WO2009041546A1 - 対物レンズ - Google Patents

対物レンズ Download PDF

Info

Publication number
WO2009041546A1
WO2009041546A1 PCT/JP2008/067373 JP2008067373W WO2009041546A1 WO 2009041546 A1 WO2009041546 A1 WO 2009041546A1 JP 2008067373 W JP2008067373 W JP 2008067373W WO 2009041546 A1 WO2009041546 A1 WO 2009041546A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
cemented
objective lens
focal length
Prior art date
Application number
PCT/JP2008/067373
Other languages
English (en)
French (fr)
Inventor
Miwako Mandai
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2009534390A priority Critical patent/JP5458889B2/ja
Priority to EP08834355.3A priority patent/EP2194412B1/en
Priority to CN2008801079884A priority patent/CN101802676B/zh
Publication of WO2009041546A1 publication Critical patent/WO2009041546A1/ja
Priority to US12/724,307 priority patent/US7848027B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
    • G02B27/0056Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations by using a diffractive optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an objective lens used in an optical system such as a microscope.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an objective lens having a long working distance that can be sufficiently used for industrial applications and having highly corrected chromatic aberration. .
  • an objective lens according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and diffraction.
  • a diffractive optical element having an optical surface, and a third lens group having a negative refractive power.
  • the first lens group has at least one cemented lens, and is the lens closest to the object side.
  • the second lens group has at least one cemented lens, and the third lens group has at least one cemented negative lens.
  • the objective lens has a chief ray intersecting the optical axis between the second lens group and the third lens group, and the diffractive optical element has a diffractive optical surface in the vicinity of the position where the chief ray and the optical axis intersect. It is arranged to be located.
  • This objective lens has the maximum principal ray height on the diffractive optical surface as h, the real field of view as ⁇ , the distance on the optical axis between the second lens group and the third lens group as L, and the focal length of the entire system. Is the maximum effective radius on the diffractive optical surface, H is the numerical aperture, NA is the combined focal length of the first and second lens units, and f 3 is the focal length of the third lens unit.
  • the curvature radius of the cemented surface of the cemented lens included in the first lens group and the second lens group is r
  • the refractive index with respect to the d-line of the medium on the object side of the cemented surface Is n 1
  • the refractive index for the d-line of the medium on the image side of the joint surface is n 2
  • the power of the joint surface is ⁇
  • the focal length fa of the entire system and the focal length f 3 of the third lens group are expressed by the following equation: 1 ⁇ I f 3 / fa I ⁇ 5
  • FIG. 1 is a lens configuration diagram of an objective lens according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing various aberrations of the objective lens according to the first example.
  • FIG. 3 is a lens configuration diagram of an objective lens according to Example 2 of the present invention.
  • FIG. 4 is a diagram of various aberrations of the objective lens according to the second example.
  • FIG. 5 is a lens configuration diagram of an objective lens according to Example 3 of the present invention.
  • FIG. 6 is a diagram of various aberrations of the objective lens according to the third example.
  • the objective lens OL includes, in order from the object side, a first lens group G 1 having a positive refractive power, a second lens group G 2 having a positive refractive power, and a third lens group G having a negative refractive power.
  • the diffractive optical element GD is disposed between the second lens group G2 and the third lens group G3.
  • the first lens group G 1 includes at least one achromatic lens (a cemented lens composed of the lenses L 2 and L 3 in FIG. 1) formed by cementing a positive lens and a negative lens.
  • the most object side surface is configured as a positive meniscus lens (lens L 1 in FIG. 1) with the concave surface facing the object side. This is to prevent the angle of incidence of light rays on the lens surface from becoming as large as possible even for high numerical aperture rays. It is.
  • the second lens group G 2 includes an achromatic lens formed by cementing a positive lens and a negative lens (from a cemented lens composed of lenses L 5, L 6 and L 7 and lenses L 8 and L 9 in FIG. 1). At least one cemented lens). Further, the third lens group G 3 includes at least one cemented negative lens (a cemented lens composed of the lenses L 14 and L 15 in FIG. 1) formed by cementing a positive lens and a negative lens. Yes.
  • the diffractive optical element GD is composed of an optical glass L 10, two optical members L 11 and L 12 formed from different resin materials, and an optical glass L 13 in this order. A diffraction grating is formed on 12 junction surfaces (hereinafter, this junction surface is referred to as “diffractive optical surface D”).
  • the Abbe number of the optical glass is usually about 30 to 80, but the Abbe number of the diffractive optical element GD has a negative value.
  • the objective lens OL according to the present embodiment does not use many expensive optical materials such as ED glass and fluorite, and uses a diffractive optical element having a negative dispersion characteristic formed of a resin, so that the number of lenses is small. It consists of.
  • the advantage of using the optical members L 11 and L 12 forming the diffractive optical surface D as a resin is that a diffraction grating can be formed by molding and ultraviolet curing more easily than ordinary optical glass.
  • the objective lens OL is This chief ray intersects the optical axis between the second lens group G2 and the third lens group G3.
  • the diffractive optical element GD has a diffractive optical surface D that It arrange
  • This objective lens OL has a maximum principal ray height on the diffractive optical surface D of the diffractive optical element GD as h, and an interval on the optical axis between the second lens group G 2 and the third lens group G 3 as L.
  • the focal length of the entire lens OL system is fa
  • the combined focal length of the first lens group G 1 and the second lens group G 2 is f 1
  • the focal length of the third lens group G 3 is f 3.
  • the objective lens OL has the following conditional expression (2) determined in consideration of the numerical aperture NA and the actual field ⁇ , where H is the maximum effective radius on the diffractive optical surface D of the diffractive optical element GD. It is configured to satisfy
  • the diffractive optical element GD mainly corrects axial chromatic aberration including the secondary spectrum, and needs to have a delicate balance with correction of chromatic aberration of magnification and color change of spherical aberration.
  • Conditional expression (1) shows the condition of the maximum principal ray height on the diffractive optical surface D of the diffractive optical element GD. Since the objective lens ⁇ L according to the present embodiment takes a long working distance, it is difficult to correct the axial color difference. When the axial chromatic aberration is corrected mainly by the diffractive optical surface D of the diffractive optical element GD, This is a condition for correcting without affecting off-axis light.
  • conditional expression (2) shows the condition of the maximum effective diameter of the light beam passing through the diffractive optical surface D of the diffractive optical element GD. If the diffractive optical element GD (diffractive optical surface D) is placed where the effective diameter is large, higher-order spherical aberration and coma aberration will occur, so this conditional expression (2) must be satisfied. .
  • the objective lens OL includes the first lens group G 1 and the second lens group.
  • the power of the cemented lens included in G2 is ⁇
  • the power ⁇ of the cemented surface is the refractive index for the d-line (588 nm) of the optical member (first medium) on the object side of the cemented surface, n 1, and the optical member (second medium) on the image side
  • the refractive index for the d-line is n 2 and the curvature radius of the joint surface is r, it is defined by the following equation (f).
  • This conditional expression (3) shows the power condition at the cemented surface of the cemented lens constituting the first lens group G1 and the second lens group G2, and if this condition is exceeded, the spherical aberration and coma aberration of the color Will occur.
  • the focal length f a of the entire system and the focal length f 3 of the third lens group G3 satisfy the following conditional expression (4).
  • Conditional expression (4) shows the power condition of the third lens group G3.
  • this lower limit that is, when the power of the third lens group G3 becomes stronger, the power of the front group also becomes larger. It must be strengthened, and spherical aberration and coma will be worsened.
  • the upper limit of conditional expression (4) is exceeded, the power of the front group must be weakened, and it is necessary to increase the distance between the front group and the rear group. You will not be able to.
