電線R、S、Tの線間電圧ESR,ETS,ERTのいずれか又は単相配電線の線間電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値又は最大の値の倍数を、上記スイッチング電源を含む上記U,V,Wの各端子に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrとして演算する。
上述したように、本発明は、従来不可能とされたスイッチング電源及びスイッチング電源に接続される負荷装置の電圧印加部分と接地部分間の絶縁抵抗を介して流れる漏洩電流Igrの測定を可能にし、しかも一般の工場、建築物、家庭に普及している200V級三相配電線、又は100V級単相配電線に接続されるスイッチング電源及びその負荷装置の絶縁監視が可能である。
さらに、従来用いられている漏洩電流Igrの値を零相電流I0の値として検出して電路を遮断する遮断装置においては、電路や負荷装置の電圧印加部分と接地部分との間に存在する対地静電容量の増加、及び不均一化、及びスイッチング電源容量の増加による零相電流I0中に含まれる高調波成分の増大等に起因する漏洩電流の増加を見込んで、零相電流I0を検知して動作する漏電遮断器の故障動作電流を過大な値、例えば数百mAに設定していたが、本発明においては、上述したような漏洩電流Igrの検出が可能となり、故障動作電流値設定時に、この数値を反映させた、例えば数mAに設定を行うことで、不動作範囲の過大な故障電流のため事故が拡大する前に漏電遮断器を動作させることができるので、より安全に、系統や負荷の保護が可能になり、不測の漏電事故を少なくすることができる。
また、本発明は、変圧器の二次側巻線を三角形又はV形に結線した配電電源又は単相配電電源に接続されるスイッチング電源及びその負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する際、電圧入力のための接地端子を必要としない線間電圧を入力して漏洩電流Igrの測定が可能であるので、接地端子が欠如している配電系統の末端部分でも確実な計測が可能である。
さらに、本発明に係る漏洩電流測定装置又は方法を採用することにより、スイッチング電源へ電力を供給する配電線の零相電流及び線間電圧を入力することで、スイッチング電源及びその負荷装置の漏洩電流Igrの計測が可能なため、スイッチング電源へ電力を供給する配電線の零相電流及び線間電圧を入力する場所より末端側に並列に接続される複数台のスイッチング電源及びその負荷装置の一括監視が可能である。
特に、本発明に係る漏洩電流測定装置及び方法は、複数台のサーボモータで駆動されるロボットなど自動装置全体の微弱な漏電の一括監視や、ビル内のインバータ空調機等負荷装置の一括監視、複数個のインバータ点灯の蛍光灯を一括監視する等の用途に適用して好適である。
さらにまた、本発明は、演算手段によって演算された結果を表示手段に表示するようにしているので、スイッチング電源の負荷の状態を常時監視することができる。
さらにまた、本発明は、警報手段を備えることにより、漏洩電流Igrが異常状態になったことを音などの警報により告知することができるので、事故を未然に防止することができる。
変圧器の二次側巻線を三角形に結線した三相三角形電源に接続されるスイッチング電源、この電源に接続された負荷装置の漏洩電流Igrの測定に本発明に係る漏れ電流測定装置を適用した構成例を示す概略系統図である。 V結線電源に接続される三相配電線用スイッチング電源、及び単相配電線用スイッチング電源、これらの電源に接続された負荷装置の漏洩電流Igrの測定に本発明に係る漏れ電流測定装置を適用した構成例を示す概略系統図である。 三相三角形電源系統の線間電圧ESR,ERT,ETS及び電気的中性点Neとその対地電位ENeそれにS相と接地極Gとの関係を示すベクトル図である。 V結線電源系統の三相配電線端子R,S,T、それらの電気的中性点Neとその対地電位ENe、単相配電線端子R,N,T、接地点N及び単相配電線N、Rとその電気的中性点Nsとその対地電位ENsの関係を示すベクトル図である。 スイッチング電源が発生する運転相電圧EU,EV、EW、線間電圧EVU,EWV,EUW、それらの電気的中性点Neとその接地極Gに対する対地電位En、及び負荷装置の関係を示す等価回路図である。 スイッチング電源の電気的中性点Neに対する各相電圧EU,EV、EW、電気的中性点Neの接地極Gに対する電位Enの関係を示すベクトル図である。 スイッチング電源出力端子の対地電圧波形で、商用周波数が60Hzで、運転周波数が20〜50Hzの例である。 零相電流I0、基準電圧として入力される線間電圧ESR,ERS,ERT、線間電圧EVU,EWV,EUW、それに単相線間電圧、位相角θ、零相電流I0の有効成分A、零相電流I0の無効成分Bの関係を示すベクトル図である。 ある時点で位相差がθの入力電圧Eと零相電流I0の波形と、位相判定のためのゼロクロッシング回路の出力波形の関係を示す図である。 本発明に係る漏れ電流測定装置を構成する信号処理部の詳細を示すブロック図である。 複数のスイッチング電源及びその負荷装置を1台の本発明に係る漏れ電流測定装置で監視し、遮断器と警報器を制御する構成を備えた本発明に係る漏洩電流測定装置を示す構成図である。
以下、本発明を適用した漏洩電流測定装置及びその測定方法の実施の形態を図面を参照しながら説明する。
図1は、配電用変圧器の低圧側三相巻線1を三角形に結線し、三相電圧端子R、S、T相のうちのS相を接地線8を経由して接地極Gで接地した三角形配電方式を採用した配電系統に、本発明に係る漏洩電流測定装置を適用した例を示す概略系統図である。
次に、図2は図1の三角形巻線の1辺を省略し、2台の単相変圧器をV形に結線し、三相電圧端子R、S、T相のうちのR、T相間の巻線の中点Nを接地線8を経由して接地極Gで接地したV結線方式を採用した配電系統の、三相電圧端子R,S,T相から導出された三相配電線にスイッチング電源2を接続し、電圧端子R相及び接地された中点Nから導出された単相配電線にスイッチング電源2sを接続した系統に、本発明に係る漏洩電流測定装置を適用した例を示す概略系統図である。なお、前記単相配電線は、R相及びT相から導出されることもあり、これらV結線の単相配電線は、R相とT相間に配置される1台の単相変圧器から導出された単相配電線と同等である。
なお、三角形配電方式は、図1に示すような200V級の三相3線方式として工場等の電力負荷用として、V形配電方式は家庭用業務用等の三相、単相小負荷顧客への電力会社の標準配電方式として広く一般に普及している。
本発明に係る漏洩電流測定装置は、この三角形三相3線配電方式若しくはV結線の配電系統を構成する三相端子R,S,Tから導出される三相配電線(以下、三相配電線と称する。)及びV結線配電方式の中点が接地された巻線又は単相変圧器から導出される単相2線配電線(以下、単相配電線と称する。)に接続されるスイッチング電源及びそのスイッチング電源の負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する。なお、単相配電線は、図2に示すように、接地された中点NとR相又はT相から導出される単相配電線と、R相及びT相から導出される線間電圧が倍の単相配電線がある。
本発明に係る漏洩電流測定装置が適用される図1に示す三相配電線から構成される配電系統で、配電用の三相変圧器の低圧側(二次側)に三角形に結線された巻線1を備える。この三角形巻線1には、三相配電線4R,4S,4Tを介してスイッチング電源2が接続されている。
また、図2に示す配電系統で、配電用の2台の単相変圧器の低圧側(二次側)の巻線をV形に結線したV形配電電源を構成するV結線1vを備え、三相配電線4R,4S,4Tのほか1組の低圧側(二次側)巻線の中点Nは接地されており、中点Nから導出された接地線4Nを併設し、三相配電線4R,4S,4Tのうちの1線、例えば配電線4Rとともに単相配電線4N,4Rを構成し、スイッチング電源2sが接続されている。また、単相配電線は配電線4R,4Tで構成されることもあり、このときの線間電圧は単相配電線4N,4Rの倍の電圧となる。
図1に示す配電用変圧器三角形巻線1をさらに具体的に説明すると、三角形巻線1は、三角形を構成するように結線された3つの巻線1a,1b,1cを有し、これらの巻線1a,1b,1cの接続端子である三相端子R,S,Tは、三相配電線4R,4S,4Tを介してスイッチング電源2に接続されている。また、各端子R,S,T間には大きさEの線間電圧ESR,ERS,ERTが発生しており、端子Sは接地線8を経由して接地極Gで接地されている。これら電圧の関係は、図3に示すベクトル図で表され、端子R,S,Tの電位の中性点である電気的中性点Neは三角形RSTの重心であり、三相配電線の電気的中性点Neの接地相Sからの電位はベクトルENeで表され、その大きさは三相線間電圧Eの1/√3である。
