JP5460539B2 - 信号制御装置及び信号制御方法 - Google Patents

信号制御装置及び信号制御方法 Download PDF

Info

Publication number
JP5460539B2
JP5460539B2 JP2010215660A JP2010215660A JP5460539B2 JP 5460539 B2 JP5460539 B2 JP 5460539B2 JP 2010215660 A JP2010215660 A JP 2010215660A JP 2010215660 A JP2010215660 A JP 2010215660A JP 5460539 B2 JP5460539 B2 JP 5460539B2
Authority
JP
Japan
Prior art keywords
signal
equalization
systems
error
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010215660A
Other languages
English (en)
Other versions
JP2012070341A (ja
Inventor
勝崇 今尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010215660A priority Critical patent/JP5460539B2/ja
Publication of JP2012070341A publication Critical patent/JP2012070341A/ja
Application granted granted Critical
Publication of JP5460539B2 publication Critical patent/JP5460539B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、受信信号から希望信号を得るための信号制御装置及び信号制御方法に関する。
一般に、移動受信環境では、電波の干渉によるマルチパスフェージングや移動に伴う伝送路環境の激しい変動により、受信信号(例えば、音声信号)の品質が劣化しやすいという問題がある。従って、受信信号の希望電力対非希望電力比(DUR:Desire power to Un−desire power Ratio)を向上させる新しい移動受信技術が要求されている。
マルチパスフェージングの影響を軽減する技術の1つとして、ダイバシティ合成技術がある。ダイバシティ合成技術では、複数本のアンテナで受信した信号の振幅及び位相を適応的に制御して信号合成を行う。ダイバシティ合成技術は、マルチパスによる受信信号の歪みや受信機で重畳される雑音の影響を低減するために、非常に有効かつ簡便な技術であり、原理上は遅延波の遅延時間がいくらであっても、一定の受信性能向上効果が得られる。
ダイバシティ技術の適用による遅延波の抑圧効果は、受信アンテナの本数に大きく依存し、その効果をより高く引き出すためには、アンテナの本数を多くしなければならない。ところが、受信性能の向上に伴って演算規模及びコストが増大するため、アンテナの本数はあまり増やすことができないのが現状である。一方、遅延波が多数重畳されている信号を少ない本数のアンテナで受信した場合、遅延波の到来方向によっては最適なウエイトが得られなくなる虞がある。
一方、マルチパスに起因して発生する受信信号の歪みを適応的に補正して受信信号を最適化する適応等化手段を用いた信号合成技術も、広く実用化されている。適応等化手段は、タップ付き遅延線モデルとして表現できるマルチパス伝送路の信号歪みを、FIR(Finite Impulse Response)型やIIR(Infinite Impulse Response)型フィルタを用いて補償するため、遅延波の到来方向によらず、複数の遅延波に対して最適なウエイトを与えることができる。従って、適応等化手段を用いた信号合成技術は、ダイバシティ合成技術に比べて、より「きめ細かな」信号合成を行うことができる。
また、適応等化手段は、主に、遅延タップ数に相当する数の乗算器と、タップ係数の更新を行うタップ係数制御アルゴリズムとによって構成されており、タップ係数制御アルゴリズムを適当に選択することで、適応等化手段のフィルタ性能、すなわち、信号歪みの抑圧効果を、向上させることができる特長がある。
従って、適応等化手段のフィルタ性能の特長をダイバシティ合成技術に統合する方式(以下「適応等化ダイバシティ統合方式」と呼ぶ。)を採用することによって、収束精度をより高く維持する提案がある(例えば、特許文献1及び2参照)。
特許文献1には、適応等化手段で抑圧することができなかった長遅延波成分をダイバシティ合成により効率よく抑圧することが開示されている。
また、特許文献2には、等化後及び合成後の受信信号の振幅偏差と時間遅延を検出し、これらの値に応じて受信信号の振幅偏差の制御を適応的に行うことで、信号合成、すなわち、ダイバシティ受信方式の動作の安定状態が維持され、高い受信品質が得られることが示されている。
しかしながら、受信信号品質の優劣を決定する際には、受信電力や受信電界の大きさを参照するだけでは不十分な場合がある。例えば、遅延波が存在するマルチパス環境下では、受信信号の電力が大きな場合であっても、希望波の信号電力が遅延波の信号電力と拮抗しているような劣悪な受信環境が存在する。また、移動受信環境下では、ドップラー周波数シフトに起因して受信信号の位相が受信電力に依存することなく時々刻々と変化するため、受信電力が比較的大きな場合であっても、信号誤りが多発する場合がある。
特許第4463689号公報(段落0010、図1) 特開2000−209139号公報(段落0049、図1)
ところで、一般的な適応等化手段は、タップ係数を逐次制御することで受信機に到来する複数の遅延波の位相偏差を補正した上で受信信号を合成し、初期状態から収束状態へと移行する。本出願では、適応等化手段が初期状態から収束状態へ移行する過程を「収束過程」と呼ぶ。
また、移動受信環境では受信信号の包絡線や位相が時々刻々と変化するため、適応等化手段は、タップ係数を逐次更新することで、受信信号の変動に追従しようとする。本出願では、適応等化手段がタップ係数を逐次更新することで、受信信号の変動に追従しようとする過程を「追従過程」と呼ぶ。
2つの適応等化手段を用いる適応等化ダイバシティ統合方式では、2つの適応等化手段が収束過程の状態である場合は、これらの適応等化手段の出力が不安定となるのが普通である。従って、収束過程の状態である場合にダイバシティを常時動作させると、ダイバシティ合成部で用いる信号合成アルゴリズムが正しく動作しなくなる場合が発生し、受信性能の向上効果が得られなくなる虞がある。
また、2つの適応等化手段が追従過程の状態である場合に、伝送路環境の悪化などに起因してタップ係数の更新が正確に行われなくなってしまう場合があり得る。このとき、2つの適応等化手段の出力を用いて信号合成を行うダイバシティ合成部の安定性も保証されなくなり、やはり受信性能の向上効果が得られなくなる虞がある。従って、収束過程の状態の場合だけでなく、追従過程の状態の場合であっても、2つの適応等化手段又はダイバシティ合成部の動作を適応的かつ相補的に制御する必要があると言える。
そこで、本発明は、上記従来技術の課題を解決するためになされたものであり、その目的は、受信信号から希望信号を可能な限り正確に得るための信号制御装置及び信号制御方法を提供することにある。
本発明の一態様に係る信号制御装置は、入力されたN(Nは正の整数)系統の信号から、N系統の等化出力信号及びN系統の等化誤差信号を計算するN系統の適応等化手段と、N系統の前記等化出力信号の合成信号及び合成等化誤差信号を計算する信号合成手段と、N系統の前記等化誤差信号及び前記合成等化誤差信号を参照し、N系統の前記適応等化手段の動作を制御するN系統の等化制御信号及び前記信号合成手段を制御する合成制御信号を生成する誤差信号解析手段とを備え、前記誤差信号解析手段は、N系統の前記等化誤差信号を参照して得られるN系統の第1評価指標及び前記合成等化誤差信号を参照して得られる第2評価指標の少なくとも一方を安定判別閾値と比較し、該比較の結果に基づいてN系統の前記等化制御信号及び前記合成制御信号を生成し、前記安定判別閾値は、前記信号合成手段を拘束動作状態から通常動作状態へ移行させるN系統の前記等化制御信号及び前記合成制御信号を生成するために使用される第1判定閾値と、前記信号合成手段を前記通常動作状態から前記拘束動作状態に移行させるN系統の前記等化制御信号及び前記合成制御信号を生成するために使用される第2判定閾値とを含み、前記第1判定閾値は、前記第2判定閾値以下の値であることを特徴としている。
本発明の一態様に係る信号制御方法は、N(Nは正の整数)系統の適応等化手段と信号合成手段と誤差信号解析手段とを有する装置により実行される信号制御方法であって、N系統の前記適応等化手段が、入力されたN系統の信号から、N系統の等化出力信号及びN系統の等化誤差信号を計算するステップと、前記信号合成手段が、N系統の前記等化出力信号の合成信号及び合成等化誤差信号を計算するステップと、前記誤差信号解析手段が、N系統の前記等化誤差信号及び前記合成等化誤差信号を参照し、N系統の前記適応等化手段の動作を制御するN系統の等化制御信号及び前記信号合成手段を制御する合成制御信号を生成するステップとを有し、N系統の前記等化制御信号及び前記合成制御信号を生成する前記ステップにおいて、前記誤差信号解析手段は、N系統の前記等化誤差信号を参照して得られるN系統の第1評価指標及び前記合成等化誤差信号を参照して得られる第2評価指標の少なくとも一方を安定判別閾値と比較し、該比較の結果に基づいてN系統の前記等化制御信号及び前記合成制御信号を生成し、前記安定判別閾値は、前記信号合成手段を拘束動作状態から通常動作状態へ移行させるN系統の前記等化制御信号及び前記合成制御信号を生成するために使用される第1判定閾値と、前記信号合成手段を前記通常動作状態から前記拘束動作状態に移行させるN系統の前記等化制御信号及び前記合成制御信号を生成するために使用される第2判定閾値とを含み、前記第1判定閾値は、前記第2判定閾値以下の値であることを特徴としている。
本発明の一態様に係る信号制御装置及び信号制御方法によれば、受信信号から希望信号を可能な限り正確に得ることができるという効果がある。
実施の形態1乃至4に係る信号制御方法を実施することができる、N系統の信号を受信する受信装置の構成を概略的に示す機能ブロック図である。 実施の形態1乃至4に係る信号制御方法を実施することができる、2系統の信号を受信する受信装置の構成を概略的に示す機能ブロック図である。 実施の形態1に係る信号制御方法を実施することができる信号制御装置における内部信号の変化の一例を示す波形図である。 実施の形態1に係る信号制御方法を実施することができる信号制御装置を構成する誤差信号解析手段の構成の一例を概略的に示す機能ブロック図である。 図4の誤差信号解析手段を構成する第1比較手段の構成の一例を概略的に示す機能ブロック図である。 図4の誤差信号解析手段を構成する第2比較手段の構成の一例を概略的に示す機能ブロック図である。 図4の誤差信号解析手段を構成する第1判定手段の構成の一例を概略的に示す機能ブロック図である。 図4の誤差信号解析手段を構成する切換手段によって切り替えられる状態を示す状態遷移図である。 図4の誤差信号解析手段を構成する切換手段を用いたときの内部信号の変化の一例を示す図である。 実施の形態2乃至4に係る信号制御方法を実施することができる信号制御装置を構成する誤差信号解析手段の構成の一例を概略的に示す機能ブロック図である。 実施の形態2に係る信号制御方法を実施することができる、図10の誤差加工手段の構成の一例を概略的に示す機能ブロック図である。 実施の形態3に係る信号制御方法を実施することができる、図10の誤差加工手段の構成の一例を概略的に示す機能ブロック図である。 実施の形態4に係る信号制御方法を実施することができる、図10の誤差加工手段の構成の一例を概略的に示す機能ブロック図である。
以下、本発明の実施の形態として、信号制御方法、この方法を実施することができる信号制御装置、及びこの信号制御装置を含む受信装置を説明する。
〔1〕実施の形態1.
〔1−1〕実施の形態1の構成.
〔1−1−1〕受信装置100
図1は、実施の形態1に係る信号制御方法を実施することができる、N系統(Nは正の整数)の信号を受信する受信装置の構成を概略的に示す機能ブロック図である。図1に示されるように、N系統の信号を受信する受信装置は、第1アンテナ〜第Nアンテナを有するアンテナ部1と、第1検波手段〜第N検波手段を有する検波部2と、第1適応等化手段〜第N適応等化手段を有する適応等化部3と、信号合成手段4と、誤差信号解析手段5とを備えている。また、適応等化部3、信号合成手段4、及び誤差信号解析手段5は、実施の形態1に係る信号制御方法を実施する信号制御装置6を構成する。
適応等化部3の第1適応等化手段〜第N適応等化手段は、入力されたN系統の信号から、N系統の等化出力信号及びN系統の等化誤差信号を計算して出力する。信号合成手段4は、N系統の等化出力信号の合成信号及び合成等化誤差信号を計算して出力する。誤差信号解析手段5は、N系統の等化誤差信号及び合成等化誤差信号を参照し、第1適応等化手段〜第N適応等化手段の動作を制御するN系統の等化制御信号及び信号合成手段4を制御する合成制御信号を生成して出力する。誤差信号解析手段5は、N系統の等化誤差信号及び合成等化誤差信号を参照して、N系統の等化制御信号及び合成制御信号を生成して出力する。
図2は、図1において、N=2とした場合の受信装置10の構成を概略的に示す機能ブロック図である。また、図3は、図2の受信装置10における内部信号の変化の一例を示す波形図である。なお、図3において、横軸は時間を示し、縦軸は信号レベルを示す。実施の形態1に係る信号制御方法は、N系統のアンテナ、N系統の検波手段、及びN系統の適応等化手段を有する信号制御装置6に適用可能であるが、以下の説明では、説明を簡素化するために、N=2の場合、すなわち、2系統のアンテナ、2系統の検波手段、及び2系統の適応等化手段を有する信号制御装置16における信号制御方法を説明する。
図2に示されるように、2系統の信号を受信する受信装置10は、第1アンテナ11−1及び第2アンテナ11−2を有するアンテナ部11と、第1検波手段12−1及び第2検波手段12−2を有する検波部12と、第1適応等化手段13−1及び第2適応等化手段13−2を有する適応等化部13と、信号合成手段(ダイバシティ合成部)14と、誤差信号解析手段15とを備えている。また、適応等化部13、信号合成手段14、及び誤差信号解析手段15は、実施の形態1に係る信号制御方法を実施する信号制御装置16を構成する。
図2に示される受信装置10によって実行される信号制御方法では、適応等化部13及び信号合成手段14において計算される等化誤差信号と合成等化誤差信号を参照し、それらの解析結果に応じて適応等化部13及び信号合成手段14の動作の停止、選択、初期化等を適応的に行うことができるため、系全体の安定性を維持しつつ信頼性の高い希望信号が得られる。
図2において、第1アンテナ11−1で受信された信号X(t)及び第2アンテナ11−2で受信された信号X(t)は、それぞれ第1検波手段12−1及び第2検波手段12−2において検波される。ここで、tは任意の時間である。また、実施の形態1では、第1検波手段12−1の検波出力D(t)及び第2検波手段12−2の検波出力D(t)は、時間Tの間隔でサンプリングされたデータであるものとする。
図2において、第1適応等化手段13−1では、検波出力D(t)及びこれを所定時間遅延させた信号を入力として適応等化処理が施され、第1等化出力信号M(t)を出力する。検波出力D(t)及び第1等化出力信号M(t)の一例を図3に示す。適応等化処理には、例えば、タップ付き遅延線モデルで表現されるFIR(Finite Impulse Response)型やIIR(Infinite Impulse Response)型フィルタを用いることができ、学習アルゴリズムによる最適ウエイトの逐次更新を用いること等により適応等化処理を実現することができる。
また、第1適応等化手段13−1では、第1等化出力信号M(t)と理想信号との差異を第1評価指標の1つである第1等化誤差信号E(t)として出力することができる。例えば、第1適応等化手段13−1で用いる学習アルゴリズムが定包絡線規範(CMA:Constant Modulus Algorithm)である場合、所定包絡線値と第1等化出力信号M(t)の包絡線値の差分を第1等化誤差信号E(t)とすることができる。
さらに、第1適応等化手段13−1は、誤差信号解析手段15の出力のうち第1等化制御信号C(t)を入力として持つことができる。第1等化制御信号C(t)により、第1適応等化手段13−1の動作が制御される、その詳細については後述する。
図2における第2適応等化手段13−2は、第1適応等化手段13−1と同じ構成とすることができる。第2適応等化手段13−2は、検波出力D(t)が入力され、第2等化出力信号M(t)を出力し、第1評価指標の1つである第2等化誤差信号E(t)を出力し、第2等化制御信号C(t)が入力される。検波出力D(t)及び第2等化出力信号M(t)の一例を図3に示す。
図2において、信号合成手段14は、第1等化出力信号M(t)及び第2等化出力信号M(t)を入力として有し、これらの振幅及び位相を適応信号処理により逐次制御して信号を合成し、合成信号Y(t)を出力する。信号合成手段14では、第1アンテナ11−1側及び第2アンテナ11−2側の両入力に対して最適な合成比が逐次計算され、出力が最適化される。合成信号Y(t)の一例を図3に示す。
また、信号合成手段14は、合成信号Y(t)と理想信号との差異を第2評価指標である合成等化誤差信号E(t)として出力することができる。例えば、信号合成手段14で用いる学習アルゴリズムがCMAである場合、所定包絡線値と合成信号Y(t)の包絡線値の差分を合成等化誤差信号E(t)とすることができる。
さらに、信号合成手段14は、誤差信号解析手段15の出力のうち合成制御信号C(t)を入力として持つことができる。合成制御信号C(t)により、信号合成手段14の動作が制御されるが、その詳細については後述する。
図2において、誤差信号解析手段15は、第1等化誤差信号E(t)、第2等化誤差信号E(t)、及び合成等化誤差信号E(t)を入力として有し、これらの入力を参照して誤差信号を解析することで、第1適応等化手段13−1の停止、選択、初期化等の動作を適応的に制御する第1等化制御信号C(t)、第2適応等化手段13−2の停止、選択、初期化等の動作を適応的に制御する第2等化制御信号C(t)、及び信号合成手段14の停止、選択、初期化等の動作を適応的に制御する合成制御信号C(t)を生成して出力することができる。
〔1−1−2〕誤差信号解析手段15
図4は、図2の受信装置10を構成する誤差信号解析手段15の構成の一例を概略的に示す機能ブロック図である。図4に示されるように、誤差信号解析手段15は、第1比較手段151−1及び第2比較手段151−2と、第1判定閾値Hの記憶部152−1及び第2判定閾値Hの記憶部152−2と、第1判定手段153−1及び第2判定手段153−2と、切換手段154とを有している。第1判定閾値H及び第2判定閾値Hは、信号合成手段14が、通常動作状態にあるか、拘束動作状態にあるかを判定するために用いられ、「安定判別閾値」と総称される。通常動作状態は、後述する図8及び図9における状態〈s〉における信号合成手段COMB=ONの動作状態であり、拘束動作状態は、後述する図8及び図9における状態〈s〉における信号合成手段COMB=OFFの動作状態である。誤差信号解析手段15では、第1等化誤差信号E(t)と第2等化誤差信号E(t)が第1比較手段151−1に入力されると同時に、第1等化誤差信号E(t)と第2等化誤差信号E(t)と合成等化誤差信号E(t)が第2比較手段151−2に入力される。なお、以下の説明において、「E(t)」、「E(t)」、及び「E(t)」のそれぞれは、第1等化誤差信号E(t)の値、第2等化誤差信号E(t)の値、及び合成等化誤差信号E(t)の値を示す記号としても用いる。
〔1−1−3〕第1比較手段151−1
図5は、図4の誤差信号解析手段15を構成する第1比較手段151−1の構成の一例を概略的に示す機能ブロック図である。第1比較手段151−1は、第1等化誤差信号E(t)及び第2等化誤差信号E(t)を第1判定閾値Hと比較し、その比較結果を信号P(t)として出力することができる。なお、以下の説明において、「P(t)」は、信号P(t)の値を示す記号としても用いる。
図5によれば、第1比較手段151−1では、第1判定閾値Hと第1等化誤差信号E(t)の差が減算手段20−1により計算され、符号判定手段21−1において減算手段20−1から出力された差の符号が判定される。また、第1比較手段151−1では、第1判定閾値Hと第2等化誤差信号E(t)の差が減算手段20−2により計算され、符号判定手段21−2において減算手段20−1から出力された差の符号が判定される。第1比較手段151−1の符号判定手段21−1及び21−2の各々は、入力信号が正数である場合に“1”を出力し、入力信号が負数である場合に“0”を出力する機能を有することが望ましい。
また、図5によれば、符号判定手段の2つの出力の論理積を論理積(AND)回路22で計算し、その計算結果を信号P(t)として出力することができる。このような構成をとることで、第1比較手段151−1では、第1等化誤差信号E(t)の値と第2等化誤差信号E(t)の値が共に第1判定閾値Hを下回った場合に限り、P(t)=1を出力することができる。
〔1−1−4〕第2比較手段151−2
図6は、図4の誤差信号解析手段15を構成する第2比較手段151−2の構成の一例を概略的に示す機能ブロック図である。第2比較手段151−2は、第1等化誤差信号E(t)と第2等化誤差信号E(t)と合成等化誤差信号E(t)のそれぞれを第2判定閾値Hと比較し、その比較結果を信号P(t)として出力することができる。なお、以下の説明において、「P(t)」は、信号P(t)の値を示す記号としても用いる。
図6によれば、第2比較手段151−2では、第2判定閾値Hと第1等化誤差信号E(t)の差が減算手段30−1により計算され、符号判定手段31−1において減算手段30−1から出力された差の符号が判定される。また、第2比較手段151−2では、第2判定閾値Hと第2等化誤差信号E(t)の差が減算手段30−2により計算され、符号判定手段31−2において減算手段30−2から出力された差の符号が判定される。さらに、第2比較手段151−2では、第2判定閾値Hと合成等化誤差信号E(t)の差が減算手段30−3により計算され、符号判定手段31−3において減算手段30−3から出力された差の符号が判定される。第2比較手段151−2の符号判定手段31−131−2,31−3の各々は、入力信号が正数である場合に“1”を出力し、負数である場合に“0”を出力する機能を有することが望ましい。
また、図6によれば、符号判定手段の3つの出力の論理積を論理積(AND)回路32で計算し、その計算結果を信号P(t)として出力することができる。このような構成をとることで、第2比較手段151−2では、第1等化誤差信号E(t)の値と第2等化誤差信号E(t)の値と合成等化誤差信号E(t)の値が全て第2判定閾値Hを上回った場合に限り、P(t)=1を出力することができる。
〔1−1−5〕第1判定手段153−1及び第2判定手段153−2
図7は、図4の誤差信号解析手段15を構成する第1判定手段153−1の構成の一例を概略的に示す機能ブロック図である。誤差信号解析手段15は、多段に接続されたM個の遅延時間遅延手段(D)40と、入力P(t)及びM個の遅延時間遅延手段(D)40の出力の論理積を計算する論理積(AND)回路41とを備えている。図4に示される誤差信号解析手段15では、第1比較手段の出力P(t)が第1判定手段153−1に入力され、第1判定手段153−1は、時間経過に対する信号P(t)の値の変化を監視した結果を信号J(t)として出力する。また、誤差信号解析手段15では、第2比較手段の出力P(t)が第2判定手段153−2に入力され、第2判定手段153−2は、時間経過に対する信号P(t)の値の変化を監視した結果を信号J(t)として出力する。なお、以下の説明において、「J(t)」及び「J(t)」は、信号J(t)及び信号J(t)の値を示す記号としても用いる。
図7によれば、第1判定手段153−1は、入力P(t)及びこれを単位時間毎に遅延させたM種類の信号の論理積を計算した結果を信号J(t)として出力する。ただし、Mは、第1判定手段の判定動作を保護するための保護段数に相当する所定の整数である。また、入力を遅延させるための単位時間は、サンプリング間隔Tの整数倍であることが望ましい。第1判定手段153−1は、上述のような構成をとることで、信号P(t)がM回連続して“1”であった場合に限り、J(t)=1を出力することができる。
第2判定手段153−2は、上述の第1判定手段153−1と同様の構成を有する。第2判定手段153−2の入力信号はP(t)であり、出力信号はJ(t)である。
〔1−1−6〕切換手段154
〔1−1−6−1〕切換手段154による制御信号の更新処理の概要
図8は、図4の誤差信号解析手段15を構成する切換手段154によって切り替えられる状態を示す状態遷移図である。誤差信号解析手段15における切換手段154では、第1等化誤差信号E(t)、第2等化誤差信号E(t)、及び合成等化誤差信号E(t)の値と、第1判定手段の出力J(t)及び第2判定手段の出力J(t)の値を用いて、適応等化部13の第1適応等化手段13−1及び第2適応等化手段13−2、並びに、信号合成手段14の動作状態を管理し、これらの動作を制御するための制御信号を出力することができる。これらの制御信号は、第1適応等化手段13−1の動作を制御する第1等化制御信号C(t)、第2適応等化手段13−2の動作を制御する第2等化制御信号C(t)、及び信号合成手段14の動作を制御する合成制御信号C(t)から構成される。
図8によれば、切換手段154では、4種類の状態、すなわち、〈s〉と〈s〉と〈s〉と〈s〉の遷移状態を監視し、状態遷移が発生した場合に制御信号C(t)〜C(t)を適当な値に更新する。
〔1−1−6−2〕切換手段154からの制御信号による状態遷移の具体例
図8及び以下の説明では、EQL1は第1適応等化手段、EQL2は第2適応等化手段、COMBは信号合成手段14を示すものとし、ONは通常動作状態、OFFは停止状態、すなわち、直前の動作状態の維持、INITは初期化又は初期値、FRZは現状維持の動作を示すものとする。動作開始時点における状態を〈s〉とし、以下に状態遷移の様子を説明する。
〔A〕状態〈s
状態〈s〉は、系が初期化された状態であり、状態〈s〉では、第1適応等化手段EQL1、第2適応等化手段EQL2、及び信号合成手段COMBの全ての機能が初期化される。より具体的には、状態〈s〉は、第1適応等化手段EQL1、第2適応等化手段EQL2、及び信号合成手段COMBにおける係数更新を全て停止し、第1適応等化手段EQL1、第2適応等化手段EQL2、及び信号合成手段COMBのそれぞれに係数の初期値(INIT)を代入した状態であることが望ましい。
〔B〕状態〈s
次に、状態〈s〉となった系は、直ちに状態〈s〉へと移行する。状態〈s〉では、第1適応等化手段EQL1及び第2適応等化手段EQL2が通常動作状態(ON)であり、第1適応等化手段EQL1及び第2適応等化手段EQL2の係数は、2系統のアンテナ入力X(t)及びX(t)に応じて適応的に更新される。一方、状態〈s〉では、信号合成手段COMBは停止状態、すなわち、直前の動作状態の維持状態(OFF)であるため、信号合成手段COMBは初期の係数が代入された状態が維持される。
系が状態〈s〉である間は、切換手段154は、第1判定手段(図4の符号153−1)の出力J(t)を監視し続け、その値に応じて状態を維持させるか遷移させるかの判断を行う。より具体的には、切換手段154は、出力J(t)の値に応じて以下のような動作を行う。
《状態〈s〉であってJ=0である場合》
第1等化誤差信号E(t)又は第2等化誤差信号E(t)の両方がM回連続して第1判定閾値Hを下回るという条件を満たさないため、状態〈s〉を維持し、第1適応等化手段EQL1及び第2適応等化手段EQL2を通常動作状態(ON)、信号合成手段COMBを停止状態(OFF)とする。
《状態〈s〉であってJ=1である場合》
第1等化誤差信号E(t)又は第2等化誤差信号E(t)の両方がM回連続して第1判定閾値Hを下回るという条件を満たすため、状態〈s〉に遷移する。
〔C〕状態〈s
状態〈s〉では、第1適応等化手段EQL1、第2適応等化手段EQL2、及び信号合成手段COMBの全てが通常動作状態(ON)であり、第1適応等化手段EQL1及び第2適応等化手段EQL2では2系統のアンテナ入力X(t)及びX(t)に応じて適応的に係数が更新され、信号合成手段COMBでは第1等化出力信号M(t)及び第2等化出力信号M(t)に応じて適応的に係数が更新される。
系が状態〈s〉である間は、切換手段154は、第2判定手段(図4の符号153−2)の出力J(t)を監視し続け、その値に応じて状態を維持させるか遷移させるかの判断を行う。より具体的には、切換手段154は、出力J(t)の値に応じて以下のような動作を行う。
《状態〈s〉であってJ=0である場合》
第1等化誤差信号E(t)と第2等化誤差信号E(t)と合成等化誤差信号E(t)の全てがM回連続して第2判定閾値Hを上回るという条件を満たさないため、状態〈s〉を維持し、第1適応等化手段EQL1と第2適応等化手段EQL2と信号合成手段COMBを全て通常動作状態(ON)とする。
《状態〈s〉であってJ=1である場合》
第1等化誤差信号E(t)と第2等化誤差信号E(t)と合成等化誤差信号E(t)の全てがM回連続して第2判定閾値Hを上回るという条件を満たすため、状態〈s〉又は状態〈s〉に遷移する。ただし、状態〈s〉又は状態〈s〉のいずれの状態に遷移するかは、第1等化誤差信号E(t)と第2等化誤差信号E(t)と合成等化誤差信号E(t)の大小関係によって以下のように判断することができる。
《状態〈s〉であり、かつ、J=1であり、かつ、E(t)+E(t)>E(t)である場合》
受信信号の品質劣化等の要因により、第1適応等化手段EQL1及び第2適応等化手段EQL2の動作が不安定となりつつあるものの、信号合成手段14は比較的安定して動作している状態であると判断し、状態〈s〉、すなわち、第1適応等化手段EQL1及び第2適応等化手段EQL2の動作を初期化(INIT)し、信号合成手段COMBの動作を一時的に停止して現状を維持する状態(FRZ)、へ遷移する。
《状態〈s〉であり、かつ、J=1であり、かつ、E(t)+E(t)≦E(t)である場合》
受信信号の品質劣化等の要因により第1適応等化手段EQL1及び第2適応等化手段EQL2の動作が不安定となりつつあり、それに応じて信号合成手段14の動作も著しく不安定になろうとしている状態であると判断し、状態〈s〉、すなわち、第1適応等化手段EQL1と第2適応等化手段EQL2と信号合成手段COMBの全ての動作を初期化(INIT)した状態、へ遷移する。
状態〈s〉から状態〈s〉又は状態〈s〉に移行した系は、直ちに状態〈s〉へと移行し、上述の遷移動作を繰り返すことで、第1適応等化手段EQL1、第2適応等化手段EQL2、及び信号合成手段COMBの動作を適応的に制御する。
〔1−1−6−3〕切換手段154による制御信号の更新処理の具体例
図8における切換手段154は、上述したような状態遷移を実現するために必要な第1等化制御信号C(t)、第2等化制御信号C(t)、及び合成制御信号C(t)を出力することができる。
より具体的には、例えば、信号合成手段COMBにおいて次式(1)のような係数更新式に基づいて係数更新が行われている場合を考える。
W(t+Δt)=W(t)+μS(t) …式(1)
ここで、W(t)は時刻tにおける係数、Δtは係数更新周期、S(t)は係数更新のために算出された係数差分であり、μは係数更新の速度と精度を制御する所定値である。
このとき、信号合成手段COMBに与える合成制御信号C(t)は、例えば、次のように行われる。
《信号合成手段COMBを通常動作(ON)させる場合》
合成制御信号C(t)は、通常動作を行うことを意味する制御信号であればよい。
《信号合成手段COMBを一時停止(FRZ)させる場合》
合成制御信号C(t)は、式(1)において所定値μを“0”に置換して係数差分S(t)が係数更新に反映されないようにする制御信号であればよい。
《信号合成手段COMBを初期化(INIT)させる場合》
合成制御信号C(t)は、式(1)において所定値μを“0”に置換して係数差分S(t)が係数更新に反映されないようにし、かつ、W(t)に係数の初期値を代入するための制御信号であればよい。
第1等化制御信号C(t)及び第2等化制御信号C(t)も、上述と同じ考え方で表現することができる。
〔1−2〕実施の形態1の動作.
図9は、図4の誤差信号解析手段15を構成する切換手段14を用いたときの内部信号の変化の一例を示す図である。図9には、第1等化誤差信号E(t)、第2等化誤差信号E(t)、及び合成等化誤差信号E(t)の変化に対し、図8のような状態遷移図に基づいて状態管理を行った場合の第1適応等化手段EQL1、第2適応等化手段EQL2、及び信号合成手段COMBの動作状態の遷移例が示されている。
図9の上部に示したグラフは、第1等化誤差信号E(t)、第2等化誤差信号E(t)、及び合成等化誤差信号E(t)の時間変化例であり、横軸は経過時間t、縦軸は誤差ERRの大きさである。また、第1判定閾値は第2判定閾値より小さな値として図示している。さらに、図9では、説明を分かりやすくするために、J又はJが“1”となる時刻をt=α、t=β、t=γ、t=δ、t=εと定義して図示している。
図9の下部に示した図は、制御信号J及びJの遷移、状態〈s〉〜状態〈s〉の遷移、第1適応等化手段EQL1及び第2適応等化手段EQL2の動作状態の遷移、信号合成手段COMBの動作状態の遷移を示している。以下に、時刻t=α、t=β、t=γ、t=δ、t=εにおける第1適応等化手段EQL1、第2適応等化手段EQL2、及び信号合成手段COMBの動作状態の遷移を具体的に説明する。
《動作開始時点から時刻t=αまでの状態遷移》
まず、系の動作開始時点で第1適応等化手段EQL1、第2適応等化手段EQL2、及び信号合成手段COMBが初期化され(状態〈s〉)、第1適応等化手段EQL1及び第2適応等化手段EQL2は直ちに通常動作(ON)を開始する(状態〈s〉)。第1適応等化手段EQL1及び第2適応等化手段EQL2が安定して動作すれば、両者の誤差信号、すなわち、第1等化誤差信号E(t)及び第2等化誤差信号E(t)は減少傾向となり、やがて第1判定閾値を下回る。次に、第1等化誤差信号E(t)及び第2等化誤差信号E(t)が共に所定時間だけ第1判定閾値を下回った時点(t=α)で、J=1となり、信号合成手段COMBが通常動作(ON)を開始する。
このような制御を行うことで、第1適応等化手段EQL1及び第2適応等化手段EQL2の動作が十分に安定してから信号合成を開始することができ、系の安定性をより向上させることが可能となる。
《時刻t=αから時刻t=βまでの状態遷移》
伝送路状態の変化等により系の安定性が劣化すると、第1等化誤差信号E(t)及び第2等化誤差信号E(t)が増加傾向に転じる。やがて、第1等化誤差信号E(t)が第1判定閾値を上回りJ=0となるが、Jの値が“1”から“0”に変化しても状態は遷移しないため、系は通常動作状態(ON)を維持することとなる。
さらに系の安定性が劣化し、第1等化誤差信号E(t)、第2等化誤差信号E(t)、及び合成等化誤差信号E(t)が全て第2判定閾値を上回る値となり、同状態が所定時間だけ継続した時点(時刻t=β)でJ=1となる。このとき、第1適応等化手段EQL1及び第2適応等化手段EQL2は初期化(INIT)される。一方、合成等化誤差信号E(t)は等化誤差信号の和、すなわち、E(t)+E(t)より小さい値であるため、信号合成手段COMBは即座に初期化する必要がなく一時停止状態(FRZ)となる。
上記のように、実施の形態1に係る信号制御装置16は、第1適応等化手段EQL1及び第2適応等化手段EQL2の安定状態のみを監視するのではなく、第1適応等化手段EQL1及び第2適応等化手段EQL2と信号合成手段14との双方の安定状態を監視することで、信号合成による信号品質向上効果を可能な限り大きく引き出すことができる。
《時刻t=βから時刻t=γまでの状態遷移》
初期化された第1適応等化手段EQL1及び第2適応等化手段EQL2は、再度通常動作状態(ON)となる。系が安定すれば両者の誤差信号、すなわち、第1等化誤差信号E(t)及び第2等化誤差信号E(t)は共に減少傾向となり、やがて第1判定閾値を下回る。第1等化誤差信号E(t)及び第2等化誤差信号E(t)が共に所定時間だけ第1判定閾値を下回った時点(t=γ)で再び信号合成手段14を一時停止状態(OFF)から通常動作状態(ON)とする。
上記のように、実施の形態1に係る信号制御装置16は、第1適応等化手段EQL1及び第2適応等化手段EQL2の初期化と同時に信号合成手段14を初期化するのではなく、第1適応等化手段EQL1及び第2適応等化手段EQL2の初期化時に信号合成手段14を一時停止状態(FRZ)とすることで、系の準安定状態を維持することができるため、再び通常動作状態(ON)となったときの収束動作をより早くすることができる。
《時刻t=γから時刻t=δまでの状態遷移》
再び伝送路状態の変化等により系の安定性が劣化すると、第1等化誤差信号E(t)及び第2等化誤差信号E(t)が増加傾向に転じる。やがて、第2等化誤差信号E(t)が第1判定閾値を上回りJ=0となるが、Jの値が“1”から“0”に変化しても状態は遷移しないため、系は通常動作状態を維持することとなる。
さらに系の安定性が劣化し、第1等化誤差信号E(t)、第2等化誤差信号E(t)、合成等化誤差信号E(t)が全て第2判定閾値を上回る値となり、同状態が所定時間だけ継続した時点(時刻t=δ)でJ=1となる。このとき、第1適応等化手段EQL1及び第2適応等化手段EQL2は初期化される。また、合成等化誤差信号E(t)は等化誤差信号の和、すなわち、E(t)+E(t)より大きな値であるため、系全体の安定性が著しく劣化しているものと判断し、信号合成手段COMBも初期化する。
《時刻t=δから時刻t=εまでの状態遷移》
第1適応等化手段EQL1及び第2適応等化手段EQL2は初期化直後から通常動作状態(ON)となり、収束動作を再開する。また、t=δにおいて信号合成手段COMBが初期化(INIT)された直後にJ=0となるため、信号合成手段COMBは第1適応等化手段EQL1及び第2適応等化手段EQL2の両方が安定するまでの間、初期状態を維持する。やがて、第1等化誤差信号E(t)及び第2等化誤差信号E(t)が共に所定時間だけ第1判定閾値を下回った時点(t=ε)で再び信号合成手段14を通常動作状態(ON)とする。
上記のように、実施の形態1に係る信号制御装置16は、信号合成手段14と第1適応等化手段EQL1及び第2適応等化手段EQL2から得られる誤差信号の関係を監視することで、系の安定性をより正確に判断することができ、系の発散を未然に防止することが可能となる。
〔1−3〕実施の形態1の効果.
以上に説明したように、実施の形態1に係る信号制御方法又は信号制御装置を用いることによって、適応等化部13及び信号合成手段14に対する停止、選択、初期化等の制御を適応的かつ相補的に行うことができるため、受信信号の振幅や位相が時々刻々と変化する環境下であっても、系全体の安定性を維持しつつ、信頼性の高い希望信号を得ることができる。
また、実施の形態1に係る信号制御方法又は信号制御装置を用いることによって、適応等化部13を構成する全ての適応等化手段(第1適応等化手段EQL1及び第2適応等化手段EQL2)が十分安定してから信号合成手段14を動作させることができるため、受信信号の振幅や位相が時々刻々と変化する環境下であっても、信号合成手段14の動作の安定性を維持しつつ、信頼性の高い希望信号を得ることができる。
さらに、実施の形態1に係る信号制御方法又は信号制御装置を用いることによって、適応等化部13を構成する全ての適応等化手段及び信号合成手段14の各々に対する安定状態の維持が見込めない場合に限り、系全体の動作を拘束状態とすることができるため、受信信号の振幅や位相が時々刻々と変化する環境下であっても、可能な限り信号合成を継続でき、結果的に、信頼性の高い希望信号を安定して得ることができる。
さらにまた、実施の形態1では、説明を簡素化するためN=2、すなわち、2系統のアンテナ、2系統の検波手段、及び2系統の適応等化手段を有する信号制御装置における信号制御方法を説明したが、N=1の場合、又は、Nが3以上の値の場合であっても、信頼性の高い希望信号を得ることができる。
また、実施の形態1では、第1適応等化手段13−1から出力される第1等化誤差信号E(t)、第2適応等化手段13−2から出力される第2等化誤差信号E(t)、及び信号合成手段14から出力される合成等化誤差信号E(t)の生成方法としてCMAを例示したが、他の算出方法を用いてこれら信号を生成してもよい。
例えば、所定周波数の正弦波等で構成される既知信号を有する系であれば、当該既知信号を、受信信号から得られる所定の信号と比較し、その振幅差異を第1等化誤差信号E(t)又は第2等化誤差信号E(t)又は合成等化誤差信号E(t)とすることができる。
また、同様の方法を用いて比較を行い、その位相偏差を、第1等化誤差信号E(t)又は第2等化誤差信号E(t)又は合成等化誤差信号E(t)とすることができる。
より一般的には、受信信号の全部又は一部を用いて算出される信号を他の信号と比較する方法であって、その比較結果の最適値があらかじめ定められているような信号であれば、第1等化誤差信号E(t)又は第2等化誤差信号E(t)又は合成等化誤差信号E(t)として用いることができる。
さらに、第1判定閾値は、高く設定するほど信号合成手段14の動作開始タイミングが早くなるため即応性が高くなるが、適応等化手段が十分に安定していない状態で信号合成手段14が動作を開始してしまう虞があるため安定性が劣化する。一方、第2判定閾値は、高く設定するほど信号合成手段14の時間動作率が向上するため追従性が高くなるが、信号合成手段14の追従能力を超える状態で動作を継続すると系が発散してしまう虞がある。従って、第1判定閾値及び第2判定閾値は、前者を後者以下の値とし、かつ、即応性と安定性がトレードオフとなることを考慮しつつ、適切に設定される必要がある。
また、実施の形態1では第1検波手段12−1の検波出力D(t)及び第2検波手段12−2の検波出力D(t)が時間Tの間隔でサンプリングされたデータであるものとしたが、検波出力D(t)及びD(t)がサンプリングされたデータでない場合であっても同一の効果を得ることができる。
〔2〕実施の形態2.
〔2−1〕実施の形態2の構成.
図10は、実施の形態2に係る信号制御方法を実施することができる信号制御装置を構成する誤差信号解析手段25の構成の一例を概略的に示す機能ブロック図である。図10において、図4に示した実施の形態1に係る信号制御方法を実施することができる信号制御装置を構成する誤差信号解析手段15と同様の構成要素には、同じ符号を付与することで重複する説明を省略する。
実施の形態2に係る信号制御装置における誤差信号解析手段25は、第1比較手段151−1、第2比較手段151−2、及び切換手段154に入力される信号が、信号E(t)、E(t)、及びE(t)から信号E´(t)、E´(t)、及びE´(t)にそれぞれ置き換わっている点、及び、入力信号E(t)、E(t)、及びE(t)を加工して第1等化誤差加工信号E´(t)、第2等化誤差加工信号E´(t)、及び合成誤差加工信号E´(t)を生成し出力する誤差加工手段155が追加されている点が、上述の実施の形態1に係る誤差信号解析手段15と異なる。
〔2−2〕実施の形態2の動作.
誤差加工手段155−1は、第1等化誤差信号E(t)の入力に対して第1等化誤差加工信号E´(t)を、誤差加工手段155−2は、第2等化誤差信号E(t)の入力に対して第1等化誤差加工信号E´(t)を、誤差加工手段155−3は、合成等化誤差信号E(t)の入力に対して合成誤差加工信号E´(t)をそれぞれ出力することができる。以下、誤差加工手段155−kへの入力を誤差信号E(t)、誤差加工手段155からの出力を誤差加工信号E´(t)として動作の説明を行う。ここで、k=1,2,3である。
図11は、実施の形態2に係る信号制御装置における誤差信号解析手段15を構成する誤差加工手段155−kの構成の一例を概略的に示す機能ブロック図である。図11に示されるように、誤差加工手段155−kは、単位時間遅延手段(D)51−kと、減算手段50−kとを備えている。
図11によれば、実施の形態2における誤差加工手段155−kでは、減算手段50−kにより、誤差信号E(t)と、これを単位時間遅延手段(D)51−kにより単位時間遅延させた信号との差を、誤差加工信号E´(t)として出力する。このような誤差加工手段155−kの出力E´(t)を用いて、第1比較手段151−1、第2比較手段151−2、及び切換手段154を動作させることで、受信信号レベルに依存しない誤差信号解析が可能となる。
〔2−3〕実施の形態2の効果.
より具体的に説明すると、例えば、受信信号レベルが極めて低い場合、一般的に誤差信号E(t)は大きくなる傾向がある。このとき、誤差信号E(t)と第1判定閾値Hとの比較及び誤差信号E(t)と第2判定閾値Hとの比較を行うと、これらの閾値を下回るまでに長い時間を要することとなる。それゆえ、信号合成手段14の動作開始までに時間がかかり、受信性能に悪影響を及ぼす虞がある。
一方、実施の形態2のような誤差加工手段155−kを用いれば、誤差信号E(t)の差分を第1判定閾値H及び第2判定閾値Hとそれぞれ比較することで、受信信号レベルに依存しない誤差信号解析を行うことができるようになるため、安定した信号合成動作を行うことが可能となる効果がある。
〔3〕実施の形態3.
〔3−1〕実施の形態3の構成.
図12は、実施の形態3に係る信号制御方法を実施することができる信号制御装置における誤差信号解析手段を構成する誤差加工手段156−kの構成の一例を概略的に示す機能ブロック図である。ただし、実施の形態3に係る信号制御装置における誤差信号解析手段は、実施の形態2において説明した図10の構成をとるものとする。図12に示されるように、誤差加工手段156−kは、加算手段60−kと、第1スイッチ(SW1)61−kと、第2スイッチ(SW2)62−kと、出力制御手段63―kと、単位時間遅延手段(D)64−kとを備えている。
図12によれば、実施の形態3における誤差加工手段156−kでは、加算手段60−kが、誤差信号E(t)と、これを単位時間遅延手段(D)64−kで単位時間遅延させた信号を逐次加算し、出力制御手段63―kを用いて制御された第1スイッチ(SW1)61−k及び第2スイッチ(SW2)62−kの動作のタイミングに応じて、誤差加工信号E´(t)を出力する。
〔3−2〕実施の形態3の動作.
図12における出力制御手段63−kは、所定の時間間隔で制御信号を出力する構成であることが望ましく、かつ、第1スイッチ(SW1)61−kは当該制御信号に呼応して遮断状態とし、第2スイッチ(SW2)62−kは当該制御信号に呼応して導通状態とする構成をとれば、実施の形態3における誤差加工手段156−kをブロック平均化回路とすることができる。このような誤差加工手段156−kの出力E´(t)を用いて、第1比較手段151−1、第2比較手段151−2、及び切換手段154を動作させることで、受信信号レベルの短周期変化に強い耐性を有する誤差信号解析が可能となる。
〔3−3〕実施の形態3の効果.
より具体的に説明すると、例えば、高速移動等に伴い受信信号レベルが短周期で激しく変動するような場合、誤差信号E(t)もその変動に応じて大きく変化する傾向がある。このとき、誤差信号E(t)そのものを用いて誤差信号解析を行うと、適応等化手段13−1,13−2や信号合成手段14の動作状態が頻繁に変化することとなり、系の安定性や受信性能に悪影響を及ぼす虞がある。
一方、実施の形態3のような誤差加工手段156−kを用いれば、誤差信号E(t)のブロック平均値を第1判定閾値H及び第2判定閾値Hと比較することができ、誤差信号の短周期変動の影響をあらかじめ軽減した状態で誤差信号解析を行うことができるようになるため、安定した信号合成動作を行うことが可能となる効果がある。
〔4〕実施の形態4.
〔4−1〕実施の形態4の構成.
図13は、実施の形態4に係る信号制御方法を実施することができる信号制御装置における誤差信号解析手段を構成する誤差加工手段157−kの構成の一例を概略的に示す機能ブロック図である。ただし、実施の形態4に係る信号制御装置における誤差信号解析手段は、実施の形態2において説明した図10の構成をとるものとする。図13に示されるように、誤差加工手段157−kは、多段に配置された単位時間遅延手段(D)70−kと、加算手段71−kとを備えている。
〔4−2〕実施の形態4の動作.
図13によれば、実施の形態4における誤差加工手段157−kでは、誤差信号E(t)と、多段に配置された単位時間遅延手段(D)70−kによって誤差信号E(t)を単位時間遅延させた信号を所定時間蓄積して加算し、当該加算結果を誤差加工信号E´(t)として出力する。このような誤差加工手段157−kの出力E´(t)を用いて、第1比較手段151−1、第2比較手段151−2、及び切換手段154を動作させることで、受信信号レベルの短周期変化に強い耐性を有する誤差信号解析が可能となる。
〔4−3〕実施の形態4の効果.
より具体的に説明すると、例えば、高速移動等に伴い受信信号レベルが短周期で激しく変動するような場合、誤差信号E(t)もその変動に応じて大きく変化する傾向がある。このとき、誤差信号E(t)そのものを用いて誤差信号解析を行うと、適応等化手段13−1,13−2や信号合成手段14の動作状態が頻繁に変化することとなり、系の安定性や受信性能に悪影響を及ぼす虞がある。
一方、実施の形態4のような誤差加工手段157−kを用いれば、誤差信号E(t)の移動平均値を第1判定閾値H及び第2判定閾値Hと比較することができ、誤差信号の短周期変動の影響をあらかじめ軽減した状態で誤差信号解析を行うことができるようになるため、安定した信号合成動作を行うことが可能となる効果がある。
また、実施の形態4のような誤差加工手段157−kを用いれば、誤差信号E´(t)が単位時間毎に出力されるため、実施の形態3のような信号制御手段に比べ、より精度の高い誤差信号解析が可能となる効果がある。
〔5〕変形例.
上述の実施の形態1乃至4の内容は、本発明の一態様に係る信号制御方法、信号制御装置、及び受信装置を例示したものであって、種々の変形が可能であり、本発明が適用可能な方法及び装置は、上述の例に限定されない。
1,11 アンテナ部、 11−1 第1アンテナ、 11−2 第2アンテナ、 2,12 検波部、 12−1 第1検波手段、 12−2 第2検波手段、 3,13 適応等化部、 13−1 第1適応等化手段、 13−2 第2適応等化手段、 4,14 信号合成手段、 5,15,25 誤差信号解析手段、 6,16 信号制御装置、 151−1 第1比較手段、 151−2 第2比較手段、 152−1 第1判定閾値、 152−2 第2判定閾値、 153−1 第1判定手段、 153−2 第2判定手段、 154 切換手段、 155−k,156−k,157−k 誤差加工手段。

Claims (20)

  1. 入力されたN(Nは正の整数)系統の信号から、N系統の等化出力信号及びN系統の等化誤差信号を計算するN系統の適応等化手段と、
    N系統の前記等化出力信号の合成信号及び合成等化誤差信号を計算する信号合成手段と、
    N系統の前記等化誤差信号及び前記合成等化誤差信号を参照し、N系統の前記適応等化手段の動作を制御するN系統の等化制御信号及び前記信号合成手段を制御する合成制御信号を生成する誤差信号解析手段と
    を備え、
    前記誤差信号解析手段は、N系統の前記等化誤差信号を参照して得られるN系統の第1評価指標及び前記合成等化誤差信号を参照して得られる第2評価指標の少なくとも一方を安定判別閾値と比較し、該比較の結果に基づいてN系統の前記等化制御信号及び前記合成制御信号を生成し、
    前記安定判別閾値は、前記信号合成手段を拘束動作状態から通常動作状態へ移行させるN系統の前記等化制御信号及び前記合成制御信号を生成するために使用される第1判定閾値と、前記信号合成手段を前記通常動作状態から前記拘束動作状態に移行させるN系統の前記等化制御信号及び前記合成制御信号を生成するために使用される第2判定閾値とを含み、
    前記第1判定閾値は、前記第2判定閾値以下の値である
    ことを特徴とする信号制御装置。
  2. 前記誤差信号解析手段は、
    第1時刻におけるN系統の前記等化誤差信号と第2時刻におけるN系統の前記等化誤差信号を、各々加算又は減算することによって得られたN系統以下の等化誤差解析信号を、N系統以下の前記第1評価指標とし、
    第3時刻における前記合成等化誤差信号と第4時刻における前記合成等化誤差信号を、各々加算又は減算することによって得られた合成等化誤差解析信号を、前記第2評価指標とする
    ことを特徴とする請求項1に記載の信号制御装置。
  3. 前記誤差信号解析手段は、
    第1時刻から第2時刻までのN系統の前記等化誤差信号の平均値を、N系統以下の前記第1評価指標とし、
    第3時刻から第4時刻までの前記合成等化誤差信号の平均値を、前記第2評価指標とする
    ことを特徴とする請求項1に記載の信号制御装置。
  4. 前記誤差信号解析手段は、
    第1時刻から第2時刻までのN系統の前記等化誤差信号の平均値と第3時刻から第4時刻までのN系統の前記等化誤差信号の平均値とを、各々加算又は減算することによって得られたN系統以下の等化誤差解析信号を、N系統以下の前記第1評価指標とし、
    第5時刻から第6時刻までの前記合成等化誤差信号の平均値と第7時刻から第8時刻までの前記合成等化誤差信号の平均値とを、各々加算又は減算することによって得られた合成等化誤差解析信号を、前記第2評価指標とする
    ことを特徴とする請求項1に記載の信号制御装置。
  5. 前記誤差信号解析手段は、N系統以下の前記第1評価指標の全てが第1所定時間区間において前記第1判定閾値以下となった場合に、前記信号合成手段を拘束動作状態から通常動作状態へ移行させるN系統の前記等化制御信号及び前記合成制御信号を生成する
    ことを特徴とする請求項1に記載の信号制御装置。
  6. 前記誤差信号解析手段は、N系統以下の前記第1評価指標の全てが第2所定時間区間において前記第2判定閾値以上となり、かつ、前記第2評価指標が前記第2所定時間区間において前記第2判定閾値以上となった場合に、前記信号合成手段を通常動作状態から拘束動作状態へ移行させるN系統の前記等化制御信号及び前記合成制御信号を生成する
    ことを特徴とする請求項1に記載の信号制御装置。
  7. 前記等化制御信号は、N系統の前記適応等化手段の一部又は全部の係数更新を一時停止又は再開させる信号である
    ことを特徴とする請求項1乃至6のいずれか1項に記載の信号制御装置。
  8. 前記等化制御信号は、N系統の前記適応等化手段の一部又は全部の係数更新動作を初期状態に戻すことができる信号である
    ことを特徴とする請求項1乃至6のいずれか1項に記載の信号制御装置。
  9. 前記合成制御信号は、前記信号合成手段の係数更新を一時停止又は再開させる信号である
    ことを特徴とする請求項1乃至6のいずれか1項に記載の信号制御装置。
  10. 前記合成制御信号は、前記信号合成手段の係数更新動作を初期状態に戻す信号である
    ことを特徴とする請求項1乃至6のいずれか1項に記載の信号制御装置。
  11. N(Nは正の整数)系統の適応等化手段と信号合成手段と誤差信号解析手段とを有する装置により実行される信号制御方法であって、
    N系統の前記適応等化手段が、入力されたN系統の信号から、N系統の等化出力信号及びN系統の等化誤差信号を計算するステップと、
    前記信号合成手段が、N系統の前記等化出力信号の合成信号及び合成等化誤差信号を計算するステップと、
    前記誤差信号解析手段が、N系統の前記等化誤差信号及び前記合成等化誤差信号を参照し、N系統の前記適応等化手段の動作を制御するN系統の等化制御信号及び前記信号合成手段を制御する合成制御信号を生成するステップと
    を有し、
    N系統の前記等化制御信号及び前記合成制御信号を生成する前記ステップにおいて、前記誤差信号解析手段は、N系統の前記等化誤差信号を参照して得られるN系統の第1評価指標及び前記合成等化誤差信号を参照して得られる第2評価指標の少なくとも一方を安定判別閾値と比較し、該比較の結果に基づいてN系統の前記等化制御信号及び前記合成制御信号を生成し、
    前記安定判別閾値は、前記信号合成手段を拘束動作状態から通常動作状態へ移行させるN系統の前記等化制御信号及び前記合成制御信号を生成するために使用される第1判定閾値と、前記信号合成手段を前記通常動作状態から前記拘束動作状態に移行させるN系統の前記等化制御信号及び前記合成制御信号を生成するために使用される第2判定閾値とを含み、
    前記第1判定閾値は、前記第2判定閾値以下の値である
    ことを特徴とする信号制御方法。
  12. N系統の前記等化制御信号及び前記合成制御信号を生成する前記ステップにおいて、
    第1時刻におけるN系統の前記等化誤差信号と第2時刻におけるN系統の前記等化誤差信号を、各々加算又は減算することによって得られたN系統以下の等化誤差解析信号を、N系統以下の前記第1評価指標とし、第3時刻における前記合成等化誤差信号と第4時刻における前記合成等化誤差信号を、各々加算又は減算することによって得られた合成等化誤差解析信号を、前記第2評価指標とする
    ことを特徴とする請求項11に記載の信号制御方法。
  13. N系統の前記等化制御信号及び前記合成制御信号を生成する前記ステップにおいて、
    第1時刻から第2時刻までのN系統の前記等化誤差信号の平均値を、N系統以下の前記第1評価指標とし、第3時刻から第4時刻までの前記合成等化誤差信号の平均値を、前記第2評価指標とする
    ことを特徴とする請求項11に記載の信号制御方法。
  14. N系統の前記等化制御信号及び前記合成制御信号を生成する前記ステップにおいて、
    第1時刻から第2時刻までのN系統の前記等化誤差信号の平均値と第3時刻から第4時刻までのN系統の前記等化誤差信号の平均値とを、各々加算又は減算することによって得られたN系統以下の等化誤差解析信号を、N系統以下の前記第1評価指標とし、第5時刻から第6時刻までの前記合成等化誤差信号の平均値と第7時刻から第8時刻までの前記合成等化誤差信号の平均値とを、各々加算又は減算することによって得られた合成等化誤差解析信号を、前記第2評価指標とする
    ことを特徴とする請求項11に記載の信号制御方法。
  15. N系統の前記等化制御信号及び前記合成制御信号を生成する前記ステップにおいて、
    前記誤差信号解析手段は、N系統以下の前記第1評価指標の全てが第1所定時間区間において前記第1判定閾値以下となった場合に、前記信号合成手段を拘束動作状態から通常動作状態へ移行させるN系統の前記等化制御信号及び前記合成制御信号を生成する
    ことを特徴とする請求項11に記載の信号制御方法。
  16. N系統の前記等化制御信号及び前記合成制御信号を生成する前記ステップにおいて、
    前記誤差信号解析手段は、N系統以下の前記第1評価指標の全てが第2所定時間区間において前記第2判定閾値以上となり、かつ、前記第2評価指標が前記第2所定時間区間において前記第2判定閾値以上となった場合に、前記信号合成手段を通常動作状態から拘束動作状態へ移行させるN系統の前記等化制御信号及び前記合成制御信号を生成する
    ことを特徴とする請求項11に記載の信号制御方法。
  17. 前記等化制御信号は、N系統の前記適応等化手段の一部又は全部の係数更新を一時停止又は再開させる信号である
    ことを特徴とする請求項11乃至16のいずれか1項に記載の信号制御方法。
  18. 前記等化制御信号は、N系統の前記適応等化手段の一部又は全部の係数更新動作を初期状態に戻すことができる信号である
    ことを特徴とする請求項11乃至16のいずれか1項に記載の信号制御方法。
  19. 前記合成制御信号は、前記信号合成手段の係数更新を一時停止又は再開させる信号である
    ことを特徴とする請求項11乃至16のいずれか1項に記載の信号制御方法。
  20. 前記合成制御信号は、前記信号合成手段の係数更新動作を初期状態に戻す信号である
    ことを特徴とする請求項11乃至16のいずれか1項に記載の信号制御方法。
JP2010215660A 2010-09-27 2010-09-27 信号制御装置及び信号制御方法 Expired - Fee Related JP5460539B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215660A JP5460539B2 (ja) 2010-09-27 2010-09-27 信号制御装置及び信号制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215660A JP5460539B2 (ja) 2010-09-27 2010-09-27 信号制御装置及び信号制御方法

Publications (2)

Publication Number Publication Date
JP2012070341A JP2012070341A (ja) 2012-04-05
JP5460539B2 true JP5460539B2 (ja) 2014-04-02

Family

ID=46167035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215660A Expired - Fee Related JP5460539B2 (ja) 2010-09-27 2010-09-27 信号制御装置及び信号制御方法

Country Status (1)

Country Link
JP (1) JP5460539B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627817B2 (ja) 2012-03-01 2014-11-19 三菱電機株式会社 受信装置及び受信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155228A (ja) * 1989-11-14 1991-07-03 Toshiba Corp ダイバーシティ受信装置
JPH05191310A (ja) * 1992-01-08 1993-07-30 Sony Corp 等化方式
JP4365125B2 (ja) * 2003-03-27 2009-11-18 株式会社日立国際電気 適応等化方式

Also Published As

Publication number Publication date
JP2012070341A (ja) 2012-04-05

Similar Documents

Publication Publication Date Title
JP6171843B2 (ja) 受信回路
EP1938537B1 (en) Data communication circuit with equalization control
JP4516443B2 (ja) 適応等化回路
US8976913B2 (en) Adaptive pattern dependent noise prediction on a feed forward noise estimate
US8903030B2 (en) Clock data recovery circuit with hybrid second order digital filter having distinct phase and frequency correction latencies
US20080069198A1 (en) Sequence decision feedback equalizer
US20080049825A1 (en) Equalizer with reorder
US7778322B2 (en) Equalizer with overlapped filter banks and methods for the same
JP5602307B2 (ja) 等化装置、受信装置及び等化方法
JP3192873B2 (ja) ブラインド等化システム及びその制御方法
EP2897319B1 (en) Method and Apparatus for Reference-Less Repeater with Digital Control
EP3316535B1 (en) Self-adaptive equalizer and method of implementing adaptive equalization
JP5460539B2 (ja) 信号制御装置及び信号制御方法
US20130162309A1 (en) Receiving circuit
JP4524119B2 (ja) スカラーデータからのベクトル出力を用いる信号処理方法及びシステム
US10523229B2 (en) Phase adjustment for interleaved analog to digital converters
EP3770628A1 (en) A method for radar interference mitigation
JP2007028155A (ja) 等化器、等化方法及び受信装置
KR20120072182A (ko) 이중 가변 누적기 기반 주파수 오프셋 보정 장치 및 그 방법
JP5257008B2 (ja) 適応等化器およびタップ係数制御方法
JP2003224532A (ja) 複数のインタポレータを使用し相対的に低いサンプリングレートでのデータリカバリ
JP5377076B2 (ja) 周波数同期装置、受信機および周波数同期方法
JP2000091965A (ja) 等化器及び等化方法
JP2006101003A (ja) 適応等化処理装置及びディジタル無線受信装置
JP6596908B2 (ja) デジタルフィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees