JP5458889B2 - 顕微鏡用対物レンズ - Google Patents

顕微鏡用対物レンズ Download PDF

Info

Publication number
JP5458889B2
JP5458889B2 JP2009534390A JP2009534390A JP5458889B2 JP 5458889 B2 JP5458889 B2 JP 5458889B2 JP 2009534390 A JP2009534390 A JP 2009534390A JP 2009534390 A JP2009534390 A JP 2009534390A JP 5458889 B2 JP5458889 B2 JP 5458889B2
Authority
JP
Japan
Prior art keywords
lens
lens group
diffractive optical
objective lens
cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009534390A
Other languages
English (en)
Other versions
JPWO2009041546A1 (ja
Inventor
三環子 万袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009534390A priority Critical patent/JP5458889B2/ja
Publication of JPWO2009041546A1 publication Critical patent/JPWO2009041546A1/ja
Application granted granted Critical
Publication of JP5458889B2 publication Critical patent/JP5458889B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
    • G02B27/0056Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations by using a diffractive optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)

Description

【技術分野】
【0001】
本発明は、顕微鏡等の光学系に用いられる顕微鏡用対物レンズに関する。
【背景技術】
【0002】
顕微鏡を用いた観察では、試料の自然な色を観察する必要があり、高度に色収差が補正された顕微鏡用対物レンズが望まれている。さらには、試料の取り扱いを容易にするため、できるだけ長い作動距離を有する顕微鏡用対物レンズが要望されている。ところが、長い作動距離を確保しようとすると、顕微鏡用対物レンズ系の物体側の焦点距離を長く取らざるを得ず、また、像側に強い屈折力を持たせた負レンズ群を配置する必要があり、当然ながら色収差の悪化は避けられない。そのため、色収差を高度に補正するために、回折光学素子を用いた顕微鏡用対物レンズが近年種々提案されている(例えば、特許文献1を参照。)
【先行技術文献】
【特許文献1】特許第3312057号公報
【発明の概要】
【発明が解決しようとする課題】
【0003】
しかしながら、このような色収差が高度に補正された顕微鏡用対物レンズは、例えば工業用途に使用するためには、作動距離が不足しており、また、球面収差やコマ収差のうねりが大きいという課題があった。
【0004】
本発明はこのような課題に鑑みてなされたものであり、工業用途にも十分使用可能な長い作動距離を有し、且つ、色収差が高度に補正された顕微鏡用対物レンズを提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明の課題を解決するために、本発明に係る顕微鏡用対物レンズは、物体側より順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、回折光学面を有する回折光学素子と、負の屈折力を有する第3レンズ群とにより、実質的に3個のレンズ群からなり、第1レンズ群は、最も物体側のレンズ面が物体側に向かって凹面に形成される。また、この顕微鏡用対物レンズは、第2レンズ群と第3レンズ群との間で主光線が光軸と交わり、回折光学素子は、この主光線と光軸が交わる位置の近傍にその回折光学面が位置するように配置される。そして、この顕微鏡用対物レンズは、回折光学面における最大主光線高をhとし、実視野をφとし、第2レンズ群と第3レンズ群との光軸上の間隔をLとし、全系の焦点距離をfaとし、回折光学面における最大有効半径をHとし、開口数をNAとし、第1レンズ群と第2レンズ群との合成焦点距離をf12とし、第3レンズ群の焦点距離をf3としたとき、次式
h < α×L×0.3
但し、α=φ/2×{1/fa−(L/f12−1)/|f3|}
H < [H3+{φ/(2×fa)+H3/|f3|}×L]×0.85
但し、H3=fa×NA
を満足するように構成される。
【0006】
また、本発明に係る顕微鏡用対物レンズは、第1レンズ群及び第2レンズ群は、それぞれ少なくとも1つの接合レンズを有し、該接合レンズの接合面の曲率半径をrとし、当該接合面の物体側の媒質のd線に対する屈折率をn1とし、当該接合面の像側の媒質のd線に対する屈折率をn2とし、当該接合面のパワーをΦとしたとき、次式
|Φ| < 0.025
但し、Φ=(n2−n1)/r
を満足するよう構成されることが好ましい。
【0007】
また、本発明に係る顕微鏡用対物レンズは、全系の焦点距離faと第3レンズ群の焦点距離f3とが、次式
1 < |f3/fa| < 5
を満足するように構成されることが好ましい。
【発明の効果】
【0008】
本発明に係る顕微鏡用対物レンズを以上のように構成すると、長い作動距離を有し、色収差が高度に補正された顕微鏡用対物レンズを提供することができる。
【図面の簡単な説明】
【0009】
【図1】本発明の第1実施例に係る顕微鏡用対物レンズのレンズ構成図である。
【図2】上記第1実施例に係る顕微鏡用対物レンズの諸収差図である。
【図3】本発明の第2実施例に係る顕微鏡用対物レンズのレンズ構成図である。
【図4】上記第2実施例に係る顕微鏡用対物レンズの諸収差図である。
【図5】本発明の第3実施例に係る顕微鏡用対物レンズのレンズ構成図である。
【図6】上記第3実施例に係る顕微鏡用対物レンズの諸収差図である。
【発明を実施するための形態】
【0010】
本発明の好ましい実施形態について図面を参照して説明する。なお、以下の説明において「対物レンズ」を「顕微鏡用対物レンズ」と読み替えることとする。まず、図1を用いて、本発明に係る対物レンズの構成について説明する。この対物レンズOLは、物体側より順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、及び、負の屈折力を有する第3レンズ群G3を有し、第2レンズ群G2と第3レンズ群G3との間に回折光学素子GDが配設されて構成されている。
【0011】
このような対物レンズOLにおいて、第1レンズ群G1は、正レンズと負レンズとを接合してなる色消しレンズ(図1におけるレンズL2,L3からなる接合レンズ)を少なくとも1つ以上有しており、また、極力球面収差を発生させないために、最も物体側の面が、物体側に凹面を向けた正のメニスカスレンズ(図1におけるレンズL1)として構成されている。これは、高い開口数の光線に対しても、レンズ面に対する光線の入射角ができるだけ大きくならないようにするためである。
【0012】
また、第2レンズ群G2は、正レンズと負レンズとを接合してなる色消しレンズ(図1におけるレンズL5,L6,L7からなる接合レンズとレンズL8,L9からなる接合レンズ)を少なくとも1つ以上有して構成されている。さらに、第3レンズ群G3は、正レンズと負レンズとを接合してなる接合負レンズ(図1におけるレンズL14,L15からなる接合レンズ)を少なくとも1つ以上有して構成されている。
【0013】
回折光学素子GDは、光学ガラスL10、それぞれ異なる樹脂材料から形成された2個の光学部材L11,L12、及び、光学ガラスL13をこの順で接合し、光学部材L11,L12の接合面に回折格子が形成されて構成されている(以下、この接合面を「回折光学面D」と呼ぶ)。回折光学素子GD(回折光学面D)は、負の分散値(アッベ数=−3.453)を有し、分散が大きく、また異常分散性(部分分散比(ng−nF)/(nF−nC)=0.2956)が強いため、強力な色収差補正能力を有している。光学ガラスのアッベ数は、通常30〜80程度であるが、回折光学素子GDのアッベ数は負の値を持っている。換言すると、回折光学素子GDにおいては、長い波長の光ほど大きく曲がる。このため、通常の光学ガラスでは達成し得ない良好な色収差補正が可能となる。すなわち、本実施例に係る対物レンズOLは、EDガラスや蛍石等の高価な光学材料を多く用いず、樹脂により形成された負分散特性を有する回折光学素子を用いて、少ないレンズ枚数で構成するものである。なお、回折光学面Dを形成する光学部材L11,L12を樹脂とした利点は、通常の光学ガラスよりも簡単にモールドと紫外線硬化により回折格子が形成できる点にある。
【0014】
ここで、第1レンズ群G1と第3レンズ群G3とで光束を制限し、各物高から発する光束の中心を通る光線を主光線と定義すると、本実施例に係る対物レンズOLは、第2レンズ群G2と第3レンズ群G3との間でこの主光線が光軸と交わるように構成されており、回折光学素子GDは、その回折光学面Dが、主光線が光軸と交わる位置の近傍に位置するように配置されている。
【0015】
それでは、本発明に係る対物レンズOLを構成するための条件について、以下に説明する。この対物レンズOLは、回折光学素子GDの回折光学面Dにおける最大主光線高をhとし、第2レンズ群G2と第3レンズ群G3との光軸上の間隔をLとし、この対物レンズOLの全系の焦点距離をfaとし、第1レンズ群G1と第2レンズ群G2との合成焦点距離をf12とし、第3レンズ群G3の焦点距離をf3としたとき、実視野φを考慮して決定した次の条件式(1)を満足するように構成される。
h < α×L×0.3 (1)
但し、α=φ/2×{1/fa−(L/f12−1)/|f3|}
【0016】
本実施例に係る対物レンズOLは、回折光学素子GDの回折光学面Dにおける最大有効半径をHとしたとき、開口数NAと実視野φを考慮して決定した次の条件式(2)を満足するように構成される。
H < [H3+{φ/(2×fa)+H3/|f3|}×L]×0.85 (2)
但し、H3 = fa×NA
【0017】
回折光学素子GDは、2次スペクトルも含めた軸上色収差を主に補正し、倍率の色収差や球面収差の色変化の補正と微妙なバランスを取る必要がある。条件式(1)は、回折光学素子GDの回折光学面Dにおける最大主光線高の条件を示している。本実施例に係る対物レンズOLは、作動距離を長く取るため、軸上色収差の補正が難しく、回折光学素子GDの回折光学面Dでこの軸上色収差を重点的に補正するときに、軸外光に影響を与えずに補正するための条件である。一方、条件式(2)は回折光学素子GDの回折光学面Dを通る光線の最大有効径の条件を示している。有効径の大きいところに回折光学素子GD(回折光学面D)が配置されると、高次の球面収差やコマ収差が発生してしまうため、この条件式(2)を満足する必要がある。
【0018】
また、本実施例に係る対物レンズOLは、第1レンズ群G1及び第2レンズ群G2に含まれる接合レンズの接合面のパワーをΦとしたとき、次の条件式(3)を満足することが望ましい。ここで、接合面のパワーΦは、接合面の物体側の光学部材(第1媒質)のd線(588nm)に対する屈折率をn1とし、像側の光学部材(第2媒質)のd線に対する屈折率をn2とし、接合面の曲率半径をrとしたとき、次式(f)で定義される。
|Φ| < 0.025 (3)
Φ = (n2−n1)/r (f)
【0019】
この条件式(3)は、第1レンズ群G1及び第2レンズ群G2を構成する接合レンズの接合面におけるパワーの条件を示しており、この条件を超えると、色の球面収差やコマ収差が発生してしまう。
【0020】
さらに、本実施例に係る対物レンズOLは、全系の焦点距離faと第3レンズ群G3の焦点距離f3とが、次の条件式(4)を満足することが望ましい。
1 < |f3/fa| < 5 (4)
【0021】
この条件式(4)は、第3レンズ群G3のパワーの条件を示しており、この下限を超えると、すなわち、第3レンズ群G3のパワーが強くなると、さらに前群のパワーも強めなければならず、球面収差やコマ収差が悪化してしまう。反対に、この条件式(4)の上限を超えると、前群のパワーを弱めなければならず、前群と後群の間隔を大きく取る必要があり、同焦点性を考えると作動距離を長くすることができなくなる。
【0022】
(実施例)
以下に、本発明に係る対物レンズOLの3つの実施例を示すが、各実施例において、回折光学素子GDに形成された回折光学面Dの位相差は、通常の屈折率と後述する非球面式(g)とを用いて行う超高屈折率法により計算した。超高屈折率法とは、非球面形状と回折光学面の格子ピッチとの間の一定の等価関係を利用するものであり、本実施例においては、回折光学面Dを超高屈折率法のデータとして、すなわち、後述する非球面式(g)及びその係数により示している。なお、本実施例では収差特性の算出対象として、d線、g線、C線及びF線を選んでいる。本実施例において用いられたこれらd線、g線、C線及びF線の波長と、各スペクトル線に対して設定した超高屈折率法の計算に用いるための回折光学面Dの屈折率の値を次の表1に示す。
【0023】
(表1)
波長 屈折率(超高屈折率法による)
d線 587.562nm 10001
C線 656.273nm 11170.4255
F線 486.133nm 8274.7311
g線 435.835nm 7418.6853
【0024】
各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(頂点曲率半径)をrとし、円錐係数をKとし、n次の非球面係数をCnとしたとき、以下の数式(g)で表わされる。またこのとき、近軸曲率半径Rは以下の
数式(h)で表される。
S(y)=(y2/r)/{1+(1−K・y2/r21/2
+C2・y2+C4・y4+C6・y6+C8・y8+C10・y10+・・・ (g)
R=1/(1/r+2C2) (h)
【0025】
なお、各実施例において、回折光学面が形成されたレンズ面には、表中の面番号の右側に*印を付しており、非球面式(g)は、この回折光学面の性能の諸元を示している。
【0026】
また、以下の各実施例における対物レンズOLは、無限遠補正型のものであり、表2に示す諸元を有する結像レンズとともに使用される。なお、この表2において、第1欄mは物体側からの各光学面の番号、第2欄rは各光学面の曲率半径、第3欄dは各光学面から次の光学面までの光軸上の距離、第4欄ndはd線に対する屈折率、そして、第5欄νdはd線に対するアッベ数を示している。この諸元表の説明は以降の実施例においても同様である。
【0027】
(表2)
m r d nd νd
1 75.043 5.1 1.623 57.0
2 -75.043 2 1.750 35.2
3 1600.58 7.5
4 50.256 5.1 1.668 42.0
5 -84.541 1.8 1.613 44.4
6 36.911 5.5
【0028】
(第1実施例)
上述の説明で用いた図1は、本発明に係る対物レンズOLの第1実施例を示している。この対物レンズOL1は、上述した通り、物体側より順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、及び、負の屈折力を有する第3レンズ群G3を有し、第2レンズ群G2と第3レンズ群G3との間に回折光学素子GDが配設されている。第1レンズ群G1は、物体側に凹面を向けた正メニスカスレンズL1、両凸レンズL2と物体側に凹面を向けた負メニスカスレンズL3とをこの順で接合した接合レンズ、及び、両凸レンズL4から構成される。また、第2レンズ群G2は、両凸レンズL5と両凹レンズL6と両凸レンズL7とをこの順で接合した接合レンズ、及び、両凸レンズL8と両凹レンズL9とをこの順で接合した接合レンズから構成される。さらに、第3レンズ群G3は、物体側に凹面を向けた正メニスカスレンズL14と両凹レンズL15とを接合した接合レンズから構成される。
【0029】
また、上述のように、回折光学素子GDは、光学ガラスL10、それぞれ異なる樹脂材料から形成された2個の光学部材L11,L12、及び、光学ガラスL13がこの順で接合され、光学部材L11,L12の接合面に回折格子(回折光学面D)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。
【0030】
このように図1に示した第1実施例に係る対物レンズOL1の諸元を表3に示す。なお、この表3において、faは対物レンズOL1の全系の焦点距離を、NAは開口数を、βは倍率を、d0は物体から最初のレンズ(レンズL1)の頂点までの光軸上の距離をそれぞれ示している。また、第1欄mに示す各光学面の番号(右の*は回折光学面として形成されているレンズ面を示す)は、図1に示した面番号1〜23に対応している。また、第2欄rにおいて、回折光学面の場合は、ベースとなる非球面の基準となる球面の曲率半径を示している。さらに、この表3には、上記条件式(1)〜(4)に対応する値、すなわち、条件対応値も示している。これらの説明は以降の実施例においても同様である。
【0031】
なお、以下の全ての諸元において掲載される曲率半径r、面間隔d、全系の焦点距離faその他長さの単位は、特記の無い場合、一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることはなく、他の適当な単位を用いることもできる。
【0032】
(表3)
fa=4
NA=0.55
β=50
d0=12.10

m r d nd νd
1 -18.980 2.78 1.903 35.7
2 -11.572 0.09
3 126.510 4.19 1.498 82.5
4 -16.020 1.11 1.795 28.7
5 -24.548 0.11
6 109.123 4.00 1.498 82.5
7 -25.541 0.16
8 41.299 4.53 1.498 82.5
9 -18.870 1.28 1.613 44.3
10 13.795 4.49 1.498 82.5
11 -45.604 0.08
12 23.853 3.94 1.498 82.5
13 -20.925 0.96 1.723 38.0
14 71.692 2.96
15 ∞ 2.00 1.517 64.1
16 ∞ 0.20 1.557 50.2
17 ∞ 0.00 10001.000
18* ∞ 0.20 1.528 34.7
19 ∞ 2.00 1.517 64.1
20 ∞ 13.00
21 -24.965 1.49 1.847 23.8
22 -5.937 0.99 1.640 60.1
23 6.382

非球面データ
第18面 K=1 C2=-3.84615×10-084=-6.10986×10-12
6=4.20109×10-148=-4.07645×10-16

条件対応値
(1) 左辺=0.21、 右辺=0.28
(2) 左辺=5.78、 右辺=6.80
(3)|Φ1|=0.019、 |Φ2|=0.006、 |Φ3|=0.008、 |Φ4|=0.011
(4)|f3/fa|=2.48
【0033】
上記に示した表3の条件対応値のうち、条件式(3)において、Φ1は第4面のパワーを示し、Φ2は第9面のパワーを示し、Φ3は第10面のパワーを示し、Φ4は第13面のパワーを示している。このように第1実施例では上記条件式(1)〜(4)は全て満たされていることが分かる。図2に、この第1実施例におけるd線、g線、C線及びF線の光線に対する球面収差、倍率色収差、及び、コマ収差の諸収差図を示す。この諸収差図において、実線はd線を示し、点線はC線を示し、一点鎖線はF線を示し、二点鎖線はg線を示している。なお、球面収差図では最大口径に対する開口数NAの値を示しており、コマ収差図は、像高Yが12.5mmのとき、9mmのとき、6mmのとき、及び、0mmのときを示している。以上の収差図の説明は他の実施例において同様である。この図2に示す各収差図から明らかなように、第1実施例では諸収差が良好に補正され、優れた結像性能が確保されていることがわかる。
【0034】
(第2実施例)
次に、第2実施例として、図3に示す対物レンズOL2について説明する。この図3に示す対物レンズOL2も、物体側より順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、及び、負の屈折力を有する第3レンズ群G3を有し、第2レンズ群G2と第3レンズ群G3との間に回折光学素子GDが配設されている。第1レンズ群G1は、物体側に凹面を向けた平凹レンズL21と像側に凸面を向けた平凸レンズL22とをこの順で接合した接合レンズ、及び、物体側に凹面を向けた正メニスカスレンズL23から構成される。また、第2レンズ群G2は、物体側に凸面を向けた負メニスカスレンズL24と両凸レンズL25とをこの順で接合した接合レンズ、及び、両凸レンズL26と両凹レンズL27とをこの順で接合した接合レンズから構成される。さらに、第3レンズ群G3は、物体側に凹面を向けた正メニスカスレンズL32と両凹レンズL33とをこの順で接合した接合レンズから構成される。
【0035】
また、第1実施例と同様に、回折光学素子GDは、光学ガラスL28、それぞれ異なる樹脂材料から形成された2個の光学部材L29,L30、及び、光学ガラスL31がこの順で接合され、光学部材L29,L30の接合面に回折格子(回折光学面D)が形成されている。
【0036】
この図3に示した第2実施例に係る対物レンズOL2の諸元を表4に示す。なお、表4に示す面番号は図3に示した面番号1〜20と一致している。
【0037】
(表4)
fa=10
NA=0.4
β=20
d0=16.20

m r d nd νd
1 -26.110 1.94 1.720 34.7
2 ∞ 4.80 1.835 42.7
3 -16.983 0.21
4 -164.215 3.31 1.603 65.4
5 -32.740 0.20
6 75.780 1.19 1.757 31.6
7 17.807 5.50 1.498 82.5
8 -52.955 1.00
9 18.485 5.50 1.498 82.5
1 -48.109 1.21 1.717 29.5
11 1988.395 3.00
12 ∞ 2.00 1.517 64.1
13 ∞ 0.20 1.557 50.2
14 ∞ 0.00 10001.000
15* ∞ 0.20 1.528 34.7
16 ∞ 2.00 1.517 64.1
17 ∞ 8.70
18 -369.424 3.02 1.785 25.7
19 -9.928 1.00 1.717 47.9
20 11.065

非球面データ
第15面 K=1 C2=-3.87597×10-084=2.81455×10-14
6=-7.25117×10-168=-1.14725×10-18

条件対応値
(1) 左辺=0.13、 右辺=0.29
(2) 左辺=7.26、 右辺=7.55
(3)|Φ1|=0、 |Φ2|=0.015、 |Φ3|=0.005
(4)|f3/fa|=1.66
【0038】
上記に示した表4の条件対応値のうち、条件式(3)において、Φ1は第2面のパワーを示し、Φ2は第7面のパワーを示し、Φ3は第10面のパワーを示している。このように第2実施例でも上記条件式(1)〜(4)は全て満たされていることが分かる。図4にこの第2実施例に係る対物レンズOL2の球面収差、倍率色収差及びコマ収差の諸収差図を示す。この各収差図から明らかなように、この第2実施例でも、収差が良好に補正され、優れた結像性能が確保されていることが分かる。
【0039】
(第3実施例)
さらに、第3実施例として、図5に示す対物レンズOL3について説明する。この図5に示す対物レンズOL3も、物体側より順に、正の屈折力を有する第1レンズ群G1、正の屈折力を有する第2レンズ群G2、及び、負の屈折力を有する第3レンズ群G3を有し、第2レンズ群G2と第3レンズ群G3との間に回折光学素子GDが配設されている。第1レンズ群G1は、物体側に凹面を向けた正メニスカスレンズL41、物体側に凹面を向けた正メニスカスレンズL42、物体側に凹面を向けた正メニスカスレンズL43、及び、両凹レンズL44と両凸レンズL45とをこの順で接合した接合レンズから構成される。また、第2レンズ群G2は、両凸レンズL46と両凹レンズL47と両凸レンズL48とをこの順で接合した接合レンズ、及び、両凸レンズL49と両凹レンズL50とをこの順で接合した接合レンズから構成される。さらに、第3レンズ群G3は、両凹レンズL55と両凸レンズL56と両凹レンズL57とをこの順で接合した接合レンズから構成される。
【0040】
また、第1及び第2実施例と同様に、回折光学素子GDは、光学ガラスL51、それぞれ異なる樹脂材料から形成された2個の光学部材L52,L53、及び、光学ガラスL54がこの順で接合され、光学部材L52,L53の接合面に回折格子(回折光学面D)が形成されている。
【0041】
この図5に示した第3実施例に係る対物レンズOL3の諸元を表5に示す。なお、表5に示す面番号は図5に示した面番号1〜26と一致している。
【0042】
(表5)
fa=2
NA=0.8
β=100
d0=5.62

m r d nd νd
1 -9.091 2.78 1.835 42.7
2 -6.831 0.11
3 -20.141 2.90 1.603 65.4
4 -11.278 0.16
5 -129.471 3.21 1.498 82.5
6 -19.912 0.21
7 -78.960 1.30 1.624 47.1
8 16.671 6.71 1.498 82.5
9 -21.356 0.20
10 24.291 5.47 1.498 82.5
11 -17.070 1.48 1.654 39.7
12 16.853 5.50 1.498 82.5
13 -18.406 0.18
14 17.067 4.63 1.498 82.5
15 -16.869 0.97 1.804 46.6
16 35.410 1.83
17 ∞ 2.00 1.517 64.1
18 ∞ 0.20 1.557 50.2
19 ∞ 0.00 10001.000
20* ∞ 0.20 1.528 34.7
21 ∞ 2.00 1.517 64.1
22 ∞ 10.95
23 -12.648 0.98 1.744 44.8
24 4.497 2.47 1.755 27.5
25 -3.748 0.96 1.624 47.1
26 4.851

非球面データ
第20面 K=1 C2=-3.87597×10-084=-6.36546×10-13
6=3.74049×10-158=7.79187×10-18

条件対応値
(1) 左辺=0.18、 右辺=0.24
(2) 左辺=5.36、 右辺=6.05
(3)|Φ1|=0.008、 |Φ2|=0.009、 |Φ3|=0.009、 |Φ4|=0.018
(4)|f3/fa|=3.10
【0043】
上記に示した表5の条件対応値のうち、条件式(3)において、Φ1は第8面のパワーを示し、Φ2は第11面のパワーを示し、Φ3は第12面のパワーを示し、Φ4は第15面のパワーを示している。このように第3実施例でも上記条件式(1)〜(4)は全て満たされていることが分かる。図6にこの第3実施例に係る対物レンズOL3の球面収差、倍率色収差及びコマ収差の諸収差図を示す。この各収差図から明らかなように、この第3実施例でも、収差が良好に補正され、優れた結像性能が確保されていることが分かる。

Claims (4)

  1. 物体側より順に、
    正の屈折力を有する第1レンズ群と、
    正の屈折力を有する第2レンズ群と、
    回折光学面を有する回折光学素子と、
    負の屈折力を有する第3レンズ群とにより、実質的に3個のレンズ群からなり、
    前記第1レンズ群は、最も物体側のレンズ面が物体側に向かって凹面に形成され、
    前記第2レンズ群と前記第3レンズ群との間で主光線が光軸と交わり、前記回折光学素子は、前記主光線と光軸が交わる位置の近傍に前記回折光学面が位置するように配置され、
    前記回折光学面における最大主光線高をhとし、実視野をφとし、前記第2レンズ群と前記第3レンズ群との光軸上の間隔をLとし、全系の焦点距離をfaとし、前記回折光学面における最大有効半径をHとし、開口数をNAとし、前記第1レンズ群と前記第2レンズ群との合成焦点距離をf12とし、前記第3レンズ群の焦点距離をf3としたとき、次式
    h < α×L×0.3
    但し、α=φ/2×{1/fa−(L/f12−1)/|f3|}
    H < [H3+{φ/(2×fa)+H3/|f3|}×L]×0.85
    但し、H3=fa×NA
    を満足するように構成された顕微鏡用対物レンズ。
  2. 前記全系の焦点距離faと前記第3レンズ群の焦点距離f3とが、次式
    1 < |f3/fa| < 5
    満足するように構成された請求項1記載の顕微鏡用対物レンズ。
  3. 前記第1レンズ群及び前記第2レンズ群は、それぞれ少なくとも1つの接合レンズを有し、該接合レンズの接合面の曲率半径をrとし、当該接合面の物体側の媒質のd線に対する屈折率をn1とし、当該接合面の像側の媒質のd線に対する屈折率をn2とし、当該接合面のパワーをΦとしたとき、次式
    |Φ| < 0.025
    但し、Φ=(n2−n1)/r
    を満足するよう構成された請求項1に記載の顕微鏡用対物レンズ。
  4. 前記全系の焦点距離faと前記第3レンズ群の焦点距離f3とが、次式
    1 < |f3/fa| < 5
    を満足するように構成された請求項3に記載の顕微鏡用対物レンズ。
JP2009534390A 2007-09-25 2008-09-18 顕微鏡用対物レンズ Active JP5458889B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009534390A JP5458889B2 (ja) 2007-09-25 2008-09-18 顕微鏡用対物レンズ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007246471 2007-09-25
JP2007246471 2007-09-25
PCT/JP2008/067373 WO2009041546A1 (ja) 2007-09-25 2008-09-18 対物レンズ
JP2009534390A JP5458889B2 (ja) 2007-09-25 2008-09-18 顕微鏡用対物レンズ

Publications (2)

Publication Number Publication Date
JPWO2009041546A1 JPWO2009041546A1 (ja) 2011-01-27
JP5458889B2 true JP5458889B2 (ja) 2014-04-02

Family

ID=40511426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009534390A Active JP5458889B2 (ja) 2007-09-25 2008-09-18 顕微鏡用対物レンズ

Country Status (5)

Country Link
US (1) US7848027B2 (ja)
EP (1) EP2194412B1 (ja)
JP (1) JP5458889B2 (ja)
CN (1) CN101802676B (ja)
WO (1) WO2009041546A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235404B (zh) 2008-04-11 2015-09-02 株式会社尼康 显微镜物镜
EP2584391B1 (en) 2010-06-16 2020-12-02 Nikon Corporation Microscope objective lens
JP5440891B2 (ja) * 2010-08-25 2014-03-12 株式会社ニコン 顕微鏡対物レンズ
JP2014202766A (ja) * 2013-04-01 2014-10-27 ソニー株式会社 撮像レンズおよび撮像装置
US9759902B2 (en) * 2013-07-19 2017-09-12 New York University System, method and computer-accessible medium for authenticating physical objects using microscopic textures
EP3096173B1 (en) * 2014-01-15 2022-08-17 Nikon Corporation Objective lens and microscope
CN106707482A (zh) * 2017-02-28 2017-05-24 浙江大学 一种宽视场多尺度高分辨率显微成像系统和方法
TWI668481B (zh) * 2017-05-22 2019-08-11 先進光電科技股份有限公司 光學成像系統(二)
DE102018132472A1 (de) 2018-12-17 2020-06-18 Leica Camera Aktiengesellschaft Fotografisches Weitwinkelobjektiv
CN109946817B (zh) * 2019-04-24 2023-11-28 威海世高光电子有限公司 一种超广角高像素手机内置镜头
CN110308548B (zh) * 2019-07-08 2024-06-14 桂林弗克斯光电仪器有限公司 长工作距平场复消色差显微物镜
CN110716299B (zh) * 2019-11-08 2021-02-02 山西大学 一种数值孔径为0.55的长工作距离显微物镜
CN112817126B (zh) * 2021-01-26 2022-06-28 江西晶超光学有限公司 光学成像镜头、取像装置及电子设备
CN114442281B (zh) * 2022-04-08 2022-07-01 东莞锐视光电科技有限公司 直写光刻镜头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347700A (ja) * 1993-06-07 1994-12-22 Olympus Optical Co Ltd 対物レンズ
JP2001305431A (ja) * 2000-04-20 2001-10-31 Olympus Optical Co Ltd 対物レンズ
JP3312057B2 (ja) * 1993-05-24 2002-08-05 オリンパス光学工業株式会社 対物レンズ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242426B2 (ja) * 1991-09-12 2001-12-25 オリンパス光学工業株式会社 紫外対物レンズ
US5631779A (en) * 1993-05-24 1997-05-20 Olympus Optical Co., Ltd. Objective lens system
US7593157B2 (en) * 2004-11-29 2009-09-22 Nikon Corporation Zoom microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312057B2 (ja) * 1993-05-24 2002-08-05 オリンパス光学工業株式会社 対物レンズ
JPH06347700A (ja) * 1993-06-07 1994-12-22 Olympus Optical Co Ltd 対物レンズ
JP2001305431A (ja) * 2000-04-20 2001-10-31 Olympus Optical Co Ltd 対物レンズ

Also Published As

Publication number Publication date
US7848027B2 (en) 2010-12-07
EP2194412A4 (en) 2017-12-20
WO2009041546A1 (ja) 2009-04-02
EP2194412A1 (en) 2010-06-09
JPWO2009041546A1 (ja) 2011-01-27
CN101802676B (zh) 2011-11-09
CN101802676A (zh) 2010-08-11
US20100172034A1 (en) 2010-07-08
EP2194412B1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP5458889B2 (ja) 顕微鏡用対物レンズ
US7411745B2 (en) Large-aperture-ratio internal focusing telephoto lens
JP4014186B2 (ja) 内視鏡用対物レンズ
US20070070517A1 (en) Zoom lens system
US8199408B2 (en) Immersion microscope objective lens
JP2004233750A (ja) ズームレンズ
WO2020066224A1 (ja) 望遠鏡および望遠鏡のシリーズ
JP3836525B2 (ja) 高変倍ズームレンズ
JP7239985B2 (ja) 撮像光学系
JP2009075281A (ja) 顕微鏡対物レンズ
JP7061989B2 (ja) 内視鏡用対物レンズ及び内視鏡
JPH11174345A (ja) 広視野接眼レンズ
JPWO2009044836A1 (ja) ズーム接眼レンズ系
JP2008122592A (ja) 顕微鏡対物レンズ
JP2007094173A (ja) 広角レンズ
JPWO2019131748A1 (ja) レンズシステムおよび撮像装置
JP5190691B2 (ja) 顕微鏡対物レンズ
JP2011017978A (ja) 接眼ズーム光学系
JP2001188169A (ja) ズームレンズ系
JP5434130B2 (ja) 顕微鏡対物レンズ
JP5422214B2 (ja) 接眼レンズ及び光学機器
JP5963121B2 (ja) 接眼ズーム光学系
JP2012083486A (ja) 対物レンズ
JP4352374B2 (ja) 顕微鏡用対物レンズ
JP2000019387A (ja) 結像レンズ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5458889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250