次に、図2に示す配電用の2台の単相変圧器巻線で構成されるV結線1vをさらに具体的に説明すると、V結線1vは、V形を構成するように結線された2つの巻線1s,1tを有し、巻線1s,1tの接続点T、巻線1sの他端R、巻線1tの他端Sは 三相端子R,S,Tを形成し、三相配電線4R,4S,4Tを介して、スイッチング電源2に接続されている。また、各端子R,S,T間には大きさEの線間電圧ESR,ETS,ERTが発生しており、端子R,T間の巻線1sの中点Nは、接地線8を経由して接地極Gで接地されている。これら電圧の関係は、図4に示すベクトル図で表され、端子R,S,Tの電位の中性点である電気的中性点Neは三角形RSTの重心であり、電気的中性点Neの接地点Nからの電位はベクトルENeで表され、大きさは三相線間電圧Eの1/(2√3)である。また、単相電源端子R、Nの中点Nsが単相配電線4R,4Nの電気的中性点Nsであり、その接地点Nからの電位はベクトルENsで表され、大きさは三相線間電圧Eの1/4である。また、単相電源端子がR、Tのときは、その中点Nがこの単相配電線の電気的中性点Neで接地点に一致し、配電線4Nからの電位は0となる。
図2に示す配電系統において、スイッチング電源2又は2sに印加される線間電圧ESR,ETS,ERT又は単相線間電圧は、スイッチング電源2又は2sの内部で一旦直流に変換され、さらにトランジスタ等のスイッチング素子によって、高周期で裁断されたパルス状の波形となり、これが組み合わされて、それに接続される負荷装置の運転に適した運転周波数及び電圧を発生する交流波形に変換される。前記負荷装置が例えば電動機のように磁束を必要とする装置にあっては、運転周波数の低下に従って発生電圧も低下する特性の、いわゆる可変電圧可変周波数特性(以下、VVVF特性という。)のスイッチング電源となる。また、スイッチング電源の発生電圧は、パルス状の波形の組み合わせであり、種々の周波数の高調波を含む。そして、スイッチング電源2又は2sの端子U,V,W間に発生した線間電圧EVU,EVW,EUWが負荷装置5,5sに印加される。
次に、スイッチング電源2又は2sに発生する電圧の状態を図5に示し、これらの電圧の関係を図6のベクトル図で示す。スイッチング電源2又は2sの内部回路は接地されていないので、図5に示す接地極Gは配電変圧器端子の接地されたS相又は中点Nに接続された接地極Gとして取り扱う。スイッチング電源2又は2sに発生する電圧の関係を示す図6のベクトル図で、端子U,V,Wにおける電位の電気的中性点Neは三角形UVWの重心であり、この重心Neに対する端子U,V,Wにおける電位が相電圧EU,EV,EWであり、その大きさは端子U,V,W間の線間電圧EVU,EVW,EUWの√3分の1で、各々が120度の位相差を有するVVVF特性の対称電源である。
図5で三相配電線又は単相配電線に接続されたスイッチング電源2又は2sの出力端子U,V,Wの電気的中性点をNeとすると、このスイッチング電源の電気的中性点Neは、図3及び図4に示す三相配電線4R,4S,4Tの電気的中性点Neと、図4に示す単相配電線4R,4Nの電気的中性点Nsと、単相配電線4R,4Nの電気的中性点Nと一致する。したがって、スイッチング電源の等価回路である図5の相電圧EU,EV,EWはVVVF特性の運転電圧、その電気的中性点Neの対地電圧Enは商用周波数電圧であり、電圧Enの大きさは、配電用変圧器が三角結線の三相給電線では線間電圧Eの1/√3、V結線の三相給電線では線間電圧Eの1/(2√3)、V結線又は単相変圧器給電の線間電圧E/2の単相給電線では線間電圧E/2の半分の電圧、線間電圧Eの単相給電線では電圧0である。
したがって、図5から、スイッチング電源2又は2sの端子U,V,Wの対地電圧は、VVVF特性の運転周波数電圧と、ある一定の商用周波数電圧、それに種々の高調波電圧との合成電圧となり、この対地電圧に起因するスイッチング電源2又は2s及びその負荷装置5又は5sの対地漏洩電流である零相電流I0も複雑な波形となり、この複雑な波形の対地電圧及び零相電流I0の両方を入力すれば測定は困難なものとなるが、本発明では、このうちの入力電圧を商用周波数の三相配電線線間電圧ESR,ETS,ERT又は単相配電線線間電圧又はスイッチング電源端子U,V,WのVVVF特性の正弦波線間電圧EVU,EVW,EUWのいずれかにすることによって計測を可能にしている。
ここで、スイッチング電源2又は2s及び負荷装置5又は5sは相似したものであるので、以下の説明では、必要に応じてこれらをスイッチング電源2及び負荷装置5として取り扱い説明する。
まず、負荷装置5の各相には対地静電容量CU,CV,CWが存在する。三相電源又は単相電源で駆動される通常の負荷装置で対地静電容量が比較的大きな電動機などの三相巻線は、接地部分に対して対称的な構造をしており、非対称設備の対地静電容量は無視できる。そこで、各相の対地静電容量CU,CV,CWはほとんど同じ容量となるのでこれをCとし、これら三相の各静電容量Cには、常時、対地電流Igcu,Igcv,Igcwが流れている。また、負荷装置5には対地漏洩抵抗ru,rv,rwが生ずることがある。これら対地漏洩抵抗ru,rv,rwには、漏洩電流Igru,Igrv,Igrwが流れる。
上述したような三相配電線若しくは単相配電線に接続されるスイッチング電源及びそのスイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrを測定する本発明に係る漏洩電流測定装置は、図1に示すように信号処理部3、演算部14、表示部15を有する処理演算部16を備える。そして、負荷装置5の対地絶縁抵抗に起因する漏洩電流Igrを測定する場合には、処理演算部16を構成する信号処理部3に、配電線4に流れる電流のベクトル和である零相電流I0が、これを検出する零相変流器9を介して入力される。また、スイッチング電源2の出力端子U,V,Wと負荷装置5,とを接続する各給電線に流れる電流のベクトル和を零相電流I0として入力してもよい。
なお、図2に示す配電系統において、負荷装置5sの対地絶縁抵抗に起因する漏洩電流Igrを測定する場合には、処理演算部16sを構成する信号処理部3に、配電線4に流れる電流のベクトル和である零相電流I0が、これを検出する零相変流器9sを介して入力される。
ここで、負荷装置5に生じた各相の対地静電容量Cを流れる対地電流Igcu,Igcv,Igcwと負荷装置5に生じた各相の対地漏洩抵抗ru,rv,rwに流れる漏洩電流Igru,Igrv,Igrwのベクトル和である零相電流I0は、大地から配電電源変圧器の接地極G、接地線8を経由して、配電電源1からスイッチング電源2の経路を還流するので、零相電流I0はこの還流経路の途中であるスイッチング電源2の電源側、負荷側いずれの点でも測定が可能である。
また、本発明を採用することにより、後述する図11に示すように、複数のスイッチング電源2a,2bにそれぞれ負荷装置5a,5bを接続したシステムの漏洩電流を1台の漏洩電流測定装置によって監視することが可能である。
ここで、以上述べた三角形又はV結線配電方式の三相配電線又は単相配電線に接続されるスイッチング電源及びそのスイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの測定方法及びその原理について説明する。
まず、図1に示すような配電用変圧器の低圧側巻線(二次側巻線)を三角形に結線した配電電源から導出した三相配電線4R,4S,4Tの線間には大きさEの線間電圧ESR,ETS,ERTが発生しており、端子Sは接地線8を経由して接地極Gで接地されている。これら線間電圧ESR,ETS,ERTの関係は、図3に示すベクトル図のように表され、端子R,S,Tの電位の中性点である電気的中性点Neは三角形RSTの重心であり、三相配電線の電気的中性点Neの接地相Sからの電位はベクトルENeで表され、大きさは三相線間電圧Eの1/√3である。
上述の三相配電線4R,4S,4Tに接続されるスイッチング電源2の各端子U,V,W間に発生する運転周波数の線間電圧EVU,EWV,EUW及びU,V,W相の電気的中性点Neと各端子U,V,W間に発生する相電圧EU,EV,EWと、接地極Gに対して中性点Neに加わる収容周波数の電圧Enの関係は、図5に示す等価回路図5で表される。但し、各電圧及び電流を、それに含まれる高調波成分を濾波器で取り除き、商用周波数と運転周波数及びそれらの合成周波数を持つものとして取り扱えば、図3で示される三相配電線4R,4S,4Tの電気的中性点Neの接地極Gからの電位ENeと、図5で示されるスイッチング電源2の各端子U,V,Wの電気的中性点Neの接地点からの電位とは一致するので、三相配電線4R,4S,4Tに接続されるスイッチング電源2で、図5に示す商用周波数の電圧Enは電位ENeとなり、その大きさは三相線間電圧Eの1/√3である。
同様に、図2に示すような配電用変圧器低圧側(二次側)の巻線をV形に結線した配電電源から導出した三相配電線4R,4S,4Tの線間には大きさEの線間電圧ESR,ETS,ERTが発生しており、端子R,T間の巻線1sの中点Nは接地線8を経由して接地極Gで接地されている。これら線間電圧ESR,ETS,ERTの関係は、図4に示すベクトル図のように表され、三相配電線4R,4S,4Tの電位の中性点である電気的中性点Neは三角形RSTの重心であり、電気的中性点Neの接地極Gからの電位はベクトルENeで表され、その大きさは三相線間電圧Eの1/(2√3)である。
また、単相電源端子R,N間の中点が単相配電線4R,4Nの電気的中性点Nsであり、その接地点Nからの電位はベクトルENsで表され、その大きさは三相線間電圧Eの1/4である。また、単相電源端子がR,Tのときはその中点Nがこの単相配電線4R,4Tの電気的中性点Neで接地点に一致し、中点Nからの電位は0となる。
以上の電気的中性点Ne,Ns及び接地点Nからの電位はENe,ENs及び0であり、これらの電位は、図5で示されるスイッチング電源2の各端子U,V,Wの電気的中性点Neの接地点Nからの電位と一致するので、線間電圧Eの三角結線三相配電線に接続されるスイッチング電源2において、図5に示す商用周波数の電圧Enは、図3に示す電圧ENeと一致し、その大きさはE/√3であり、線間電圧EのV結線三相配電線に接続されるスイッチング電源2において、図5に示す商用周波数の電圧Enは、図4に示す電圧ENeと一致し、その大きさはE/(2√3)であり、V結線変圧器又は単相変圧器から導出される前述の三相配電線と同じ線間電圧E又は線間電圧E/2の単相配電線に接続されるスイッチング電源2において、図5に示す商用周波数の電圧Enは電圧0又は図4に示す電圧ENsと一致し、その大きさはE/4である。
次に、スイッチング電源2の状態を図5を参照して説明する。図5において、負荷装置5のU,V,W相に印加される対地電圧は、運転周波数の相電圧EU,EV,EWに商用周波数の電圧Enが重畳されたもので、図3に示す電位ENe、図4に示す電位ENe、0、ENsが商用周波数の電圧Enに相当し、この電圧Enの大きさは配電線相電圧(E/√3)の1倍、0.5倍、0及び(√3/4)倍と一定であるのに対し、運転周波数の相電圧EU,EV,EWはスイッチング電源の特性から、運転周波数が60Hzのとき、ほぼ配電線相電圧(E/√3)となっており、40Hzのときはほぼ0.7(E/√3)となり、周波数の低下にしたがって低下する。
商用周波数の電圧Enが0の場合を除き、この商用周波数の電圧Enに対する運転周波数の相電圧EU,EV,EWの割合をpとし、運転周波数及び商用周波数をそれぞれf及びfnとし、時間をtとしたとき、U,V,W相の瞬時対地電圧eoは次の式(1)で表される。
eo=√2En(sin2πfnt+psin2πft) ・・・(1)
この式(1)は、下記の式(1a)のように書き直すことができる。
eo=√2En{(1+p)sinαcosβ+(1−p)cosαsinβ)}
・・・(1a)
上記式(1a)で、α=2π{(fn+f)/2}t、β=2π{(fn―f)/2}tとする。
上記式(1)で運転周波数fが商用周波数fnに近い60Hz〜40Hzにおいて、pは2.3〜1となるので、式(1a)の(1+p)の3.3〜2に対し(1−p)は1.3〜0となり、U,V,W相に印加される瞬時対地電圧eoの波形をみるときには(1−p)の項は無視できる。したがって、瞬時対地電圧eoの波形の周波数は式(1a)のαより、運転周波数fと商用周波数fnとの平均値は、60,55,50となり、この周波数の波形が、式(1a)のβの運転周波数fと商用周波数fnとの差の半分の周波数で変調された波形であり、前記の変調周期で、上記瞬時対地電圧eoは最高値を示す。
次に、式(1)で運転周波数fが40Hz〜20Hzでは、pは1.6〜0.7となるので、式(1a)の(1+p)の2.6〜1.7に対し(1−p)は0.3〜−0.6となり、同様に(1−p)の項は無視し、瞬時対地電圧eoの運転周波数fと商用周波数fnとの平均値は50,45,40となり、この周波数の波形が、式(1a)のβの運転周波数fと商用周波数fnとの差の半分の周波数で変調された波形であり、この変調周期で、瞬時対地電圧eoは最高値を示す。
このような特性を持つ式(1)で表され、三角形結線200V三相電源に接続されるスイッチング電源2のU,V,W相に印加される瞬時対地電圧eoの波形を図7に示す。そして、この瞬時対地電圧eoと同波形の零相電流I0が負荷装置5の電圧印可部分から接地部分に流れる。この零相電流I0の波形の最高値付近の波形は商用周波数の電圧Enの波形とほぼ一致するので、入力した商用周波数の基準電圧Eの波形と対応させながら、図9に示すように位相角θを測定して漏洩電流Igrの値を算出する。このように運転周波数fが60〜20Hzでも、測定する零相電流I0の周波数は前述のように60〜40Hzとなり、基準電圧の商用周波数fnが50Hz、60Hzとの差は少なく、商用周波数fnの三相配電線若しくは単相配電線の線間電圧を基準電圧として入力し、前述の瞬時対地電圧eoと同波形の零相電流I0との位相角θの測定には、少しの測定誤差を含むが、実用的に可能な範囲で行うことができる。
ここで、スイッチング電源2とその負荷装置5を等価回路で示す図5、及びその電圧状態をベクトル図で示す図6を参照してU,V,W相に印加される瞬時対地電圧eoの状態を説明する。
運転周波数fの相電圧ベクトルEU,EV,EWは、図6に示すように、120度の位相差を保ちながら、電気的中性点Neの周りを回転し、図6で表示している時点で相電圧ベクトルEUが商用周波数ベクトルEnの方向と一致しU相の対地電圧が最大になっている。
ところで、図6に示す商用周波数ベクトルEnと相電圧ベクトルEUとは周波数が異なるので本来はベクトル図での表現はできないが、ここでは両周波数が接近しており、両者の位相がほぼ一致した時点の解析を行うので両者の周波数は等しいものとして取り扱う。
そして、図5において、U,V,W相の電気的中性点Neと各端子U,V,W間に発生する相電圧である運転相電圧EU,EV,EWの値をEdとし、配電線方式によって定まった電圧を持つ図3に示す電気的中性点Neの対地電圧ENe、図4に示す電気的中性点Neの対地電圧ENe、図4に示す電気的中性点Nsの対地電圧ENsと同じ大きさの電圧En及び電圧の大きさがEdである運転相電圧Euを基準電圧の方向とすると、U,V,W端子の対地電圧EGU,EGV,EGWは、下記の式(2)〜(4)のようにベクトル記号法により示すことができる。
GU=En+Ed ・・・(2)
GV=En−0.5Ed−j0.5・√3Ed ・・・(3)
GW=En−0.5Ed+j0.5・√3Ed ・・・(4)
そして、負荷装置5のU,V,Wの各相に存在する大きさがほぼ等しい対地静電容量Cに流れる対地電流をIgcu、Igcv,Igcwとし、角周波数ω=2πfnとおくと、上記対地電流Igcu、Igcv,igcwは、下記の式(5)〜(7)で示すことができる。
Igcu=jωCEGU=jωC(En+Ed) ・・・(5)
Igcv=jωCEGV=jωC(En−0.5Ed)+ωC0.5√3Ed
・・・(6)
Igcw=jωCECW=jωC(En−0.5Ed)−ωC0.5√3Ed
・・・(7)
また、負荷装置5に生じたU,V,Wの各相の対地漏洩抵抗ru,rv,rwにそれぞれ流れる漏洩電流をIgru,Igrv,Igrwとすると、U,V,W相にそれぞれ流れる漏洩電流Igru,Igrv,Igrwは下記の式(8)〜(10)で示すことができる。
Igru=EGU/ru=(En+Ed)/ru ・・・(8)
Igrv=EGV/rv=(En−0.5Ed)/rv−j0.5√3Ed/rv
・・・(9)
Igrw=EGW/rw=(En−0.5Ed)/rw+j0.5√3Ed/rw
・・・(10)
以上から、スイッチング電源端子U,V,Wからの対地漏洩電流である零相電流I0は、上記式(5)〜(10)を加えたものであり、1/ru=gu、1/rv=gv、1/rw=gwとおくと、上記零相電流I0は下記の式(11)で表すことができる。
0=(gu+gv+gw)En+(gu−0.5gv−0.5gw)Ed
+j{(3ωCEn+0.5√3(gw−gv)}Ed ・・・(11)
ここで、漏洩電流Igrを測定する際、この漏洩電流測定装置に入力される三相配電線又は単相配電線の線間電圧を基準電圧Eとするとき、上記式(11)で表される零相電流I0と、基準電圧Eと同位相の零相電流I0の有効成分Aと、基準電圧Eより90度位相が進んだ零相電流I0の無効成分Bの関係は、図8に示すベクトル図のように表され、上記有効成分Aは図8に示すベクトル図のI0及び上記式(11)の実数部分であるので、下記の式(12)により示すことができる。
A=(gu+gv+gw)En+(gu−0.5gv−0.5gw)Ed
・・・(12)
上記基準電圧Eとして入力された線間電圧ERTから90度位相が進んだ零相電流I0の無効成分Bは、図8に示すベクトル図のI0及び式(11)の虚数部分であるので、下記の式(13)により示すことができる。
B=3ωCEn+0.5√3(gw−gv)Ed ・・・(13)
次に、X,Y,Zを下記の式(14)〜(16)とおく。
X=B−√3A ・・・(14)
Y=B+√3A ・・・(15)
Z=−2B ・・・(16)
上記式(14)、(15)、(16)に、上記式(12)、(13)を代入し、下記の式(17)〜(19)を得る。
X=B−√3A={3ωC−√3(gu+gv+gw)}En+√3(gw−gu)Ed
・・・(17)
Y=B+√3A={3ωC+√3(gu+gv+gw)}En+√3(gu−gv)Ed
・・・(18)
Z=−2B=−6ωCEn−√3(gw−gv)Ed ・・・(19)
上記式(17)〜(19)のうち、式(18)が最大の値を示す。この式(18)において、運転相電圧Edは、運転周波数fが60Hzのとき最大値を示し、この値は線間電圧Eの三相配電線相電圧(E/√3)の値にほぼ等しく、運転周波数の低下とともに低くなる。
つまり、運転周波数fが60Hzのとき、スイッチング電源2の線間電圧√3Edが最大で、この値は三相配電線線間電圧Eの値にほぼ等しくなる。そこで、この条件を上記式(18)に代入すると、下記の式(20)が得られる。
Y=(√3ωC+gu+gv+gw)√3En+(gu−gv)E ・・・(20)
次に、スイッチング電源2又は2sの等価回路である図5に示す商用周波数の電圧Enは、線間電圧Eの三角結線三相配電線にスイッチング電源2が接続されたときには、図3に示す電圧ENeと一致し、大きさはE/√3となる。この関係を式(20)に代入すると下記の式(21)が得られる。
Yd=(√3ωC+gu+gv+gw)E+(gu−gv)E
=(√3ωC+2gu+gw)E ・・・(21)
そして、図6に示すベクトル図より、対地抵抗ruに流れる漏洩電流Igruは、Igru=(En+Ed)gu=(2/√3)Eguとなり、運転相電圧EdのベクトルEdは中性点Neに加わる電圧EnのベクトルEnに対して回転するので、この式の関係はU,V,Wの各相で同様であり、対地静電容量Cは無視すると、下記の式(22)が得られる。
Yd=√3(Igru+0.5Igrw) ・・・(22)
次に、線間電圧EのV結線三相配電線にスイッチング電源2が接続されたとき、商用周波数fの電圧Enは図4に示す電圧ENeと一致し、その大きさはE/(2√3)となるので、この関係を上記式(20)に代入すると下記の式(23)が得られる。
Yv=(√3ωC+gu+gv+gw)0.5E+(gu−gv)E
=(√3ωC+1.5gu−05gv+0.5gw)E ・・・(23)
そして、図4、図6に示すベクトル図より、
Igru=(En+Ed)gu=(1.5/√3)Egu
となり、運転相電圧EdのベクトルEdは中性点Neに加わる電圧EnのベクトルEnに対して回転するので、この式(23)の関係はU,V,Wの各相で同様であり、対地静電容量Cは無視し、さらに、1相又は2相地絡なので負の値を無視すると、下記の式(24)が得られる。
Yv=√3(Igru+Igrw/3) ・・・(24)
次に、V結線変圧器又は単相変圧器から導出される単相2線のうちの1線が接地された単相配電線に接続されるスイッチング電源2で、図5に示す商用周波数の電圧Enは、図4に示す電圧ENeと一致し、その大きさはE/4となる。この関係を前述の式(18)に代入すると、下記の式(25)が得られる。
Ys=(√3ωC+gu+gu+gv+gw)0.25√3E+(gu−gv)E
={√3ωC+(1+0.25√3)gu−(1−0.25√3)gv
+0.25√3gw)E ・・・(25)
図4、図6に示すベクトル図より、
Igru=(En+Ed)gu=(0.25√3+1)(E/√3)gu
となり、ベクトルEdは、ベクトルEnに対して回転するので、この式の関係はU,V,Wの各相で同様であり、対地静電容量Cは無視し、さらに、1相又は2相地絡なので負の値を無視すると、上記式(25)は、下記の式(26)のように示される。
Ys=√3{Igru+0.25√3Igrw/(1+0.25√3)}
・・・(26)
漏洩電流Igrの値は、式(14)、(15)、(16)で表されるX,Y,Zの測定値うちの最大の値をYmとするとき、三角結線三相配電線に接続されるスイッチング電源2のとき、V結線三相配電線に接続されるスイッチング電源2のとき、V結線変圧器又は単相変圧器から導出される単相2線のうちの1線が接地された単相配電線に接続されるスイッチング電源2のときは、前述の式(22)、(24)、(26)から、いずれも下記の式(27)で表すことができる。
Igr=Ym/√3 ・・・(27)
但し、式(27)で表される漏洩電流Igrの値は、U,V,Wの各相のうちの最大の漏洩電流を示す相の値と、次の値の相の0.5〜0.3倍の漏洩電流の値との合計となる。
次に、最大運転周波数が約30Hzのときは、運転電圧Edが上記60Hzの値の約半分であり、漏洩電流は、運転電圧Edが最大のとき、つまり60Hzのときを基準に算出すると、前記式(22)、(24)、(26)は、次の式(28)、(29)、(30)で表すことができる。
Ydh=0.75√3{Igru+(2/3)Igrw} ・・・(28)
Yvh=(2/√3)(Igru+0.5Igrw) ・・・(29)
Ysh=√3{(2+√3)/(4+√3)}{Igru+√3/(2+√3)Igrw} ・・・(30)
このような関係は、最大運転周波数、配電線電源の方式ごとに計算が可能であり、最大運転周波数が60Hzより小さいときは、式(27)で計算した漏洩電流Igrの値に、例えば式(28)、(29)、(30)で表されるような最大運転周波数、配電線電源の方式ごとに定められた値を乗じて補正する。
以上は三相配電線又は単相配電線の線間電圧を測定のために入力したが、スイッチング電源の運転周波数を持つ出力線間電圧を入力しても同様な原理、方法、工程で漏洩電流Igrの測定が可能である。但し、運転周波数と商用周波数との差が20Hzを超えるにしたがって測定値に含まれる誤差が増加するが、漏洩電流Igrが0の場合とは明らかに差があり、また一般のスイッチング電源は前記周波数の差以内で運転されるか、運転周波数が通過するかであり、前記誤差のために、実用が妨げられる機会は殆どない。
次に、スイッチング電源の図5に示す等価回路図の商用周波数電圧Enが0の場合、具体的には、図2に示すV結線変圧器又は単相変圧器巻線1sがその中点Nで接地され、電源端子R、Tから導出された単相配電線にスイッチング電源2が接続された例がこれに該当し、図5及び図6の運転相電圧Eu,Ev,Ewの電気的中性点Neが接地されたことと等価である。
ここで、この単相配電線に接続されるスイッチング電源2及び負荷装置5の漏洩電流Igr等を測定する際、漏洩電流測定装置に入力する測定の基準になる基準電圧をEとして、まず、負荷装置5の運転周波数を持つスイッチング電源2の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのうちのいずれかを入力したときについて説明する。
ここで、負荷装置5に生じた零相電流I0の周波数は運転周波数であり、商用周波数は重畳せず、図8に示すように、横軸である実数軸上の基準ベクトルである入力電圧に対して位相角θのベクトルI0として表される。
そこで、図5で、端子Vと端子Uとの間に発生する線間電圧EVUを基準電圧とするとき、その値は接地電位である中性点Neに対する対地電圧Eu,Ev,Ewの値Edに対し√3Edとして示され、対地電圧Eu,Ev,Ewは下記の式(31)〜(33)のようにベクトル記号法により示すことができる。
Eu=0.5√3Ed−j0.5Ed ・・・(31)
Ev=−0.5√3Ed−j0.5Ed ・・・(32)
Ew=jEd ・・・(33)
そして、負荷装置5のU,V,Wの各相に存在する大きさがほぼ等しい対地静電容量Cには、常時、対地電流Igcu,igcv,igcwが流れているが、対地電圧Eu,Ev,Ewはバランスした三相電圧のため上記対地電流Igcu,Igcv,Igcwのベクトル和はほぼ0である。
また、負荷装置5に生じた各相の対地漏洩抵抗ru,rv,rwにそれぞれ流れる漏洩電流Igru,Igrv,Igrwは、下記のベクトル記号の式(34)〜(36)で示すことができる。
Igru=Eu/ru=0.5√3Ed/ru−j0.5Ed/ru ・・・(34)
Igrv=Ev/rv=−0.5√3Ed/rv−j0.5Ed/rv・・・(35)
Igrw=Ew/rw=jEd/rw ・・・(36)
以上から、巻線1sの中点Nと接地極Gとの間を接続する接地線8、配電線4(4R,4S,4T)、スイッチング電源2、負荷装置5を経由して接地極Gに還流する電流である零相電流I0は、上記式(34)〜(36)を加えたものであり、下記の式(37)で表すことができる。
0=0.5√3(Ed/ru−Ed/rv)
+j(Ed/rw−0.5Ed/ru−0.5Ed/rv) ・・・(37)
ここで、漏洩電流Igrを測定する際、この漏洩電流測定装置に入力される線間電圧EVUを基準電圧Eとするとき、上記式(37)で表される零相電流I0と、基準電圧Eと同位相の零相電流I0の有効成分Aと、基準電圧Eより90度位相が進んだ零相電流I0の無効成分Bの関係は、図8のベクトル図のように表され、前記有効成分Aは図8に示すベクトル図の零相電流I0の有効成分A及び上記式(37)の実数部分であるので、下記の式(38)により示すことができる。但し、以下のIgru,Igrv,Igrwは、それぞれのベクトルの大きさを表し、IgruはEv/rv、IgrwはEw/rwである。
A=0.5√3(Igru−Igrv) ・・・(38)
上記基準電圧として入力された線間電圧EVUから90度位相が進んだ零相電流I0の無効成分Bは、図8に示すベクトル図のI0の無効成分B及び式(37)の虚数部分であるので、下記の式(39)により示すことができる。
B=Igrw−0.5Igru−0.5Igrv ・・・(39)
ここで、零相電流I0と、基準電圧Eとの間の位相角をθとすると、図8から判るように、上記有効成分AはI0cosθで表され、上記無効成分BはI0sinθで表される。
ところで、零相電流I0の有効成分A、無効成分Bの値を実際に測定して求めるにあたっては、処理演算部16の信号処理部3へ入力される基準電圧Eと零相電流I0の波形から、後述する図9に示すように、基準電圧Eと零相電流I0との間の位相の差を測定し、演算部14で零相電流I0を基準電圧Eと同位相の有効成分Aと基準電圧Eより90度位相が進んだ無効成分Bとに分解して出力する。すなわち、演算部14は、基準電圧Eと零相電流I0との位相角θに基づいて、上記有効成分Aと無効成分Bとを検出する。
次に、X,Y,Zを、前記式(14)、(15)、(16)に示すようにおき、前記式(14)、(15)、(16)に前記式(38)、(39)のA,Bをそれぞれ代入すると次の式(40)〜(42)が得られる。
X=Igrv+Igrw−2Igru ・・・(40)
Y=Igrw+Igru−2Igrv ・・・(41)
Z=Igru+Igrv−2Igrw ・・・(42)
ここで、スイッチング電源2及び負荷装置5では、三相の各相に同時に漏洩電流Igrは流れないものとし、漏洩電流Igruが流れないときには上記式(40)を、漏洩電流Igrvが流れないときには上記式(41)を、Igrwが流れないときには上記式(42)を採用するものとすれば、上記X,Y,Zの値のうちの最大の値が、1相に漏洩電流Igrが流れた場合の当該漏洩電流Igrの測定値を示し、2相に漏洩電流Igrが流れた場合は2相分合計の漏洩電流Igrの値を示し、線間負荷中に発生した対地漏洩抵抗に相当する対地漏洩電流Igrの測定値に近い値として出力される。
以上、式(31)〜(42)を含んだ部分の説明では、端子Vと端子Uとの間に発生する線間電圧EVUを基準電圧Eとしていたが、他の線間電圧EWV,EUWを基準電圧Eとしても上述の式(40)〜(42)は全く同様に適用が可能で、式(40)〜(42)のX,Y,Zとその右辺の式との組み合わせが入れ替わるだけであり、それらの最大の値を漏洩電流Igrの測定値とする漏洩電流Igrの値は同じ値であるので、三相線間電圧のいずれの相の電圧を入力しても同じ測定結果が得られ、測定の際の入力電圧の選定間違いが発生することはない。
次に、漏洩電流Igr等を測定する際、漏洩電流測定装置に入力する測定の基準になる基準電圧Eとして、商用周波数である配電系統の端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれかを入力する場合について説明する。
商用周波数は、特殊な例外を除き50Hz又は60Hzであるのに対し、運転周波数は60Hzから20Hzの帯域で変化されるか、少なくとも経過する場合が殆どである。前述のように三相配電線に接続されたスイッチング電源2及び負荷装置5の零相電流I0は、商用周波数電圧Enが0の場合運転周波数を持ち、基準電圧Eの商用周波数と異なるので、基準電圧Eに対する零相電流I0の位相角θは両周波数の差の周波数の周期で0度から360度まで変化する。
この場合、前述の式(14)〜(16)のX,Y,Zの変化、ひいてはX,Y,Zの最大値である漏洩電流Igrの変化を求めるため、図8に示すベクトル図より、A=I0×cosθ、B=I0×sinθを式(14)〜(16)に代入すると、下記の式(43)〜(45)を得る。
X=2I0×sin(θ−60度) ・・・(43)
Y=2I0×sin(θ+60度) ・・・(44)
Z=−2I0×sinθ ・・・(45)
ここで、位相角θが変化するとき、式(43)〜(43)の各々は+2I0から−2I0の間を変化し測定が困難になるが、本発明ではX,Y,Zの最大値を漏洩電流Igrの値としているので、θが30度でYの値が2I0、θが150度でXの値が2I0、θが270度でZの値が2I0、θが90度、210度、330度で、X,Y,Zのうちのいずれか2つがI0となり、X,Y,Zのうちの最大値としてはI0から2I0間の値を運転周波数の3倍の周波数の周期で変動する。
ここで、零相電流I0と漏洩電流Igrの関係を検討する。図8からI0 2=A2+B2となり、前記式(38)、式(39)のA,Bをこの式に代入すると、I0は下記の式(46)のように表される。
0 2=Igcu2+Igrv2+Igrw2−Igcu・Igrv−Igrv・Igrw
−Igrw・Igru ・・・(46)
漏洩電流Igru,Igrv,Igrwのうちのいずれか1つが発生したときはI0=Igrとなるが、2相で、例えばIgru,Igrvが同時に発生したときは、
0 2=(Igru+Igrv)2−3(Igru×Igrv)
となり、I0の値はIgru,Igrvの合計値より小さくなる。
次に、前記式(43)〜(45)の変動の上限値である2I0では、
4I0 2=(Igru+Igrv)2+3(Igru−Igrv)2
となり、2I0の値はIgru,Igrvの合計値より大きな値を示し、Igru,Igrvの値が等しいときは、両者の合計値となる。
したがって、前記式(43)〜(45)の最大値の2I0、ひいては式(14)〜(16)のX,Y,Zのうちの最大値を漏洩電流Igrの値とすることができる。
また、零相電流I0、及び漏洩電流Igrの値は、U,V,Wの各相の対地電圧EU,EV,EWの値に比例しており、これら対地電圧EU,EV,EWの値は、スイッチング電源の特性から運転周波数が60Hz以上では一定であり、このときが最大で、このとき測定した値が定格の漏洩電流Igrの値である。運転周波数が60Hzより低下するにつれて運転電圧も低下し、例えば運転周波数が30Hzで約半分の電圧値となる。以上の計算は、運転周波数が60Hz付近に到達する前提での計算であるので、運転周波数がこれより低いときは到達した最大周波数によって、前述したように測定された漏洩電流Igrの値を下記に示す式(47)によって補正する。但し、運転周波数が30Hzより低下すると誤差は増加する。
補正Igr=測定Igr×(60÷最大運転周波数) ・・・(47)
次に、図1に示す処理演算部16を構成する信号処理部3の具体例を、図10を参照して説明する。この信号処理部3は、電圧検出器21と、第1の増幅器22と、第1のローパスフィルタ(LPF)23と、第1の実効値変換器28と、零相電流(I0)検出器24と、第2の増幅器25と、第2のローパスフィルタ(LPF)26と、第2の実効値変換器29と、位相差計測器27とを備える。
図10において、電圧検出器21には、三相配電線R,S,Tの各相の各端子間に発生する線間電圧ESR,ETS,ERTのいずれか、又はスイッチング電源2の端子U,V,W間に発生した線間電圧EVU,EWV,EUWのいずれか、単相配電線4Nと配電線4R,4S,4Tのいずれか1相の単相電源にスイッチング電源2bが接続されている状態での単相線間電圧が基準電圧Eとして入力される。
なお、図1、図2に示す系統図の三相配電線においては、線間電圧ESRが入力され、単相配電線においては線間電圧ENRが入力されている。そして、第1の増幅器22は、電圧検出器21の検出感度に応じて、電圧検出器21から出力される基準電圧Eを適切な値になるまで増幅する。第1のローパスフィルタ23は、基準電圧Eとして入力される電圧の最高周波数である例えば60Hzを超える周波数成分を減衰させて基準電圧周波数波形を取り出す。
また、零相電流検出器24には、三相配電線にあっては、R,S,Tの各相の配電線4R,4S,4Tに流れる電流のベクトル和である零相電流I0が入力され、単相配電線4N,4R,4S,4Tのいずれかの単相2線に流れる電流のベクトル和である零相電流I0が入力される。第2の増幅器25は、零相電流検出器24の検出感度に応じて、零相電流検出器24から出力される零相電流I0を適切な値になるまで増幅する。第2のローパスフィルタ26は、零相電流I0の商用周波数及び運転周波数を超える周波数成分を減衰させて商用周波数及び運転周波数及びこれらの合成周波数波形を取り出す。
そして、位相差計測器27は、基準電圧として入力された配電電源各端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれか、又はスイッチング電源2の端子U,V,W間に発生した線間電圧EVU,EWV,EUWのいずれか、又は単相配電線4N,4R,4S,4Tのいずれか1相の単相電源にスイッチング電源2sが接続されている状態での単相線間電圧のいずれかと、零相電流I0との位相差を計測する。ここで基準電圧Eとして入力された端子R,S,T間に発生する線間電圧ESR,ETS,ERTのいずれか、又はスイッチング電源2の端子U,V,W間に発生した線間電圧EVU,EWV,EUWのいずれか、又は単相配電線4N,4R,4S,4Tのいずれか1相の単相電源にスイッチング電源2sが接続されている状態での単相線間電圧のいずれかと、零相電流I0との位相角θの関係を図8、図9に示す。なお、位相角θは、時間とともに変化するが、図8、図9ではその代表例を示す。
そして、信号処理部3において、第1のローパスフィルタ23は出力された基準電圧Eの波形と、第2のローパスフィルタ26から出力された零相電流I0の波形を、例えばオペアンプゼロクロッシング回路に入力すると、それらの出力波形は、図9に示すように、基準電圧Eに対してはEZで示すようになり、零相電流I0に対してはIZで示すようになる。基準電圧E及び零相電流I0の出力波形の波高値を一致させて、出力波形EZとIZの差を求める。その差の絶対波形は、図9に示す|EZ−IZ|波形になる。図9に示す|EZ−IZ|波形及びIZ波形の突出部分の面積をそれぞれS1,S2とすれば、S1は基準電圧Eと零相電流I0との位相差角θに比例し、S2は位相差180度に比例する。このS1,S2に比例した電圧は、演算部14に出力される。
そして、第1の実効値変換器28は、基準電圧Eの波形を両波整流して実効値に比例したアナログ値に変換し、演算部14に入力する。第2の実効値変換器29は、零相電流I0の基本周波数波形を両波整流して実効値に比例したアナログ値に変換して演算部14に入力する。
そして、演算部14は、位相差計測器27が計測した基準電圧Eと零相電流I0との位相差角θを用いて、零相電流I0を基準電圧Eと同位相の有効成分Aと、基準電圧Eより90度位相が進んだ無効成分Bとに分解して出力する。
なお、位相差計測器27が検出する基準電圧Eと零相電流I0との位相差角θは、次の式(48)から算出される。
θ=(180S1)/S2 ・・・(48)
ここで、演算部14は、I0cosθの値を零相電流I0の有効成分Aの値として、I0sinθの値を零相電流I0の無効成分Bの値として演算し出力する。これら零相電流I0と、零相電流I0の有効成分A及び無効成分Bの関係は、前述したように、図8のベクトル図に示すように表される。
そして、演算部14において、上述したような演算処理が行われ、スイッチング電源2の負荷装置5のU,V,Wの各相の対地漏洩抵抗ru,rv,rwが1相又は2相、あるいは2相間にまたがる負荷の中に存在しているとき、それらの中に流れる電流値又は2相分の合計電流値を漏洩電流Igrの値として測定し、その値を必要に応じて表示部15に表示させる。
本発明に係る漏洩電流測定装置及びこの測定装置を用いた測定方法においては、前述した零相電流I0の有効成分Aと無効成分Bを上述した式(14)〜(16)又は式(43)〜(45)に代入する演算処理を演算部14により行うことにより、U,V,Wの各相の対地漏洩抵抗ru,rv,rwが1相又は2相、あるいは2相間にまたがる負荷の中に存在しているとき、それらの中に流れる電流値又は2相分の合計電流値又はその値に近い電流値の測定が実現される。
また、本発明に係る漏洩電流測定装置は、図11に示すように、複数のスイッチング電源2a,2b及びその負荷装置5a,5bを1台の漏洩電流測定装置で監視することも可能である。また、配電線4の途中に遮断器19を設け、演算部14の演算の結果により、遮断器19の遮断動作を制御する構成としてもよい。本発明に係る漏洩電流測定装置は、演算部14により演算されて測定された対地漏洩抵抗ru,rv,rwの中を流れる漏洩電流Igrの測定結果を制御信号とし、この制御信号に基づいて配電線4の途中に設けた遮断器19を動作させることにより、スイッチング電源2a,2b及び負荷装置5a,5bを配電電源1から遮断する。
本発明に係る漏洩電流測定装置においては、上述のようにさらに遮断器を設けることにより、漏洩電流Igrの検出と共に、漏洩電流Igrが所定の値を超えたときスイッチング電源及び負荷装置を配電電源から遮断するようにすることができるので、配電電源に接続されたスイッチング電源及びその負荷装置を絶縁不良に伴う重大事故から守ることができる。
さらに、本発明に係る漏洩電流測定装置では、演算部14の演算の結果により、対地絶縁抵抗に起因する漏洩電流Igrの値が所定の値より大きくなったことが判定された場合には、その判定信号を制御信号として、音や発光等の警報装置を動作させ、音や発光等を用いて警報を発するようにしてもよい。このような警報装置を設けることにより、漏電に起因する事故を確実に防止することができる。なお、この警報装置は、図11に示すように、演算部14の判定信号を制御信号として警報器18を動作させるものであるので、演算部14からの判定信号が入力されるように、この演算部14に接続される。
本発明に係る漏洩電流測定装置及び測定方法は、広く一般で実用されている電源周波数を変化させるインバータ及びインバータで駆動される電動機などの負荷装置や自動機械ロボット等に組み込まれているサーボモータ及びそれらを駆動するスィッチング電源装置における絶縁測定に用いることができる。
1 三角形配電電源、1v V形配電電源、2 スイッチング電源、2s 単相配電線用スイッチング電源、3 信号処理部、4 配電線、5 負荷装置、8 接地線 9 零相変流器、14 演算部、15 表示部、16 処理演算部、18 警報機、19 遮断器、

Claims (11)

  1. 変圧器の二次側巻線を三角形に結線し、三相の電圧端子をR,S,Tとし、上記三相の電圧端子R,S,Tのうちの1の端子若しくはその近傍で接地された電源から給電される三相3線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、
    又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとするとき、上記二次側巻線は上記電圧端子R,T間及び上記電圧端子T,Sとの間にそれぞれ存在するものとしたとき、上記二次側巻線の中点のうちの1つで接地された電源から給電される三相3線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、
    又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとし、上記二次側巻線が上記電圧端子R,T間及び上記電圧端子T,Sとの間にそれぞれ存在するものとしたとき、上記電圧端子R、Tから給電される単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、
    又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとし、上記V形に結線された二次側巻線の中点Nと上記電圧端子Rとの間若しくは上記中点Nと上記電圧端子Tとの間から給電される単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、
    又は単相変圧器の二次側巻線の中点若しくは一端で接地された単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrのいずれかを測定する漏洩電流測定装置であって、
    上記三相の電圧端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記単相2線の配電線の線間電圧及び上記スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを測定する電圧検出手段と、
    各配電線及びスイッチング電源と上記スイッチング電源に接続される負荷装置に流れる電流のベクトル和である零相電流Iを検出する零相電流検出手段と、
    上記電圧検出手段によって検出された上記線間電圧ESR,ETS,ERT又は上記単相2線の配電線の線間電圧及び上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は上記単相2線配電線の線間電圧及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧とし、この基準電圧と上記零相電流Iとの位相を比較する位相比較手段と、
    上記基準電圧に対して、上記零相電流Iを同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記単相2線配電線の線間電圧及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧としたときに得られる上記零相電流Iの有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、U相、V相、W相のうちの2相に発生する上記漏洩電流Igrの合計値、U相、V相、W相のうちの1相に発生する上記漏洩電流Igrの値、U相、V相、W相のうちの2相間若しくは三相間に接続される負荷装置の内部で発生する上記漏洩電流Igrの値を演算する演算手段と
    を備えることを特徴とする漏洩電流測定装置。
  2. 上記演算手段は、上記各電圧端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項1に記載の漏洩電流測定装置。
  3. 上記演算手段は、上記電圧端子R,T間に発生する線間電圧ERT又は上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を√3で除した値を、上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項1に記載の漏洩電流測定装置。
  4. 上記演算手段によって演算された漏洩電流Igrの近似値を、スイッチング電源出力周波数及び上記三相3線の配電線又は単相2線の配電線の電源の方式によって決まる定数によって補正することを特徴とする請求項2又は3に記載の漏洩電流測定装置。
  5. 当該漏洩電流測定装置は、さらに表示手段を備え、上記演算手段によって演算された結果が上記表示手段に表示されることを特徴とする請求項1〜4のいずれか1に記載の漏洩電流測定装置。
  6. 当該漏洩電流測定装置は、さらに警報手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記警報手段より警報を発することを特徴とする請求項1〜5のいずれか1に記載の漏洩電流測定装置。
  7. 当該漏洩電流測定装置は、さらに遮断手段を備え、上記演算手段において求められる上記漏洩電流Igrの値が所定の値を超えたときに上記遮断手段により電路を遮断することを特徴とする請求項1〜6のいずれか1に記載の漏洩電流測定装置。
  8. 変圧器の二次側巻線を三角形に結線し、三相の電圧端子をR,S,Tとし、上記三相の電圧端子R,S,Tのうちの1の端子若しくはその近傍で接地された電源から給電される三相3線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、
    又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとするとき、上記二次側巻線は上記電圧端子R,T間及び上記電圧端子T,Sとの間にそれぞれ存在するものとしたとき、上記二次側巻線の中点のうちの1つで接地された電源から給電される三相3線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、
    又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとし、上記二次側巻線が上記電圧端子R,T間及び上記電圧端子T,Sとの間にそれぞれ存在するものとしたとき、上記電圧端子R、Tから給電される単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、
    又は2台の単相変圧器の二次側巻線をV形に結線し、三相の電圧端子をR,S,Tとし、上記V形に結線された二次側巻線の中点Nと上記電圧端子Rとの間若しくは上記中点Nと上記電圧端子Tとの間から給電される単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igr、
    又は単相変圧器の二次側巻線の中点若しくは一端で接地された単相2線の配電線に接続されるスイッチング電源及び上記スイッチング電源に接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrのいずれかを測定する漏洩電流測定方法であって、
    上記三相の電圧端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記単相2線の配電線の線間電圧及び上記スイッチング電源の各出力端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを測定する電圧検出工程と、
    各配電線及びスイッチング電源と上記スイッチング電源に接続される負荷装置に流れる電流のベクトル和である零相電流Iを検出する零相電流検出工程と、
    上記電圧検出工程において検出された上記線間電圧ESR,ETS,ERT又は上記単相2線の配電線の線間電圧及び上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかが入力され、上記入力されたいずれかの線間電圧ESR,ETS,ERT又は上記単相2線配電線の線間電圧及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧とし、この基準電圧と上記零相電流Iとの位相を比較する位相比較工程と、
    上記基準電圧に対して、上記零相電流Iを同相の有効成分Aと、これと直角の位相差を有する無効成分Bに分離した計測値を求め、上記各端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記単相2線配電線の線間電圧及び上記スイッチング電源各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかを基準電圧としたときに得られる上記零相電流Iの有効成分Aとこれと直角の位相差を有する無効成分Bとに基づいて、U相、V相、W相のうちの2相に発生する上記漏洩電流Igrの合計値、U相、V相、W相のうちの1相に発生する上記漏洩電流Igrの値、U相、V相、W相のうちの2相間若しくは三相間に接続される負荷装置の内部で発生する上記漏洩電流Igrの値を演算する演算工程と
    を備えることを特徴とする漏洩電流測定方法。
  9. 上記演算工程は、上記各電圧端子R,S,T間に発生する線間電圧ESR,ETS,ERT又は上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を、上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項8に記載の漏洩電流測定方法
  10. 上記演算工程は、上記電圧端子R,T間に発生する線間電圧ERT又は上記スイッチング電源の各端子U,V,W間に発生する線間電圧EVU,EWV,EUWのいずれかの電圧を基準電圧としたとき、式(B−√3A)の値、式(B+√3A)の値、式(−2B)の値のうちの最大の値を√3で除した値を、上記スイッチング電源及びスイッチング電源の各端子U,V,Wに接続される負荷装置の対地絶縁抵抗に起因する漏洩電流Igrの近似値として演算することを特徴とする請求項8に記載の漏洩電流測定方法。
  11. 上記演算工程は、演算された漏洩電流Igrの近似値を、スイッチング電源出力周波数及び上記三相3線の配電線又は単相2線の配電線の電源の方式によって決まる定数によって補正することを特徴とする請求項9又は10に記載の漏洩電流測定方法。
JP2010015474A 2010-01-27 2010-01-27 電気機器おける漏洩電流測定装置及び測定方法 Expired - Fee Related JP5544517B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015474A JP5544517B2 (ja) 2010-01-27 2010-01-27 電気機器おける漏洩電流測定装置及び測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015474A JP5544517B2 (ja) 2010-01-27 2010-01-27 電気機器おける漏洩電流測定装置及び測定方法

Publications (2)

Publication Number Publication Date
JP2011153910A JP2011153910A (ja) 2011-08-11
JP5544517B2 true JP5544517B2 (ja) 2014-07-09

Family

ID=44539992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015474A Expired - Fee Related JP5544517B2 (ja) 2010-01-27 2010-01-27 電気機器おける漏洩電流測定装置及び測定方法

Country Status (1)

Country Link
JP (1) JP5544517B2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101654382B1 (ko) * 2011-10-31 2016-09-06 한국전력공사 절연역률 측정 장치 및 방법
JP6222722B2 (ja) * 2012-02-22 2017-11-01 株式会社三和技術総合研究所 電力及び漏洩電流測定装置並びにその測定方法
JP5631444B1 (ja) 2013-05-27 2014-11-26 タナシン電機株式会社 漏洩電流算出装置及び漏洩電流算出方法
CN103915850B (zh) * 2014-03-10 2016-04-13 华南理工大学 20kV城市电缆线路无功配置方法
JP6408785B2 (ja) * 2014-04-23 2018-10-17 一般財団法人関東電気保安協会 絶縁監視装置
CN104007307B (zh) * 2014-05-06 2017-01-11 西安理工大学 基于随机共振的小电流单相接地故障电流检测电路及方法
JP5770903B1 (ja) * 2014-09-26 2015-08-26 タナシン電機株式会社 漏洩電流算出装置及び漏洩電流算出方法
JP6324629B2 (ja) * 2015-06-19 2018-05-16 三菱電機株式会社 漏洩電流検出装置
JP6477548B2 (ja) * 2016-03-09 2019-03-06 オムロン株式会社 漏洩電流算出装置および漏洩電流算出方法
JP6460146B2 (ja) 2017-04-21 2019-01-30 オムロン株式会社 漏洩電流算出装置および漏洩電流算出方法
JP6885214B2 (ja) * 2017-06-21 2021-06-09 株式会社デンソー モータ制御装置及びモータシステム
CN110469954A (zh) * 2019-08-26 2019-11-19 广东美的制冷设备有限公司 空调器的故障点检方法、装置和可读存储介质
WO2022239432A1 (ja) * 2021-05-14 2022-11-17 株式会社村田製作所 絶縁抵抗算出装置および絶縁抵抗算出方法
CN113608150B (zh) * 2021-07-15 2024-09-10 国网天津市电力公司 可提高负荷漏电检测性能的单相变压器系统及其安装方法
EP4450991A1 (en) * 2023-04-21 2024-10-23 Yokogawa Electric Corporation Measurement method, measurement device, and measurement system
JP7353002B1 (ja) * 2023-05-08 2023-09-29 株式会社SoBrain 計測装置、計測方法および計測プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164375A (ja) * 2006-12-27 2008-07-17 Sbc Co Ltd 電気機器における漏洩電流測定装置及び漏洩電流測定方法
JP2009058235A (ja) * 2007-08-29 2009-03-19 Sbc Co Ltd 電路及び電気機器の漏れ電流測定装置及び方法
JP2009115754A (ja) * 2007-11-09 2009-05-28 Sbc Co Ltd 電気機器における漏洩電流測定装置及び測定方法

Also Published As

Publication number Publication date
JP2011153910A (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5544517B2 (ja) 電気機器おける漏洩電流測定装置及び測定方法
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
EP2482411B1 (en) Drive Failure Protection
JP2009115754A (ja) 電気機器における漏洩電流測定装置及び測定方法
JP5477020B2 (ja) 電気機器おける漏洩電流測定装置及び測定方法
JP2008164374A (ja) 漏洩電流測定装置及び漏洩電流測定方法
JP2009058234A (ja) 漏れ電流測定装置及び測定方法
JP2012215423A (ja) 給電系統における漏洩電流測定装置及び漏洩電流測定方法
KR20080093169A (ko) 위상각 산출에 의한 누설전류 측정 및 누전차단 방법
JP5380702B2 (ja) 漏洩電流測定装置及び測定方法
JP2008164375A (ja) 電気機器における漏洩電流測定装置及び漏洩電流測定方法
US20100213952A1 (en) Methods and Apparatuses for Determining Charging Current in Electrical Power Systems
JP7509385B2 (ja) 検出装置、方法およびプログラム
CN103777108A (zh) 一种快速查找电气设备接地故障点的方法
JP2009145122A (ja) 漏洩電流測定装置
JP2013170961A (ja) 電力及び漏洩電流測定装置並びにその測定方法
WO2008069249A1 (ja) 漏洩電流検出装置及び漏洩電流検出方法
JP2011027449A (ja) 漏れ電流測定装置
JP2018021812A (ja) 漏れ電流測定方法および漏れ電流測定装置
Ludwinek et al. Experimental analysis of assessing of the tripping effectiveness of miniature circuit breakers in an electrical installation fed from a synchronous generator set
JP2017194465A (ja) 監視装置
JP2010060329A (ja) 電路及び電気機器の漏洩電流測定装置及び方法
JP2009058235A (ja) 電路及び電気機器の漏れ電流測定装置及び方法
JP2009229211A (ja) 漏れ電流測定装置及びその測定方法
JP6704368B2 (ja) 絶縁監視装置、方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140411

R150 Certificate of patent or registration of utility model

Ref document number: 5544517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees