WO2008069249A1 - 漏洩電流検出装置及び漏洩電流検出方法 - Google Patents

漏洩電流検出装置及び漏洩電流検出方法 Download PDF

Info

Publication number
WO2008069249A1
WO2008069249A1 PCT/JP2007/073520 JP2007073520W WO2008069249A1 WO 2008069249 A1 WO2008069249 A1 WO 2008069249A1 JP 2007073520 W JP2007073520 W JP 2007073520W WO 2008069249 A1 WO2008069249 A1 WO 2008069249A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage current
phase
igr
voltage
calculated
Prior art date
Application number
PCT/JP2007/073520
Other languages
English (en)
French (fr)
Inventor
Toyotsugu Atoji
Yorikazu Kashiramoto
Original Assignee
Ohno, Takemi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohno, Takemi filed Critical Ohno, Takemi
Publication of WO2008069249A1 publication Critical patent/WO2008069249A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/337Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers avoiding disconnection due to reactive fault currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a leakage current detection device and a leakage current detection method for determining an insulation state of an electrical device by measuring a leakage current, and more particularly, to a ground insulation resistance component flowing in a measured electric line
  • the present invention relates to a leakage current detection device and a leakage current detection method for detecting only leakage current.
  • leakage current which is closely related to insulation failure of electric circuits and equipment.
  • investigating this leakage current requires a lot of time, and it is necessary to measure the value of insulation failure with an insulation resistance meter after a power failure.
  • the leakage current I includes the leakage current (Igc) caused by the capacitance to ground and the insulation resistance. Including leakage current (Igr) due to ground insulation resistance that is directly involved in!
  • the cause of the leakage fire described above is the presence of insulation resistance. If only the leakage current (Igr) caused by this insulation resistance can be detected accurately, the insulation state of the circuit can be checked. And catastrophic events such as electric leakage fires can be avoided.
  • these electric devices are equipped with inverters using power semiconductor elements.
  • Electrical equipment uses this installed inverter as a high-speed electronic switch, which inevitably generates harmonic distortion current that is a sine wave that is an integer multiple of the fundamental frequency of commercial power supply, 50 Hz or 60 Hz. To do. Since the harmonic distortion current contains high frequency components, it passes through the ground capacitance naturally distributed in the electric wire and flows into the electric wire! / ⁇ Harmonic distortion flowing in the electric wire The value of leakage current I increases with current.
  • the leakage current (Igr) caused by the ground insulation resistance that is directly related to the quality of the insulation is affected by the length of the electric line and the harmonic distortion current due to the inverter, etc., and can be detected accurately. It becomes difficult.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-215247
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-98729
  • the problem to be solved by the invention of the present application is that the leakage current is measured, and the electric circuit and machine equipment are not put into a power failure state for detection, and the machine connected to the electric line to be measured is connected. It is the point to measure and detect only the leakage current (Igr) caused by the ground insulation resistance that is directly and safely related to the quality of insulation easily and safely from the outside without destroying the function of the vessel.
  • Igr leakage current
  • the leakage current detection apparatus has a leakage current detection means for detecting a leakage current flowing in a measured electric line having a single-phase or three-phase electrical method, Based on the voltage detection means for detecting the voltage applied to the measured electrical line and the signal waveform of the voltage detected by the voltage detection means, the power frequency applied to the measured electrical line is calculated.
  • a frequency calculation means a phase difference detection means for detecting a phase difference between the signal waveform of the voltage detected by the voltage detection means and the signal waveform of the leakage current detected by the leakage current detection means;
  • a phase angle calculating means for calculating a phase angle ⁇ of the leakage current flowing through the measured electric line based on the phase difference detected by the phase difference detecting means and the power supply frequency calculated by the frequency calculating means;
  • Up An effective value calculating means for calculating an effective value of the leakage current detected by the leakage current detecting means, an electric method determining means for determining the electric method of the measured electric line, and an electric value detected by the electric method determining means.
  • the effective value calculated by the effective value calculating means and the phase angle of the leakage current flowing through the measured electric wire calculated by the phase angle calculating means.
  • a ground insulation resistance leakage current component calculation means for calculating a leakage current component caused by ground insulation resistance included in the leakage current.
  • the average value of the leakage current detected by the detection means is I, and its effective value I is
  • the ground insulation resistance leakage current component calculation means is:
  • the effective value I 0 calculated by the effective value calculation means and the phase angle ⁇ calculated by the phase angle calculation means On the basis of the leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing in the measured electric line,
  • the effective value I calculated by the effective value calculation means and the phase angle calculation means are calculated.
  • the leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing in the measured electric line is
  • the ground insulation resistance leakage current component calculating means is effective when the electric method detected by the electric method determining means is a three-phase three-wire type (delta connection).
  • the effective value I calculated by the value calculating means and the phase angle calculating means is effective when the electric method detected by the electric method determining means is a three-phase three-wire type (delta connection).
  • the leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing in the measured electric wire path is
  • Igr (I X sin ⁇ ) Z cos ⁇ O
  • the effective value I calculated by the effective value calculation unit and the phase angle calculation unit is a three-phase four-wire system (star connection).
  • the leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing in the measured electric wire path is
  • Igr (I X sin ⁇ ) Z cos60
  • the electrical method determination means is constituted by a selection switch for determining an electrical method! /.
  • the electrical method determination means may determine the electrical method based on the leakage current detected by the leakage current detection means and the voltage detected by the voltage detection means. I like it.
  • the leakage current detection method detects leakage current that detects leakage current flowing in a measured electric line having a single-phase or three-phase electrical system.
  • a voltage detection step for detecting a voltage applied to the measured electric line Based on the signal waveform of the voltage detected in the voltage detection step, a frequency calculation step for calculating the power supply frequency applied to the measured electric line, and a signal waveform of the voltage detected by the voltage detection step.
  • the phase difference detection step for detecting the phase difference from the leakage current signal waveform detected by the leakage current detection step, the phase difference detected by the phase difference detection step, and the frequency calculation step are calculated.
  • the phase angle calculation process for calculating the phase angle of the leakage current flowing through the measured electric wire path and the effective value of the leakage current detected by the leakage current detection step are calculated.
  • An effective value calculating step an electric method detecting step for determining the electric method of the electric line to be measured, an electric method detected by the electric method detecting step, and an actual value calculated in the effective value calculating step.
  • the leakage current flowing in the measured cable path based on the value and the phase angle of the leakage current flowing in the measured cable path calculated in the phase angle calculation step.
  • a ground insulation resistance leakage current component calculation step for calculating a leakage current component due to the ground insulation resistance
  • the average value of the leakage current detected in the leakage current detection step is set as I, and the effective value I is calculated as I.
  • the ground insulation resistance leakage current component calculation step is as follows:
  • the effective value I calculated by the effective value calculation process and the phase angle calculation process are calculated.
  • the leakage current component Igr caused by the ground insulation resistance included in the leakage current flowing in the measured electric line is
  • the effective value I calculated by the effective value calculation step and the phase angle calculation step are calculated.
  • the electric wire to be measured which is constituted by a single-phase type and a three-phase type is in a balanced state and an unbalanced state! /, And a leakage current component caused by ground insulation resistance Igr can be measured accurately.
  • the leakage current component Igr caused only by the ground insulation resistance can be accurately measured.
  • FIG. 1 is a block diagram showing a configuration of a leakage current detection apparatus according to the present invention.
  • FIG. 2A is a diagram showing a phase difference between Igr and Igc when the power source is a single phase and a three-phase power source.
  • FIG. 2B is a diagram showing a phase difference between Igr and Igc when the power source is a single phase and a three-phase power source.
  • FIG. 2C is a diagram showing a phase difference between Igr and Igc when the power source is a single phase and a three-phase power source.
  • FIG. 3A is a diagram for explaining the calculation of the phase angle between Igr and Igc in a three-phase three-wire system (delta connection).
  • FIG. 3B is a diagram for explaining the calculation of the phase angle between Igr and Igc in the three-phase three-wire system (delta connection).
  • FIG. 3C is a diagram for explaining the calculation of the phase angle between Igr and Igc in the three-phase three-wire system (delta connection).
  • FIG. 3D is a diagram for explaining the calculation of the phase angle between Igr and Igc in the three-phase three-wire system (delta connection).
  • FIG. 3E is a diagram for explaining calculation of a phase angle between Igr and Igc in a three-phase three-wire system (delta connection).
  • FIG. 4A is a diagram for explaining the calculation of the phase angle between Igr and Igc in the three-phase four-wire system (star connection).
  • FIG.4B Calculation of phase angle between Igr and Igc in three-phase four-wire system (star connection)
  • FIG. 4C is a diagram for explaining the calculation of the phase angle between Igr and Igc in the three-phase four-wire system (star connection).
  • FIG. 4D is a diagram for explaining the calculation of the phase angle between Igr and Igc in the three-phase four-wire system (star connection).
  • FIG. 4E is a diagram for explaining the calculation of the phase angle between Igr and Igc in the three-phase four-wire system (star connection).
  • FIG. 4F is a diagram for explaining the calculation of the phase angle between Igr and Igc in the three-phase four-wire system (star connection).
  • FIG. 5 is a diagram for explaining the basis for deriving Igr in the three-phase three-wire system (delta connection) shown in FIG.
  • FIG. 6 is a diagram for explaining the basis for derivation of Igc in the three-phase three-wire system (delta connection) shown in FIG.
  • FIG. 7 is a diagram for explaining the basis for deriving Igr in the three-phase four-wire system (star connection) shown in FIG.
  • FIG. 8 is a flowchart explaining the operation of the leakage current detection device according to the present invention! 9] The first data when the electric line is actually measured by the leakage current detection device according to the present invention. It is a figure which shows an example.
  • FIG. 10 is a diagram showing a second example of data when an electric line is actually measured by the leakage current detection apparatus according to the present invention.
  • EXOR exclusive OR based on the waveform when square wave is converted based on the converted voltage VI shown in Fig. 13 and the waveform when square wave is converted based on the voltage V2 shown in Fig. 12. It is a figure which shows the waveform formed when a calculation is performed.
  • FIG. 15A is a vector diagram of a star connection.
  • FIG. 15B is a vector diagram of delta connection.
  • FIG. 16 is a diagram showing composition by vectors.
  • FIG. 17 is a diagram showing I produced by T-phase Igr and synthesized Igc.
  • FIG. 18 is a diagram showing I produced by R-phase Igr and synthesized Igc.
  • FIG. 19 is a diagram showing a region where 1 occurs.
  • FIG. 20 is a diagram for explaining the method of calculating Igr for the three phases! /.
  • FIG. 21 is a diagram showing a state where Igr in T phase and Igr in R phase are virtually added to Igr in R phase when Igr is generated in both T phase and R phase.
  • FIG. 22 is a vector diagram showing the relationship among Igc, Igr, and I in a single phase.
  • FIG. 23 is a diagram for explaining the method of calculating Igr for a single phase! /.
  • FIG.24 Shows the measurement results when two phases (R, T phase) other than the ground phase are grounded simultaneously, and electrostatic capacity is generated in R phase and T phase.
  • FIG.26 The measurement results when two capacitors (R, T phase) other than the ground phase are grounded simultaneously and capacitors with capacitance (1. F) are added to R phase and T phase.
  • FIG. 27 is a diagram showing the measurement results when the S phase (ground phase) is short-circuited!
  • FIG. 28 is a diagram showing a configuration by V-connection.
  • FIG. 29 is a diagram showing a measurement result of Igr by V-connection.
  • CT sensor Current transformer sensor
  • the leakage current detection apparatus 1 clamps a part or all of the measured electrical line A and detects the leakage current I flowing through the measured electrical line A!
  • Current transformer sensor unit (hereinafter referred to as CT sensor unit) 10 and leakage current I detected by CT sensor unit 10 are converted into voltage, and the converted voltage (hereinafter referred to as “converted voltage”) V1 is amplified.
  • Amplifying unit 11 low-pass filter (hereinafter referred to as LPF) 12 that removes harmonic components from amplified converted voltage VI, and rectified converted voltage VI from which harmonic components have been removed by LPF 12 Full-wave rectification unit 13, voltage detection unit 14 for detecting voltage V2 from the voltage line of electric wire A to be measured, and transformer for transforming voltage V2 detected by voltage detection unit 14 to a predetermined transformation ratio 15 and a rover that removes harmonic components from the voltage V2 transformed to a predetermined voltage value by the transformer 15.
  • LPF low-pass filter
  • LPF Linear Filter
  • full-wave rectifier 17 that rectifies voltage V 2 from which harmonic components have been removed by LPF
  • signal waveform S of converted voltage VI from which harmonic components have been removed by LPF 12 S 1
  • the comparison unit 18 that compares the signal waveform S2 of the voltage V2 from which the harmonic component has been removed by the LPF 16, and an operation that performs a predetermined calculation based on the comparison result of the comparison unit 18.
  • the power supply frequency measurement unit 21 that measures the power supply frequency that occurs and the phase noise measured by the phase noise width measurement unit 20 and the power supply frequency measured by the power supply frequency measurement unit 21
  • a phase angle calculation unit 22 that calculates the phase angle of the leakage current I flowing through the measurement electrical line A
  • an A / D conversion unit 23 that converts the converted voltage VI rectified by the full-wave rectification unit 13 into a digital signal
  • the A / D converter 23 converts the voltage V2 rectified by the effective value calculator 24 and the full-wave rectifier 17 to calculate the effective value of the converted voltage VI converted into a digital signal.
  • Leakage current calculation unit 27 that calculates current I, phase angle of leakage current I calculated by phase angle calculation unit 22, and resistance value of ground insulation resistance from the effective value of voltage V2 calculated by effective value calculation unit 26
  • the CT sensor unit 10 includes a clamp unit 10a that clamps the measured electrical line A, a signal force detected by the clamp unit 10a, and a measurement unit 1 Ob that measures the leakage current flowing in the measured electrical line A. Consists of.
  • the measuring unit 10b detects the magnetism generated from the leakage current component flowing in the measured electric wire path A by the clamp unit 10a, and generates a current from the detected magnetism.
  • the CT sensor unit 10 supplies the generated current as the leakage current I to the amplification unit 11.
  • the leakage current I generated by the CT sensor unit 10 is a leakage current component due to the ground capacitance (hereinafter referred to as Igc) and a leakage current component due to the ground insulation resistance directly related to the insulation resistance. (Hereinafter referred to as Igr). Igc also increases in capacity due to the harmonic distortion current caused by the inverter noise filter etc. used in electrical equipment as well as the capacity increases in accordance with the length of measured wire A. .
  • the clamp portion 10a is a force indicating a form in which the entire measured electric wire A is sandwiched in a lump.
  • the electric wire constituting the measured electric wire A is not limited to this. Choice Alternatively, a configuration in which the electric wires constituting the wire A to be measured A are selectively inserted one by one may be employed. In the case of such a configuration, a plurality of CT sensor units 10 are configured.
  • the amplifying unit 11 converts the leakage current I supplied from the CT sensor unit 10 into a voltage, and amplifies the converted voltage VI to a predetermined level.
  • the amplifying unit 11 amplifies in two stages when the leakage current I to which the CT sensor unit 10 power is also supplied is 0 mA to 10 mA, and the leakage current I supplied from the CT sensor unit 10 is 10 mA. At ⁇ 300mA, it is amplified in one stage.
  • the amplifying unit 11 supplies the converted voltage VI after amplification to the LPF 12.
  • LPF12 removes harmonic components contained in converted voltage VI.
  • the LPF 12 supplies the converted voltage VI from which the harmonic component has been removed to the full-wave rectification unit 13 and the comparison unit 18.
  • the full-wave rectifier 13 rectifies the supplied converted voltage VI, and supplies the converted rectified voltage VI to the A / D converter 23.
  • the voltage detection unit 14 detects a voltage generated in the voltage line by connecting a voltage probe to the measured electric line A.
  • the voltage detector 14 detects the voltage between the R phase and T phase other than the S phase (ground) when the electrical system of the measured electrical line A is a three-phase three-wire system (consisting of delta connection). .
  • the voltage detector 14 detects the voltage from the phase other than the ground wire (neutral point) when the electrical line A to be measured is a three-phase four-wire system (consisting of a star connection).
  • the voltage detector 14 detects the voltage between the N phase and the L phase when the electrical system of the measured electrical line A is a single-phase two-wire system.
  • the force for explaining the S phase as the ground phase may be the T phase or the R phase as the ground phase.
  • the voltage detector 14 obtains a reference point from the voltage V2 detected from the measured electrical line A, and supplies the voltage V2 to the transformer 15. For example, the voltage detector 14 uses the point at which the voltage V2 detected from the measured electrical line A crosses zero as the reference point.
  • the transformer 15 transforms the supplied voltage V2 to a predetermined voltage value, and supplies the transformed voltage V to the LP F16. For example, the transformer 15 performs transformation so that the voltage ratio is 20: 1.
  • the LPF 16 removes harmonic components contained in the supplied voltage V2.
  • the LPF 16 supplies the voltage V2 from which the harmonic components have been removed to the full-wave rectification unit 17, the comparison unit 18, and the power supply frequency measurement unit 21.
  • the full-wave rectifier 17 rectifies the supplied voltage V 2 and supplies the rectified voltage V 2 to the A / D converter 25.
  • the comparison unit 18 takes a 0V cross point of the converted voltage VI supplied from the LPF 12, performs square wave conversion, and supplies the signal after the square wave conversion to the calculation unit 19. Further, the comparison unit 18 takes the 0V cross point of the voltage V2 supplied from the LPF 16, performs square wave conversion, and supplies the square wave converted signal to the calculation unit 19.
  • the calculation unit 19 performs a predetermined calculation based on the signal supplied from the comparison unit 18 and supplies the calculated signal to the phase noise width measurement unit 20.
  • the calculation unit 19 is composed of, for example, an EXOR (exclusive OR) operation circuit, and executes an EXOR (exclusive OR) operation of the two square wave signals supplied from the comparison unit 18.
  • the phase pulse width measurement unit 20 Based on the calculation result supplied from the calculation unit 19, the phase pulse width measurement unit 20 detects the phase pulse width of the converted voltage VI and voltage V2. Here, the operation of the phase pulse width measurement unit 20 will be described.
  • phase angle ⁇ of Igr is 0 ° and the phase angle ⁇ of Igc is 90 °. Therefore, the phase difference between Igr and Igc is 90 ° (1/4 cycle).
  • the phase angle ⁇ of Igr is 60 ° and the phase angle ⁇ of Igc is 0 °. Therefore, the phase difference between Igr and Igc is 60 ° (1/6 cycle).
  • the phase angle ⁇ of Igr is 30 ° and the phase angle ⁇ of Igc is 0 °. Therefore, the phase difference between Igr and Igc is 30 ° (1/12 cycle).
  • the power source is a three-phase three-wire system (delta connection)
  • the reason why the Igr phase angle ⁇ force is 0 ° and the Igc phase angle is 0 ° will be described.
  • the three-phase three-wire system (delta connection) is in an equilibrium state and the S phase is grounded.
  • a signal is output with a phase difference of 120 °, and therefore the vector of each phase can be expressed as shown in FIG. 3A.
  • the S-phase vector is denoted as vector S
  • the T-phase vector is denoted as vector T
  • the R-phase vector is denoted as vector. It is written as R.
  • the vector S can be expressed in a 180 ° inverted direction, as shown in FIG. 3B.
  • vector S ⁇ R the vector combination of the vector S and the vector R
  • vector S ⁇ R the vector combination of the vector S and the vector R
  • vector S and the vector T are combined (hereinafter referred to as the vector S).
  • Figure 3C shows the result of vector composition of and vector T with vector S ⁇ T and! / From Fig. 3C, the angle between Vectonore S ⁇ T and Vectonore S ⁇ R is 60 °.
  • Igr is a resistance component, the phase difference between the voltage and current is zero. Therefore, Igr (rs) generated between the R phase and the S phase is generated on the vector S ⁇ R, and Igr (ts) generated between the T phase and the S phase is generated on the vector S ⁇ T ( (See Figure 3D).
  • Igc is a capacitance component
  • the phase difference between voltage and current is ⁇ / 2 (90 °)
  • the current advances by ⁇ / 2. Therefore, Igc (rs) generated between R phase and S phase occurs at a position advanced by 90 ° from Igr (rs) (position at 150 ° in Fig. 3D), and also occurs between T phase and S phase.
  • Igc (ts) is generated at a position where the Igr (ts) force is also advanced by 90 ° (210 ° in Fig. 3D).
  • Igc (Igc (rs) + Igc (ts)) can be obtained by synthesizing Igc (rs) and Igc (ts) (in FIG. 3D, Igc is 180 °). Occurs at the position of).
  • Igc can be expressed at a position of 0 ° (180 ° -180 °),
  • Igr (ts) can be expressed on Igr (rs) (see Figure 3E).
  • the angle between Igr and Igc is 60 °.
  • the phase angle of the leakage current I flowing in the measured electrical line A is the vector sum of Igr and Igc.
  • the electrical system is a three-phase four-wire system (star connection) and the S phase is grounded, the reason why the angle between Igr and Igc is 30 ° will be described.
  • star connection the angle between Igr and Igc is 30 ° in both equilibrium and non-equilibrium conditions.
  • the vector of each phase can be expressed as shown in FIG. 4A.
  • the S-phase vector is denoted as vector S
  • the T-phase vector is denoted as vector T
  • the R-phase vector is denoted as vector R.
  • Igr is a resistance component, the phase difference between voltage and current is zero. Therefore, Igr (r) generated in the R phase is generated on the vector S, and Igr (t) generated in the T phase is generated on the vector T, and Igr (t) generated on the S phase is generated. s) occurs on the vector S (see Figure 4B).
  • Igc is a capacitance component
  • the phase difference between the voltage and current is ⁇ / 2 (90 °), and the current advances by ⁇ / 2. Therefore, Igc (r) generated in the R phase is generated at a position advanced by 90 ° from the Igr (r) force (120 ° position in Fig. 4B), and Igc (t ) Occurs at a position advanced 90 ° from Igr (t) (position at 240 ° in Fig. 4B), and Igc (s) generated at S phase advances 90 ° from Igr (s). It occurs at a position (position of 360 ° (0 °) in Fig. 4B).
  • the vector Igr (s) can be represented at a position of 90 ° (360 ° — 2 70 °), and the vector Igc (t) is 120
  • the vector Igc (t) and the vector Igc (r) can be expressed as in-phase.
  • the vector Igr (t) can be expressed at the position of 30 ° (180 ° — 1 50 °), and the vector Igc (r) and the vector Igc (t) can be expressed in the 60 ° (180 ° -120 °) position, and Igr (t) and Igr (r) can be expressed in phase.
  • the vector Igr (s) becomes 30 ° (120 ° — 9
  • the vector Igc (t) and the vector Igc (r) can be expressed at a position of 0 ° (60 ° ⁇ 60 °), and the vector Igc ( The force S can be expressed as the same phase of s), vector Igc (t), and vector Igc (r).
  • the angle between Igr and Igc is 30 °.
  • the phase angle of the leakage current I flowing in the measured electrical line A is the vector sum of Igr and Igc.
  • the phase noise width measuring unit 20 sets the phase noise width to 1 / cycle of one cycle so that it can be used even when the power source is a single phase, a three-phase three-wire system, and a three-phase four-wire system. Only those below 4 (90 °) are covered.
  • the phase noise width measurement unit 20 outputs to the phase angle calculation unit 22 a phase noise width that is 1/4 or less of one cycle, calculated based on the calculation result supplied from the calculation unit 19.
  • the power supply frequency is 60 Hz
  • the phase pulse width is 1/4 or less, that is, 4.15 ms or less.
  • the frequency is 50 Hz
  • the phase pulse width measurement unit 20 may be configured not to provide the above-described restriction (only for one cycle or less of one cycle).
  • the power supply frequency measurement unit 21 measures the power supply frequency based on the voltage V2 supplied from the LPF 16, and supplies the measurement result to the phase angle calculation unit 22. If the line A to be measured is a commercial power source, the measurement result of the power frequency measuring unit 21 is 50 Hz or 60 Hz. Further, the power frequency measuring unit 21 may be configured to determine either 50 Hz or 60 Hz based on the voltage V2 supplied from the LPF 16.
  • the phase angle calculator 22 supplies the calculated phase angle ⁇ to the leakage current calculator 27.
  • the A / D converter 23 converts the rectified converted voltage VI supplied from the full-wave rectifier 13 into a digital signal, and supplies the converted signal to the effective value calculator 24.
  • the effective value calculator 24 calculates the effective value I of the converted voltage VI according to the following equation (2).
  • the number is based on the converted voltage VI obtained by converting the average value I of the leakage current flowing through the measured wire A to the voltage, and is therefore I for convenience.
  • the effective value calculation unit 24 supplies the calculated effective value I to the leakage current calculation unit 27.
  • the A / D converter 25 converts the rectified voltage V2 supplied from the full-wave rectifier 17 into a digital signal, and supplies the converted signal to the effective value calculator 26. Based on the signal supplied from the A / D converter 25, the effective value calculator 26 calculates the effective value V of the voltage V2 by the following equation (3).
  • V is the average value of the voltage V2 detected from the line to be measured ⁇
  • the effective value calculation unit 26 supplies the calculated effective value V to the resistance value calculation unit 28.
  • the leakage current calculation unit 27 calculates Igr based on the phase angle ⁇ supplied from the phase angle calculation unit 22 and I supplied from the effective value calculation unit 24, and the calculated Igr is the resistance value calculation unit.
  • Igr is calculated using the following equation (4). If the power source is a three-phase power source, Igr is calculated using the following equation (5).
  • Igr (I X sin ⁇ ) / cos ⁇ ... (5)
  • the power source is a three-phase three-wire system (delta connection), as described above with reference to FIG. 3, the angle formed by Igr and Igc is 60 °, and the phase angle ⁇ is 0 Within the range of 60 ° to 60 ° (Fig. (See 5). In FIG. 5, the phase angle ⁇ is ⁇ i for convenience.
  • Igr is expressed by Equation (5) by calculation using the trigonometric ratio.
  • Igc at this time can be obtained from equation (7) by calculation using a trigonometric ratio (see Fig. 6).
  • Igc 1 X sin (60. - ⁇ ) / cos30. (7)
  • the leakage current calculation unit 27 determines that Igr is generated in the T phase when I> Igr.
  • phase angle calculated by the phase angle calculation unit 22 is calculated as “180 ° ⁇ ”, and the calculated phase angle ( ⁇ ) is substituted into equation (7) to obtain Igc.
  • the leakage current calculation unit 27 assumes that Igr is generated in the R phase when I is Igr.
  • the leakage current calculation unit 27 performs the calculation for I calculated by the effective value calculation unit 24.
  • the angle formed by Igr and Igc is 30 °, and the phase angle ⁇ Is in the range of 0 ° to 30 ° (see Figure 7). In Fig. 7, for convenience, the phase angle is ⁇ .
  • Igr is expressed by Equation (5) by calculation using the trigonometric ratio. If the electrical system is a three-phase four-wire system (star connection) in a balanced or unbalanced state and the S phase is grounded, ⁇ is 60 ° (90 °-30 °) .
  • Equation (6) is
  • Igc I X sin (60 ° — ( ⁇ ⁇ X)) / cos30.
  • the leakage current detection device 1 has a single-phase power, a three-phase three-wire type (delta connection), or a three-phase four-wire type (star connection). ) It is equipped with an electrical method judgment unit 29 that judges whether or not
  • the electrical system determination unit 29 is configured by a selection switch that determines the electrical system, and is configured by, for example, a rotary switch.
  • the electrical method determination unit 29 determines an electrical method according to the position of the rotary switch determined by the user, and notifies the leakage current calculation unit 27 of the determined electrical method.
  • the electrical method determination unit 29 automatically determines the electrical method. Although not shown, the electrical method determination unit 29 is connected to the voltage detection unit 14 and determines the electrical method based on the voltage V 2 supplied from the voltage detection unit 14.
  • the three-phase power supply voltage is equal to the phase voltage.
  • the three-phase power supply voltage is the phase voltage root 3 ( ⁇ 3) Equal to double.
  • the electrical method determination unit 29 determines that the three-phase three-wire system (delta connection) is used, and the voltage detection unit 14 If the supplied voltage V2 is the root voltage 3 ( ⁇ 3) times the phase voltage, it is judged to be a three-phase four-wire system (star connection).
  • the electrical method determination unit 29 supplies the determination result to the leakage current calculation unit 27.
  • the electrical method determination unit 29 is connected to a 1S CT sensor unit 10 (not shown). If the shape is singular, it is determined as single phase, and if there are multiple current waveforms, it is determined as three phase. In addition, by preparing multiple CT sensor units 10 and clamping them to each electrical line of measured electrical line A, it is possible to determine whether it is single-phase or three-phase.
  • the electrical method determination unit 29 supplies a predetermined signal to the leakage current calculation unit 27 so as to calculate Igr with the force S set to the condition of the three-phase three-wire system (delta connection) (equation (6)). To do.
  • the leakage current calculation unit 27 supplies the calculation result to the electrical method determination unit 29.
  • the electrical method determination unit 29 determines the electrical method depending on whether the supplied calculation result is a predetermined value.
  • the actual electrical system is a three-phase four-wire system (star connection)
  • the calculation must be performed according to the conditions of the three-phase four-wire system (Equation (8)). 6) Since the calculation is performed using the formula, the balance is lost, for example, when I force is near 3 ⁇ 4OOmA.
  • Igr is measured as 150mA, which is half of that (actual measurement value).
  • the electrical method determination unit 29 controls the leakage current calculation unit 27 so that the calculation is performed in accordance with the three-phase four-wire (star connection) condition (equation (8)).
  • Igr 0 appears and Igr becomes 0.
  • the capacitance (Igc) also occurs as Igr, which is not a realistic number.
  • the electrical method determination unit 29 controls the leakage current calculation unit 27 so as to perform the calculation according to the single-phase condition (Equation (4)).
  • Leakage current calculation unit 27 calculates Igr based on equation (5) when it is determined that the power supply is a single-phase type based on the determination result of electric method determination unit 29. Is determined to be a three-phase three-wire system (delta connection), Igr is calculated based on equation (6), and the power source is determined to be a three-phase four-wire system (star connection) Calculate Igr based on equation (7)
  • the resistance value calculation unit 28 calculates the effective value V supplied from the effective value calculation unit 26 and the leakage current.
  • the leakage current detection device 1 configured as described above, for example, when the power source of the measured electrical line A is a three-phase type, the power source can be processed in the same manner as the single-phase type. It is.
  • step ST1! The user can change the above-mentioned according to the type of electric wire to be measured (single-phase two-wire, single-phase three-wire, three-phase three-wire, or three-phase four-wire).
  • the electrical method judgment unit 29 may determine the type of the electrical line by the second configuration (1) (2) (auto select)> as described above. In the following, it is assumed that the type of electric wire to be measured is a three-phase three-wire system.
  • step ST2 the user connects the voltage probe to the voltage line of the electrical line to be measured.
  • the electrical line to be measured is a single-phase two-wire system (consisting of a voltage line and a ground line), pay attention to the polarity of the voltage line and connect a voltage probe to the voltage line.
  • the voltage detection unit 14 supplies the voltage detected via the voltage probe to the transformer 15.
  • the electrical line to be measured is a single-phase three-wire system or a three-phase multi-wire system (three-phase three-wire system or three-phase four-wire system)
  • pay attention to the polarity of the R phase and T phase Connect a voltage probe to phase T.
  • the voltage detection unit 14 combines the voltages detected via the voltage probe and supplies the combined voltage to the transformer 15.
  • step ST3 the user turns on the main power supply of leakage current detection apparatus 1.
  • step ST4 the user pays attention to the directions of K and L of the clamp part 10a (divided AC device) of the CT sensor part 10, and puts together the ground wire or the measured electrical line for the B type installation work. Pinch.
  • the leakage current detection device 1 when the K and L directions of the clamp part 10a are aligned, the leakage current component is displayed on the display part (not shown), and the K and L directions of the clamp part 10a are displayed. If it is wrong, the buzzer may sound from a buzzer output unit (not shown). Also, place the K handle and L display on the handle part of the clamp part 10a so that the clamping direction of the clamp part 10a is correct.
  • step ST5 the user presses the measurement start button of leakage current detection device 1.
  • the leakage current detection device 1 detects the leakage current that flows through the line to be measured when the measurement start button is pressed.
  • FIG. 9 shows a first result of actually measuring the leakage current component from the measured electric line by the leakage current detection apparatus 1 according to the present invention.
  • Fig. 9 shows the power panel of a rooftop power distribution cubicle (high voltage power receiving equipment) (power frequency: 50 Hz, voltage: 200 V, type of low voltage circuit to be measured: three-phase three-wire system, 150 kvA, room temperature: 41 ° C, humidity: 43 %)
  • leakage current detector 1 detected 12.3 mA Igr when grounding a resistance of 20 k ⁇ in phase R as a pseudo-insulation resistor after 6 minutes had elapsed.
  • Igr is 2mA when the pseudo-insulation resistance is grounded! /, N! /, (6 minutes before the start of measurement, 11 minutes after the start of measurement ⁇ 12 minutes after the start of measurement, and 15 minutes after the start of measurement) Therefore, if 2mA is subtracted from Igr after grounding the 20k ⁇ pseudo-resistance to the R phase, it becomes 10.3mA. Therefore, the leakage current detection apparatus 1 according to the present invention was able to measure a change of 10.3 mA. This value is almost in agreement with the above theoretical value (10mA)!
  • the resistance value before grounding (Gr 105. 46
  • the leakage current detection device 1 has a resistance Gr of 17.2 kQ after 6 minutes from the start of measurement, which is almost equal to the theoretical value (16.3 kQ) described above.
  • the combined resistance value Gr when the pseudo-insulation resistance is grounded to 20k ⁇ on the T phase is theoretically 16.3k Q, as described above, and the measured value is 17.4k Q. It almost matches the theoretical value.
  • the leakage current detection device 1 has a pseudo insulation resistance in the R phase or the T phase.
  • the leakage current detection device 1 is configured so that 12 minutes have elapsed after 11 minutes from the start of measurement, and
  • FIG. 10 shows a second result of actually measuring the leakage current component from the measured electric line by the leakage current detection apparatus 1 according to the present invention.
  • Fig. 10 shows the power board (power supply frequency: 50Hz, voltage: 200V, type of low-voltage circuit to be measured: three-phase three-wire system, 150kvA) for power distribution and distribution cubicles (high-voltage power receiving equipment). .
  • Capacitive reactance X is
  • the current is added and flows.
  • the leakage current detection device 1 has a 0.2 F capacitance grounded to the R and T phases as a pseudo capacitance when the time has elapsed 1 minute from the start of measurement.
  • the Igr when the pseudo capacitance is not grounded is 7.6 mA (Igr 1 minute before the start of measurement), as shown in Fig. 10. When the capacitance is grounded, there is almost no change in Igr.
  • the added Igc is almost equal to the theoretical value (27.6 mA).
  • the leakage current detection device 1 has a pseudo-capacitance grounded in the R phase and the T phase, and a pseudo insulation resistance is grounded in the T phase (measurement start). From 3 minutes to 4 minutes before, 21. OmA Igr was detected and 107. OmA I was detected.
  • the comparison unit 18 receives the converted voltage VI from the LPF 12 and also receives the voltage V 2 from the LPF 16. Since the type of the measured electrical line is a three-phase three-wire system, the phase difference between the converted voltage VI and the voltage V2 (reference point) is 60 °.
  • comparison unit 18 performs square wave conversion on converted voltage VI input from LPF 12 and outputs the converted signal to operation unit 19. Further, as shown in FIG. 13, the comparison unit 18 performs square wave conversion on the voltage V 2 input from the LPF 16 and outputs the converted signal to the calculation unit 19.
  • the arithmetic unit 19 performs an EXOR (exclusive OR) operation based on the square wave signal of the converted voltage VI and the square wave signal of the voltage V2. Based on the signal after the EXOR (exclusive OR) operation, the arithmetic unit 19 obtains a phase noise width W of 1/4 or less of one cycle, and outputs the obtained phase noise width W to the phase angle calculation unit 22 To do.
  • the leakage current calculation unit 27 calculates Igr according to equation (6).
  • step ST6 when the measurement is completed, the user turns off the power of the leakage current detection apparatus 1.
  • the leakage current detection device 1 configured as described above detects the leakage current I flowing in the measured electrical line A, converts the detected leakage current I into a voltage, The harmonic component is removed from the voltage, the converted voltage VI from which the harmonic component has been removed, and the voltage V2 are detected from the voltage line of the line A to be measured, and the harmonic component is removed from the detected voltage V2.
  • the leakage current detection device 1 the measured electric line is lengthened, and the leakage current (Igc) caused by the ground capacitance by an inverter or the like that outputs harmonic distortion current Even if increases, only the leakage current component (Igr) caused by the ground insulation resistance can be detected accurately in the order of mA.
  • Igr when the present invention is applied to a leakage current interrupting device, Igr can be accurately measured, so that the interrupting drive can be performed based only on Igr. No malfunction occurs due to an increase in leakage current due to other factors (increased Igc).
  • Igr when the present invention is applied to a leakage alarm device, Igr can be measured accurately, so that an alarm action can be performed based only on Igr, and leakage due to factors other than Igr. Even if the current increases, it can be used without misreporting.
  • the leakage current detection device 1 uses the reference point itself from the voltage generated in the measured electric wire A rather than bringing the reference point to another force as in the frequency injection type. Therefore, it is possible to measure Igr flowing through the measured wire A without considering the error due to the reference point.
  • an equivalent ground insulation resistance component hereinafter Igr
  • Igr equivalent ground insulation resistance component
  • the delta three-wire type three-phase three-wire delta connection type
  • Igc equivalent ground capacitance component
  • Figure 15A is a vector connection diagram of star connection.
  • Fig. 15B is a vector diagram of the delta connection.
  • Igc component of each phase Is balanced, Igc is canceled out to zero (0).
  • S phase is grounded, S phase becomes 0 potential, and S phase Igc is not generated.
  • Igc is generated in the R and T phases with ground potential, and this results in the following problems with the I method.
  • Igc of the same size is generated in the R phase and T phase, the synthesized Igc is generated at a position of 180 ° with reference to the voltage R ⁇ T as shown in Fig. 16 by vector synthesis. To do.
  • the vector composition of Igc, IgrR, and IgrT is I. At this time, as shown in FIGS. 17 and 18, I
  • gr may have a different appearance from the single-phase ground fault (IgrR) in the R phase or the single-phase ground fault (IgrT) in the T phase.
  • IgrR single-phase ground fault
  • IgrT single-phase ground fault
  • IgrT of about 100 mA is generated in the T phase in the situation where 07 mA of Igc is generated, I becomes a current value of about 180 mA as the vector sum (Fig. 17). In such cases
  • Figure 18 shows the single-phase ground fault of the R phase.
  • Igc at 180 ° and IgrR in the R phase at 60 ° are synthesized in a solid manner, I is smaller than Igc, unlike the T phase. For example, about 107mA I
  • Igr of about 100mA is generated in the R phase, I becomes about 104mA as the vector sum, which is smaller than Igc (about 107mA).
  • the leakage detection technology is currently changing from “I method to Igr method” in the electrical measurement field.
  • phase angle of I ( ⁇ ) required to calculate Igr can also be obtained from the V (T ⁇ R) waveform and the I waveform.
  • Igr is obtained by matching the phase angles of IgrR and IgrT with a phase difference of 60 ° across 90 °.
  • the condition is equation (10).
  • Eq. (11) proves that in the T phase, I> Igr, and in the R phase, I ⁇ Igr.
  • Igr is calculated from the reference voltage V (T ⁇ R), the S-phase leakage current can also be detected, and since it is not affected by Igc, more stable measurement accuracy can be achieved.
  • the Ir detection method is considered difficult to detect “leakage current of two phases other than the ground phase”.
  • the S phase is a grounding phase and B type grounding is applied. If insulation degradation occurs in the ground phase where a ground resistance exists, leakage current may occur due to voltage generation due to the voltage drop of the load current at that location. In the Igr detection method according to the present invention, since the V (T ⁇ R) reference voltage is used, the leakage current can be measured without breaking the reference point even if the leakage current of the ground phase occurs. .
  • FIG. 22 is a diagram showing the correlation of I gc, Igr and I vectors in a single-phase circuit, and equation (12) shows the relationship.
  • Igc is about 50 mA and Igr is OmA
  • the I value is About 50mA.
  • Igr is 10 mA (in IEEE literature, children 4.5 mA, adult women 6.
  • OmA adult men 9.
  • OmA is considered to be lethal dose, so Igr 1 OmA is enough (It can be said that it is a dangerous current value.)
  • the 0 value is 50.99mA, and the change is 0.99mA. Such a small amount of change I
  • Fig. 23 and (13) show the Igr principle diagram and calculation formula when the Igr vector theory method is used for a single-phase circuit.
  • Igr can be calculated directly from the voltage and phase angle.
  • the Igr method is not affected by the I gc component, so it is a theory that is not easily affected by harmonics and noise even in a single phase.
  • Fig. 24 shows the measurement results when two phases (R, T phase) other than the ground phase are grounded simultaneously, and no capacitance is generated in the R phase and T phase. As can be seen from the measurement results, the added value of the leakage current generated in the R and T phases can be measured almost accurately.
  • Fig. 25 shows a case where two phases (R, T phase) other than the ground phase are grounded simultaneously, and capacitors having capacitances (0.47 F) in the R phase and the T phase are shown. It is a measurement result when adding. As can be seen from the measurement results, it is possible to measure the added value of the leakage current generated in the R-phase and T-phase almost accurately without being affected by the capacitance!
  • Fig. 26 shows the case where two phases (R, T phase) other than the ground phase are grounded simultaneously. And the measurement results when a capacitor with capacitance (1.0 F) is added to the T phase. As can be seen from the measurement results, the sum of the leakage currents generated in the R and T phases can be measured almost accurately without being affected by the capacitance.
  • Fig. 27 shows the measurement results when the S phase (ground phase) is short-circuited.
  • Figure 27 shows the measurement results when the voltage between S phase and ground is 0'6V, and 20 ⁇ is added to S phase as a short-circuit resistance.
  • the leakage current detection device 1 includes not only a single phase but also three systems of alternating currents or voltages, and each phase is , 120 degrees (2 ⁇ / 3 [rad]) phase shift, V, so-called three-phase AC.
  • Three-phase AC connection methods include Y connection, delta connection, and V connection.
  • the Y connection is a connection for connecting each phase of the three phases at a neutral point of one end thereof.
  • the potential difference between each phase is called the line voltage
  • the potential difference between each phase and the ground is called the phase voltage.
  • the current of each phase outside the connection is called line current
  • the current of each phase in the connection is called phase current.
  • the line current equal to the root voltage of the phase voltage is 3 times the root of the phase voltage is equal to the phase current.
  • the delta connection is a connection in which each of the three phases is connected in the direction in which the phase voltage is applied to form a closed circuit.
  • the line voltage is equal to the phase voltage
  • the line current is equal to three times the root of the phase current.
  • V connection is a connection obtained by removing one of the three phases from the triangular connection!
  • the line voltage is equal to the phase voltage
  • the line current is equal to the phase current.
  • FIG. 28 shows a configuration diagram when the ground fault experiment by the V connection is performed by the leakage current detecting apparatus 1 according to the present invention.
  • the measurement results (line voltage: 220V) are shown in Fig. 29. From the measurement results, when there is no capacitance component and I add a resistance component (approximately 4.7 kQ) to the R phase only, I is 46.7 mA, and Igr at that time is 46.6 mA And
  • Igr can be measured almost according to the theoretical value (about 46.8 mA).
  • the fluctuation is the measurement error.
  • Igr can be measured almost according to the theoretical value (about 46.8 mA).
  • the fluctuation is the measurement error.
  • Igr can be measured almost according to the theoretical value (about 46.8 mA).
  • the fluctuation is the measurement error.
  • Igr can be measured almost according to the theoretical value (about 93.6mA).
  • the fluctuation is a measurement error.
  • the leakage current detection device 1 according to the present invention proves that Igr can be accurately measured without being affected by the capacitance component in the V connection.

Abstract

 対地絶縁抵抗に起因する漏洩電流(Igr)を検出する。  CTセンサ部10により被測定電線路Aに流れている漏洩電流Iを検出し、検出した漏洩電流Iを電圧に変換し、変換後の電圧V1と、被測定電線路Aの電圧線路から検出した電圧V2とに基づき、被測定電線路Aに流れている漏洩電流Iの位相角度θを位相角度算出部22により求め、当該位相角度θと、漏洩電流Iとから対地絶縁抵抗に起因する漏洩電流Igrのみを、漏洩電流算出部27により被測定電線路Aの電気方式及び平衡・不平衡の状態に応じた所定の条件(第1の条件又は第2の条件)に基づいて算出する。 第1の条件:Igr=I0×cosθ 第2の条件:Igr=(I0×sinθ1)/cosθ2

Description

明 細 書
漏洩電流検出装置及び漏洩電流検出方法
技術分野
[0001] 本発明は、漏洩電流を計測することにより電気機器の絶縁状態を判定する漏洩電 流検出装置及び漏洩電流検出方法に関し、詳細には、被測定電線路に流れている 対地絶縁抵抗成分のみの漏洩電流を検出する漏洩電流検出装置及び漏洩電流検 出方法に関する。
背景技術
[0002] 日常生活の中で、電気の存在を意識することはあまりないが、周知のように、ェネル ギ一源として、また、情報や通信を初めとする様々な分野に利用され、我々の社会に とって、なくてはならない存在となっている。
[0003] 一方で、電気の利用は、便利な反面、適切な管理や使用を誤れば、大変危険な側 面も兼ね備えており、電気火災や感電事故等の重大な事故を引き起こす可能性も少 なくない。
[0004] 例えば、その重大事故の原因の一つとして、電路や機器の絶縁不良に深く関係し ているのが漏洩電流である。しかし、この漏洩電流を調べるには、大変な時間を要す るうえに、停電させて絶縁不良だけの数値を絶縁抵抗計により測定する必要がある。
[0005] しかしながら、現在の社会状況では、コンピュータが社会の各方面に利用され、イン テリジェントビルの普及拡大及び工場の FA (ファクトリー 'オートメーション)化により、 24時間連続稼働するシステムが構築されており、漏洩電流を計測するために、一時 的に停電状態にすることができない状況となっている。
[0006] したがって、現在では、このような高度情報化による社会の無停電化の要請から、 電路及び機器の絶縁不良管理が停電を伴う絶縁抵抗計による方法から、電気を切る ことなく測定できる漏洩電流測定方法に移ってきており、漏電遮断器や漏電火災警 報機等により漏洩電流を測定して絶縁状態を管理する通電中の予防策は種々提案 されて!/、る (例えば、特許文献 1及び 2参照)。
[0007] ところで、漏洩電流 Iには、対地静電容量に起因する漏洩電流 (Igc)と、絶縁抵抗 に直接関与してレ、る対地絶縁抵抗に起因する漏洩電流 (Igr)とが含まれて!/、る。上 述した漏電火災等を引き起こす原因は、絶縁抵抗の存在であり、この絶縁抵抗に起 因する漏洩電流(Igr)のみを正確に検出することができれば、回路の絶縁状態をチ エックすることができ、漏電火災等の大惨事を避けることができる。
[0008] しかしながら、工場等で使用される電気機器は、機器同士を結線する際に電線路 の長さが長大になることがあり、この電線路の長大化により、対地静電容量が増大化 し、それに伴って対地静電容量に起因する漏洩電流 (Igc)が大きくなつてしまう。
[0009] また、これらの電気機器は、電力用半導体素子を応用したインバータを搭載してい る。電気機器では、この搭載しているインバータを高速の電子スィッチとして使用して いるため、必然的に、商用電源の基本周波数である 50Hz若しくは 60Hzの整数倍の 正弦波である高調波歪み電流が発生する。高調波歪み電流には、高い周波数成分 が含まれているため、電線路に自然分布している対地静電容量を通過し、電線路に 流れてしま!/ \電線路に流れた高調波歪み電流により漏洩電流 Iの値が大きくなつて しまう。
[0010] したがって、絶縁の良否に直接関係する対地絶縁抵抗に起因する漏洩電流 (Igr) が電線路の長大化及びインバータ等による高調波歪み電流の影響を受けてしまい、 正確に検出することが困難となる。
[0011] また、部品が高密度に実装された機器、例えば、電話機、ファクシミリ、プリンター及 び複合機等では、絶縁箇所を調べるために、絶縁抵抗計等により計測を行った場合 、注入する測定電圧により電子回路が影響を受けてしまう恐れがある。したがって、こ のような機器では、機能破壊を招く恐れがあることから、絶縁抵抗の測定自体ができ ない機器も多数存在する。
特許文献 1 :特開 2001— 215247号公報
特許文献 2:特開 2002— 98729号公報
発明の開示
発明が解決しょうとする課題
[0012] 本願発明が解決しょうとする問題点は、漏洩電流を計測し、検出のために電路及 び機械設備等を停電状態にすることなぐかつ、被測定電線路に接続されている機 器の機能を破壊することなぐ外部から簡単かつ安全に絶縁の良否に直接関係する 対地絶縁抵抗に起因する漏洩電流 (Igr)のみを計測し、検出する点にある。
課題を解決するための手段
本発明に係る漏洩電流検出装置は、上述の課題を解決するために、電気方式が 単相式又は三相式の被測定電線路に流れている漏洩電流を検出する漏洩電流検 出手段と、上記被測定電線路に印加されている電圧を検出する電圧検出手段と、上 記電圧検出手段により検出された電圧の信号波形に基づき、上記被測定電線路に 印加されている電源周波数を算出する周波数算出手段と、上記電圧検出手段によ つて検出された電圧の信号波形と、上記漏洩電流検出手段により検出された上記漏 洩電流の信号波形との位相差を検出する位相差検出手段と、上記位相差検出手段 により検出された位相差と、上記周波数算出手段で算出された電源周波数に基づき 、上記被測定電線路に流れている漏洩電流の位相角度 Θを算出する位相角度算出 手段と、上記漏洩電流検出手段により検出された漏洩電流の実効値を算出する実 効値算出手段と、上記被測定電線路の電気方式を判断する電気方式判断手段と、 上記電気方式判断手段により検出された電気方式と、上記実効値算出手段で算出 された実効値と、上記位相角度算出手段により算出された上記被測定電線路に流れ てレ、る漏洩電流の位相角度とに基づき、上記被測定電線路に流れて!/、る漏洩電流 に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏 洩電流成分算出手段と、を備え、上記実効値算出手段は、上記漏洩電流検出手段 により検出された漏洩電流の平均値を Iとして、その実効値 Iを
0
I =Ι Χ ( π /2) ^2
ο
により算出し、
上記対地絶縁抵抗漏洩電流成分算出手段は、
上記電気方式判断手段により検出された電気方式が単相式の場合には、上記実 効値算出手段により算出された実効値 I 0と、上記位相角度算出手段により算出され た位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流に含まれて いる対地絶縁抵抗に起因する漏洩電流成分 Igrを、
丄 gr = I X cos θ
0 により算出し、
上記電気方式判断手段により検出された電気方式が三相式の場合には、上記実 効値算出手段により算出された実効値 Iと、上記位相角度算出手段により算出され
0
た位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流に含まれて いる対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Figure imgf000006_0001
により算出することを特徴とする。
[0014] また、漏洩電流検出装置では、上記対地絶縁抵抗漏洩電流成分算出手段は、上 記電気方式判断手段により検出された電気方式が三相三線式 (デルタ結線)の場合 には、上記実効値算出手段により算出された実効値 Iと、上記位相角度算出手段に
0
より算出された位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流 に含まれている対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Igr= (I X sin θ ) Z cos^O
ο
により算出し、
上記電気方式判断手段により検出された電気方式が三相四線式 (スター結線)の 場合には、上記実効値算出手段により算出された実効値 Iと、上記位相角度算出手
0
段により算出された位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩 電流に含まれている対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Igr= (I X sin θ ) Z cos60
ο
により算出することが好ましい。
[0015] また、漏洩電流検出装置では、上記電気方式判断手段は、電気方式を決定する選 択スィッチにより構成されて!/、ることが好まし!/、。
[0016] また、漏洩電流検出装置では、上記電気方式判断手段は、上記漏洩電流検出手 段により検出された漏洩電流と上記電圧検出手段により検出された電圧に基づいて 電気方式を判断することが好ましレヽ。
[0017] 本発明に係る漏洩電流検出方法は、上述の課題を解決するために、電気方式が 単相式又は三相式の被測定電線路に流れている漏洩電流を検出する漏洩電流検 出工程と、上記被測定電線路に印加されている電圧を検出する電圧検出工程と、上 記電圧検出工程により検出された電圧の信号波形に基づき、上記被測定電線路に 印加されている電源周波数を算出する周波数算出工程と、上記電圧検出工程によ つて検出された電圧の信号波形と、上記漏洩電流検出工程により検出された上記漏 洩電流の信号波形との位相差を検出する位相差検出工程と、上記位相差検出工程 により検出された位相差と、上記周波数算出工程で算出された電源周波数に基づき 、上記被測定電線路に流れて!/、る漏洩電流の位相角度を算出する位相角度算出ェ 程と、上記漏洩電流検出工程により検出された漏洩電流の実効値を算出する実効 値算出工程と、上記被測定電線路の電気方式を判断する電気方式検出工程と、上 記電気方式検出工程により検出された電気方式と、上記実効値算出工程で算出さ れた実効値と、上記位相角度算出工程により算出された上記被測定電線路に流れ てレ、る漏洩電流の位相角度とに基づき、上記被測定電線路に流れて!/、る漏洩電流 に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏 洩電流成分算出工程と、を備え、
上記実効値算出工程は、上記漏洩電流検出工程により検出された漏洩電流の平 均値を Iとして、その実効値 Iを
0
I =Ι Χ ( π /2) ^2
ο
により算出し、
上記対地絶縁抵抗漏洩電流成分算出工程は、
上記電気方式検出工程により検出された電気方式が単相式の場合には、上記実 効値算出工程により算出された実効値 Iと、上記位相角度算出工程により算出され
0
た位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流に含まれて いる対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Igr = I X cos θ
ο
により算出し、
上記電気方式検出工程により検出された電気方式が三相式の場合には、上記実 効値算出工程により算出された実効値 Iと、上記位相角度算出工程により算出され
0
た位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流に含まれて いる対地絶縁抵抗に起因する漏洩電流成分 Igrを、 Igr= (I X sin Θ ) Z cos Θ
o
により算出することを特徴とする。
発明の効果
[0018] 本発明によれば、電気方式が単相式及び三相式により構成される被測定電線路が 平衡状態及び不平衡状態にお!/、て、対地絶縁抵抗に起因する漏洩電流成分 Igrを 正確に測定することができる。また、被測定電線路が長大化し、インバータによる高 調波歪み電流による影響を受けても、対地絶縁抵抗のみに起因する漏洩電流成分 I grを正確に測定することができる。
[0019] また、本発明によれば、電路 ·機械設備等を停電状態等にする必要がなぐ通常使 用状態において、外部から簡単かつ安全に漏洩状態を把握することができる。
図面の簡単な説明
[0020] [図 1]本発明に係る漏洩電流検出装置の構成を示すブロック図である。
[図 2A]電源が単相の場合と三相の場合における Igrと Igcの位相差を示す図である。
[図 2B]電源が単相の場合と三相の場合における Igrと Igcの位相差を示す図である。
[図 2C]電源が単相の場合と三相の場合における Igrと Igcの位相差を示す図である。
[図 3A]三相三線式(デルタ結線)における Igrと Igcとの位相角度の算出についての 説明に供する図である。
[図 3B]三相三線式(デルタ結線)における Igrと Igcとの位相角度の算出についての 説明に供する図である。
[図 3C]三相三線式(デルタ結線)における Igrと Igcとの位相角度の算出についての 説明に供する図である。
[図 3D]三相三線式(デルタ結線)における Igrと Igcとの位相角度の算出についての 説明に供する図である。
[図 3E]三相三線式(デルタ結線)における Igrと Igcとの位相角度の算出についての 説明に供する図である。
[図 4A]三相四線式 (スター結線)における Igrと Igcとの位相角度の算出についての説 明に供する図である。
[図 4B]三相四線式 (スター結線)における Igrと Igcとの位相角度の算出についての説 明に供する図である。
[図 4C]三相四線式 (スター結線)における Igrと Igcとの位相角度の算出についての説 明に供する図である。
[図 4D]三相四線式 (スター結線)における Igrと Igcとの位相角度の算出についての説 明に供する図である。
[図 4E]三相四線式 (スター結線)における Igrと Igcとの位相角度の算出についての説 明に供する図である。
[図 4F]三相四線式 (スター結線)における Igrと Igcとの位相角度の算出についての説 明に供する図である。
[図 5]図 3に示す三相三線式(デルタ結線)における Igrの導出根拠についての説明 に供する図である。
[図 6]図 3に示す三相三線式(デルタ結線)における Igcの導出根拠についての説明 に供する図である。
[図 7]図 4に示す三相四線式 (スター結線)における Igrの導出根拠についての説明 に供する図である。
[図 8]本発明に係る漏洩電流検出装置の動作につ!/、て説明するフローチャートであ 園 9]本発明に係る漏洩電流検出装置により電線路を実際に測定したときの第 1のデ 一タ例を示す図である。
園 10]本発明に係る漏洩電流検出装置により電線路を実際に測定したときの第 2の データ例を示す図である。
園 11]比較部に入力された変換後電圧 VIと電圧 V2の位相差を示す図である。 園 12]比較部に入力されたときの電圧 V2の波形と、電圧 V2に基づき方形波変換し たときの波形を示す図である。
園 13]比較部に入力されたときの変換後電圧 VIの波形と、変換後電圧 VIに基づき 方形波変換したときの波形を示す図である。
園 14]図 13に示した変換後電圧 VIに基づき方形波変換したときの波形と、図 12に 示した電圧 V2に基づき方形波変換したときの波形に基づき EXOR (排他的論理和) 演算を実行した際に形成される波形を示す図である。
[図 15A]スター結線のベクトル図である。
[図 15B]デルター結線のベクトル図である。
[図 16]ベクトルによる合成を示す図である。
[図 17]T相の Igrと合成された Igcとにより生成される Iを示す図である。
0
[図 18]R相の Igrと合成された Igcとにより生成される Iを示す図である。
0
[図 19]1の発生領域を示す図である。
0
[図 20]三相にお!/、て Igrを算出する方法につ!/、ての説明に供する図である。
[図 21]T相と R相の双方に Igrが発生した場合にお!/、て、 T相の Igrを R相の Igrに仮想 的に加算する様子を示す図である。
[図 22]単相における Igcと Igrと Iとの関係を示すベクトル図である。
0
[図 23]単相にお!/、て Igrを算出する方法につ!/、ての説明に供する図である。
[図 24]接地相以外の 2相(R、 T相)の同時接地した場合であって、 R相及び T相に静 電容量が発生してレ、な!/、ときの測定結果を示す図である。
[図 25]接地相以外の 2相(R、 T相)の同時接地した場合であって、 R相及び T相に静 電容量 (0. 47 F)を有するコンデンサを付加したときの測定結果を示す図である。
[図 26]接地相以外の 2相(R、 T相)の同時接地した場合であって、 R相及び T相に静 電容量(1. F)を有するコンデンサを付加したときの測定結果を示す図である。
[図 27]S相(接地相)が短絡した場合につ!/、ての測定結果を示す図である。
[図 28]V結線による構成を示す図である。
[図 29]V結線による Igrの測定結果を示す図である。
符号の説明
1 漏洩電流検出装置
10 カレントトランスセンサ部(CTセンサ部)
11 増幅部
12, 16 ローパスフィルタ(LPF)
13, 17 全波整流部
14 電圧検出部 15 変圧器
18 比較部
19 演算部
20 位相パルス幅測定部
21 電源周波数測定部
22 位相角度算出部
23, 25 A/D変換部
24, 26 実効値算出部
27 漏洩電流算出部
28 抵抗値算出部
29 電気方式判断部
A 被測定電線路
発明を実施するための形態
[0022] 以下、本発明の実施の形態としての漏洩電流検出装置及び漏洩電流検出方法に ついて説明する。
[0023] 漏洩電流検出装置 1は、図 1に示すように、被測定電線路 Aの一部又は全部をクラ ンプし、被測定電線路 Aに流れて!/、る漏洩電流 Iを検出するカレントトランスセンサ部 (以下 CTセンサ部という。) 10と、 CTセンサ部 10により検出された漏洩電流 Iを電圧 に変換し、変換後の電圧(以下「変換後電圧」という。)V1を増幅する増幅部 11と、増 幅後の変換後電圧 VIから高調波成分を除去するローパスフィルタ(以下 LPFとレ、う 。)12と、 LPF12で高調波成分が除去された変換後電圧 VIを整流する全波整流部 13と、被測定電線路 Aの電圧線路から電圧 V2を検出する電圧検出部 14と、電圧検 出部 14で検出された電圧 V2を所定の変圧比になるように変圧する変圧器 15と、変 圧器 15で所定の電圧値に変圧された電圧 V2から高調波成分を除去するローバスフ ィルタ(以下 LPFという。) 16と、 LPF16で高調波成分が除去された電圧 V2を整流 する全波整流部 17と、 LPF12により高調波成分が除去された変換後電圧 VIの信 号波形 S 1と、 LPF16により高調波成分が除去された電圧 V2の信号波形 S2とを比 較する比較部 18と、比較部 18により比較された結果に基づき所定の演算を行う演算 部 19と、演算部 19による演算結果に基づき位相ノ ルス幅を測定する位相ノ ルス幅 測定部 20と、 LPF16により高調波成分が除去された電圧 V2の信号から被測定電線 路 Aの電圧線路に発生して!/、る電源周波数を測定する電源周波数測定部 21と、位 相ノ ルス幅測定部 20で測定された位相ノ ルスと、電源周波数測定部 21で測定され た電源周波数から被測定電線路 Aに流れる漏洩電流 Iの位相角度を算出する位相 角度算出部 22と、全波整流部 13で整流された変換後電圧 VIをデジタル信号に変 換する A/D変換部 23と、 A/D変換部 23でデジタル信号に変換された変換後電 圧 VIの実効値を算出する実効値算出部 24と、全波整流部 17で整流された電圧 V2 をデジタル信号に変換する A/D変換部 25と、 A/D変換部 25でデジタル信号に変 換された電圧 V2の実効値を算出する実効値算出部 26と、位相角度算出部 22で算 出された漏洩電流 Iの位相角度と、実効値算出部 24で算出された変換後電圧 VIの 実効値から対地絶縁抵抗に起因する漏洩電流 Iを算出する漏洩電流算出部 27と、 位相角度算出部 22で算出された漏洩電流 Iの位相角度と、実効値算出部 26で算出 された電圧 V2の実効値から対地絶縁抵抗の抵抗値を算出する抵抗値算出部 28と、 電気方式を判断する電気方式判断部 29と、を備えて!/、る。
[0024] CTセンサ部 10は、被測定電線路 Aをクランプするクランプ部 10aと、クランプ部 10 aにより検出した信号力 被測定電線路 Aに流れている漏洩電流を測定する測定部 1 Obとにより構成される。
[0025] 測定部 10bは、クランプ部 10aで被測定電線路 Aに流れて!/、る漏洩電流成分から 生じる磁気を検出し、検出した磁気から電流を生成する。
[0026] また、 CTセンサ部 10は、生成した電流を漏洩電流 Iとして増幅部 11に供給する。
なお、 CTセンサ部 10により生成された漏洩電流 Iは、対地静電容量に起因する漏洩 電流成分(以下 Igcという。)と、絶縁抵抗に直接関与している対地絶縁抵抗に起因 する漏洩電流成分(以下 Igrという。)と、が含まれている。また、 Igcは、被測定電線 路 Aの長さに応じて容量が増大するだけでなぐ電気機器に使用されているインバー タゃノイズフィルタ一等に起因する高調波歪み電流によっても容量が増大する。
[0027] また、クランプ部 10aは、図 1においては、被測定電線路 A全体を一括して挟み込 む形態を示している力 これに限られず、被測定電線路 Aを構成する電線路を選択 的に挟み込む形態であっても良ぐまた、被測定電線路 Aを構成する電線路を一本 一本選択的に挟み込む形態であっても良い。このような形態の場合には、複数個の CTセンサ部 10により構成される。
[0028] 増幅部 11は、 CTセンサ部 10から供給された漏洩電流 Iを電圧に変換し、変換後 電圧 VIを所定のレベルまで増幅する。また、増幅部 11は、例えば、 CTセンサ部 10 力も供給された漏洩電流 Iが 0mA〜; 10mAのときには、二段で増幅し、また、 CTセン サ部 10から供給された漏洩電流 Iが 10mA〜300mAのときには、一段で増幅する。 増幅部 11は、増幅後の変換後電圧 VIを LPF12に供給する。 LPF12は、変換後電 圧 VIに含まれている高調波成分を除去する。 LPF12は、高調波成分が除去された 変換後電圧 VIを全波整流部 13と比較部 18に供給する。全波整流部 13は、供給さ れた変換後電圧 VIを整流し、整流後の変換後電圧 VIを A/D変換部 23に供給す
[0029] 電圧検出部 14は、被測定電線路 Aに電圧プローブを接続することにより、電圧線 路に発生している電圧を検出する。なお、電圧検出部 14は、被測定電線路 Aの電気 方式が三相三線式 (デルタ結線からなる)の場合には、 S相(接地)以外の R相と T相 間の電圧を検出する。また、電圧検出部 14は、被測定電線路 Aの電気方式が三相 四線式 (スター結線からなる)の場合には、接地線(中性点)以外の相間から電圧を 検出する。また、電圧検出部 14は、被測定電線路 Aの電気方式が単相二線式の場 合には、 N相と L相間の電圧を検出する。また、以下では、三相三線式において、 S 相を接地相として説明する力 T相又は R相を接地相としても良い。
[0030] そして、電圧検出部 14は、被測定電線路 Aから検出した電圧 V2から基準点を求め 、電圧 V2を変圧器 15に供給する。例えば、電圧検出部 14は、被測定電線路 Aから 検出した電圧 V2の 0クロスする点を基準点とする。
[0031] 変圧器 15は、供給された電圧 V2を所定の電圧値に変圧し、変圧後の電圧 Vを LP F16に供給する。変圧器 15は、例えば、電圧比が 20 : 1になるように変圧を行う。
[0032] LPF16は、供給された電圧 V2に含まれている高調波成分を除去する。 LPF16は 、高調波成分を除去した電圧 V2を全波整流部 17と、比較部 18と、電源周波数測定 部 21に供給する。 [0033] 全波整流部 17は、供給された電圧 V2を整流し、整流後の電圧 V2を A/D変換部 25に供給する。
[0034] 比較部 18では、 LPF12から供給された変換後電圧 VIの 0Vクロス点をとり、方形 波変換を行い、方形波変換後の信号を演算部 19に供給する。また、比較部 18では 、 LPF16から供給された電圧 V2の 0Vクロス点をとり、方形波変換を行い、方形波変 換後の信号を演算部 19に供給する。
[0035] 演算部 19は、比較部 18から供給される信号に基づき所定の演算を行い、演算後 の信号を位相ノ ルス幅測定部 20に供給する。演算部 19は、例えば、 EXOR (排他 的論理和)演算回路からなっており、比較部 18から供給されてきた 2つの方形波信 号の EXOR (排他的論理和)演算を実行する。
[0036] 位相ノ ルス幅測定部 20は、演算部 19から供給される演算結果に基づき、変換後 電圧 VIと電圧 V2の位相パルス幅を検出する。ここで、位相パルス幅測定部 20の動 作について説明する。
[0037] 電気方式が単相の場合には、図 2Aに示すように、 Igrの位相角度 Θは 0° 、 Igcの 位相角度 Θは 90° となる。したがって、 Igrと Igcの位相差は、 90° (1/4サイクル) となる。
[0038] また、電源が三相三線(デルタ結線)の場合には、図 2Bに示すように、 Igrの位相角 度 Θは 60° 、 Igcの位相角度 Θは 0° となる。したがって、 Igrと Igcの位相差は、 60 ° (1/6サイクル)となる。
[0039] また、電源が三相四線 (スター結線)の場合には、図 2Cに示すように、 Igrの位相角 度 Θは 30° 、 Igcの位相角度 Θは 0° となる。したがって、 Igrと Igcの位相差は、 30 ° (1/12サイクル)となる。
[0040] ここで、電源が三相三線式 (デルタ結線)の場合に、 Igrの位相角度 Θ力 0° となり 、 Igcの位相角度が 0° となる理由について説明する。なお、以下の説明では、平衡 状態にある三相三線式 (デルタ結線)とし、 S相が接地されているものとする。
[0041] 三相三線式(デルタ結線)は、 120° の位相差をもって信号が出力されているので 、各相のベクトルを図 3Aに示すように表すことができる。なお、以下では、 S相のベタ トルをベクトル Sと表記し、 T相のベクトルをベクトル Tと表記し、 R相のベクトルをべタト ル Rと表記する。
[0042] ここで、 S相は、接地されているため、ベクトル Sは、図 3Bに示すように、 180° 反転 した向きで表すことができる。
[0043] また、ベクトル Sとベクトル Rとを合成(以下、ベクトル Sとベクトル Rとのベクトル合成 をベクトル S→Rという。)し、また、ベクトル Sとベクトル Tとを合成(以下、ベクトル Sと ベクトル Tとのベクトル合成をベクトル S→Tと!/、う。 )したときの様子を図 3Cに示す。 図 3Cより、ベクトノレ S→Tとべクトノレ S→Rとのなす角は、 60° となる。
[0044] また、 Igrは、抵抗成分であるため、電圧と電流の位相差はゼロである。したがって、 R相— S相間に発生する Igr (rs)は、ベクトル S→R上に発生し、また、 T相— S相間に 発生する Igr (ts)は、ベクトル S→T上に発生する(図 3Dを参照)。
[0045] また、 Igcは、静電容量成分であるため、電圧と電流の位相差は、 π /2 (90° )で あり、 π /2だけ電流が進む。したがって、 R相 S相間に発生する Igc (rs)は、 Igr (r s)から 90° 進んだ位置(図 3D中では、 150° の位置)に発生し、また、 T相— S相間 に発生する Igc (ts)は、 Igr (ts)力も 90° 進んだ位置(図 3D中では、 210° の位置) に発生する。
[0046] また、 Igc (rs)と Igc (ts)とを合成することにより、 Igc (Igc (rs) +Igc (ts) )を求めるこ とができる(図 3D中では、 Igcは、 180° の位置に発生する)。
[0047] ここで、 Θ力 90° 以上(θ〉90° )のときには、「180° θ」の演算を行う。
[0048] 上記演算を行うことにより、 Igcは、 0° (180° —180° )の位置に表すことができ、
Igr (ts)は、 Igr (rs)上に表すことができる(図 3E参照。)。
[0049] したがって、 Igr成分(Igr (rs) +Igr (ts) )は、すべて、 60° の位置に現れ、また、 Ig c成分(Igc (rs) +Igc (ts) )は、すべて、 0。 の位置に現れることになる。
[0050] このようにして、 Igrと、 Igcとのなす角は、 60° になる。また、詳細は後述するが、被 測定電線路 Aに流れている漏洩電流 Iの位相角度は、 Igrと Igcとのベクトル和である
0
ので、 0° 〜60° の範囲内になる。
[0051] また、電気方式が、三相四線式 (スター結線)であり、 S相が接地されている場合に は、 Igrと Igcとのなす角が 30° になる根拠について説明する。なお、スター結線にお いては、平衡状態であっても不平衡状態であっても Igrと Igcとのなす角は 30° にな [0052] スター結線の場合は、デルタ結線と同様、 120° の位相差をもって信号が出力され ているので、各相のベクトルを図 4Aに示すように表すことができる。なお、以下では、 S相のベクトルをベクトル Sと表記し、 T相のベクトルをベクトル Tと表記し、 R相のベタ トルをベクトル Rと表記する。
[0053] また、 Igrは、抵抗成分であるため、電圧と電流の位相差はゼロである。したがって、 R相に発生する Igr(r)は、ベクトル S上に発生し、また、 T相に発生する Igr(t)は、ベ タトル T上に発生し、また、 S相に発生する Igr(s)は、ベクトル S上に発生する(図 4B を参照)。
[0054] また、 Igcは、静電容量成分であるため、電圧と電流の位相差は、 π /2 (90° )で あり、 π /2だけ電流が進む。したがって、 R相に発生する Igc (r)は、 Igr (r)力、ら 90 ° 進んだ位置(図 4B中では、 120° の位置)に発生し、また、 T相に発生する Igc (t) は、 Igr (t)から 90° 進んだ位置(図 4B中では、 240° の位置)に発生し、また、 S相 に発生する Igc (s)は、 Igr (s)から 90° 進んだ位置(図 4B中では、 360° (0° )の位 置)に発生する。
[0055] ここで、 Θ力 S180° 以上(Θ〉180° )のときには、「360° — θ」の演算を行う。
[0056] 上記演算を行うことにより、図 4Cに示すように、ベクトル Igr (s)は、 90° (360° — 2 70° )の位置に表すことができ、ベクトル Igc (t)は、 120° (360° —240° )の位置 に表すことができ、ベクトル Igc (t)とベクトル Igc (r)とを同相として表すことができる。
[0057] つぎに、 Θ力 0° 以上(θ〉90° )のときには、「180° — θ」の演算を行う。
[0058] 上記演算を行うことにより、図 4Dに示すように、ベクトル Igr (t)は、 30° (180° — 1 50° )の位置に表すことができ、ベクトル Igc (r)及びベクトル Igc (t)は、 60° (180 ° —120° )の位置に表すことができ、 Igr (t)と Igr (r)とを同相として表すことができ
[0059] つぎに、 Θ力 0° 以上(θ〉60° )のときには、「120° — θ」の演算を行う。
[0060] 上記演算を行うことにより、図 4Εに示すように、ベクトル Igr(s)は、 30° (120° — 9
0° )の位置に表すことができ、ベクトル Igr (s)とベクトル Igr (t)とベクトル Igr (r)とを 同申目として表すこと力 Sできる。 [0061] つぎに、 Θ力 ¾0° 以上(θ〉30° )のときには、「60° — θ」の演算を行う。
[0062] 上記演算を行うことにより、図 4Fに示すように、ベクトル Igc (t)及びベクトル Igc (r) は、 0° (60° —60° )の位置に表すことができ、ベクトル Igc (s)とベクトル Igc (t)と ベクトル Igc (r)とを同相として表すこと力 Sできる。
[0063] したがって、 Igr成分は、すべて、 30° の位置に現れ、また、 Igc成分は、すべて、 0
° の位置に現れることになる。
[0064] このようにして、 Igrと、 Igcとのなす角は、 30° になる。また、詳細は後述するが、被 測定電線路 Aに流れている漏洩電流 Iの位相角度は、 Igrと Igcとのベクトル和である
0
ので、 0° 〜30° の範囲内になる。
[0065] また、位相ノ ルス幅測定部 20は、電源が単相のときでも、三相三線式及び三相四 線式のときでも対応できるように、位相ノ ルス幅を 1サイクルの 1/4 (90° )以下のも ののみ対象とする。
[0066] ゆえに、位相ノ ルス幅測定部 20は、演算部 19から供給される演算結果に基づい て算出した、 1サイクルの 1/4以下の位相ノ ルス幅を位相角度算出部 22に出力す る。なお、電源周波数が 60Hzの場合には、 1サイクルが 16. 6 ( = l/60) msである ので、位相パルス幅は、その 1/4以下、すなわち、 4. 15ms以下となり、また、電源 周波数が 50Hzの場合には、 1サイクルが 20 ( = l/50) msであるので、位相パルス 幅は、その 1/4以下、すなわち、 4ms以下となる。なお、位相パルス幅測定部 20は 、上述のような制限(1サイクルの 1/4以下のもののみ対象とする)を設けない構成で あっても い。
[0067] 電源周波数測定部 21は、 LPF16から供給された電圧 V2に基づき、電源周波数を 測定し、測定結果を位相角度算出部 22に供給する。なお、被測定電線路 Aが商用 電源であれば、電源周波数測定部 21の測定結果は、 50Hz若しくは 60Hzとなる。ま た、電源周波数測定部 21は、 LPF16から供給された電圧 V2に基づき、 50Hz又は 60Hzの何れかを判定する構成であっても良い。
[0068] 位相角度算出部 22は、位相パルス幅測定部 20から供給された位相パルス幅 W(s )と、電源周波数測定部 21から供給された電源周波数 F (Hz)の逆数 (f = l/F)に 基づき、下記(1)式により被測定電線路 Aに流れている漏洩電流 Iの位相角度 Θを 算出する。
Θ = 360 XWX l/f - - - (1)
また、位相角度算出部 22は、算出した位相角度 Θを漏洩電流算出部 27に供給す
[0069] A/D変換部 23は、全波整流部 13から供給された整流後の変換後電圧 VIをデジ タル信号に変換し、変換後の信号を実効値算出部 24に供給する。
[0070] 実効値算出部 24は、 A/D変換部 23から供給された信号に基づき、下記(2)式に より変換後電圧 VIの実効値 Iを算出する。なお、実効値算出部 24に供給される信
0
号は、被測定電線路 Aに流れて!/、る漏洩電流の平均値 Iを電圧に変換した変換後電 圧 VIに基づくものであるので、便宜的に Iとする。
0
I =Ι Χ ( π /2) / 2 · · · (2)
0
[0071] 実効値算出部 24は、算出した実効値 Iを漏洩電流算出部 27に供給する。
0
[0072] また、 A/D変換部 25は、全波整流部 17から供給された整流後の電圧 V2をデジ タル信号に変換し、変換後の信号を実効値算出部 26に供給する。実効値算出部 26 は、 A/D変換部 25から供給された信号に基づき、下記(3)式により電圧 V2の実効 値 Vを算出する。なお、 Vは、被測定電線路 Αから検出した電圧 V2の平均値である
0
Figure imgf000018_0001
[0073] 実効値算出部 26は、算出した実効値 Vを抵抗値算出部 28に供給する。
0
[0074] 漏洩電流算出部 27は、位相角度算出部 22から供給された位相角度 Θと、実効値 算出部 24から供給された Iに基づき、 Igrを算出し、算出した Igrを抵抗値算出部 28
0
に供給する。なお、電源が単相電源の場合には、下記 (4)式により Igrを算出し、電 源が三相電源の場合には、下記(5)式により Igrを算出する。
Igr = I X cos θ · · · (4)
ο
Igr= (I X sin Θ ) / cos Θ … (5)
0 1 2
[0075] ここで、(5)式の導出根拠について述べる。
[0076] 電源が三相三線式 (デルタ結線)の場合には、図 3を用いて上述で説明したように、 Igrと Igcとのなす角は、 60° であり、位相角度 Θは、 0° 〜60° の範囲内になる(図 5を参照)。なお、図 5中では、便宜的に、位相角度 Θを Θ iにしている。
[0077] したがって、 Igrは、三角比を用いた演算により、(5)式となる。
[0078] また、電気方式が平衡状態にある三相三線式 (デルタ結線)であって、 S相が接地 されている場合には、 Θ は、 30° ( = 90° —60° )となる。
2
[0079] したがって、電源が三相三線式 (デルタ結線)の場合には、(5)式は、
Igr= (I X sin 0 ) /cos30° = (I X sin 0 ) Χ 2/^3 · · · (6)
0 1 0 1
となる。
[0080] また、このときの Igcは、三角比を用いた演算より、(7)式より求まる(図 6を参照)。
Igc = 1 X sin (60。 - Θ ) /cos30。 · · · (7)
0 1
[0081] また、漏洩電流算出部 27は、 I 〉Igrの場合には、 T相に Igrが発生しているものと
0
判断し、位相角度算出部 22で算出された位相角度に「180° ― Θ」の演算を行い、 演算後の位相角度( Θ )を(7)式に代入し、 Igcを求める。
[0082] また、漏洩電流算出部 27は、 Iく Igrの場合には、 R相に Igrが発生しているものと
0
判断し、位相角度算出部 22で算出された位相角度( Θ )を(7)式に代入し、 Igcを求 める。
[0083] このようにして、漏洩電流算出部 27は、実効値算出部 24により算出された Iに対し
0 て、 2つの Igcが発生する可能性を特定することができる。
[0084] また、電源が三相四線式 (スター結線)の場合には、図 4を用いて上述で説明したよ うに、 Igrと Igcとのなす角は、 30° であり、位相角度 Θは、 0° 〜30° の範囲内にな る(図 7を参照)。なお、図 7中では、便宜的に、位相角度を Θ にしている。
[0085] したがって、 Igrは、三角比を用いた演算により、(5)式となる。また電気方式が平衡 状態又は不平衡状態にある三相四線式 (スター結線)であって、 S相が接地されてい る場合には、 Θ は、 60° (90° — 30° )となる。
2
[0086] したがって、電源が三相四線式 (スター結線)の場合には、(5)式は、
Igr= (I X sin 0 ) /cos60° = (I X sin 0 ) Χ 2 · · . (8)
0 1 0 1
となる。
[0087] なお、上述した Θ iは、基準点(0点)の決め方(とり方)によって ±X° 変動するもの であり、厳密には、(5)式は、 Igr= (I X sin ( Θ ±X))/cos6
0 1 2
であり、(6)式は、
Igr=(I Xsin(0 ±X))/cos30。 = (I Xsin(0 ±X)) X2/^3
0 1 0 1
であり、(7)式は、
Igc = I X sin (60° —(Θ ±X))/cos30。
0 1
であり、(8)式は、
Igr=(I Xsin(0 ±X))/cos60。 = (I Xsin(0 ±X)) X2/^3
0 1 0 1
である。
[0088] また、漏洩電流検出装置 1は、図 1に示すように、電源が単相式である力、、三相三 線式 (デルタ結線)であるか、三相四線式 (スター結線)であるかを判断する電気方式 判断部 29を備えている。
[0089] ここで、電気方式判断部 29の構成について説明する。
[0090] <第 1構成(マニュアルセレクト) >
電気方式判断部 29は、電気方式を決定する選択スィッチにより構成されており、例 えば、ロータリースィッチにより構成されている。電気方式判断部 29は、ユーザにより 決定されたロータリースィッチの位置に応じて電気方式を決定し、当該決定された電 気方式を漏洩電流算出部 27に通知する。
[0091] <第 2構成(1) (オートセレクト)〉
電気方式判断部 29は、電気方式を自動的に判断する。電気方式判断部 29は、図 示しないが、電圧検出部 14に接続されており、電圧検出部 14から供給される電圧 V 2に基づいて電気方式を判断する。ここで、三相三線式 (デルタ結線)では、三相電 源電圧は相電圧に等しぐまた、三相四線式 (スター結線)では、三相電源電圧は相 電圧のルート 3 (^3)倍に等しい。そこで、電気方式判断部 29は、電圧検出部 14か ら供給される電圧 V2が相電圧に等しい場合には、三相三線式 (デルタ結線)である と判断し、また、電圧検出部 14から供給される電圧 V2が相電圧のルート 3 (^3)倍 の場合には、三相四線式 (スター結線)であると判断する。電気方式判断部 29は、判 断結果を漏洩電流算出部 27に供給する。また、電気方式判断部 29は、図示しない 1S CTセンサ部 10に接続されており、 CTセンサ部 10による検出結果から、電流波 形が単数ならば単相と判断し、電流波形が複数本あれば三相と判断する。また、 CT センサ部 10を複数用意し、被測定電線路 Aの各電線路にそれぞれクランプすること で、単相か三相かを判断できる。
[0092] <第 2構成(2) (オートセレクト) >
電気方式判断部 29は、例えば、三相三線式 (デルタ結線)の条件((6)式)にした 力 Sつて Igrの算出を行わせるように、漏洩電流算出部 27に所定の信号を供給する。 漏洩電流算出部 27は、算出結果を電気方式判断部 29に供給する。
[0093] 電気方式判断部 29は、供給された算出結果が所定値かどうかにより電気方式を判 断する。ここで、実際の電気方式が三相四線式 (スター結線)であった場合、本来な らば三相四線式の条件((8)式)にしたがって演算をしなければならないところ、 (6) 式で演算を行うため、バランスが崩れ、例えば、 I力 ¾OOmA近く発生しているときに
0
は、 Igrは、その半分である 150mAと測定されてしまう(実測値)。
[0094] この場合には、電気方式判断部 29は、三相四線式 (スター結線)の条件((8)式)に したがって演算を行うように、漏洩電流算出部 27を制御する。
[0095] また、実際の電気方式が単相であった場合、本来ならば単相の条件((4)式)にし たがって演算をしなければならないところ、(6)式で演算を行うため、 Igrの値が、 Iに
0 現れ、 Igrが 0となる。また、静電容量分 (Igc)も Igrとして発生する現象となり、現実的 な数ィ直とならない。
[0096] この場合には、電気方式判断部 29は、単相の条件((4)式)にしたがって演算を行 うように、漏洩電流算出部 27を制御する。
[0097] 漏洩電流算出部 27は、電気方式判断部 29の判断結果により、電源が単相式であ ると判断した場合には、(5)式に基づいて Igrを算出し、また、電源が三相三線式 (デ ルタ結線)であると判断した場合には、(6)式に基づいて Igrを算出し、また、電源が 三相四線式 (スター結線)であると判断した場合には、(7)式に基づいて Igrを算出す
[0098] また、抵抗値算出部 28は、実効値算出部 26から供給された実効値 Vと、漏洩電
0 流算出部 27から供給された Igrに基づき、下記(9)式により Grを算出する。
Gr=V /Igr- - - (9) 上述のように構成される本願発明に係る漏洩電流検出装置 1では、例えば、被測 定電線路 Aの電源が三相式の場合、電源を単相式と同様の処理が可能な構成とな つている。
[0099] ここで、本願発明に係る漏洩電流検出装置 1により、被測定電線路 Aに流れる漏洩 電流成分を検出する動作について図 8に示すフローチャートを用いて説明する。
[0100] ステップ ST1にお!/、て、ユーザは、測定対象の電線路の種類(単相二線式、単相 三線式、三相三線式又は三相四線式)に応じて、上述した <第 1構成(マニュアルセ レクト)〉により電気方式判断部 29を操作する。なお、電気方式判断部 29は、上述し たく第 2構成(1) (2) (オートセレクト)〉により電線路の種類を判断しても良い。また 、以下では、測定対象となる電線路の種類は、三相三線式であるとする。
[0101] ステップ ST2において、ユーザは、電圧プローブを測定対象の電線路の電圧線路 に接続する。測定対象の電線路が単相二線式 (電圧線路と接地線とからなる)の場 合には、電圧線路の極性に注意して、電圧線路に電圧プローブを接続する。電圧検 出部 14は、電圧プローブを介して検出した電圧を変圧器 15に供給する。また、測定 対象の電線路が単相三線式又は三相多線式(三相三線式又は三相四線式)の場合 には、 R相及び T相の極性に注意して、 R相及び T相に電圧プローブを接続する。電 圧検出部 14は、電圧プローブを介して検出した電圧を合成して、合成後の電圧を変 圧器 15に供給する。
[0102] ステップ ST3において、ユーザは、漏洩電流検出装置 1の主電源を ONにする。
[0103] ステップ ST4において、ユーザは、 CTセンサ部 10のクランプ部 10a (分割型交流 器)の Kと Lの方向に注意して、 B種設置工事の接地線若しくは被測定電線路を一括 して挟む。なお、漏洩電流検出装置 1は、クランプ部 10aの Kと Lの方向が合っている 場合には、漏洩電流成分が図示しない表示部に表示され、また、クランプ部 10aの K と Lの方向が間違っている場合には、図示しないブザー出力部からブザーが鳴り響く 構成であっても良い。また、クランプ部 10aの挟む方向を間違えないように、クランプ 部 10aの持ち手の部分に、 K表示と L表示を付して置!/、ても良!/、。
[0104] また、被測定電線路に対するクランプの方法を変化させる(例えば、各相ごとにそれ ぞれクランプする)ことによって、各相ごとに発生する Igr及び Igcの測定も可能となる [0105] ステップ ST5において、ユーザは、漏洩電流検出装置 1の測定開始ボタンを押圧 する。漏洩電流検出装置 1は、測定開始ボタンの押圧により、被測定電線路に流れ てレ、る漏洩電流の検出を行う。
[0106] ここで、本発明に係る漏洩電流検出装置 1により、実際に被測定電線路から漏洩電 流成分を測定した第 1の結果を図 9に示す。図 9は、屋上受配電キュービタル(高圧 受電設備)の動力盤 (電源周波数: 50Hz、電圧: 200V、被測定低電圧電路の種類: 三相三線式、 150kvA、室温: 41°C、湿度: 43%)を測定対象として行ったものであ
[0107] また、実験では、測定開始から 6分経過時〜 9分経過前(3分間)に疑似絶縁抵抗と して R相に 20k Ωを接地し、測定開始から 9分経過時〜 11分経過前(2分間)に疑似 絶縁抵抗として T相に 20kQを接地し、測定開始から 11分経過時〜 12分経過前(1 分間)に疑似絶縁抵抗を外し (接地解除)、測定開始から 12分経過時〜 13分経過前 (1分間)に疑似絶縁抵抗として R相に 10k Ωを接地し、測定開始から 13分経過時〜 15分経過前(2分間)に疑似絶縁抵抗として T相に 1 Ok Ωを接地し、測定開始から 15 分経過後に疑似絶縁抵抗を外した。
[0108] 例えば、疑似絶縁抵抗として R相に 20k Ωの抵抗を接地した場合には、理論的に、 疑似絶縁抵抗成分の電流として、
Figure imgf000023_0001
200/ (20 X 10つ = 10mA
の電流が被測定電線路に加算されて流れる。
[0109] 漏洩電流検出装置 1は、図 9に示すように、時間が 6分経過時に、疑似絶縁抵抗と して R相に 20k Ωの抵抗を接地したら、 12. 3mAの Igrを検出した。疑似絶縁抵抗を 接地して!/、な!/、とき(測定開始から 6分経過前、測定開始から 11分経過時〜 12分経 過前及び測定開始から 15分経過後)の Igrが 2mAであるので、 R相に 20k Ωの疑似 抵抗を接地した後の Igrから 2mAを差し引くと、 10. 3mAとなる。したがって、本願発 明に係る漏洩電流検出装置 1は、 10. 3mAの変化を測定できたことになる。この値 は、上述した理論値( 10mA)とほぼ一致して!/、る。
[0110] また、 R相に疑似絶縁抵抗を 20k Ω接地したとき、接地前の抵抗値 (Gr 105. 46 k Q (測定開始から 6分経過前までの Grの平均値) )との合成抵抗値は、 Gr= (20 X 103 X 105. 46 X 103) / (20 X 103+ 105. 46 X 103) = 16. 3k Ω となる。漏洩電流検出装置 1は、図 9に示すように、測定開始から 6分経過時の抵抗 Grは 17. 2kQを示しており、上述した理論値(16. 3kQ )とほぼ一致している。
[0111] また、疑似絶縁抵抗として T相に 20kQの抵抗を接地した場合にも、上述と同様に 、理論的には、疑似絶縁抵抗成分の電流は 10mA増加する。漏洩電流検出装置 1 では、図 9に示すように、測定開始から 9分経過時〜 11分経過前に検出した Igrは、 ほぼ 12. 4mAとなっており、該数値から 2mAを差し引くと、 10. 4mAとなり、ほぼ理 論値(10mA)と一致する。
[0112] また、 T相に疑似絶縁抵抗を 20k Ω接地したときの合成抵抗値 Grは、上述と同様 に、理論的には、 16. 3k Qであり、測定値は 17. 4k Qを示しており、ほぼ理論値と一 致している。
[0113] また、漏洩電流検出装置 1は、図 9に示す通り、疑似絶縁抵抗として R相又は T相に
10kQを接地したときの Igrと Grも理論値と実測値がほぼ一致している。
[0114] さらに、漏洩電流検出装置 1は、測定開始から 11分経過後から 12分経過前、及び
15分経過時に疑似絶縁抵抗の接地状態を解除した場合、 Igr, I及び Grの値が接
0
地以前 (測定開始から 1分〜 5分)の状態に戻った。
[0115] また、本発明に係る漏洩電流検出装置 1により、実際に被測定電線路から漏洩電 流成分を測定した第 2の結果を図 10に示す。図 10は、受配電キュービタル(高圧受 電設備)の動力盤 (電源周波数: 50Hz、電圧: 200V、被測定低電圧電路の種類:三 相三線式、 150kvA)を測定対象として行ったものである。
[0116] また、実験は、測定開始から 1分経過時〜 4分経過前(3分間)に疑似静電容量とし て R相及び T相に 0. 22 を接地し、測定開始から 3分経過時〜 4分経過前(1分間 )に疑似絶縁抵抗として T相に 20k Ωを接地し、測定開始から 4分経過後に疑似静電 容量及び疑似絶縁抵抗を外して行った。したがって、測定開始から 3分経過時〜 4 分経過前は、 R相及び T相に疑似静電容量を接地し、かつ、 T相に疑似絶縁抵抗を 接地して行った。
[0117] 例えば、疑似静電容量として R相及び T相に 0. 22 Fの容量を接地した場合には 、容量性リアクタンス Xは、
Χ= 1/2 π ί。 = 1/ (2 π Χ 50 Χ (0. 22 X 10— 6 + 0. 22 X 10— 6) )
= 7. 23 X 103
となる。
[0118] したがって、被測定電線路には、
I=V/X= 200/7. 23 X 103 = 27. 6mA
の電流が加算されて流れる。
[0119] また、絶縁抵抗として T相に 20k Ωの抵抗を接地した場合には、理論的に、疑似絶 縁抵抗成分の電流として、
Figure imgf000025_0001
200/ (20 X 10つ = 10mA
の電流が被測定電線路に加算されて流れる。
[0120] 漏洩電流検出装置 1は、図 10に示すように、時間が測定開始から 1分経過時に、 疑似静電容量として R相及び T相に 0. 22 Fの静電容量が接地されているときに、
7. 8mAの Igrを検出し、また、 100. 8mAの Iを検出した。なお、 Iは、上述したよう
0 0
に絶縁抵抗に起因する電流 Igrと、静電容量に起因する電流 Igcの合成電流である。
[0121] 疑似静電容量を接地していないときの Igrは、図 10に示した通り、 7. 6mA (測定開 始から 1分経過前の Igr)であるので、 R相及び T相に疑似静電容量を接地した場合、 Igrの変化は殆どない。
[0122] 一方、疑似静電容量を接地していないときの Iは、 75. 9mA (測定開始から 1分経
0
過前の I )である。疑似静電容量接地後の I (100. 8mA)から疑似静電容量接地前
0 0
の I (75· 9mA)を差し引くと、 24. 9mAとなり、これが、加算された Igcである。この
0
加算された Igcは、理論値(27. 6mA)とほぼ等しい。
[0123] また、漏洩電流検出装置 1は、図 10に示すように、 R相及び T相に疑似静電容量が 接地され、かつ、 T相に疑似絶縁抵抗が接地されているとき(測定開始から 3分経過 時〜 4分経過前)に、 21. OmAの Igrを検出し、また、 107. OmAの Iを検出した。
0
[0124] T相に絶縁抵抗を接地した後の Igr (21mA)から、絶縁抵抗を接地する前の Igr (8 mA (測定開始から 3分経過時の Igr) )を差し引くと、 13mAとなり、理論値(10mA)と ほぼ等しくなる。 [0125] また、 R相に疑似絶縁抵抗として 10k Qを接地したときの比較部 18と演算部 19の 動作につ!/、て図 11〜図 14を用いて説明する。
[0126] 比較部 18は、図 11に示すように、 LPF12から変換後電圧 VIが入力され、また、 L PF16から電圧 V2が入力される。なお、被測定電線路の種類は、三相三線式なので 、変換後電圧 VIと電圧 V2 (基準点)との位相差は 60° である。
[0127] また、比較部 18は、図 12に示すように、 LPF12から入力された変換後電圧 VIを 方形波変換し、変換後の信号を演算部 19に出力する。また、比較部 18は、図 13に 示すように、 LPF16から入力された電圧 V2を方形波変換し、変換後の信号を演算 部 19に出力する。
[0128] 演算部 19は、図 14に示すように、変換後電圧 VIの方形波信号と、電圧 V2の方形 波信号に基づき、 EXOR (排他的論理和)演算を実行する。演算部 19は、 EXOR ( 排他的論理和)演算後の信号に基づき、 1サイクルの 1/4以下の位相ノ ルス幅 Wを 求め、求めた位相ノ ルス幅 Wを位相角度算出部 22に出力する。位相角度算出部 2 2は、位相ノ ルス幅測定部 20から供給された位相ノ ルス幅 Wと、電源周波数測定部 21から供給された電源周波数 F (Hz)の逆数 (f= l/F)に基づき、(1)式により被測 定電線路 Aに流れている漏洩電流 Iの位相角度 Θを算出し、当該位相角度 Θを漏洩 電流算出部 27に出力する。
[0129] 漏洩電流算出部 27は、位相角度算出部 22から供給された位相角度 Θと、実効値 算出部 24から供給された Iに基づき、(6)式により Igrを算出する。
0
[0130] ステップ ST6において、ユーザは、測定が終了したら、漏洩電流検出装置 1の電源 を OFFにする。
[0131] このように構成される本願発明に係る漏洩電流検出装置 1は、被測定電線路 Aに 流れている漏洩電流 Iを検出し、検出した漏洩電流 Iを電圧に変換し、変換後の電圧 から高調波成分を除去し、高調波成分を除去した変換後電圧 VIと、被測定電線路 Aの電圧線路から電圧 V2を検出し、検出した電圧 V2から高調波成分を除去し、高 調波成分を除去した電圧 V2とに基づき、被測定電線路 Aに流れて!/、る漏洩電流 Iの 位相角度 Θを求め、その位相角度 Θと、高調波成分が除去された変換後電圧 VIの 実効値 Iとから対地絶縁抵抗に起因する漏洩電流 Igrのみを、被測定電線路 Aの電 気方式及び平衡 ·不平衡の状態に応じた所定の条件( (4)式又は(5)式)に基づ!/ヽ て算出する。
[0132] したがって、本願発明に係る漏洩電流検出装置 1は、被測定電線路が長大化し、ま た、高調波歪み電流を出力するインバータ等により対地静電容量に起因した漏洩電 流(Igc)が増大しても、 mAオーダーで正確に対地絶縁抵抗に起因する漏洩電流成 分 (Igr)のみを検出することができる。
[0133] また、本願発明を漏洩電流遮断装置に応用した場合には、 Igrを正確に測定するこ とができるので、 Igrのみに基づいて遮断駆動をさせることができ、従来のように、 Igr 以外の要素(Igcの増大)による漏洩電流の増大によって誤動作することがない。
[0134] また、本願発明を漏電警報機に応用した場合には、 Igrを正確に測定することがで きるので、 Igrのみに基づいて警報動作をさせることができ、 Igr以外の要素により漏 洩電流が増大しても誤報をすることがなぐ使用することができる。
[0135] また、本願発明によれば、電路 ·機械設備等を停電状態等にする必要がなぐ通常 使用状態において、外部から簡単かつ安全に漏洩状態を把握することができる。
[0136] また、本願発明に係る漏洩電流検出装置 1は、周波数注入式のように基準点を他 力、ら持ってくるのではなぐ被測定電線路 Aに生じている電圧から基準点そのものを 求めるので、基準点による誤差を考慮することなく被測定電線路 Aに流れて!/、る Igr を測定すること力できる。
[0137] <本発明に係る Igr方式について〉
絶縁体の劣化を診断するには、数 mAの等価対地絶縁抵抗成電流成分(以下 Igr) を検出することが有効である。ここで、三相 3線デルター結線式 (以下、デルター 3線 という。)と単相 2線式において、絶縁抵抗試験を行うことなぐ活線状況で、現場の高 調波やノイズの影響を受けずに、等価対地静電容量成分の電流 (以下、 Igcという。 ) を分離し、 Igrを精確に検出可能な、 Igrベクトル方式の有効性について計算式と試 験結果から述べる。
[0138] <デルター 3線における従来の I漏れ電流検出方式の問題点〉
0
従来の I方式の問題について述べる。図 15Aは、スター結線のベクトノレ図であり、
0
図 15Bは、デルター結線のベクトノレ図である。スター結線において、各相の Igc成分 が平衡していれば、 Igcは打ち消されて零(0)になる。つぎに、デルター結線の場合 は、 S相接地で、 S相は 0電位となり、 S相の Igcは発生しない。すなわち、対地電位の ある R相と T相に Igcが発生し、この結果 I方式には次の問題をもたらす。
0
1.スター結線では、 3相で打ち消しあっていた Igcが、デルター 3線では、 2相とな つたため、打ち消しあうことがない。
2. R相と T相で大きさの等しい Igcが発生している場合、ベクトル合成により、図 16 に示すように、電圧 R→Tを基準とした 180° の位置に合成された Igcが発生する。こ の Igcと IgrR、 IgrTのベクトル合成が Iとなり、この時、図 17及び図 18に示すように、 I
0
grは、 Igcの影響により、 R相での 1相地絡(IgrR)、又は T相での 1相地絡(IgrT)と異 なる様相を示すことがある。
[0139] また、 T相の 1相地絡の場合(図 17)、 180° にある IgcRと IgcT合成となる Igcと、 1 20° にある T相の IgrTがベクトル合算されると、 Iは、 Igcより大きくなる。例えば、約 1
0
07mAの Igcが発生している状況で、 T相に約 100mAの IgrTを発生させた場合、ベ クトル和として、 Iは、約 180mAの電流値となる(図 17)。このようなケースにおいて
0
は、 Iは、増加傾向にあり I方式でも検出は可能となる。しかし、 R相においては、そ
0 0
の関係が大きく異なる。
[0140] R相の 1相地絡を図 18に示す。 180° にある Igcと 60° にある R相の IgrRがべタト ル合成されると、 T相の場合と異なり、 Iは、 Igcより小さくなる。例えば、約 107mAの I
0
gcが発生している状況で、 R相に約 100mAの Igrを発生させた場合、ベクトル和とし て Iは、約 104mAとなり、 Igc (約 107mA)より小さくなる。
0
[0141] また、例えば、 Igcが 10mA発生している場合、 Igrが 30mA発生しても、 Iは、 26m
0
A程度を示すため、一般的な漏電遮断器等では、動作しないこともありうる。
[0142] <ベクトル理論 Igr方式の有効性〉
漏電検出技術が、現在、電気計測分野において、「I方式から Igr方式に変わりつ
0
つある背景」について述べる。
[0143] 上述したデルター 3線において、 T相では、 I 〉 Igrとなり、また逆に R相では、 I < 1
0 0 grとなる。しかし、一般的に、多くの需要家においては、 I 〉 Igrと理解されているため
0
I方式の監視装置でも安全性が確保されると誤解されている。つまり、 R相において は、危険な状態を見逃していることも考えられる。
[0144] 一方で、 Igr方式では、 T相における I 〉Igrのみならず、 R相における I < Igrの場
0 0 合も確実に検出することができ、有効性が高いと言える。
[0145] <ベクトル理論 Igr方式について〉
1)デルター 3線におけるベクトル理論 Igr方式
相間電圧 V(T→R)を基準とし接地線に流れる漏洩電流 Iと V(T→R)の位相角度
0
( Θ )カゝら Igrを求めること力 Sでさる。
[0146] 図 16のデルター 3線におけるベクトル図より、 R→T及び T→Sを反転させ、 T→Rを 基準としてベクトル図を整理すると図 19に示すようになる。 T→Rを基準とし、 S→Rは それより 60° S→Tは 120° 進む。また、 S→R S→Tより 90° 進み、 IgcR IgcT のベクトル合成 Igcは、 180° になる。よって漏洩電流 Iは、 60° から 180° の領域
0
に発生する。
[0147] 1— 1) 1の位相角 Θ
0
Igrを算出する上で必要な Iの位相角度( Θ )は、 V(T→R)波形と Iの波形からも求
0 0
められる。
[0148] 1 2) IgrRと IgrTの位相合わせ
90° を挟み、 60° の位相差のある IgrRと IgrTの位相角を一致させ Igrを求める。 条件は、(10)式である。
90 < θ , sin e =sin (180° - Θ ) · · · (10)
[0149] これにより、 Igcは、 T→Rに平 fiになり、 120。 の S→Tは、 Sinl20 = Sin (180
120° ) = Sin60° となり 60° の S→Rに重なる。他の Iの Θもこの条件に当て
0
はめ演算を行う(図 20)。
[0150] 図 6に示すように、演算された I力、ら T→Rに垂線を下ろす。この垂線の大きさは、 I
0 0 と Θより、 I sin Θとして演算される。そして、 Cos30 = I sin Θ /Igrの関係から Igrを
0 0
算出する((11)式を参照。)。
Igr = I sin Θ /cos30° · · · (11)
o
[0151] (11)式により、 T相では、 I 〉Igrとなり、また R相では、 I < Igrとなることも証明され
0 0 [0152] 1 3)ベクトル理論 Igr方式の安定した精度
V(T→R)という基準電圧から Igrを算出しているため、 S相の漏洩電流も検出するこ とができ、 Igcの影響を受けないため、より安定した測定精度を実現できる。
[0153] 2)接地相以外の 2相の漏洩電流について
一般的に I r検出方式は、「接地相以外の 2相の漏洩電流」の検出は、困難とされて
0
いる力 1)デルター 3線におけるベクトル理論 Igr方式、で述べたように、本発明に係 る Igr方式では、検出が可能となる。
[0154] また、図 21に示すように、本発明に係る Igr方式によれば、 T相及び R相の双方で I grが発生した場合、スカラー量の和となり算出することができ、また、 T相及び R相に 異なる Igrが発生している場合でも、同様にして算出することができる。
[0155] 3)接地相(S相)の漏洩電流について
接地相すなわち S相の漏洩電流検出についても I R検出方式では困難とされてい
0
る。 S相は、接地相とされ B種接地が施されている。接地抵抗が存在する接地相に絶 縁劣化が発生した場合、その箇所の負荷電流の電圧降下による電圧の発生により漏 洩電流が生じることがある。本発明に係る Igr検出方式では、 V(T— R)基準電圧を 採用しているため、接地相の漏洩電流が発生しても基準点が崩れることがなく漏れ電 流の測定が可能となる。
[0156] 4) Igcバランスが崩れて!/、る場合の測定につ!/、て
モーター等の機器において、単相専用回路に、サージ吸収やノイズカットの目的で R— Cフィルターを設置することが多い。その結果、 Igcバランスが崩れる場合がある 1S このバランスが崩れている分が Igr値に精確に加算される。本発明では、 Igcバラ ンスが崩れている場合においても、その増加分の Igrを精確に測定することができる。
[0157] 5)単相回路の測定理論
5 1)単相回路への摘要
単相回路においても Igrを検出することは重要である。図 22は、単相回路における I gcと Igrと Iのベクトルの相関を示す図であり、(12)式は、その関係性を示している。
0
I =^ ( (Igc) 2+ (Igr) 2) - - - (12)
0
[0158] ここで、例えば、 Igcが約 50mA 生し、 Igrが OmAであると、(12)式より、 I値は、 約 50mAとなる。この状況において、 Igrを 10mA (IEEEの文献での考察では、子供 4. 5mA、成人女性 6. OmA、成人男性 9. OmAが致死量とされているので、 Igrが 1 OmAというのは、十分危険な電流値であると言える。)発生させると、(12)式より、 I
0 値は、 50. 99mAとなり、変化分は、 0. 99mAである。このような微量な変化分を I
0 方式で検出することは困難である。
[0159] また、供給電圧の変動により負荷に係る電流分も変化するので、 lmA〜2mA程度 の変動では、 0. 99mAの変化は、問題ないと判断される可能性がある。一方で、 Igr 方式では、原理的に、 10mAの増加が確実に検出でき、漏れ電流が危険なレベルに あると判定すること力できる。このようにして、単相回路においても、 Igrの有効性が証 明される。
[0160] また、単相回路に Igrベクトル理論方式を用いた場合における、 Igrの原理図及び 算出式を図 23及び(13)式に示す。
Igr = I0cos Θ…(13)
[0161] また、電圧の基準点及び I · Θを検出し、(13)式に代入する。このようにして、 Igr方
0
式では、 Igrを電圧及び位相角度から直接算出することができる。また、 Igr方式は、 I gc成分の影響を受けないため、単相においても高調波及びノイズ等に影響を受けに くい理論なのである。
[0162] <測定結果〉
つぎに、本発明に係る漏洩電流検出装置 1により、様々な条件下において Igrを測 定したときの結果を示す。
[0163] 図 24は、接地相以外の 2相(R、 T相)の同時接地した場合であって、 R相及び T相 に静電容量が発生していないときの測定結果である。当該測定結果から分かるように 、R相と T相に生じている漏洩電流の加算値をほぼ精確に測定できている。
[0164] また、図 25は、接地相以外の 2相(R、 T相)の同時接地した場合であって、 R相及 び T相に静電容量(0. 47 F)を有するコンデンサを付加したときの測定結果である 。当該測定結果から分かるように、静電容量の影響を受けずに、 R相と T相に生じて V、る漏洩電流の加算値をほぼ精確に測定できて!/、る。
[0165] また、図 26は、接地相以外の 2相(R、 T相)の同時接地した場合であって、 R相及 び T相に静電容量(1. 0 F)を有するコンデンサを付加したときの測定結果である。 当該測定結果から分かるように、静電容量の影響を受けずに、 R相と T相に生じてい る漏洩電流の加算値をほぼ精確に測定できている。
[0166] また、図 27は、 S相(接地相)が短絡した場合についての測定結果である。図 27で は、 S相とグランド間の電圧が 0 ' 6Vであり、短絡抵抗として S相に 20 Ωを付加した場 合の測定結果である。図 27から分かるように、本発明に係る漏洩電流検出装置 1に よれば、理論値とほぼ同等の測定結果を得ることができる。
[0167] また、本発明に係る漏洩電流検出装置 1は、本実施例全体に渡って述べたように、 単相のみならず、 3系統の交流電流又は交流電圧であって、各相それぞれを、 120 度(2 π /3 [rad] )ずつ位相をずらしたもの、 V、わゆる三相交流に対応することができ る。また、三相交流の結線方式は、 Y結線、デルター結線、 V結線がある。
[0168] Y結線は、三相各相をその一端の中性点で接続する結線である。また、 Y結線では 、各相間の電位差を線間電圧といい、各相と大地間の電位差を相電圧という。また、 結線外の各相の電流を線電流といい、結線内の各相の電流を相電流という。また、 Y 結線では、線間電圧は、相電圧のルート 3倍に等しぐ線電流は、相電流に等しい。
[0169] また、デルター結線は、三相各相を相電圧が加わる向きに接続し閉回路とする結 線である。デルター結線では、線間電圧は相電圧に等しぐまた、線電流は、相電流 のルート 3倍に等しい。
[0170] また、 V結線は、三角結線より三相のうち一相を除!/、た結線のことである。 V結線で は、線間電圧は、相電圧に等しぐまた、線電流は、相電流と等しい。
[0171] ここで、図 28に本発明に係る漏洩電流検出装置 1により、 V結線による地絡実験を 行ったときの構成図を示す。また、このときの測定結果 (線間電圧: 220V)を図 29に 示す。測定結果より、静電容量成分がない場合であって、 R相のみに抵抗成分 (約 4 . 7kQ )を付加したときの Iは、 46. 7mAであり、そのときの Igrは、 46· 6mAであり、
0
Igrは、ほぼ理論値 (約 46. 8mA)通りに測定できている。なお、変動分は、測定誤差 である。
[0172] また、静電容量成分がない場合であって、 T相のみに抵抗成分 (約 4. 7kQ )を付 カロしたときの Iは、 48. 2mAであり、そのときの Igrは、 48. 1mAであり、 Igrは、ほぼ 理論値 (約 46. 8mA)通りに測定できている。なお、変動分は、測定誤差である。
[0173] また、静電容量成分がない場合であって、 R相及び T相に抵抗成分 (約 4. 7kQ )を 付カロしたときの Iは、 81. 6mAであり、そのときの Igrは、 94. 2mAであり、 Igrは、ほ
0
ぼ理論値 (約 93. 6mA)通りに測定できている。なお、変動分は、測定誤差である。
[0174] また、静電容量成分 (約 0. 47 F)がある場合であって、 R相及び T相に抵抗成分 がないときの Iは、 47. 7mAであり、そのときの Igrは、 0. 7mAであり、 Igrは、ほぼ理
0
論値 (OmA)通りに測定できている。なお、変動分は、測定誤差である。
[0175] また、静電容量成分 (約 0. 47 F)がある場合であって、 R相のみに抵抗成分 (約 4 . 7kQ )を付加したときの Iは、 47. 3mAであり、そのときの Igrは、 45· 8mAであり、
0
Igrは、ほぼ理論値 (約 46. 8mA)通りに測定できている。なお、変動分は、測定誤差 である。
[0176] また、静電容量成分 (約 0. 47 F)がある場合であって、 T相のみに抵抗成分 (約 4 . 7k Ω )を付加したときの Iは、 82· 5mAであり、そのときの Igrは、 46. 3mAであり、
0
Igrは、ほぼ理論値 (約 46. 8mA)通りに測定できている。なお、変動分は、測定誤差 である。
[0177] また、静電容量成分 (約 0. 47 F)がある場合であって、 R相及び T相に抵抗成分
(約 4· 7k Ω )を付加したときの Iは、 94· 3mAであり、そのときの Igrは、 91. 8mAで
0
あり、 Igrは、ほぼ理論値 (約 93. 6mA)通りに測定できている。なお、変動分は、測 定誤差である。
[0178] このようにして、本発明に係る漏洩電流検出装置 1は、 V結線において静電容量成 分に影響を受けることなぐ精確に Igrを測定できることを証明している。

Claims

請求の範囲
電気方式が単相式又は三相式の被測定電線路に流れている漏洩電流を検出する 漏洩電流検出手段と、
上記被測定電線路に印加されている電圧を検出する電圧検出手段と、 上記電圧検出手段により検出された電圧の信号波形に基づき、上記被測定電線 路に印加されている電源周波数を算出する周波数算出手段と、
上記電圧検出手段によって検出された電圧の信号波形と、上記漏洩電流検出手 段により検出された上記漏洩電流の信号波形との位相差を検出する位相差検出手 段と、
上記位相差検出手段により検出された位相差と、上記周波数算出手段で算出され た電源周波数に基づき、上記被測定電線路に流れている漏洩電流の位相角度 Θを 算出する位相角度算出手段と、
上記漏洩電流検出手段により検出された漏洩電流の実効値を算出する実効値算 出手段と、
上記被測定電線路の電気方式を判断する電気方式判断手段と、
上記電気方式判断手段により検出された電気方式と、上記実効値算出手段で算 出された実効値と、上記位相角度算出手段により算出された上記被測定電線路に 流れて!/、る漏洩電流の位相角度とに基づき、上記被測定電線路に流れてレ、る漏洩 電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵 抗漏洩電流成分算出手段と、を備え、
上記実効値算出手段は、上記漏洩電流検出手段により検出された漏洩電流の平 均値を Iとして、その実効値 Iを
0
I =Ι Χ ( π /2) ^2
ο
により算出し、
上記対地絶縁抵抗漏洩電流成分算出手段は、
上記電気方式判断手段により検出された電気方式が単相式の場合には、上記実 効値算出手段により算出された実効値 I 0と、上記位相角度算出手段により算出され た位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流に含まれて いる対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Igr = I X cos θ
ο
により算出し、
上記電気方式判断手段により検出された電気方式が三相式の場合には、上記実 効値算出手段により算出された実効値 Iと、上記位相角度算出手段により算出され
0
た位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流に含まれて いる対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Igr= (I X sin θ ) Z cos θ
ο
により算出することを特徴とする漏洩電流検出装置。
[2] 上記対地絶縁抵抗漏洩電流成分算出手段は、
上記電気方式判断手段により検出された電気方式が三相三線式 (デルタ結線)の 場合には、上記実効値算出手段により算出された実効値 Iと、上記位相角度算出手
0
段により算出された位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩 電流に含まれている対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Igr= (I X sin θ ) Z cos^O
ο
により算出し、
上記電気方式判断手段により検出された電気方式が三相四線式 (スター結線)の 場合には、上記実効値算出手段により算出された実効値 Iと、上記位相角度算出手
0
段により算出された位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩 電流に含まれている対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Igr= (I X sin θ ) Z cos60
ο
により算出することを特徴とする請求項 1記載の漏洩電流検出装置。
[3] 上記電気方式判断手段は、電気方式を決定する選択スィッチにより構成されてい ることを特徴とする請求項 1又は 2記載の漏洩電流検出装置。
[4] 上記電気方式判断手段は、上記漏洩電流検出手段により検出された漏洩電流と 上記電圧検出手段により検出された電圧に基づいて電気方式を判断することを特徴 とする請求項 1又は 2記載の漏洩電流検出装置。
[5] 電気方式が単相式又は三相式の被測定電線路に流れて!/、る漏洩電流を検出する 漏洩電流検出工程と、
上記被測定電線路に印加されている電圧を検出する電圧検出工程と、 上記電圧検出工程により検出された電圧の信号波形に基づき、上記被測定電線 路に印加されている電源周波数を算出する周波数算出工程と、
上記電圧検出工程によって検出された電圧の信号波形と、上記漏洩電流検出ェ 程により検出された上記漏洩電流の信号波形との位相差を検出する位相差検出ェ 程と、
上記位相差検出工程により検出された位相差と、上記周波数算出工程で算出され た電源周波数に基づき、上記被測定電線路に流れて!/、る漏洩電流の位相角度を算 出する位相角度算出工程と、
上記漏洩電流検出工程により検出された漏洩電流の実効値を算出する実効値算 出工程と、
上記被測定電線路の電気方式を判断する電気方式検出工程と、
上記電気方式検出工程により検出された電気方式と、上記実効値算出工程で算 出された実効値と、上記位相角度算出工程により算出された上記被測定電線路に 流れて!/、る漏洩電流の位相角度とに基づき、上記被測定電線路に流れてレ、る漏洩 電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵 抗漏洩電流成分算出工程と、を備え、
上記実効値算出工程は、上記漏洩電流検出工程により検出された漏洩電流の平 均値を Iとして、その実効値 Iを
0
I =Ι Χ ( π /2) ^2
ο
により算出し、
上記対地絶縁抵抗漏洩電流成分算出工程は、
上記電気方式検出工程により検出された電気方式が単相式の場合には、上記実 効値算出工程により算出された実効値 Iと、上記位相角度算出工程により算出され
0
た位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流に含まれて いる対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Igr = I X cos θ
ο により算出し、
上記電気方式検出工程により検出された電気方式が三相式の場合には、上記実 効値算出工程により算出された実効値 Iと、上記位相角度算出工程により算出され
0
た位相角度 Θとに基づいて、上記被測定電線路に流れている漏洩電流に含まれて いる対地絶縁抵抗に起因する漏洩電流成分 Igrを、
Figure imgf000037_0001
により算出することを特徴とする漏洩電流検出方法。
PCT/JP2007/073520 2006-12-08 2007-12-05 漏洩電流検出装置及び漏洩電流検出方法 WO2008069249A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/324553 WO2008072287A1 (ja) 2006-12-08 2006-12-08 漏洩電流検出装置及び漏洩電流検出方法
JPPCT/JP2006/324553 2006-12-08

Publications (1)

Publication Number Publication Date
WO2008069249A1 true WO2008069249A1 (ja) 2008-06-12

Family

ID=39492131

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/324553 WO2008072287A1 (ja) 2006-12-08 2006-12-08 漏洩電流検出装置及び漏洩電流検出方法
PCT/JP2007/073520 WO2008069249A1 (ja) 2006-12-08 2007-12-05 漏洩電流検出装置及び漏洩電流検出方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324553 WO2008072287A1 (ja) 2006-12-08 2006-12-08 漏洩電流検出装置及び漏洩電流検出方法

Country Status (1)

Country Link
WO (2) WO2008072287A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001950A1 (ja) * 2008-07-02 2010-01-07 パナソニック電工株式会社 漏電検出機能を持つ配線器具
CN102680851A (zh) * 2012-05-30 2012-09-19 深圳市英威腾电气股份有限公司 一种漏电流检测方法及其装置
JP2013031262A (ja) * 2011-07-27 2013-02-07 Mitsubishi Electric Corp 保護継電器
JP2015064265A (ja) * 2013-09-25 2015-04-09 株式会社関電工 漏電監視装置及び方法
JP2015206741A (ja) * 2014-04-23 2015-11-19 一般財団法人関東電気保安協会 絶縁監視装置
EP2306609A3 (en) * 2009-09-24 2017-04-19 General Electric Company Ground fault detection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190645A (ja) * 2009-02-17 2010-09-02 Fuji Electric Fa Components & Systems Co Ltd 漏れ電流検出方法、漏れ電流検出装置及び系統監視装置
JP6240918B1 (ja) * 2016-06-30 2017-12-06 共立電気計器株式會社 漏れ電流測定方法および漏れ電流測定装置
JP7043367B2 (ja) * 2018-08-09 2022-03-29 株式会社日立製作所 電気機械の診断装置および診断方法、並びに回転電機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729477U (ja) * 1993-10-28 1995-06-02 株式会社ムサシ電機計器製作所 絶縁性漏洩電流測定装置
JPH0919046A (ja) * 1995-04-28 1997-01-17 Mitsubishi Electric Corp 絶縁劣化診断装置
JP2002125313A (ja) * 2000-10-16 2002-04-26 Kansai Denki Hoan Kyokai 漏電検出器とこれを用いた漏電警報器及び漏電遮断器
JP2004012147A (ja) * 2002-06-03 2004-01-15 Kawamura Electric Inc 絶縁監視装置及び絶縁監視方法
JP2005062124A (ja) * 2003-08-20 2005-03-10 Chugoku Electric Power Co Inc:The 電線又はケーブルの絶縁劣化領域診断システム及び方法
JP2005140532A (ja) * 2003-11-04 2005-06-02 Toyoji Ahei 位相角度算出装置及び方法、漏洩電流検出装置及び方法
JP2006038604A (ja) * 2004-07-27 2006-02-09 Multi Keisokuki Kk 漏れ電流計測器
WO2006035519A1 (ja) * 2005-01-31 2006-04-06 Ohno, Takemi 漏洩電流遮断装置及び方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729477U (ja) * 1993-10-28 1995-06-02 株式会社ムサシ電機計器製作所 絶縁性漏洩電流測定装置
JPH0919046A (ja) * 1995-04-28 1997-01-17 Mitsubishi Electric Corp 絶縁劣化診断装置
JP2002125313A (ja) * 2000-10-16 2002-04-26 Kansai Denki Hoan Kyokai 漏電検出器とこれを用いた漏電警報器及び漏電遮断器
JP2004012147A (ja) * 2002-06-03 2004-01-15 Kawamura Electric Inc 絶縁監視装置及び絶縁監視方法
JP2005062124A (ja) * 2003-08-20 2005-03-10 Chugoku Electric Power Co Inc:The 電線又はケーブルの絶縁劣化領域診断システム及び方法
JP2005140532A (ja) * 2003-11-04 2005-06-02 Toyoji Ahei 位相角度算出装置及び方法、漏洩電流検出装置及び方法
JP2006038604A (ja) * 2004-07-27 2006-02-09 Multi Keisokuki Kk 漏れ電流計測器
WO2006035519A1 (ja) * 2005-01-31 2006-04-06 Ohno, Takemi 漏洩電流遮断装置及び方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001950A1 (ja) * 2008-07-02 2010-01-07 パナソニック電工株式会社 漏電検出機能を持つ配線器具
JP2010015745A (ja) * 2008-07-02 2010-01-21 Panasonic Electric Works Co Ltd 漏電検出機能付配線器具
CN102067263A (zh) * 2008-07-02 2011-05-18 松下电工株式会社 具有漏电检测功能的配线器具
KR101236799B1 (ko) * 2008-07-02 2013-02-25 파나소닉 주식회사 누전 검출 기능을 가지는 배선 기구
US8390967B2 (en) 2008-07-02 2013-03-05 Panasonic Corporation Wiring device having leakage detection function
EP2306609A3 (en) * 2009-09-24 2017-04-19 General Electric Company Ground fault detection device
JP2013031262A (ja) * 2011-07-27 2013-02-07 Mitsubishi Electric Corp 保護継電器
CN102680851A (zh) * 2012-05-30 2012-09-19 深圳市英威腾电气股份有限公司 一种漏电流检测方法及其装置
JP2015064265A (ja) * 2013-09-25 2015-04-09 株式会社関電工 漏電監視装置及び方法
JP2015206741A (ja) * 2014-04-23 2015-11-19 一般財団法人関東電気保安協会 絶縁監視装置

Also Published As

Publication number Publication date
WO2008072287A1 (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4920357B2 (ja) 漏洩電流検出装置及び方法
AU2005288465B2 (en) Leak current breaker and method
WO2008069249A1 (ja) 漏洩電流検出装置及び漏洩電流検出方法
JP4945727B2 (ja) 漏洩電流遮断装置及び方法
US20090287430A1 (en) System and Method for Detecting Leak Current
JP5216958B2 (ja) 漏洩電流検出装置及び漏洩電流検出方法
JP2008164374A (ja) 漏洩電流測定装置及び漏洩電流測定方法
JP2009058234A (ja) 漏れ電流測定装置及び測定方法
JP5380702B2 (ja) 漏洩電流測定装置及び測定方法
JP4599120B2 (ja) 電気設備の絶縁監視装置と方法
JP5477020B2 (ja) 電気機器おける漏洩電流測定装置及び測定方法
JP2004012147A (ja) 絶縁監視装置及び絶縁監視方法
EP1875252B1 (en) Method and apparatus for monitoring the earth loop impedance of an electrical installation
JP5748797B2 (ja) 漏洩電流検出装置及び方法
US11942816B2 (en) Apparatus and method for detection of line to neutral back-feed voltage
JP5329470B2 (ja) 漏洩電流検出装置及び方法
KR102296618B1 (ko) 휴대용 변류기용 비오차 및 위상각 시험기
KR101117870B1 (ko) 누설전류검출장치와 방법
RU2358272C1 (ru) Устройство и способ размыкания тока утечки
KR101030437B1 (ko) 누설전류 및 접지저항 측정시스템
JP2020153849A (ja) 零相電流計測方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP