JP5507804B2 - トモシンセシス画像を取得するための方法 - Google Patents

トモシンセシス画像を取得するための方法 Download PDF

Info

Publication number
JP5507804B2
JP5507804B2 JP2007223344A JP2007223344A JP5507804B2 JP 5507804 B2 JP5507804 B2 JP 5507804B2 JP 2007223344 A JP2007223344 A JP 2007223344A JP 2007223344 A JP2007223344 A JP 2007223344A JP 5507804 B2 JP5507804 B2 JP 5507804B2
Authority
JP
Japan
Prior art keywords
orientation
dose
breast
orientations
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007223344A
Other languages
English (en)
Other versions
JP2008062058A (ja
JP2008062058A5 (ja
Inventor
アンリ・スーシェ
イブラヒマ・フェイ
ラズヴァン・ガブリエル・イオダッシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2008062058A publication Critical patent/JP2008062058A/ja
Publication of JP2008062058A5 publication Critical patent/JP2008062058A5/ja
Application granted granted Critical
Publication of JP5507804B2 publication Critical patent/JP5507804B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • A61B6/544Control of apparatus or devices for radiation diagnosis involving control of exposure dependent on patient size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging

Description

本発明は、放射線学的徴候に対する検出の選択性を高めたトモシンセシス画像を取得するための方法に関する。本発明は特殊な便宜に供することが可能であり、医用撮像分野(さらに具体的には、マンモグラフィ分野)における利用に限るものではない。本発明はさらに、この種の画像処理法を備えた医用画像観察ステーションに関する。
マンモグラフィは今日、乳がんに関連付けされた病変を早期に検出するために広範に利用されている。マンモグラフィ装置で検出される放射線学的徴候は、周囲の組織と比べてX線に対する不透過性がより大きい要素からなる微小石灰化と呼ばれるカルシウムの沈着(accretion)であることや、あるいはマンモグラフィ画像内において隣接するゾーンと比べてX線の吸収がより強いところである高密度ゾーンによって表現される腫瘍であることがあり得る。
放射線画像は、患者乳房の放射線像を取得するように設計されたX線マンモグラフィ装置によって収集される。構造的にまたその原理のために、マンモグラフィデバイスは垂直の支柱を有しており、マンモグラフィデバイスは斜方向に向けることが可能であり、かつマンモグラフィデバイスには患者が自分の乳房をその上に位置させる乳房支持トレイまたはプラットフォームが設けられている。この乳房支持トレイまたはプラットフォームは、放射線画像の検出用の放射線感受性フィルムか電子式検出器のいずれかの上に重ね合わされる。画像収集プロトコルには放射線撮像の時点で乳房を圧迫する必要性が含まれる。このためにこの支柱は、乳房を圧迫することが可能な手動操作式またはモータ駆動式の摺動式パッド(pad)またはパドル(paddle)を備えている。支柱の上部には、X線管と、X線ビームをコリメートするために使用される器具と、を備えている。したがって支柱は、上から下に向かって順に、X線管、パドル、乳房支持トレイ及び検出器という構成要素を垂直に支えている。
しかしこの種のマンモグラフィ装置は、腫瘍や石灰化の有無に関する十分な情報を提供できない患者乳房の2D画像しか作成することができず、患者に対してストレスをもたらすと共に公衆衛生上の過剰なコストを要するような偽陽性解釈を生じさせることが多い。
さらに、ある種のカルシウム堆積やある種の不透過体ケースは特定されないことがあり得る。この現象には幾つかの原因がある。特にマンモグラフィ画像が投影の結果得られるものであるため、マンモグラフィ画像は構造が重なり合って描出され乳房の構造の視認性を妨げることになり、このためこれらの構造の重複がある不透過体に類似する場合には偽陽性解釈につながり、またこれらの構造が病変の視認性を不明瞭にする場合には偽陰性解釈につながることがしばしばある。
これらの偽陽性解釈や偽陰性解釈の問題の解決に役立てるために、従来技術において患者乳房の3D画像を作成するマンモグラフィ装置が存在している。図1aは、患者乳房の3D画像の収集原理を表した概略図である。図1aの装置では、X線感受性フィルム上への照射の連続的な集積によって画像を収集するのではなく、マンモグラフィ装置のX線管4を経路Tに沿った異なる位置P’n〜Pnに配置させて行った1組の曝射に対応した一連の画像を収集することが好ましい。患者の乳房2(またしたがって、検出器3)はこれらの連続する曝射P’n〜Pnの間に照射を受ける。
次いでコンピュータ断層で使用されるタイプの画像再構成アルゴリズムを適用することによって、あるスライス面内の画像並びに該スライス面と隣接する面内のその他の画像を再構築するような周知の方法が存在する。したがって、単一のスキャンですべての画像が要求されるような合成式断層撮像について述べることができる。この一連の収集画像から、乳房内で検出器と平行な任意の面を遡及的に作成することができる。したがって、投影により収集した一連の画像から、圧迫した乳房の厚み全体に及ぶ1組の画像スライスが作成される。各断面5a〜5nは距離zの位置にある検出器の面と平行な仮想断面を意味している。
図1bは、作成する画像ボリュームに関する検出器面と平行な2つの仮想スライスを表した概略図である。図1bから理解できるように、乳房2内の臨床関心対象領域6及び7はすべての断面上においてそのスライス面を基準として分布しており、また同時に周囲の組織との干渉が最小化されている。
しかし、このトモシンセシス・マンモグラフィ装置には限界がある。というのは、こうしたトモシンセシス装置では平均的な乳房について典型的には50〜80枚のスライスからディジタルボリューム再構成が実施されるからである。このため管理すべき情報量が極めて大きい。同様に、臨床関心対象の情報を画像ボリューム内で順次探査することになるため、こうした情報へのアクセスには極めて長い時間がかかる。
ただし、マンモグラフィにより特異的な別の問題点(別の分野でも起こり得る)は、臨床関心対象となる微小石灰化に対する100μmと500μmの間での解析を可能とさせる要求に関するものである。このため、マンモグラフィ内でがん病変を疑う根拠となし得る異常の検出及び特徴付けには高い空間分解能が必要である。この空間分解能の問題はトモシンセシス・マンモグラフィデバイスにおいて決定的である。したがってこれらのデバイスは、微小石灰化を精細に解析するのに十分な画質を取得するために使用することができない。
さらに、こうした収集幾何学構成に関して予測される影響の1つは、微小石灰化などの微小物体がより明瞭でなくなったり位置特定できなくなることである。というのは、臨床関心対象の面外ゾーン(out−of−plane zone)6及び7は、第1には再構成アルゴリズムによってかつ第2には乳房全体のボリューム再構成によって誘導されるファジースポット関数(fuzzy spot function)による影響を受けるからである。この乳房全体のボリューム再構成は、膨大なデータボリュームを作成することによらなければ投影軸に沿って十分な分解能を備えるように実施することが不可能である。このために、断層撮像画像の検討処理に大きな影響を及ぼす結果となる。
さらに、微小石灰化が個々に喪失することだけが予期される唯一の影響ではない、というのはクラスター状の微小石灰化ではさらに同時に焦点深度の低下のためにクラスター内での微小石灰化の視認性が喪失するからである。この焦点深度は、厳密な焦点面の下側または該面を超えるところで画像の鮮鋭度をひどく損なうことなく変更することが可能な量である。
従来技術において、ワークフロー及び表示焦点深度の問題点に対するある取り組み法が存在する。この取り組み法はTao Wuらによって「Medical Physics」(2003年3月、Vol.30 365/380)内の記事において開示されている。Tao Wuらが記載している解決法は、一般に線量(dose)と呼ばれるX線強度全体の分布に関して1つの方針を記載している。この方針によれば、乳房の曝射中にX線管が発生させる照射線量に関して不均一な分布が実現される。この分布は、乳房を基準とした管球の位置並びに検出器の動きの関数として実現される。
Tao Wuらの記事で開示されたこの取り組み法を図2に表している。図2では、管球の向き群中の2つの境界線位置PnとP’nの間で管球の位置を角度分布させている。これらの群は、管球の中央の位置P0の各側に配置設定される。ある群の向きのすべてに関する照射線量は同じである。
その管球位置ができる限り境界線位置PnまたはP’nの近くにされる境界線群G3またはG’3では、その累積照射線量は総照射線量の0.33に等しい。その管球位置が中央の位置の各側に分布される中央の群G1では、その累積照射線量は総照射線量に等しい。中央の群G1と境界線群G3またはG’3との間に位置する中間群G2またはG’2では、その累積照射線量は総照射線量の0.5に等しい。
第FR2864299A号
提唱されたこの取り組み法では、再構成スライスがディジタル式に相互に組み合わせられ高い焦点深度を得ている。しかしこれによっても、臨床関心領域の面外にある微小石灰化が喪失する可能性は解決されておらず、またスライスと組み合わされる追加的なデータボリュームが作成されない。さらに、スライスの組み合わせを表示と同時に実施するとそのワークフローが損なわれることがある。
本発明は正確には、本明細書の上で説明した技法の欠点を克服することを目的とする。このために本発明は、放射線学的徴候の検出の選択度を向上させることが可能なトモシンセシス画像を取得するための方法を提唱する。
このために本発明は、3D画像において放射線学的徴候の検出を容易にするために使用される画像処理法と関連付けされた投影画像収集技法を提唱する。この収集技法及び画像処理法では、放射線学的徴候はトモシンセシス方法で特定するのが容易であり、これによってより効率の高い検査が可能となる。
本発明は、情報の可読性を向上させるための放射線学的画像に対するディジタル処理技法を有利に活用しているマンモグラフィに対する新規の取り組み法を提唱する。
これらの画像処理法は、臨床データの観察に要する時間を短縮しかつ臨床関心対象の情報へのアクセスを簡略化することが可能な新規方式の開発において大きなデータ量に対処するために使用することが可能である。
本発明の収集技法は、X線線量の分布に関する改良式の方針を用いてトモシンセシスシーケンスを収集するために使用することが可能である。本発明では、従来技術の方式に対する矯正を実施したいずれの線量分布方針によっても放射線学的徴候の検出の向上につながることが理解できよう。
本発明の線量分布方針は、放射線学的徴候の多種多様なサイズ及び種別に関して実質的に均一である焦点深度の関数として規定される。この方針は、周波数スペクトルを超えた信号対雑音比の最適な伝播の保証を目的としたディジタル式フィルタ処理と結合させている。このディジタル式フィルタ処理は、再構成中にノイズ伝播の制御を要求するようなクラスの適応フィルタによって実施される。本発明では、管球の各投影に対して適用するフィルタは、その投影に割り当てられる線量に依存する。
したがって本発明は、収集幾何学構成の分布及び/または収集線量及び/またはディジタル式フィルタ処理が適正であることによって異なるサイズ及び種別の放射線学的徴候の検出に適した焦点深度を提供するようなある特定のトモシンセシス画像を取得するための方法を実現する。本発明はさらに、再構成の光軸に近い(すなわち、スライス面と直交する)角度にピークをもつ線量分布方針によって、管球の中央の位置と境界線位置の間の比を3対1として、表示させる画像の品質が急激に改善されることを利点としている。
より具体的には本発明の目的は、トモシンセシス画像を取得するための方法であって、
身体に対する第1の角度方向にその主照射方向が向くようにしたX線管によって曝射中に身体にX線照射が当てられること、
この第1の向きに対応する第1の投影画像が記録されること、
主向き方向のその他の向きに関してこれらの操作が反復されると共に、その他の投影画像が記録されること、
再構成画像を作成するようにこれらの投影画像が処理されること、
X線管によって発生させる照射線量は、身体を基準とした主方向の向きあるいは該向きとリンクさせた別の係数の関数として曝射中に変動するように生成されること、
向き群中の2つの境界線向きの間で向きが角度分布されること、を特徴とすると共に、
1つの向きまたは1つの向き群が経路の多数の向きと比べて好ましいこと、
この好ましい向きまたは好ましい向き群に関する累積照射線量が総照射線量の5/9より多いこと、
を特徴とする方法である。
同じく本発明では、
これらの群は、その主方向が身体の支持体と直交するような中央の向きの各側に配置設定されていること、
その向きが境界線向きの最も近くにある境界線群ではその累積照射線量が総照射線量の1/9より少ないこと、
中央の向きの各側にその向きが分布される中央の群ではその累積照射線量が総照射線量の5/9より多いこと、
中央群と境界線群の間に位置する中間群では、該群における向きの数が境界線群に関する向きの数より少ないこと、
とすると有利である。
本発明の目的の1つはさらに、トモシンセシス画像を取得するための方法であって、
身体に対する第1の角度方向にその主照射方向が向くようにしたX線管によって曝射中に身体にX線照射が当てられること、
この第1の向きに対応する第1の投影画像が記録されること、
主向き方向のその他の向きに関してこれらの操作が反復されると共に、その他の投影画像が記録されること、
再構成画像を作成するようにこれらの投影画像が処理されること、
X線管が発生させる照射線量は身体を基準とした主方向の関数として曝射中に変動するように生成されること、
中央の向きの各側に配置設定された2つの境界線向きの間に向きが角度分布されること、
境界線向きの近くに向けられた曝射に関する照射線量は中央の向きの近くに向けられた曝射に関する照射線量より少ないこと、を特徴とすると共に、
該処理は投影画像に対する空間フィルタ処理を含むこと、
該空間フィルタ処理は所与のサイズのフィルタ処理コアを含むこと、
中央の向きの近傍の向きに対応する投影画像では該コアのサイズが境界線向きに対応する投影画像の近傍の向きに関する場合よりも小さいこと、
を特徴とする方法である。
同じく本発明では、割り当てられる線量及びコアのサイズは中央の向きを基準とした角度方向の特定に従って段階的かつ単調性に変更されると有利である。
同じく本発明では、そのフィルタがウィーナーフィルタであると共に、中央の向きの近傍の向きに関するフィルタの値は境界線向きの近傍の向きに関するフィルタの値より大きいと有利である。
同じく本発明では、2つの連続する向きが形成する角度である角度ピッチは境界線向きに向かうに従って増大させると有利である。
同じく本発明では、中央の向きの近傍の向きは約3度に等しい角度ピッチを有しかつ境界線向きの近傍の向きは約7度に等しいその角度ピッチを有すると有利である。
同じく本発明では、中央の向きはX線管と対面するように配置させた身体の支持体と直角の方向を向いていると有利である。
同じく本発明では、その曝射は固定式あるいは移動式であると有利である。
同じく本発明では、その身体は乳房であると有利である。
同じく本発明では、検出器面と平行なスライス面を基準として再構成画像が1つまたは複数のスライスになるように切断されると有利である。
同じく本発明では、管球が発生させる照射線量は患者乳房の厚さの関数として決定されると有利である。
本発明はさらに、放射線学的徴候に対する検出の選択性を高めたトモシンセシス画像を取得するための前記方法を実現するためのデバイスに関する。
本発明は、以下の説明及び添付の図からより明瞭に理解されよう。これらの図は例示のために与えたものであり、いかなる意味でも本発明の範囲を限定するものではない。
図3は本発明によるX線デバイス(特に、マンモグラフィ装置)を表している。このX線デバイス10は垂直の支柱11を有する。この垂直の支柱11上には、X線放出管球13とこの管球13が放出したX線の検出が可能な検出器14とを支えているヒンジ式アーム12が存在する。このアーム12は、垂直方向、水平方向あるいは斜め方向に向けることができる。管球13にはX線放出焦点となる焦点15が設けられている。この焦点15は主放出方向Dに沿ってX線ビーム16を放出する。
アーム12は垂直の支柱11上において、円弧の形態の経路Tに沿って管球13をシフトする一方で同時に検出器14は不動の状態として使用できるようなヒンジ動作をする。管球13がある1つの面内または球体部内を移動することを可能とした別の配列も可能である。ついで管球13は2つの末端位置の間で傾斜して拡がっている異なる位置を占めることが可能である。この2つの位置は例えば、検出器2の面との直交面を基準として互いに対称である。
好ましい一例では、その検出器14はディジタル検出器である。検出器14はX線ビーム16を受け取るように管球13と反対側で主照射方向Dでアーム11に対してフックされている。
アーム12には、患者がその上に自身の乳房を置くための乳房支持トレイまたはプラットフォーム17が設けられている。この乳房支持トレイは検出器14を覆うように置かれている。検出器14は乳房支持トレイ17の下側に配置されている。検出器14は、患者乳房及び乳房ホルダートレイ17を通過した後のX線を検出する。
一変形形態では、検出器14は、可動式とすることがありまたX線管13と同時に乳房の周りの様々な位置を占有することがある。このケースでは、検出器14は乳房ホルダートレイ17に対して固定式に連結していない。検出器14は平坦とすることや曲面状とすることができる。そのシフトは回転式及び/または並進式とすることができる。
好ましい一例では、その検出器14はディジタル検出器である。検出器14は、X線ビーム16を受け取るように管球13と反対側で放出方向Dでアーム12に対してフックされている。
アーム12には、患者がその上に自身の乳房を置くための乳房ホルダートレイ18が設けられている。この乳房ホルダートレイ18は検出器14の最上部に配置されている。検出器14は乳房ホルダートレイ18の下側に配置されている。検出器14は、患者乳房及び乳房ホルダートレイ18を交差した後のX線を検出する。
さらに、乳房の固定と画質や患者乳房に付与されるX線強度との両者に関連した理由のために、放射線撮像中に患者乳房を圧迫することが必要である。様々な圧迫力が加えられることがある。これらの力は、実施される検査の種類の関数として乳房ホルダートレイ17上にある乳房を圧迫している圧迫用パッド18を介して加えられる。このためにアーム12は、手動操作式またはモータ駆動式のいずれかにより乳房を圧迫するように製作することが可能な摺動式パッド18を有している。パッド18はX線透過材料(例えば、プラスチック)から製作される。アーム12はしたがって、垂直方向で上から順に、X線管13、圧迫用パッド18、乳房ホルダートレイ17及び検出器14を支持している。
パッド18、患者乳房、トレイ17及び検出器14は固定されているが、X線管13はこのアセンブリを基準として様々な空間的位置を占有することがある。
患者乳房の各部分に対する検査を可能にするために、ビーム16はその乳房の周りの多数の方向に向けられることがある。患者身体のある部分を横切る多数のビーム16を受け取った後、検出器14は受け取った線束のエネルギーに対応した電気信号を放出する。次いでこれらの電気信号は外部バス21によって制御論理ユニット20に送られることがある。これらの電気信号によってこの制御論理ユニット20は解析対象の身体部分に対応する投影画像を作成することが可能となる。次いでこれらの画像はこの制御論理ユニット20の画面によって表示することができ、あるいはこれらの画像はプリントされることがある。
一例では制御論理ユニット20は、マイクロプロセッサ22、プログラムメモリ23、データメモリ24、キーボード26を装備した表示画面25、及び出力/入力インタフェース27を備える。マイクロプロセッサ22、プログラムメモリ23、データメモリ24、キーボード26を装備した表示画面25、及び入力/出力インタフェース27は内部バス28によって相互連絡させている。
実際面では、あるデバイスがある動作を実施するように指令されると、該デバイスのマイクロプロセッサを該デバイスのプログラムメモリ内に記録された命令コードによって制御することによってこの動作が実施される。制御論理ユニット20はこうしたデバイスのうちの1つである。制御論理ユニット20は集積回路の形態で製作されることが多い。
プログラムメモリ23は、その各々がデバイスのある機能を履行させるような命令コードに対応している幾つかのゾーンに分割されている。本発明のその変形形態に応じて、メモリ23は、管球13の経路を設定させる命令コードを含んだゾーン29を有する。メモリ23は、該経路に沿った方向Dの角度の数を決定させる命令コードを含んだゾーン30を有する。メモリ23は、検出しようとする放射線学的徴候の種別に応じて向き方向Dを拡げるモードを決定させる命令コードを含んだゾーン31を有する。メモリ23は、検出しようとする放射線学的徴候の種別及びサイズに応じて主X線照射方向Dの多数の向きに関してX線強度分布の方針を実現させる命令コードを含んだゾーン32を有する。
メモリ23は、主X線照射方向Dの各向きに割り当てられたX線強度の放出を指令する命令コードを含んだゾーン33を有する。
メモリ23は、各向きで放出されたX線に対応して検出器14が受け取る投影画像を収集させる命令コードを含んだゾーン34を有する。メモリ23は、収集幾何学構成及び検出器に由来するアーチファクトを解消するために投影画像に対する前処理を実行させる命令コードを含んだゾーン35を有する。メモリ23は、各投影画像について対応する方向Dごとに受け取ったX線強度の関数として適応させてフィルタを適用させる命令コードを含んだゾーン36を有する。
メモリ23は、平均的な乳房で50〜80枚のスライスを含む再構成ディジタルボリュームを取得するため、異なる角度で収集した処理済み投影画像のすべてに断層撮像再構成アルゴリズムを適用させる命令コードを含んだゾーン37を有する。メモリ23は、再構成ディジタルボリュームを処理し、再構成した乳房ボリューム内で放射線学的徴候を構成する可能性があるボクセルを位置特定するためのアルゴリズムを実行させる命令コードを含んだゾーン38を有する。これらの放射線学的徴候は微小石灰化のことも不透過体のこともある。
動作モードにおいて、制御論理ユニット20は管球13の経路Tを決定する。この経路は施術者が選択した標準ビューに従って決定されることがある。
制御論理ユニット20は、経路Tに沿って管球3の一連の曝射位置をサンプリングすることによって進められる。経路Tの形状は焦点15によって与えられる。図3の例では、経路Tは円弧の形状を有している。管球のこれらの曝射位置は、管球の2つの境界線曝射位置が境界となっている。これらの境界線曝射位置は一般に、管球の製作に由来して、さもなければ医学的要件に従って生じる。これらの境界線曝射位置は、焦点が空間的に占有することが可能な末端位置に対応する。この2つの境界線曝射位置は、乳房ホルダートレイ17の面Nと直交する中央の位置を基準として対称である。乳房(またしたがって、検出器14)は連続する曝射位置の間に照射を受ける。これらの曝射位置では、X線管の焦点15は、固定した空間角度展開した位置を占有する。
このことは一例であり本発明の限定を意図していないが、角度探査が中央の曝射位置にあたる照射の正中方向を基準として60度プラスまたはマイナス30度に等しくなるように企画している。この探査の間に、制御論理ユニットはビーム16をある数だけ収集しており、所望の画像再構成精度に応じて例えば9本、11本、13本あるいは別のビーム本数が収集される。したがって患者乳房の曝射中に、管球13により乳房にX線照射が当てられる。一例では管球13は、その主照射方向Dが乳房ホルダートレイ面Nと直交する第1の中央角度方向A0を向くようにして乳房に第1のX線照射を当てている。この曝射(exposure)とは、乳房がX線に曝露されている間の時間である。乳房に対するこの曝射は、管球13が固定の位置で乳房に照射を当てる場合は固定していると想定される。また管球13が非固定の位置で乳房に照射を当てる場合は乳房に対する曝射は移動していると想定される。
検出器が固定しているときは、この中央の向き角度A0は検出器の法線と直交する。管球が中央の曝射位置にあるときは、この中央の向き角度A0は主角度方向に対応する。制御論理ユニット20は、管球13の経路Tに沿った主X線照射方向Dの向きの数を決定する。図3の例では、その向きの数が21である。
管球13は、経路Tに沿った主照射方向Dの多数の向きに対してX線線量を放出する。図3の例では、中央の向きA0と境界線向きA9の間に配置設定された向きのみを図示している。ここで向きA9の角度は、管球が境界線曝射位置にあるときは主角度方向に対応する。
これらの向きA1〜A9は中央の向きA0の右側に配置設定させている。これ以外の向きA’1〜A’9(図示せず)がこの中央の向きA0の左側に配置設定されている。これらの向きA’1〜A’9は、向きA1〜A9と同じ特徴を有する。この中央の向きA0によって向きの全体数が2つの等しい部分に分離されている。
制御論理ユニットはさらに、経路Tに沿って多数のビーム16を放出するための向きA0〜A9の角度展開を決定する。制御論理ユニット20は、検出しようとする放射線学的徴候の種別の関数として経路T上で向き16(A0〜A9)を展開させる。こうした向きの決定及び角度展開の一例を図5a及び5cに表している。
制御論理ユニット20は、方向Dの各向きに関するX線ビーム16上に分布させるX線強度(より一般的には、線量と呼ばれる)を決定する。分布させる総X線線量は、従来のマンモグラフィで使用される線量の関数として決定されることがある。一変形形態では、患者乳房の厚さの関数としてこれが決定されることがある。
制御論理ユニット20は、方向Dの全方向にわたりこの総線量の分布モードを決定する。これによって、その受け取る累積線量が割り当てられる最大X線線量になるような好ましい向きまたは好ましい向き群が決定される。この決定操作の一例を図4b及び5bに表している。制御論理ユニット20は、方向Dのビーム16に対してX線強度を不均一に分布させている。制御論理ユニットによって、X線管が発生させる照射線量が身体を基準とした主方向の向きA0〜A9の関数として曝射中に変更される。こうした分布の例示的な一実施形態を図5bに表している。
検出器14は、多数の主照射方向Dを表している多数の投影画像を収集する。制御論理ユニットは、対応する方向Dごとに受け取ったX線の強度の関数として各投影画像に対して適応フィルタを適用している。
制御論理ユニット20は、この多数のフィルタ処理済み投影画像をデータメモリ24内に収集する。コンピュータ断層で使用されるタイプの画像再構成アルゴリズムを次いで適用することによって、あるスライス面内の画像並びに該スライス面と隣接する面内のその他の画像を再構成することが可能となる。したがって、単一スキャンにおいて画像のすべてが収集される合成断層撮像と呼ぶことが可能となる。実際面では、このスライス面の画像は探査が180°に対して実施されない場合において隣接する面の画像と比べてより精細となる。
この合成が含意する補正はその多くにおいて、X線管焦点の経路が検出器位置と相似関係になく、検出器は異なる入射角に沿って投影の法線方向に対して傾斜を示すことに関連するものである。制御論理ユニットはコンピュータ断層再構成アルゴリズムに関するこれらの収集制約要件の影響を補正する。
選択したビューを基準として乳房の全体描出を得るために、制御論理ユニットは経路Tの向きA’1〜A’9に関して同じ操作を実施する。
図4aは、均一な線量分布の従来技術方針を表した模式図である。図4aの例では、方向Dの向きは均一な角度分布θを有する。同様にその線量は多数の方向Dに対して均一に分布されている。各向きごとに検出器は、乳房の投影半径に依存するような投影軸に沿ったZ応答を与える。
図4aの展開及び分布モードでは、乳房の不透過体40など大サイズの放射線学的徴候が高い選択度で検出される。しかし微小石灰化41など乳房の小サイズの放射線学的徴候ではその応答が極めて短くなり、これにより使用する再構成方法や表示方法と無関係に病変の検出能力が影響を受けることになる。この問題点は、従来式の均一分布の線量では境界線向きの近傍の向きに対して割り当てられる線量が伝達される情報に対して過剰であることに由来する(この情報は臨床上ほとんど利用されることがなく、また病変検出に悪影響を及ぼすことさえあり得る)。
本発明は、図4bから理解できるように不均一な線量分布という方針を実現することによってこの問題点を解決している。図4bの例では、この線量分布方針によって乳房に関する異方性(anisotropic)3D再構成が可能となる。したがって検出される放射線学的徴候のZ応答は、線量の最適な利用による大サイズと小サイズの放射線学的徴候に対する同時検出という臨床目標の関数として規定される。この種の方針では、検出しようとする放射線学的徴候のサイズに伴って実効角度方向が変更される。
図5aは、管球の経路に沿った角度展開を決定するモードの1つを表している。トモシンセシスでは、その角度展開が組織の重複に対して重要な影響を有している。このため、境界線向きの間での向きの展開を決定するために、制御論理ユニットは減衰係数がμで直径44の長さがdの2つの同一の均一球体構造42及び43を想定する。この2つの球体構造42及び43は、同じ垂直軸45に沿ってその中心同士が距離aを有する。この軸方向で球体42及び43を明瞭に識別するのに必要な角度θは、その投影が接線方向になるような最小角度によって規定される。
この基本に基づいて制御論理ユニットは、乳房内に存在するすべての放射線学的徴候を識別するのに用いる向きの展開角度を計算することができる。一例ではその制御論理ユニットは、2つの種別の放射線学的徴候のみ(すなわち、不透過体と微小石灰化)を想定することがある。別の病変を想定することもあり得る。
不透過体は比較的低い減衰係数Δμと2mm<d<8mmの範囲の大きな直径を有しており、また微小石灰化はこれより高い減衰係数Δμとより小さい直径d<1mmを有している。放射線学的徴候の各種別ごとに、制御論理ユニットは固定の分離距離aを割り当てている。制御論理ユニットは、一定の分離ピッチによって放射線学的徴候の直径の変動を生じさせる際の各向きの展開角度を計算する。好ましい一例では、制御論理ユニットは微小石灰化の直径では一定分離ピッチ0.1mmで、また不透過体の直径では一定分離ピッチ1mmで変動を得ている。
このことは、0度の中央の向きの近傍の角度間隔ではその角度比が比較的小さいと想定し、また管球境界線向きの近傍の向きでは角度比がこれより大きいと想定することを意味する。
図5bは、線量分布モードの好ましい一実施形態を表した図である。この例では、y軸はX線強度または線量の百分率で形成されており、またx軸は主照射方向の向きのそれぞれが中央の向きに対してつくる角度で形成されている。この線量は向きA’9〜A9の全体に関して不均一に分布している。これらの向きは向き群中の2つの境界線向きA9とA’9の間で角度展開される。これらの向き群は中央の向きA0の各側に配置設定されている。
制御論理ユニットは経路Tに関する好ましい向きまたは好ましい向き群を決定する。この好ましい向きまたはこの好ましい向き群に対する割り当ては総線量の5/9を超えている。
図5bの例では、中央の向きA0が好ましい向きであると見なしている。制御論理ユニットは、中央の向きA0に対して総線量の5/9を超える割り当てをしている。これが最大の線量を受け取る向きとなる。これによって総線量の70%〜80%が受け取られる。中央の向きA0の近傍の向きA’1及びA1は総線量の10%〜20%を受け取る。中央の向きA0の近傍の向きA’2及びA2は総線量の5%〜10%を受け取る。境界線向きA9及びA’9の近傍のそれぞれ向きA6、A7及びA’6、A’7は総線量の1%〜3%。中間向きA3、A4及びA’3、A’4は線量の3%〜5%を受け取る。この例では、制御論理ユニットはその向きが中央の向きA0に近づくに連れて線量を増加させている。
その好ましい向きは、その主方向が乳房支持体の面と直交するような向きとすることが好ましい。これはまた、向きの全体数を2つの部分に分離する向きとさせることがある。これは本発明の実施形態に従って規定することができる。
制御論理ユニットはさらに、好ましい向き群に対して総線量の5/9を超えて割り当てすることが可能である。向き群の各向きは好ましい向きの各側に配置設定させている。
本発明ではしたがって、再構成光軸(すなわち、スライス面と直交する軸)の最も近い角度域内までの補償を伴う線量分布によってその画質が改善されることを示すことが可能である。このため、従来技術の分布に対してその線量分布を補正した任意の方針によって微小石灰化や不透過体などの2つの種別の放射線学的徴候の検出に関してより良好な結果が得られる。
好ましい一例では、その線量分布方針は以下のように規定することができる。その向きが境界線向きの最も近くにある境界線群については、制御論理ユニットは総照射線量の9分の1より低い累積照射線量を与える。その向きが中央の向きの各側で展開される中央の群については、制御論理ユニットは総照射線量の5/9より多い累積照射線量を与える。また中央群と境界線群の間に位置する中間群については、群の向きの数は境界線群の向きの数より少ない。
このタイプの分布によれば、乳房の投影サイズ並びに収集の開口角によって投影軸に沿った応答が決定される。この線量は各投影位置において、その情報内容が境界線群に属する向きにおいてより小さい放射線学的徴候については判定が可能でないように調整される。より小さい放射線学的徴候の判定は中央群の向きにより与えられる情報内容によって可能としている。これによって小サイズの放射線学的徴候の応答と比較したときの大サイズの放射線学的徴候の応答の低減が可能となる。このため、正確に設計された角度プロフィールに沿って線量を分布させることによって、概ね乳房のサイズと無関係の応答が生じる。したがって本発明では、検出しようとする放射線学的徴候の直径及び種別が各角度に対して割り当てられる。
図5cは線量分布プロフィールの一例である。図5cの例では、制御論理ユニットは放射線学的徴候の各種別ごとに分離距離aを決定する。微小石灰化の種別では、その距離aが2mmに等しいと規定される。キャパシティの種別では、その距離aが10mmに等しいと規定される。2つの境界線向きの間における向きの角度展開の計算結果を以下の表に表している。
この表は、放射線学的徴候の種別並びに分離距離aの値に関する情報を提供する第1の縦列を有する。この表の第2の縦列は、検出しようとする放射線学的徴候の直径に関する情報を提供する。この第2の縦列内ではその一定分離ピッチは、微小石灰化では0.1mmにまた不透過体では1mmに等しい。第3の縦列は、乳房支持トレイの法線を基準とした向きの展開角度に対して、検出しようとする放射線学的徴候の直径及び種別の関数とした計算値を与えている。第4の縦列は、向きの角度ピッチに対する計算値を与えている。この角度ピッチは2つの連続する向きが形成する角度である。
Figure 0005507804
微小石灰化と不透過体に関する結果を組み合わせることによって、中央の向きの近傍の向きに関する角度ピッチθ≒3°と境界線向きの近傍の向きに関する角度ピッチθ≒7°が得られる。
制御論理ユニットは、表の各放射線学的徴候サイズを特徴付けるコントラストを計算することによって線量分布方針を決定する。これを実行するために制御論理ユニットは、減衰係数Δμ=0.027mm−1を不透過体に対して割り当て、また係数Δμ=0.714mm−1を微小石灰化に対して割り当てる。表の各放射線学的徴候サイズごとに、制御論理ユニットは対応する減衰係数を計算する。この減衰係数の表から制御論理ユニットは、表の放射線学的徴候の各サイズに対する対応するコントラスト表を決定する。次いで制御論理ユニットは必要な線量を計算するために、これらの放射線学的徴候について計算したコントラストの関数として投影画像内において放射線学的徴候の識別を可能とする数学的判定基準(例えば、Roseの判定基準など)を使用する。したがって、Roseの数学的判定基準を用いかつコントラストを基準とすることによって、制御論理ユニットは図5bの線量分布方針を決定する。線量分布方針を決定すためには、別のタイプの数学的基準を使用することも可能である。
制御論理ユニット10は、表の結果に従って経路Tの境界線向きの間での向きの角度分布を実施する。制御論理ユニットは計算したX線線量を各向きに割り当てる。この不均一線量分布を用いることによってがん細胞に関して高いコントラストを得ることが可能となる。この線量は、標準マンモグラフィ内で2つの放射線撮像投影を取得するために従来技術で使用される線量に等しいことが好ましい。
好ましい一実施形態では、制御論理ユニット10は中央の向きの近傍の向きに対してより大きな線量を割り当てている。
制御論理ユニット10は先ず、別の向きでの放出に先だって中央の向きでのX線放出を指令することができる。さらに、中央の向きの近傍の向きでの放出に先だって境界線向きの近傍の向きでの放出を指令することもできる。さらに、中央の向きの右側に配置設定した向きでのみ放出を指令することができる。このケースでは、中央の向きが2つの部分の2等分線であると見なして中央の向きの左側に配置設定される向きを決定する。
検出器14は、経路Tの各向きでの放出を表している投影画像を収集する。この投影画像の処理を図6に表している。
図6は、各投影画像に適用する適応フィルタを表したグラフである。y軸は振幅(単位:mm)を表している。x軸は空間周波数を表している。これらの投影画像は、再構成工程中におけるノイズの伝播を制御するために必要な適応空間フィルタによる処理を受ける。
この空間フィルタは所与のサイズのフィルタ処理コアを有する。中央の向きの近傍の向きに対応する投影画像に関するコアのサイズは、境界線向きの近傍の向きに対応する投影画像に関するコアのサイズより小さい。
好ましい一例では、これらの空間フィルタはウィーナーフィルタである。こうしたフィルタに関する具体的な一実現形態が文書番号第FR28 64 299A号に記載されている。制御論理ユニットは、この投影画像に割り当てられるX線線量の関数として各画像データ片に対してウィーナーフィルタを適用する。
図6は、2つの線量レベルに対応する3つのウィーナーフィルタ曲線C1〜C3と3つのタイプの放射線学的徴候とを示している。曲線C1は、その割り当て線量が総線量の0.1%〜5%でありかつ検出しようとする放射線学的徴候の直径が3.6mmであるような投影画像に適用するウィーナーフィルタを表している。この投影画像は境界線向きの近傍の向きにおいて与えられる。ここでの放射線学的徴候は不透過体である。
曲線C2は、その割り当て線量が総線量の0.06%〜5%でありかつ検出しようとする放射線学的徴候の直径が2mmであるような投影画像に適用するウィーナーフィルタを表している。この投影画像は、中央の向きと境界線向きの間の中間向きとなる向きにおいて与えられる。ここでの放射線学的徴候は不透過体である。
曲線C3は、その割り当て線量が総線量の0.3%〜30%でありかつ検出しようとする放射線学的徴候の直径が0.5mmであるような投影画像に適用するウィーナーフィルタを表している。この投影画像は中央の向きの近傍の向きにおいて与えられる。ここでの放射線学的徴候は微小石灰化である。
図6から理解できるように、割り当てられる線量及びコアのサイズは、中央の向きを基準とした角度方向の特定に従って段階的かつ単調性に変更される。フィルタの値は全体として空間周波数の関数として減少する。中央の向きの近傍の向きに関するフィルタの値は境界線向きの近傍の向きに関するフィルタの値より大きい。
ここで各向きは、割り当てられたサイズ及び放射線学的徴候種別、線量、並びに空間周波数に関連する曲線を有する。各向きごとに制御論理ユニットは、その入力信号が直径とこの向きと関連付けした所与のコントラストとによって検出しようとする放射線学的信号であることを前提として、空間周波数及び変調伝達関数とリンクさせた曲線からウィーナーフィルタを決定する。
これらのフィルタは、再構成工程中に微小石灰化などの小サイズの放射線学的徴候に対する信号対雑音比を保全する機能を有している。この保全は再構成中におけるノイズスペクトルに対するこれらの低線量投影の高周波数寄与を排除することによって実施される。
この向き角度展開によって組織の重複が低減される。この線量分布方法によって、総線量がより適正に利用できると共に、臨床関心対象を伴う構造が見失われるリスクも低下する。
図7は、本発明の方法を実現するための手段を表している。図7の工程100では、X線管13が事前決定の経路Tに従った多数の投影P1〜Pnを得るために患者乳房を通過させてX線強度を放出する。これらのX線強度は、図5a〜5cに記載した方針に従って投影の間で分布させている。
検出器4は、それぞれが投影P1〜Pnを表しているX線投影画像I1〜Inを収集する。制御論理ユニットはこの投影画像I1〜Inを処理する。
工程101では、制御論理ユニットは各投影画像I1〜Inに前処理アルゴリズムを適用する。
工程102では、制御論理ユニットは各前処理投影画像に対して図6に示したようなウィーナーフィルタを適用する。工程103では、制御論理ユニットは単純な逆投影再構成アルゴリズムを適用する。このアルゴリズムは、検出器と平行な様々なスライス面でのボリューム再構成のために使用される。本明細書では、乳房のトモシンセシスという用語を使用している。このトモシンセシス再構成中において乳房のディジタルボリュームを提供するために前処理済みかつフィルタ処理済みの画像I1〜Inのすべてが使用される。このトモシンセシス技法によって、少ない数の2D投影または投影画像によって検査され、限定された角度領域にわたって分布させ、かつディジタル検出器上で収集されるような乳房の3Dボリューム再構成が可能となる。
工程104では、制御論理ユニットはこのディジタルボリュームに対して処理アルゴリズムを適用する。この処理アルゴリズムは、ディジタルボリューム内の放射線学的徴候の処理及び検出に使用される任意のタイプの従来技術アルゴリズムとすることが可能である。本発明の方法によって、放射線学的徴候の検出において処理アルゴリズムの選択性を高めることができる。
工程105では、制御論理ユニットは、再構成ボリュームの処理済みスライスを表示する。図面の符号に対応する特許請求の範囲中の符号は、単に本願発明の理解をより容易にするために用いられているものであり、本願発明の範囲を狭める意図で用いられたものではない。そして、本願の特許請求の範囲に記載した事項は、明細書に組み込まれ、明細書の記載事項の一部となる。
トモシンセシス画像の収集原理を示した概略図である。 乳房に対する再構成ディジタルボリュームのスライスを表した概略図である。 X線線量の分布方針を表した概略図である。 本発明の改良型手段を備えたX線デバイス(特に、マンモグラフィ装置)の概略図である。 従来技術による線量分布方針の効果を示した概略図である。 本発明における線量分布方針の効果を示した概略図である。 本発明による管球の曝射位置の角度分布並びにX線強度の分布方針を決定するための様式を表した図である。 本発明による管球の曝射位置の角度分布並びにX線強度の分布方針を決定するための様式を表した図である。 本発明による管球の曝射位置の角度分布並びにX線強度の分布方針を決定するための様式を表した図である。 本発明による各投影画像に適用する適応フィルタを表したグラフである。 本発明の方法を実現するための手段を表した図である。
符号の説明
2 乳房
3 検出器
4 X線管
5a〜5n 断面
6 臨床関心領域
7 臨床関心領域
10 X線デバイス
11 垂直の支柱
12 ヒンジ式アーム
13 X線放出管球
14 検出器
15 焦点
16 X線ビーム
17 乳房支持トレイ
18 摺動式パッド
20 制御論理ユニット
21 外部バス
22 マイクロプロセッサ
23 プログラムメモリ
24 データメモリ
25 表示画面
26 キーボード
27 出力/入力インタフェース
28 内部バス
29 ゾーン
30 ゾーン
31 ゾーン
32 ゾーン
33 ゾーン
34 ゾーン
35 ゾーン
36 ゾーン
37 ゾーン
38 ゾーン
40 不透過体
41 微小石灰化
42 球体構造
43 球体構造
44 直径
45 垂直軸
100 工程
101 工程
102 工程
103 工程
104 工程
105 工程
A0 第1の中央角度方向
A1〜A9 向き
d 長さ
D 主放出方向
C1 曲線
C2 曲線
C3 曲線
G1 中央群
G2、G’2 中間群
G3、G’3 境界線群
I1〜In X線投影画像
N 面
P0 中央位置
P’n〜Pn 位置
T 経路
z 距離

Claims (11)

  1. 放射線学的徴候に対する検出の選択性を高めたトモシンセシス画像を取得するための方法であって、
    身体に対し、ある角度方向にX線照射が向くようにしたX線管(4)によって、X線照射を提供する工程と、
    2つの境界線向きの間で向き角度を変えることにより、経路に沿った方向の向きを分布させる工程と、
    複数の向きの各々でX線照射に前記身体を曝す工程と、
    前記身体を基準とした方向の向きの関数として曝射中に前記X線管(4)によって発生させる前記照射線量を変更する工程と、を含み、
    前記向きの角度のピッチが放射線学的徴候のサイズで変わり、
    経路の多数の向きと比べてある1つの向きまたは1つの向き群累積照射線量は総照射線量の5/9より多いこと、を特徴とする方法。
  2. 累積照射線量が総照射線量の5/9より多い向きは、その主方向が身体の支持体と直交するような中央の向き(A0)の各側に配置設定されていること、
    境界線向き(A9及びA’9)の最も近くにある境界線向き群(A6、A7、A8及びA’6、A’7、A’8)ではその累積照射線量が総照射線量の1/9より少ないこと、
    中央の向き(A0)の各側に分布させた中央向き群(A1、A2及びA’1、A’2)ではその累積照射線量が総照射線量の5/9より多いこと、
    中央向き群(A1、A2及びA’1、A’2)と境界線向き群(A6、A7、A8及びA’6、A’7、A’8)の間に位置する中間向き群(A3、A4及びA’3、A’4)では、中間群内の向きの数が境界線群(A6、A7、A8及びA’6、A’7、A’8)内の向きの数より少ないこと、
    を特徴とする請求項1に記載の方法。
  3. トモシンセシス画像を取得するための方法であって、
    身体に対し、ある角度の第1の向きにX線照射が向くようにしたX線管(4)によって、X線照射を提供する工程と、
    前記第1の向きに対応する第1の投影画像を記録する工程と、
    中央向きのいずれかの側に位置付けられた2つの境界線向きの間で、前記向きの方向を角度分布させ、その他の複数の投影画像を記録する工程と、
    再構成画像を作成するために前記複数の投影画像を処理する工程と、を含み、
    前記向きの角度のピッチが放射線学的徴候のサイズで変わり、
    前記境界線向き(A9及びA’9)の近くに向けられた曝射に関する照射線量は前記中央の向き(A0)の近くに向けられた曝射に関する照射線量より少なく、
    前記処理工程は前記複数の投影画像の各々に空間フィルタを適用し、
    前記空間フィルタはフィルタ処理コアを含み、
    中央の向き(A0)の近傍の向きに対応する投影画像に関する前記コアのサイズは境界線向き(A9及びA’9)の近傍の向きに対応する投影画像に関する前記コアのサイズより小さいこと、
    を特徴とする方法。
  4. 割り当てられる線量及びコアのサイズを、中央の向き(A0)を基準とした角度方向の特定に従って段階的かつ単調性に変更する工程をさらに含む請求項3に記載の方法。
  5. 前記フィルタがウィーナーフィルタであり、かつ中央の向きの近傍の向きに関するフィルタの値は境界線向き(A9及びA’9)の近傍の向きに関するフィルタの値より大きい、請求項1乃至4のいずれかに記載の方法。
  6. 2つの連続する向きによってその角度が形成される角度ピッチは境界線向き(A9及びA’9)に向かうに従って増大する、請求項1乃至5のいずれかに記載の方法。
  7. 前記中央の向き(A0)の近傍の向きは約3度に等しい角度ピッチを有しており、かつ前記境界線向き(A9及びA’9)の近傍の向きは約7度に等しい角度ピッチを有している、請求項1乃至6のいずれかに記載の方法。
  8. 前記中央の向き(A0)は、X線管(4)と対面するように配置させた身体の支持体と直角の方向を向いている、請求項1乃至7のいずれかに記載の方法。
  9. 前記曝射は固定式あるいは移動式である、請求項1乃至8のいずれかに記載の方法。
  10. 前記身体は乳房(2)である、請求項1乃至9のいずれかに記載の方法。
  11. X線管(4)が発生させる照射線量を患者の乳房(2)の厚さの関数として決定する工程と、
    前記再構成画像を検出器(3)の面と平行なスライス面を基準とした1つまたは複数のスライスになるように切断する工程をさらに含む請求項1乃至10のいずれかに記載の方法。
JP2007223344A 2006-09-05 2007-08-30 トモシンセシス画像を取得するための方法 Active JP5507804B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653578A FR2905256B1 (fr) 2006-09-05 2006-09-05 Procede d'obtention d'une image de tomosynthese
FR0653578 2006-09-05

Publications (3)

Publication Number Publication Date
JP2008062058A JP2008062058A (ja) 2008-03-21
JP2008062058A5 JP2008062058A5 (ja) 2011-10-06
JP5507804B2 true JP5507804B2 (ja) 2014-05-28

Family

ID=37944980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223344A Active JP5507804B2 (ja) 2006-09-05 2007-08-30 トモシンセシス画像を取得するための方法

Country Status (4)

Country Link
US (1) US7697661B2 (ja)
JP (1) JP5507804B2 (ja)
DE (1) DE102007041976A1 (ja)
FR (1) FR2905256B1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233875A (ja) * 2009-03-31 2010-10-21 Fujifilm Corp 放射線画像撮影装置、生検装置、放射線画像撮影方法及び生検方法
JP5572040B2 (ja) * 2009-09-28 2014-08-13 富士フイルム株式会社 放射線撮影装置
FR2954556B1 (fr) 2009-12-22 2017-07-28 Gen Electric Procede de traitement d'acquisitions de tomosynthese pour obtenir une representation du contenu d'un organe
JP2011172847A (ja) * 2010-02-25 2011-09-08 Fujifilm Corp 放射線画像生成装置及び放射線画像生成方法
JP2011177456A (ja) * 2010-03-04 2011-09-15 Fujifilm Corp 放射線画像撮影方法及びその装置並びに放射線画像生成方法及びその装置
JP5436301B2 (ja) * 2010-03-29 2014-03-05 富士フイルム株式会社 放射線撮影装置、及び放射線撮影システム
KR101687971B1 (ko) * 2010-07-19 2016-12-21 삼성전자주식회사 유방 촬영 장치 및 그 방법
US8571174B2 (en) 2010-09-09 2013-10-29 Hologic, Inc. Methods and systems for detecting possible error in patient position
WO2015054518A1 (en) 2013-10-09 2015-04-16 Hologic, Inc X-ray breast tomosynthesis enhancing spatial resolution including in the thickness direction of a flattened breast
FR2968188A1 (fr) * 2010-12-01 2012-06-08 Gen Electric Procede et systeme pour generation d'images de tomosynthese avec reduction du flou
KR101297081B1 (ko) 2011-01-19 2013-08-19 한국전기연구원 병변 진단 장치 및 방법
US8817947B2 (en) 2011-01-31 2014-08-26 University Of Massachusetts Tomosynthesis imaging
WO2012127819A1 (ja) * 2011-03-18 2012-09-27 富士フイルム株式会社 3次元放射線撮影装置および方法
EP2727534A4 (en) * 2011-07-01 2015-04-29 Rayence Co Ltd MAMMOGRAPHY DETECTOR WITH MULTIPLE SENSORS AND MAMMOGRAPHY DEVICE FOR 3D IMAGING
FR2997284B1 (fr) * 2012-10-30 2016-06-17 Gen Electric Procede d'obtention d'images de tomosynthese
US9808211B2 (en) * 2013-11-12 2017-11-07 Carestream Health, Inc. Head and neck imager
US9642581B2 (en) * 2013-11-12 2017-05-09 KUB Technologies, Inc. Specimen radiography with tomosynthesis in a cabinet
JP6475138B2 (ja) * 2015-09-30 2019-02-27 富士フイルム株式会社 制御装置、放射線画像撮影装置、放射線画像撮影方法、及び放射線画像撮影プログラム
US10488351B2 (en) 2016-09-07 2019-11-26 KUB Technologies, Inc. Specimen radiography with tomosynthesis in a cabinet with geometric magnification
US10157460B2 (en) 2016-10-25 2018-12-18 General Electric Company Interpolated tomosynthesis projection images
US10096106B2 (en) 2016-11-10 2018-10-09 General Electric Company Combined medical imaging
US10463333B2 (en) 2016-12-13 2019-11-05 General Electric Company Synthetic images for biopsy control
JP6734212B2 (ja) * 2017-03-02 2020-08-05 株式会社モリタ製作所 X線断層撮影装置およびx線断層撮影方法
US10830712B2 (en) * 2017-03-27 2020-11-10 KUB Technologies, Inc. System and method for cabinet x-ray systems with camera
KR102150926B1 (ko) * 2018-08-03 2020-09-02 주식회사 뷰웍스 피검자 인식이 가능한 맘모그래피 장치
US11020066B2 (en) * 2018-12-10 2021-06-01 KUB Technologies, Inc. System and method for cabinet x-ray systems with stationary x-ray source array

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526394A (en) * 1993-11-26 1996-06-11 Fischer Imaging Corporation Digital scan mammography apparatus
US5485494A (en) * 1994-08-03 1996-01-16 General Electric Company Modulation of X-ray tube current during CT scanning
IL120097A0 (en) * 1997-01-29 1997-04-15 Elscint Ltd Variable current CT scanning
US6744848B2 (en) * 2000-02-11 2004-06-01 Brandeis University Method and system for low-dose three-dimensional imaging of a scene
EP1172069A1 (de) * 2000-07-14 2002-01-16 VAMP Verfahren und Apparate der Medizinischen Physik GmbH Computertomograph mit Dosisoptimierung durch Festlegung der optimalen Wahl des Röhrenstroms in Echtzeit (Belichtungsautomatik), der Röhrenstrommodulation (Dosisminimierung) und darauf aufbauender Nachverarbeitung durch 3D adaptive Filter (Rauschreduzierung
US7187794B2 (en) * 2001-10-18 2007-03-06 Research Foundation Of State University Of New York Noise treatment of low-dose computed tomography projections and images
US6827489B2 (en) * 2001-11-01 2004-12-07 Ge Medical Systems Global Technology Company, Llc Low-dose exposure aided positioning (LEAP) for digital radiography
US7123684B2 (en) * 2002-11-27 2006-10-17 Hologic, Inc. Full field mammography with tissue exposure control, tomosynthesis, and dynamic field of view processing
US7092482B2 (en) * 2003-04-11 2006-08-15 Fischer Imaging Corporation Signal profiling for medical imaging systems
US7319734B2 (en) * 2003-04-11 2008-01-15 Hologic, Inc. Method and apparatus for blocking radiographic scatter
JP4458773B2 (ja) * 2003-05-27 2010-04-28 キヤノン株式会社 画像撮影装置
US6950493B2 (en) * 2003-06-25 2005-09-27 Besson Guy M Dynamic multi-spectral CT imaging
JP2005034436A (ja) * 2003-07-16 2005-02-10 Canon Inc 放射線画像撮影装置
US7020243B2 (en) * 2003-12-05 2006-03-28 Ge Medical Systems Global Technology Company Llc Method and system for target angle heel effect compensation
DE102005022899A1 (de) * 2005-05-18 2006-11-23 Siemens Ag Verfahren und Einrichtung zum Erzeugen eines digitalen tomosynthetischen 3D-Röntgenbildes von einem Untersuchungsobjekt
EP1951119A2 (en) * 2005-11-09 2008-08-06 Dexela Limited Methods and apparatus for obtaining low-dose imaging

Also Published As

Publication number Publication date
US20080056441A1 (en) 2008-03-06
FR2905256B1 (fr) 2008-11-21
US7697661B2 (en) 2010-04-13
DE102007041976A1 (de) 2008-03-13
JP2008062058A (ja) 2008-03-21
FR2905256A1 (fr) 2008-03-07

Similar Documents

Publication Publication Date Title
JP5507804B2 (ja) トモシンセシス画像を取得するための方法
US7885378B2 (en) Imaging system and related techniques
AU2003290665B2 (en) Apparatus and method for cone beam volume computed tomography breast imaging
EP0932363B1 (en) Tomosynthesis system for breast imaging
KR101471699B1 (ko) 치과용 엑스선 장치 및 연관된 방법
RU2545319C2 (ru) Формирование фазово-контрастных изображений
US7545907B2 (en) Methods and apparatus for obtaining low-dose imaging
JP5162182B2 (ja) 異常陰影の検出のために放射線画像を処理するための方法
US7693254B2 (en) X-ray device and image-processing method
KR101443956B1 (ko) 3d 유방 x 선 촬영법
US20070140419A1 (en) Method and apparatus for combining images
US11241207B2 (en) Hybrid CT system with additional detectors in close proximity to the body
AU1581401A (en) Apparatus and method for cone beam volume computed tomography breast imaging
JP2013511318A (ja) 視野を拡大した断層合成マンモグラフィー
KR20230153347A (ko) 좁은 시야 x선 이미징 시스템 및 방법
US20120121064A1 (en) Procedure for processing patient radiological images
JP2013545545A (ja) マルチ−モダリティ画像取得方法および装置
JP5674299B2 (ja) イメージング・システムのz位置依存型x線ビーム・フィルタリングの装置及び方法
JP5214110B2 (ja) X線ct装置
JP7242284B2 (ja) 医用画像処理装置、x線診断装置及び医用画像処理プログラム
JP2007268033A (ja) X線撮影システム及びx線撮影方法
US11972510B2 (en) Method for generating tomographic image and X-ray imaging apparatus according to same
JP7334034B2 (ja) 医用画像処理装置、x線診断装置及び医用画像処理プログラム
US20210125384A1 (en) Method for generating tomographic image and x-ray imaging apparatus according to same
CN113662569A (zh) 使用预曝光采集生成断层融合数据集

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5507804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250