  • the phase difference of the diffractive optical surface D formed on the diffractive optical element GD is a normal refractive index and will be described later. It was calculated by the ultrahigh refractive index method using the aspherical formula (g).
  • the ultra-high refractive index method uses a certain equivalent relationship between the aspheric shape and the grating pitch of the diffractive optical surface. As data, that is, an aspheric formula (g) described later and its coefficient.
  • the d-line, g-line, C-line and F-line are selected as the aberration characteristic calculation targets.
  • the rate values are shown in Table 1 below.
  • Wavelength Refractive index (by ultra high refractive index method)
  • the aspherical surface is defined as y in the direction perpendicular to the optical axis, and the optical axis from the tangent plane of each aspherical surface at height y to each aspherical surface.
  • the distance (sag) along the line is S (y)
  • the radius of curvature of the reference sphere (vertex radius of curvature) is r
  • the conic coefficient is and the nth-order aspheric coefficient is Cn, the following formula ( g).
  • the paraxial radius of curvature R is
  • the objective lens OL in each of the following examples is of the infinity correction type, and is used with an imaging lens having the specifications shown in Table 2.
  • Table 2 the first column m is the number of each optical surface from the object side, the second column r is the radius of curvature of each optical surface, The third column d is the distance on the optical axis from each optical surface to the next optical surface, the fourth column 'nd is the refractive index for the d line, and the fifth column d is the Abbe number for the d line. ing.
  • Table 2 the description of this specification table is the same in the following examples.
  • FIG. 1 used in the above description shows a first embodiment of the objective lens OL according to the present invention.
  • the objective lens OL 1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and a first lens group G2 having a negative refractive power.
  • a diffractive optical element GD is provided between the second lens group G2 and the third lens group G3.
  • the first lens group G 1 includes a positive meniscus lens L 1 having a concave surface facing the object side, a cemented lens in which a biconvex lens L 2 and a negative meniscus lens L 3 having a concave surface facing the object side are cemented in this order, and The biconvex lens L4 force is composed.
  • the second lens group G 2 includes a cemented lens obtained by cementing a biconvex lens L 5, a biconcave lens L 6 and a biconvex lens L 7 in this order, and a biconvex lens L 8 and a biconcave lens L 9 in this order. It consists of cemented cemented lenses.
  • the third lens group G 3 is composed of a cemented lens in which a positive meniscus lens L 14 having a concave surface directed toward the object side and a biconcave lens L 15 are cemented.
  • the diffractive optical element GD is different from the optical glass L 10. Two optical members L 1 1 and L 12 and optical glass L 13 made of resin material are joined in this order, and a diffraction grating (diffraction opticals) is formed on the joint surface of the optical members L 1 1 and L 12. Surface D) is formed. That is, the diffractive optical element GD is a close-contact multilayer diffractive optical element.
  • Table 3 shows the specifications of the objective lens OL 1 according to Example 1 shown in FIG.
  • fa is the focal length of the entire system of the objective lens OL 1
  • NA is the numerical aperture
  • 3 is the magnification
  • d 0 is from the object to the top of the first lens (lens L 1).
  • the distances on the optical axis are respectively shown.
  • the numbers of the optical surfaces shown in the first column m (* on the right indicate the lens surfaces formed as diffractive optical surfaces) correspond to the surface numbers 1 to 23 shown in FIG.
  • the second column r in the case of a diffractive optical surface, the radius of curvature of the spherical surface serving as a reference for the base aspherical surface is shown.
  • Table 3 also shows values corresponding to the conditional expressions (1) to (4), that is, the condition corresponding values.
  • mm is generally used as the unit of curvature radius r, surface spacing d, focal length distance fa, and other length units listed in all the following specifications. Since the same optical performance can be obtained even if proportional expansion or reduction is performed, the unit is not limited to “mm”, and other appropriate units can be used.
  • FIG. 2 shows various aberration diagrams of spherical aberration, lateral chromatic aberration, and coma aberration for the rays of d-line, g-line, C-line, and F-line in the first example.
  • the solid line indicates the d line
  • the dotted line indicates the C line
  • the alternate long and short dash line indicates the F line
  • the alternate long and two short dashes line indicates the g line.
  • the spherical aberration diagram shows the value of the numerical aperture NA with respect to the maximum aperture
  • the coma aberration diagram shows the case where the image height Y is 12.5 mm, 9 mm, 6 mm, and Omm. Yes.
  • the explanation of the above aberration diagrams is the same in other examples. As is apparent from the respective aberration diagrams shown in FIG. 2, it can be seen that in the first example, various aberrations are satisfactorily corrected and excellent imaging performance is ensured.
  • the objective lens OL 2 shown in FIG. 3 also has, in order from the object side, a first lens group Gl having a positive refractive power, a second lens group G 2 having a positive refractive power, and a negative refractive power.
  • a diffractive optical element GD is disposed between the second lens group G2 and the third lens group G3.
  • the first lens group G 1 is a cemented surface in which a concave-convex lens with a concave surface facing the object side and a plano-convex lens L 22 with a convex surface facing the image side are joined in this order.
  • the second lens group G 2 includes a cemented lens in which a negative meniscus lens L 24 having a convex surface facing the object side and a biconvex lens L 25 are cemented in this order, and a biconvex lens L2 6 and a biconcave lens L 27. Are composed of cemented lenses that are cemented in this order.
  • the third lens group G3 includes a cemented lens in which a positive meniscus lens L32 having a concave surface directed toward the object side and a biconcave lens L33 are cemented in this order.
  • the diffractive optical element GD includes an optical glass L28, two optical members L29, L30, and an optical glass L31 each made of different resin materials.
  • the diffraction gratings are formed on the joint surfaces of the optical members L 29 and L 30 in this order.
  • Table 4 shows the specifications of the objective lens OL 2 according to Example 2 shown in FIG.
  • the surface numbers shown in Table 4 correspond to the surface numbers 1 to 20 shown in FIG.
  • FIG. 4 shows various aberrations of spherical aberration, lateral chromatic aberration, and coma aberration of the objective lens OL 2 according to the second example. As is apparent from the respective aberration diagrams, it can be seen that the aberration is corrected well and excellent imaging performance is secured in the second embodiment.
  • the objective lens OL 3 shown in FIG. 5 will be described as a third embodiment.
  • the objective lens OL 3 shown in FIG. 5 also has, in order from the object side, a first lens group G 1 having a positive refractive power, a second lens group G 2 having a positive refractive power, and a negative refractive power.
  • the diffractive optical element GD is disposed between the second lens group G2 and the third lens group G3.
  • the first lens group G 1 includes a positive meniscus lens L 4 1 with a concave surface facing the object side, a positive meniscus lens L 4 2 with a concave surface facing the object side, a positive meniscus lens L 4 3 with a concave surface facing the object side, And, it is composed of a cemented lens in which a biconcave lens L 4 4 and a biconvex lens L 4 5 are cemented in this order.
  • the second lens group G 2 includes a cemented lens in which a biconvex lens L 4 6, a biconcave lens L 4 7 and a biconvex lens L 4 8 are cemented in this order, and a biconvex lens L 4 9 and a biconcave lens L 5.
  • the third lens group G3 is composed of a cemented lens in which a biconcave lens L55, a biconvex lens L56, and a biconcave lens L57 are cemented in this order.
  • the diffractive optical element GD includes an optical glass L 51, two optical members L 52, L 53, and optical glass formed from different resin materials, respectively.
  • L 5 4 is bonded in this order, and a diffraction grating (diffractive optical surface D) is formed on the bonded surfaces of the optical members L 5 2 and L 5 3.
  • Table 5 shows the specifications of the objective lens ⁇ L3 according to Example 3 shown in FIG.
  • the surface numbers shown in Table 5 coincide with the surface numbers 1 to 26 shown in FIG.
  • FIG. 6 shows various aberration diagrams of spherical aberration, lateral chromatic aberration, and coma aberration of the objective lens OL 3 according to the third example. As is apparent from the respective aberration diagrams, it is understood that the aberration is corrected well and excellent imaging performance is secured in this third embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)

Abstract

 対物レンズOLは、物体側より順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、回折光学面Dが形成された回折光学素子GDと、負の屈折力を有する第3レンズ群G3を有して構成し、第1レンズ群G1は、少なくとも1つ以上の接合レンズを有し、最も物体側のレンズ面が物体側に向かって凹面に形成され、第2レンズ群G2は、少なくとも1つ以上の接合レンズを有し、第3レンズ群G3は、少なくとも1つ以上の接合負レンズを有して構成される。また、この対物レンズOLは、第2レンズ群G2と第3レンズ群G3との間で主光線が光軸と交わり、回折光学素子GDは、この主光線と光軸が交わる位置の近傍に回折光学面Dが位置するように配置されて構成される。

Description

明 細 書 対物レンズ 技術分野
本発明は、 顕微鏡等の光学系に用いられる対物レンズに関する。 背景技術
顕微鏡を用いた観察では、 試料の自然な色を観察する必要があり、 高度に色収 差が補正された対物レンズが望まれている。 さらには、 試料の取り扱いを容易に するため、 できるだけ長い作動距離を有する対物レンズが要望されている。 とこ ろが、 長い作動距離を確保しょうとすると、 対物レンズ系の物体側の焦点距離を 長く取らざるを得ず、 また、 像側に強い屈折力を持たせた負レンズ群を配置する 必要があり、 当然ながら色収差の悪化は避けられない。 そのため、 色収差を高度 に補正するために、 回折光学素子を用いた対物レンズが近年種々提案されている (例えば、 特許第 3 3 1 2 0 5 7号公報参照)。
しかしながら、 このような色収差が高度に補正された対物レンズは、 例えばェ 業用途に使用するためには、 作動距離が不足しており、 また、 球面収差やコマ収 差のうねりが大きいという課題があった。 発明の開示
本発明はこのような課題に鑑みてなされたものであり、 工業用途にも十分使用 可能な長い作動距離を有し、 且つ、 色収差が高度に補正された対物レンズを提供 することを目的とする。
本発明の課題を解決するために、本発明に係る対物レンズは、物体側より順に、 正の屈折力を有する第 1レンズ群と、 正の屈折力を有する第 2レンズ群と、 回折 光学面を有する回折光学素子と、 負の屈折力を有する第 3レンズ群とを有してな り、 第 1レンズ群は、 少なくとも 1つ以上の接合レンズを有し、 最も物体側のレ ンズ面が物体側に向かって凹面に形成され、 第 2レンズ群は、 少なくとも 1っ以 上の接合レンズを有し、 第 3レンズ群は、 少なくとも 1つ以上の接合負レンズを 有して構成される。 また、 この対物レンズは、 第 2レンズ群と第 3レンズ群との 間で主光線が光軸と交わり、 回折光学素子は、 この主光線と光軸が交わる位置の 近傍にその回折光学面が位置するように配置される。そして、この対物レンズは、 回折光学面における最大主光線高を hとし、 実視野を φとし、 第 2レンズ群と第 3レンズ群との光軸上の間隔を Lとし、 全系の焦点距離を f aとし、 回折光学面 における最大有効半径を Hとし、 開口数を NAとし、 第 1レンズ群と第 2レンズ 群との合成焦点距離を f 12とし、 第 3レンズ群の焦点距離を f 3としたとき、 次式
h < aXLX 0. 3
但し、 α = φΖ2Χ { 1/f a- (L/ f 12 - 1) / I f 3 I }
H < [H3+ { / (2 X f a) +H3Z I f 3 I } XL] X 0. 85
但し、 H3= f a XNA
を満足するように構成される。
また、 本発明に係る対物レンズは、 第 1レンズ群及び第 2レンズ群に含まれる 接合レンズの接合面の曲率半径を rとし、 当該接合面の物体側の媒質の d線に対 する屈折率を n 1とし、 当該接合面の像側の媒質の d線に対する屈折率を n 2と し、 当該接合面のパワーを Φとしたとき、 次式
I Φ I < 0. 025
但し、 Φ= (η 2— η 1) / τ
を満足するよう構成されることが好ましい。
また、 本発明に係る対物レンズは、 全系の焦点距離 f aと第 3レンズ群の焦点 距離 f 3とが、 次式 1 < I f 3 / f a I < 5
を満足するように構成されることが好ましい。
本発明に係る対物レンズを以上のように構成すると、 長い作動距離を有し、 色 収差が高度に補正された対物レンズを提供することができる。 図面の簡単な説明
図 1は、 本発明の第 1実施例に係る対物レンズのレンズ構成図である。
図 2は、 上記第 1実施例に係る対物レンズの諸収差図である。
図 3は、 本発明の第 2実施例に係る対物レンズのレンズ構成図である。
図 4は、 上記第 2実施例に係る対物レンズの諸収差図である。
図 5は、 本発明の第 3実施例に係る対物レンズのレンズ構成図である。
図 6は、 上記第 3実施例に係る対物レンズの諸収差図である。 発明の実施の形態
本発明の好ましい実施形態について図面を参照して説明する。 まず、 図 1を用 いて、本発明に係る対物レンズの構成について説明する。この対物レンズ O Lは、 物体側より順に、 正の屈折力を有する第 1レンズ群 G l、 正の屈折力を有する第 2レンズ群 G 2、 及び、 負の屈折力を有する第 3レンズ群 G 3を有し、 第 2レン ズ群 G 2と第 3レンズ群 G 3との間に回折光学素子 G Dが配設されて構成され ている。
このような対物レンズ O Lにおいて、 第 1レンズ群 G 1は、 正レンズと負レン ズとを接合してなる色消しレンズ (図 1におけるレンズ L 2 , L 3からなる接合 レンズ) を少なくとも 1つ以上有しており、 また、 極力球面収差を発生させない ために、 最も物体側の面が、 物体側に凹面を向けた正のメニスカスレンズ (図 1 におけるレンズ L 1 ) として構成されている。 これは、 高い開口数の光線に対し ても、 レンズ面に対する光線の入射角ができるだけ大きくならないようにするた めである。
また、 第 2レンズ群 G 2は、 正レンズと負レンズとを接合してなる色消しレン ズ (図 1におけるレンズ L 5, L 6, L 7からなる接合レンズとレンズ L 8, L 9からなる接合レンズ) を少なくとも 1つ以上有して構成されている。 さらに、 第 3レンズ群 G 3は、 正レンズと負レンズとを接合してなる接合負レンズ (図 1 におけるレンズ L 14, L 15からなる接合レンズ) を少なくとも 1つ以上有し て構成されている。
回折光学素子 GDは、 光学ガラス L 10、 それぞれ異なる樹脂材料から形成さ れた 2個の光学部材 L 11, L 12、及び、光学ガラス L 13をこの順で接合し、 光学部材 L 11, L 12の接合面に回折格子が形成されて構成されている(以下、 この接合面を 「回折光学面 D」 と呼ぶ)。 回折光学素子 GD (回折光学面 D) は、 負の分散値 (アッベ数 =— 3. 453) を有し、 分散が大きく、 また異常分散性 (部分分散比 (ng— nF) / (nF-nC) =0. 2956) が強いため、 強 力な色収差補正能力を有している。 光学ガラスのアッベ数は、 通常 30〜80程 度であるが、 回折光学素子 GDのアッベ数は負の値を持っている。 換言すると、 回折光学素子 GDにおいては、 長い波長の光ほど大きく曲がる。 このため、 通常 の光学ガラスでは達成し得ない良好な色収差補正が可能となる。 すなわち、 本実 施例に係る対物レンズ OLは、 EDガラスや蛍石等の高価な光学材料を多く用い ず、 樹脂により形成された負分散特性を有する回折光学素子を用いて、 少ないレ ンズ枚数で構成するものである。なお、回折光学面 Dを形成する光学部材 L 11, L 12を樹脂とした利点は、 通常の光学ガラスよりも簡単にモールドと紫外線硬 化により回折格子が形成できる点にある。
ここで、 第 1レンズ群 G1と第 3レンズ群 G 3とで光束を制限し、 各物高から 発する光束の中心を通る光線を主光線と定義すると、 本実施例に係る対物レンズ OLは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間でこの主光線が光軸と交わ るように構成されており、 回折光学素子 GDは、 その回折光学面 Dが、 主光線が 光軸と交わる位置の近傍に位置するように配置されている。
それでは、 本発明に係る対物レンズ OLを構成するための条件について、 以下 に説明する。 この対物レンズ OLは、 回折光学素子 GDの回折光学面 Dにおける 最大主光線高を hとし、 第 2レンズ群 G 2と第 3レンズ群 G 3との光軸上の間隔 を Lとし、 この対物レンズ OLの全系の焦点距離を f aとし、 第 1レンズ群 G 1 と第 2レンズ群 G 2との合成焦点距離を f 1 2とし、 第 3レンズ群 G 3の焦点距 離を f 3としたとき、 実視野 Φを考慮して決定した次の条件式 (1) を満足する ように構成される。
h < aXLX O. 3 (1)
但し、 α = φΖ2 Χ { 1/ f a- (L/ f 1 2 - 1) / I f 3 I }
本実施例に係る対物レンズ O Lは、 回折光学素子 G Dの回折光学面 Dにおける 最大有効半径を Hとしたとき、 開口数 N Aと実視野 φを考慮して決定した次の条 件式 (2) を満足するように構成される。
H < [Η3+ {φ/ (2 X f a) +H3Z I f 3 | } XL] X 0. 8 5 (2) 但し、 H3 = f a XNA
回折光学素子 GDは、 2次スペクトルも含めた軸上色収差を主に補正し、 倍率 の色収差や球面収差の色変化の補正と微妙なバランスを取る必要がある。 条件式 (1) は、 回折光学素子 GDの回折光学面 Dにおける最大主光線高の条件を示し ている。 本実施例に係る対物レンズ〇Lは、 作動距離を長く取るため、 軸上色収 差の補正が難しく、 回折光学素子 GDの回折光学面 Dでこの軸上色収差を重点的 に補正するときに、 軸外光に影響を与えずに補正するための条件である。 一方、 条件式 (2) は回折光学素子 GDの回折光学面 Dを通る光線の最大有効径の条件 を示している。 有効径の大きいところに回折光学素子 GD (回折光学面 D) が配 置されると、高次の球面収差やコマ収差が発生してしまうため、 この条件式(2) を満足する必要がある。
また、 本実施例に係る対物レンズ OLは、 第 1レンズ群 G 1及び第 2レンズ群 G 2に含まれる接合レンズの接合面のパワーを Φとしたとき、 次の条件式 (3) を満足することが望ましい。 ここで、 接合面のパワー Φは、 接合面の物体側の光 学部材 (第 1媒質) の d線 (588n m) に対する屈折率を n 1とし、 像側の光 学部材 (第 2媒質) の d線に対する屈折率を n 2とし、 接合面の曲率半径を rと したとき、 次式 (f) で定義される。
I Φ I < 0. 025 (3)
Φ = (n 2 -n 1) / τ ( f )
この条件式 (3) は、 第 1レンズ群 G1及び第 2レンズ群 G 2を構成する接合 レンズの接合面におけるパワーの条件を示しており、 この条件を超えると、 色の 球面収差やコマ収差が発生してしまう。
さらに、 本実施例に係る対物レンズ OLは、 全系の焦点距離 f aと第 3レンズ 群 G3の焦点距離 f 3とが、 次の条件式 (4) を満足することが望ましい。
1 < I f 3/f a I < 5 (4)
この条件式 (4) は、 第 3レンズ群 G 3のパワーの条件を示しており、 この下 限を超えると、 すなわち、 第 3レンズ群 G 3のパワーが強くなると、 さらに前群 のパワーも強めなければならず、球面収差やコマ収差が悪化してしまう。反対に、 この条件式 (4) の上限を超えると、 前群のパワーを弱めなければならず、 前群 と後群の間隔を大きく取る必要があり、 同焦点性を考えると作動距離を長くする ことができなくなる。
(実施例)
以下に、 本発明に係る対物レンズ OLの 3つの実施例を示すが、 各実施例にお いて、 回折光学素子 GDに形成された回折光学面 Dの位相差は、 通常の屈折率と 後述する非球面式 (g) とを用いて行う超高屈折率法により計算した。 超高屈折 率法とは、 非球面形状と回折光学面の格子ピッチとの間の一定の等価関係を利用 するものであり、 本実施例においては、 回折光学面 Dを超高屈折率法のデータと して、すなわち、後述する非球面式(g)及びその係数により示している。なお、 本実施例では収差特性の算出対象として、 d線、 g線、 C線及び F線を選んでい る。 本実施例において用いられたこれら d線、 g線、 C線及び F線の波長と、 各 スぺクトル線に対して設定した超高屈折率法の計算に用いるための回折光学面 Dの屈折率の値を次の表 1に示す。
(表 1)
波長 屈折率 (超高屈折率法による)
d線 587.562nm 10001
C線 656.273nm 11170.4255
F線 486.133nm 8274.7311
g線 435.835nm 7418.6853 各実施例において、 非球面は、 光軸に垂直な方向の高さを yとし、 高さ yにお ける各非球面の頂点の接平面から各非球面までの光軸に沿った距離 (サグ量) を S (y) とし、 基準球面の曲率半径 (頂点曲率半径) を rとし、 円錐係数を と し、 n次の非球面係数を Cnとしたとき、 以下の数式 (g) で表わされる。 また このとき、 近軸曲率半径 Rは以下の
数式 (h) で表される。
S (y) = (yVr) / {1+ (1 -K · y r2) 1/2}
+ C2- y2+C4- y +C6- y6+C8- y8+C10- y10+ · · · (g) = 1/ (1/r + 2 C2) (h) なお、 各実施例において、 回折光学面が形成されたレンズ面には、 表中の面番 号の右側に *印を付しており、 非球面式 (g) は、 この回折光学面の性能の諸元 を示している。
また、以下の各実施例における対物レンズ OLは、無限遠補正型のものであり、 表 2に示す諸元を有する結像レンズとともに使用される。 なお、 この表 2におい て、 第 1欄 mは物体側からの各光学面の番号、 第 2欄 rは各光学面の曲率半径、 第 3欄 dは各光学面から次の光学面までの光軸上の距離、 第 4欄' n dは d線に対 する屈折率、 そして、 第 5欄レ dは d線に対するアッベ数を示している。 この諸 元表の説明は以降の実施例においても同様である。
(表 2)
m r d n d v d
1 75. 043 5. 1 1.623 57.0
2 -75. 043 2 1.750 35.2
3 1600. 58 7. 5
4 50. 256 5. 1 1.668 42.0
5 -84. 541 1. 8 1.613 44.4
6 36. 911 5. 5
(第 1実施例)
上述の説明で用いた図 1は、 本発明に係る対物レンズ OLの第 1実施例を示し ている。 この対物レンズ OL 1は、 上述した通り、 物体側より順に、 正の屈折力 を有する第 1レンズ群 Gl、 正の屈折力を有する第 2レンズ群 G 2、 及び、 負の 屈折力を有する第 3レンズ群 G 3を有し、 第 2レンズ群 G 2と第 3レンズ群 G 3 との間に回折光学素子 GDが配設されている。 第 1レンズ群 G 1は、 物体側に凹 面を向けた正メニスカスレンズ L 1、 両凸レンズ L 2と物体側に凹面を向けた負 メニスカスレンズ L 3とをこの順で接合した接合レンズ、 及び、 両凸レンズ L 4 力 構成される。 また、 第 2レンズ群 G 2は、 両凸レンズ L 5と両凹レンズ L 6 と両凸レンズ L 7とをこの順で接合した接合レンズ、 及び、 両凸レンズ L 8と両 凹レンズ L 9とをこの順で接合した接合レンズから構成される。 さらに、 第 3レ ンズ群 G 3は、 物体側に凹面を向けた正メニスカスレンズ L 14と両凹レンズ L 15とを接合した接合レンズから構成される。
また、 上述のように、 回折光学素子 GDは、 光学ガラス L 10、 それぞれ異な る樹脂材料から形成された 2個の光学部材 L 1 1, L 12、 及び、 光学ガラス L 13がこの順で接合され、 光学部材 L 1 1, L 12の接合面に回折格子 (回折光 学面 D) が形成されている。 すなわち、 この回折光学素子 GDは、 密着複層型の 回折光学素子である。
このように図 1に示した第 1実施例に係る対物レンズ OL 1の諸元を表 3に 示す。 なお、 この表 3において、 f aは対物レンズ OL 1の全系の焦点距離を、 NAは開口数を、 )3は倍率を、 d 0は物体から最初のレンズ (レンズ L 1) の頂 点までの光軸上の距離をそれぞれ示している。 また、 第 1欄 mに示す各光学面の 番号 (右の *は回折光学面として形成されているレンズ面を示す) は、 図 1に示 した面番号 1〜23に対応している。 また、 第 2欄 rにおいて、 回折光学面の場 合は、 ベースとなる非球面の基準となる球面の曲率半径を示している。 さらに、 この表 3には、 上記条件式 (1) 〜 (4) に対応する値、 すなわち、 条件対応値 も示している。 これらの説明は以降の実施例においても同様である。
なお、 以下の全ての諸元において掲載される曲率半径 r、 面間隔 d、 全系の焦 点距離 f aその他長さの単位は、特記の無い場合、一般に「mm」が使われるが、 光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、 単位は 「mm」 に限定されることはなく、 他の適当な単位を用いることもできる。
(表 3)
f a=4
NA = 0.55
)3=50
d 0=12.10 m r d n d v d
1 -18.980 2.78 1.903 35.7
2 -11.572 0.09
Figure imgf000012_0001
'9
I •09 0 9 •i 66 •0 i86"S- U
8 •8Z in •\ 6 •i S96" Z- \l
00 •81 oo oz
I • 9 Z19 •I 00 Ί oo 61
L • 8ZQ 'I OZ •0 oo *8l
000 •10001 00 •0 oo i,l
I •09 9Q Ί QZ •0 oo 91
\ • i-19 Ί 00 Ί oo 91
96 Ί Z69'U n
0 •8C •I 96 •0 n
9 8 86 Ί Π "8 l\
80 •0 09 'S - II
S 8 86 Ί 6 ' 01
819 8Z •I 0 8'8l- 6
9 86 Ί S9 •t 66Ζ· 8
91 •0 its'sz- I
S •Z8 86 Ί 00 ' U\ '601 9
Π •0 9
L •8Z 96A Ί Π Ί 020-91-
S "28 86 Ί 61 0l9'92l ε
01
£L£L90/800ZdT/13d 贿 600Z OAV 条件対応値
(1) 左辺 = 0.21、 右辺 = 0.28
(2) 左辺 =5.78、 右辺 =6.80
(3) I Φ 1 I =0.019, I Φ 2 I =0.006, I Φ 3 I =0.008, I Φ4 I =0.011
(4) I f 3/f a I =2.48 上記に示した表 3の条件対応値のうち、 条件式 (3) において、 Φ 1は第 4面 のパワーを示し、 Φ 2は第 9面のパワーを示し、 3は第10面のパワーを示し、 Φ4は第 13面のパワーを示している。 このように第 1実施例では上記条件式 (1) 〜 (4) は全て満たされていることが分かる。 図 2に、 この第 1実施例に おける d線、 g線、 C線及び F線の光線に対する球面収差、 倍率色収差、 及び、 コマ収差の諸収差図を示す。 この諸収差図において、 実線は d線を示し、 点線は C線を示し、 一点鎖線は F線を示し、 二点鎖線は g線を示している。 なお、 球面 収差図では最大口径に対する開口数 NAの値を示しており、 コマ収差図は、 像高 Yが 12. 5mmのとき、 9mmのとき、 6mmのとき、 及び、 Ommのときを 示している。 以上の収差図の説明は他の実施例において同様である。 この図 2に 示す各収差図から明らかなように、 第 1実施例では諸収差が良好に補正され、 優 れた結像性能が確保されていることがわかる。
(第 2実施例)
次に、 第 2実施例として、 図 3に示す対物レンズ OL 2について説明する。 こ の図 3に示す対物レンズ〇L 2も、 物体側より順に、 正の屈折力を有する第 1レ ンズ群 Gl、 正の屈折力を有する第 2レンズ群 G 2、 及び、 負の屈折力を有する 第 3レンズ群 G 3を有し、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に回折光 学素子 GDが配設されている。 第 1レンズ群 G 1は、 物体側に凹面を向けた平凹 レンズし 2 1と像側に凸面を向けた平凸レンズ L 22とをこの順で接合した接 合レンズ、 及び、 物体側に凹面を向けた正メニスカスレンズ L 23から構成され る。 また、 第 2レンズ群 G 2は、 物体側に凸面を向けた負メニスカスレンズ L 2 4と両凸レンズ L 25とをこの順で接合した接合レンズ、 及び、 両凸レンズ L2 6と両凹レンズ L 27とをこの順で接合した接合レンズから構成される。 さらに、 第 3レンズ群 G 3は、 物体側に凹面を向けた正メニスカスレンズ L 32と両凹レ ンズ L 33とをこの順で接合した接合レンズから構成される。
また、 第 1実施例と同様に、 回折光学素子 GDは、 光学ガラス L28、 それぞ れ異なる樹脂材料から形成された 2個の光学部材 L 29, L 30、 及び、 光学ガ ラス L 31がこの順で接合され、光学部材 L 29, L 30の接合面に回折格子(回 折光学面 D) が形成されている。
この図 3に示した第 2実施例に係る対物レンズ OL 2の諸元を表 4に示す。 な お、 表 4に示す面番号は図 3に示した面番号 1〜20と一致している。
(表 4)
f a =10
NA = 0.4
β = 20
d 0 = 16.20 m r d n d v d
1 -26.110 1.94 1.720 34.7
2 oo 4.80 1.835 42.7
3 -16.983 0.21
4 -164.215 3.31 1.603 65.4
5 -32.740 0.20
6 75.780 1.19 1.757 31.6
7 17.807 5.50 1.498 82.5 8 -52.955 1.00
9 18.485 5.50 1.498 82.5
1 -48.109 1.21 1.717 29.5
11 1988.395 3.00
12 oo 2.00 1.517 64.1
13 oo 0.20 1.557 50.2
14 oo 0.00 10001.000
15* oo 0.20 1.528 34.7
16 oo 2.00 1.517 64.1
17 oo 8.70
18 -369.424 3.02 1.785 25.7
19 -9.928 1.00 1.717 47.9
20 11.065 非球面データ
第 15面 K =l C2=- 3.87597X 10"08 C4=2.81455X 10'14
Cfi=-7.25117X10"16 Cs=-1.14725X 10"18 条件対応値
(1) 左辺 = 0.13、 右辺 =0.29
(2) 左辺 = 7.26、 右辺 =7.55
(3) I Φ 1 I =0、 I Φ 2 I =0.015、 Φ 3 I =0.005
(4) I f 3/f a = 1.66 上記に示した表 4の条件対応値のうち、 条件式 (3) において、 Φ 1は第 2面 のパワーを示し、 Φ 2は第 7面のパワーを示し、 Φ 3は第 10面のパワーを示し ている。 このように第 2実施例でも上記条件式 (1 ) 〜 (4 ) は全て満たされて いることが分かる。 図 4にこの第 2実施例に係る対物レンズ O L 2の球面収差、 倍率色収差及びコマ収差の諸収差図を示す。 この各収差図から明らかなように、 この第 2実施例でも、 収差が良好に補正され、 優れた結像性能が確保されている ことが分かる。
(第 3実施例)
さらに、 第 3実施例として、 図 5に示す対物レンズ O L 3について説明する。 この図 5に示す対物レンズ O L 3も、 物体側より順に、 正の屈折力を有する第 1 レンズ群 G l、 正の屈折力を有する第 2レンズ群 G 2、 及び、 負の屈折力を有す る第 3レンズ群 G 3を有し、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に回折 光学素子 G Dが配設されている。 第 1レンズ群 G 1は、 物体側に凹面を向けた正 メニスカスレンズ L 4 1、 物体側に凹面を向けた正メニスカスレンズ L 4 2、 物 体側に凹面を向けた正メニスカスレンズ L 4 3、 及び、 両凹レンズ L 4 4と両凸 レンズ L 4 5とをこの順で接合した接合レンズから構成される。 また、 第 2レン ズ群 G 2は、 両凸レンズ L 4 6と両凹レンズ L 4 7と両凸レンズ L 4 8とをこの 順で接合した接合レンズ、 及び、 両凸レンズ L 4 9と両凹レンズ L 5 0とをこの 順で接合した接合レンズから構成される。 さらに、 第 3レンズ群 G 3は、 両凹レ ンズ L 5 5と両凸レンズ L 5 6と両凹レンズ L 5 7とをこの順で接合した接合 レンズから構成される。
また、第 1及び第 2実施例と同様に、回折光学素子 G Dは、光学ガラス L 5 1、 それぞれ異なる樹脂材料から形成された 2個の光学部材 L 5 2, L 5 3、 及び、 光学ガラス L 5 4がこの順で接合され、 光学部材 L 5 2 , L 5 3の接合面に回折 格子 (回折光学面 D) が形成されている。
この図 5に示した第 3実施例に係る対物レンズ〇L 3の諸元を表 5に示す。 な お、 表 5に示す面番号は図 5に示した面番号 1〜2 6と一致している。
(表 5 ) 8^ Ί 0Γ0 oo *0Z
000 Ί0001 00 '0 oo 61
Α99Ί 0 0 oo 81 ι · 119Ί 00 oo l\
88 Ί Oif 98 91
9'9 08'l 6·0 698.91- 91
9"Z8 86 Ί 89 ' 90ΊΙ n
81 ·0 ■•81- 21
S 8 86f 1 0 '9 898-91 l\
99'l 8fl O O'Zl- \\ "Z8 86f I if S \wn 01 oro 6
9"Z8 86 I U'9 U9.9I 8
1 " '\ 096 '8 I
ΪΓ0 ZI6'6l- 9
9^8 86 I i e Uf 6ΖΪ- 9
91 ·0 8^'il- ε09·ϊ 067 I l ·0Ζ- C
Π ·0 IC8*9- I
S88"l SL'Z 160.6- \
P ^ P u P j
0 P
001 =ϋ
8'0 = VN
1 =
C.C.90/800Zdf/X3d 贿 600Z OAV 21 oo 2.00 1.517 64.1
22 oo 10.95
23 -12.648 0.98 1. 744 44.8
24 4.497 2.47 1. 755 27.5
25 -3.748 0.96 1. 624 47.1
26 4.851 非球面データ
第 20面 K =l C2=-3.87597X 10-°8 C4=-6.36546X 10"13
C6=3.74049X 10"15 C8=7.79187X 10—18 条件対応値
(1) 左辺 =0.18、 右辺 =0.24
(2) 左辺 =5.36、 右辺 =6.05
(3) Ι Φ 1 1 =0.008、 I Φ 2 I =0.009, I Φ 3 I =0.009, I Φ 4
I =0.018
(4) I f 3/ f a I =3.10 上記に示した表 5の条件対応値のうち、 条件式 (3) において、 Φ 1は第 8面 のパワーを示し、 Φ 2は第 1 1面のパワーを示し、 Φ 3は第 1 2面のパワーを示 し、 Φ4は第 1 5面のパワーを示している。 このように第 3実施例でも上記条件 式 (1) 〜 (4) は全て満たされていることが分かる。 図 6にこの第 3実施例に 係る対物レンズ OL 3の球面収差、 倍率色収差及びコマ収差の諸収差図を示す。 この各収差図から明らかなように、この第 3実施例でも、収差が良好に補正され、 優れた結像性能が確保されていることが分かる。

Claims

請 求 の 範 囲
1. 物体側より順に、 正の屈折力を有する第 1レンズ群と、 正の屈折力を有す る第 2レンズ群と、 回折光学面を有する回折光学素子と、 負の屈折力を有する第 3レンズ群とを有してなり、
前記第 1レンズ群は、 少なくとも 1つ以上の接合レンズを有し、 最も物体側の レンズ面が物体側に向かって凹面に形成され、
前記第 2レンズ群は、 少なくとも 1つ以上の接合レンズを有し、
前記第 3レンズ群は、 少なくとも 1つ以上の接合負レンズを有し、
前記第 2レンズ群と前記第 3レンズ群との間で主光線が光軸と交わり、 前記回 折光学素子は、 前記主光線と光軸が交わる位置の近傍に前記回折光学面が位置す るように配置され、
前記回折光学面における最大主光線高を hとし、 実視野を φとし、 前記第 2レ ンズ群と前記第 3レンズ群との光軸上の間隔を Lとし、 全系の焦点距離を f aと し、 前記回折光学面における最大有効半径を Hとし、 開口数を N Aとし、 前記第 1レンズ群と前記第 2レンズ群との合成焦点距離を f 12とし、 前記第 3レンズ 群の焦点距離を f 3としたとき、 次式
h < aXLX 0. 3
但し、 α = φΖ2Χ { 1/ f a - (L/ f 12 - 1) / I f 3 I }
H < [H3+ { / (2 X f a) +H3Z I f 3 I } XL] X 0. 85
但し、 H3= f aXNA
を満足するように構成された対物レンズ。
2. 前記全系の焦点距離 f aと前記第 3レンズ群の焦点距離 f 3とが、 次式 1 く I f 3/ f a I く 5
を満足するように構成された請求項 1に記載の対物レンズ。
3. 前記第 1レンズ群及び前記第 2レンズ群に含まれる前記接合レンズの接合 面の曲率半径を rとし、 当該接合面の物体側の媒質の d線に対する屈折率を n 1 とし、 当該接合面の像側の媒質の d線に対する屈折率を n 2とし、 当該接合面の パワーを Φとしたとき、 次式
I Φ I < 0. 025
但し、 Φ= (n 2— n 1) Zr
を満足するよう構成された請求項 1に記載の対物レンズ。
4. 前記全系の焦点距離 f aと前記第 3レンズ群の焦点距離 f 3とが、 次式 1 < I f 3/f a I < 5
を満足するように構成された請求項 3に記載の対物レンズ。
PCT/JP2008/067373 2007-09-25 2008-09-18 対物レンズ WO2009041546A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009534390A JP5458889B2 (ja) 2007-09-25 2008-09-18 顕微鏡用対物レンズ
EP08834355.3A EP2194412B1 (en) 2007-09-25 2008-09-18 Objective lens
CN2008801079884A CN101802676B (zh) 2007-09-25 2008-09-18 物镜
US12/724,307 US7848027B2 (en) 2007-09-25 2010-03-15 Objective lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007246471 2007-09-25
JP2007-246471 2007-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/724,307 Continuation US7848027B2 (en) 2007-09-25 2010-03-15 Objective lens

Publications (1)

Publication Number Publication Date
WO2009041546A1 true WO2009041546A1 (ja) 2009-04-02

Family

ID=40511426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067373 WO2009041546A1 (ja) 2007-09-25 2008-09-18 対物レンズ

Country Status (5)

Country Link
US (1) US7848027B2 (ja)
EP (1) EP2194412B1 (ja)
JP (1) JP5458889B2 (ja)
CN (1) CN101802676B (ja)
WO (1) WO2009041546A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158778A1 (ja) * 2010-06-16 2011-12-22 株式会社ニコン 顕微鏡対物レンズ
WO2012026239A1 (ja) * 2010-08-25 2012-03-01 株式会社ニコン 顕微鏡対物レンズ
WO2015107881A1 (ja) * 2014-01-15 2015-07-23 株式会社ニコン 対物レンズおよび顕微鏡
CN114442281A (zh) * 2022-04-08 2022-05-06 东莞锐视光电科技有限公司 直写光刻镜头

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235405B (zh) * 2008-04-11 2015-07-01 株式会社尼康 显微镜物镜
JP2014202766A (ja) * 2013-04-01 2014-10-27 ソニー株式会社 撮像レンズおよび撮像装置
JP6478995B2 (ja) * 2013-07-19 2019-03-06 ニューヨーク ユニバーシティ 微視的テクスチャを用いて物理的対象を認証するためのシステム、方法及びコンピュータアクセス可能媒体
CN106707482A (zh) * 2017-02-28 2017-05-24 浙江大学 一种宽视场多尺度高分辨率显微成像系统和方法
TWI668481B (zh) * 2017-05-22 2019-08-11 先進光電科技股份有限公司 光學成像系統(二)
DE102018132472A1 (de) 2018-12-17 2020-06-18 Leica Camera Aktiengesellschaft Fotografisches Weitwinkelobjektiv
CN109946817B (zh) * 2019-04-24 2023-11-28 威海世高光电子有限公司 一种超广角高像素手机内置镜头
CN110308548B (zh) * 2019-07-08 2024-06-14 桂林弗克斯光电仪器有限公司 长工作距平场复消色差显微物镜
CN110716299B (zh) * 2019-11-08 2021-02-02 山西大学 一种数值孔径为0.55的长工作距离显微物镜
CN112817126B (zh) * 2021-01-26 2022-06-28 江西晶超光学有限公司 光学成像镜头、取像装置及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347700A (ja) * 1993-06-07 1994-12-22 Olympus Optical Co Ltd 対物レンズ
JP2001305431A (ja) * 2000-04-20 2001-10-31 Olympus Optical Co Ltd 対物レンズ
JP3312057B2 (ja) 1993-05-24 2002-08-05 オリンパス光学工業株式会社 対物レンズ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242426B2 (ja) * 1991-09-12 2001-12-25 オリンパス光学工業株式会社 紫外対物レンズ
US5631779A (en) * 1993-05-24 1997-05-20 Olympus Optical Co., Ltd. Objective lens system
US7593157B2 (en) * 2004-11-29 2009-09-22 Nikon Corporation Zoom microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312057B2 (ja) 1993-05-24 2002-08-05 オリンパス光学工業株式会社 対物レンズ
JPH06347700A (ja) * 1993-06-07 1994-12-22 Olympus Optical Co Ltd 対物レンズ
JP2001305431A (ja) * 2000-04-20 2001-10-31 Olympus Optical Co Ltd 対物レンズ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366850B2 (en) 2010-06-16 2016-06-14 Nikon Corporation Microscope objective lens
US10281703B2 (en) 2010-06-16 2019-05-07 Nikon Corporation Microscope objective lens
CN102971656A (zh) * 2010-06-16 2013-03-13 株式会社尼康 显微镜物镜
WO2011158778A1 (ja) * 2010-06-16 2011-12-22 株式会社ニコン 顕微鏡対物レンズ
JP5614448B2 (ja) * 2010-06-16 2014-10-29 株式会社ニコン 顕微鏡対物レンズ
US9851546B2 (en) 2010-06-16 2017-12-26 Nikon Corporation Microscope objective lens
JP5440891B2 (ja) * 2010-08-25 2014-03-12 株式会社ニコン 顕微鏡対物レンズ
US9341832B2 (en) 2010-08-25 2016-05-17 Nikon Corporation Microscope objective lens
US9958659B2 (en) 2010-08-25 2018-05-01 Nikon Corporation Microscope objective lens
WO2012026239A1 (ja) * 2010-08-25 2012-03-01 株式会社ニコン 顕微鏡対物レンズ
US10890746B2 (en) 2010-08-25 2021-01-12 Nikon Corporation Microscope objective lens
JPWO2015107881A1 (ja) * 2014-01-15 2017-03-23 株式会社ニコン 対物レンズおよび顕微鏡
WO2015107881A1 (ja) * 2014-01-15 2015-07-23 株式会社ニコン 対物レンズおよび顕微鏡
CN114442281A (zh) * 2022-04-08 2022-05-06 东莞锐视光电科技有限公司 直写光刻镜头
CN114442281B (zh) * 2022-04-08 2022-07-01 东莞锐视光电科技有限公司 直写光刻镜头

Also Published As

Publication number Publication date
EP2194412A4 (en) 2017-12-20
JPWO2009041546A1 (ja) 2011-01-27
US7848027B2 (en) 2010-12-07
EP2194412A1 (en) 2010-06-09
US20100172034A1 (en) 2010-07-08
CN101802676B (zh) 2011-11-09
JP5458889B2 (ja) 2014-04-02
EP2194412B1 (en) 2019-05-01
CN101802676A (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
WO2009041546A1 (ja) 対物レンズ
JPWO2018008249A1 (ja) 接眼光学系およびヘッドマウントディスプレイ
JP4756901B2 (ja) 接眼レンズ及びそれを用いた光学機器
JP2991524B2 (ja) 広角レンズ
CN107111114B (zh) 广角光学系统
US5638213A (en) Wide field eyepiece
JP7239985B2 (ja) 撮像光学系
JPH11174345A (ja) 広視野接眼レンズ
JP3450544B2 (ja) 内視鏡対物レンズ
JPH04238312A (ja) 超小型超広角レンズ
JPH10186223A (ja) トリプレットレンズ
JP2007094173A (ja) 広角レンズ
JP5305136B2 (ja) 接眼レンズ
JP4097781B2 (ja) 対物レンズ
JP2009251554A5 (ja)
JP5190691B2 (ja) 顕微鏡対物レンズ
JP7219105B2 (ja) 広角レンズ
JP5434130B2 (ja) 顕微鏡対物レンズ
JP2011017978A (ja) 接眼ズーム光学系
TWI314218B (en) Objective lens system
JP5422214B2 (ja) 接眼レンズ及び光学機器
JP5963121B2 (ja) 接眼ズーム光学系
JPS63294506A (ja) 広角域を含む高変倍率ズ−ムレンズ
JPH09297271A (ja) 接眼レンズ
JP5218903B2 (ja) 接眼補助光学系

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880107988.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08834355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009534390

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008834355

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE