JP5458802B2 - デジタルカメラ - Google Patents

デジタルカメラ Download PDF

Info

Publication number
JP5458802B2
JP5458802B2 JP2009243620A JP2009243620A JP5458802B2 JP 5458802 B2 JP5458802 B2 JP 5458802B2 JP 2009243620 A JP2009243620 A JP 2009243620A JP 2009243620 A JP2009243620 A JP 2009243620A JP 5458802 B2 JP5458802 B2 JP 5458802B2
Authority
JP
Japan
Prior art keywords
digital camera
information
image
celestial
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009243620A
Other languages
English (en)
Other versions
JP2010122672A (ja
Inventor
紀夫 沼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2009243620A priority Critical patent/JP5458802B2/ja
Publication of JP2010122672A publication Critical patent/JP2010122672A/ja
Application granted granted Critical
Publication of JP5458802B2 publication Critical patent/JP5458802B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00323Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a measuring, monitoring or signaling apparatus, e.g. for transmitting measured information to a central location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00795Reading arrangements
    • H04N1/00827Arrangements for reading an image from an unusual original, e.g. 3-dimensional objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0084Digital still camera

Description

本発明は、天体の静止撮影を可能にしたデジタルカメラに関する。
カメラを固定して天体撮影を行うと、地球の自転により相対的に天体が移動(日周運動)するため、星が直線あるいは曲線状に写ってしまう。天体を静止状態にして長時間露光撮影を行うには、自動追尾装置を備えた赤道儀を使用するのが一般的である。
近年では、赤道儀を用いずに固定したデジタルカメラで複数回の撮影を行い、撮影後に撮影画像データを使用して星の位置を補正しながら複数回の画像を加算する方法が提案されている(特許文献1、2)。
出願人は、カメラのブレをジャイロセンサで検出して、撮像素子を光軸と直交する任意の方向に移動及び光軸周りに回転させることで、垂直及び水平方向の振れだけでなく回転振れを補正する機構を備えた像振れ補正装置を提案している(特許文献3)。
特開2006-279135号公報 特開2003-259184号公報 特開2007−25616号公報
しかし、自動追尾装置を備えた赤道儀は高価であり、重く、扱いも容易ではなかった。複数の画像を合成するデジタルカメラ(文献1、2)は、画像の位置合わせ精度や画像加算処理の速度が遅いなど、画像合成をデジタルカメラ単体で行うには問題があった。
本発明はかかる従来技術の問題に鑑みてなされたものであって、赤道儀を使用せずに、固定するだけで天体を静止した状態で撮影、つまり天体追尾撮影ができるデジタルカメラを得ることを目的とする。
本発明は、撮影光学系による被写体像を、該撮影光学系の光軸に対して直交する面内において所定の軌跡で移動させることができる被写体像移動機構を備えたデジタルカメラであって、該デジタルカメラの位置情報、撮影方位情報及び撮影高度情報を入力する入力手段と、撮影光学系の焦点距離情報を入力する焦点距離入力手段と、上記撮影光学系による被写体像を撮像素子上に露光する露出時間を設定する露出時間設定手段と、上記被写体像移動機構の可動範囲を規定する可動リミット情報に基づいて、該可動リミットを超えない範囲で上記被写体像移動機構を駆動制御する制御手段と、入力された位置情報、撮影方位情報、撮影高度情報及び焦点距離情報から、上記露出時間内における地球の自転によって上記撮影光学系のイメージサークルの初期位置に対して相対移動する上記被写体像である天体像の移動軌跡を演算する演算手段と、を備え、上記制御手段は、上記演算手段が演算した移動軌跡と上記可動リミット情報に基づいて、該可動リミットを超えない範囲で上記被写体像移動機構を駆動制御して、上記天体像の撮像素子上での位置を一定に維持することを特徴とする
実際的には、請求項1記載のデジタルカメラにおいて、上記被写体像移動機構は、撮像素子を、撮影光学系の光軸に対して直交する面内において所定の軌跡で移動させることができる撮像素子移動機構であって、演算手段は、上記入力された位置情報、撮影方位角情報、撮影高度情報及び焦点距離情報から、上記露出時間内における地球の自転によって上記撮影光学系のイメージサークルに対して相対移動する上記被写体像である天体像の移動軌跡を演算し、制御手段は、上記演算手段が演算した移動軌跡と可動リミット情報に基づいて、該可動リミットを超えない範囲でに基づいて上記撮像素子移動機構を駆動制御して、上記天体像の撮像素子上での位置を一定に維持する構成とする。
本発明において位置情報は該デジタルカメラが位置する場所の緯度φであり、上記撮影方位情報は上記撮影光学系が狙う天体の方位Aであり、上記撮影高度情報は上記天体の高度hであり、上記演算手段は、入力した緯度φ情報、方位A情報、高度h情報及び撮影光学系の焦点距離f情報から、単位時角Hにおける上記天体の方位Aの変位量dA/dHを下記式(6)、高度hの変位量dh/dHを下記式(7)、天球面上において、天の極と上記天体とを最短で結ぶ曲線と、天頂と上記天体とを最短で結ぶ曲線とがなす角θの変化量dθ/dHを下記式(8)、
dA/dH=sinφ+cosφ・tan(h)・cosA・・・(6)
dh/dH=-sinA・cosφ・・・(7)
dθ/dH=cosA・cosφ/cos(h)・・・(8)
により算出することが好ましい。
本発明の演算手段にあっては、上記デジタルカメラが水平に構えられているときの、水平をX軸、垂直をY軸と定義したとき、上記天体像の撮像素子上での位置を一定に維持する追尾撮影を行うための撮像素子の単位時角あたりの移動量ΔX、ΔY、回転角Δθを式(9)、(10)、(11)で求め、
ΔX=f・tan(dα/dH)・・・(9)
ΔY=f・tan(dh/dH)・・・(10)
Δθ=dθ/dH・・・(11)
(但し、dαは、単位時角に同一高度で変化した天体の方位角変化量)
制御手段は、上記撮像素子移動機構により撮像素子を単位時角あたりΔX、ΔY、Δθの速度で駆動制御する。
さらに本発明において、演算手段は、上記撮像素子駆動機構の機械的可動リミットのうちX方向をLx、Y方向をLy、回転の機械的可動リミットをLθとすると、それぞれの機械的可動リミットに達するまでの時角ΔHを下記式、(12)、(13)、(14)により算出し、
ΔH(x)=arctan(Lx/f)/(dα/dH)・・・(12)
ΔH(y)=arctan(Ly/f)/(dh/dH)・・・(13)
ΔH(θ)=Lθ/(dθ/dH)・・・(14)
(但し、dαは、単位時角に同一高度で変化した天体の方位角変化量)
上記の3個の時角ΔHのうち最小値をΔHminとすると、機械的可動リミットにより制限された最長露出時間Tlimit[秒]を下記式(15)、
Tlimit=ΔHmin・3600/15・・・(15)
により設定することが好ましい。
別の観点からなる本発明は、上記位置情報は該デジタルカメラが位置する場所の緯度φであり、上記撮影方位情報は撮影光学系が狙う天体の方位Aであり、上記撮影高度情報は上記天体の高度hであり、演算手段は、入力した緯度φ情報、方位A情報、高度h情報及び撮影光学系の焦点距離f情報から、単位時角Hにおける上記天体の方位Aの変位量dA/dHを下記式(6)、高度hの変位量dh/dHを下記式(7)、天球面上において、天の極と上記天体とを最短で結ぶ曲線と、天頂と上記天体とを最短で結ぶ曲線とがなす角θの変化量dθ/dHを下記式(8)、
dA/dH=sinφ+cosφ・tan(h)・cosA・・・(6)
dh/dH=-sinA・cosφ・・・(7)
dθ/dH=cosA・cosφ/cos(h)・・・(8)
により算出することに特徴を有する。
そうして本発明の演算手段は、上記デジタルカメラが水平に構えられているときの、水平をX軸、垂直をY軸と定義したとき、上記天体像の撮像面上における単位時角あたりの移動量ΔX、ΔY、回転角Δθを式(9)、(10)、(11)で求め、
ΔX=f・tan(dα/dH)・・・(9)
ΔY=f・tan(dh/dH)・・・(10)
Δθ=dθ/dH・・・(11)
(但し、dαは、単位時角に同一高度で変化した天体の方位角変化量)
被写体像移動機構は、上記撮影光学系の一部の光学系を偏心させることによって単位時角あたりΔX、ΔYの速度で上記天体像を移動させる撮影光学系偏心機構と、上記撮像素子を撮像面に垂直で該撮像素子の中心を通る撮影光学系の基準光軸に対して単位時角あたりΔθの速度で回転駆動制御する撮像素子回転機構とを備える
演算手段は、上記撮影光学系偏心機構の機械的可動リミットによる被写体像移動のX方向をLx、Y方向をLy、上記撮像素子回転機構の機械的可動リミットをLθとすると、それぞれの機械的可動リミットに達するまでの時角ΔHを下記式、(12)、(13)、(14)により算出し、
ΔH(x)=arctan(Lx/f)/(dα/dH)・・・(12)
ΔH(y)=arctan(Ly/f)/(dh/dH)・・・(13)
ΔH(θ)=Lθ/(dθ/dH)・・・(14)
(但し、dαは、単位時角に同一高度で変化した天体の方位角変化量)
上記の3個の時角ΔHのうち最小値をΔHminとすると、機械的可動リミットにより制限された最長露出時間Tlimit[秒]を下記式(15)、
Tlimit=ΔHmin・3600/15・・・(15)
により設定する。
また、本発明のデジタルカメラにおいて、上記位置情報は該デジタルカメラが位置する場所の緯度情報であって、該緯度情報は、デジタルカメラに搭載された入力手段を介して手入力されるか、又はGPSユニットから入力される構成とする。上記撮影方位情報は、該デジタルカメラに搭載された入力手段を介して手入力されるか、又は方位センサから入力される。上記撮影高度情報は、上記撮影高度情報は、該デジタルカメラに搭載された入力手段を介して手入力されるか、又は重力センサから入力される。GPSユニット、方位センサ、重力センサはデジタルカメラに内蔵してもよいが、外付けユニットとして形成し、アクセサリーシュー又はブラケットに設けてブラケットを介してボディ底板に装着する構成とできる。また情報は、デジタルカメラに設けられた外部入力端子を使用して入出力できる。
以上の本発明は、該デジタルカメラの振れを検出するジャイロセンサを備え、上記被写体像移動機構は、上記ジャイロセンサが検出したカメラ振れに基づき、撮像素子上の被写体像が移動しない方向及び速度で上記被写体像移動機構を駆動制御する防振機構を有するデジタルカメラが実際的である。
本発明のデジタルカメラにおいて、演算手段は、被写体像移動機構の可動リミット情報に基づいて露出限界時間を算出し、該露出限界時間を越えない範囲で露出時間を決定することが実際的である。
演算手段は、デジタルカメラに備えられたレリーズスイッチがオンされた後、露出限界時間の算出を開始することが実際的である。
演算手段は、デジタルカメラに備えられたレリーズスイッチがオンされた後、天体像の移動軌跡の演算を開始することが実際的である。
本発明によると、撮影するデジタルカメラの撮影位置の緯度情報、方位情報、高度情報及び撮影光学系の焦点距離情報に基づいて撮像素子上の天体像が移動しないように撮像素子を運動させるので、長時間露光しても静止した状態で天体を撮影できる。撮影光学系を天の極に合わせなくても済むので、赤道儀を使用しなくても、簡単に赤道儀を使用した場合と同様の天体撮影ができる。
天体撮影の様子を説明する図であって、(A)は天球座標を示す図、(B)は天球上の三角形を示す図である。 天体撮影において天体の像が日周運動によって撮像ユニット上を移動する様子を説明する図である。 本発明のデジタルカメラの主要構成部材の実施形態を示すブロック図である。 同デジタルカメラにより天体追尾撮影する際のメイン動作をフローチャートで示した図である。 同デジタルカメラによる天体追尾撮影における動作をフローチャートで示した図である。 本発明を適用したデジタルカメラの防振ユニットの実施形態の縦断側面図である。 同防振ユニットの非作動状態を、ヨークの一部を破断して示す背面図である。 同防振ユニットの固定支持基板の背面図である。 図7のIX-IX矢線に沿う断面図である。 図7のX-X矢線に沿う断面図である。 図7のXI-XI矢線に沿う断面図である。 X方向駆動装置の主要部を模式的に示す拡大図である。 Y方向駆動装置の主要部を模式的に示す拡大図である。 天体像の撮像面上におけるX方向の単位時角あたりの移動量ΔXを求める方法を説明する球体図である。 本発明を、撮影レンズ内に防振ユニットを、カメラボディ内に撮像素子回転駆動ユニットを備えた防振カメラの主要構成部材の実施形態を示すブロック図である。
先ず、天体撮影の様子を図1及び図2を参照して説明する。図1及び図2において、各符号を以下の通り定義する。
P:天の北極
Z:天頂
N:真北
S:対象恒星(説明の便宜上、この対象恒星は撮影画面の中心であり、撮影レンズの光軸Oの延長線上に位置するものとする。)
φ:観測点の緯度
A:観測方位(撮影光学系が狙う恒星Sの方位、撮影光学系の光軸と天球との交点の方位)
h:観測高度(撮影光学系が狙う恒星Sの高度、撮影光学系の光軸と天球との交点の高度)
H:恒星Sの時角(通常、時角の単位は時間が使われるが、ここでは角度(1時間=15度)に換算して扱うこととする。)
δ:恒星Sの赤緯
θ:天球面上において、天の極と対象恒星S(天体)とを最短で結ぶ曲線と、天頂と対象恒星S(天体)とを最短で結ぶ曲線とがなす角。
緯度φの観測点(デジタルカメラで撮影する位置)において、方位A、高度hの恒星Sを観測する場合、観測する恒星Sの時角Hと赤緯δは次式(1)、(2)で表される。
tanH= sinA/(cosφ・tan(h)+ sinφ・cosA) ・・・(1)
sinδ= sin(h)・sinφ − cos(h)・cosφ・cosA ・・・(2)
時角Hは地球の自転及び公転による恒星の動き(日周運動)を示す角度であって、1日で約360゜、1時間で約15゜回転すると近似できる。今、恒星Sの観測開始時の時角をH0とすると、時角H0は、観測点の緯度φと観測開始時の方位A0、高度h0を式(1)に代入することで算出できる。また、この時の恒星Sの赤緯δは式(2)により算出できる。
観測開始時からt秒後の恒星Sの時角Hは、次式(3)で求められる。
H=H0+15/3600・t ・・・(3)
この時の恒星Sの方位A、高度hは次式(4)、(5)で算出できる。
tanA= -sinH/(cosφ・tanδ − sinφ・cosH) ・・・(4)
sin(h)= sinφ・sinδ + cosφ・cosδ・cosH ・・・(5)
緯度φの観測点において、方位A、高度hの恒星Sを観測した場合、恒星Sの方位Aと高度hの変位量dA/dH、dh/dHは次式(6)、(7))で表される。
dA/dH= sinφ + cosφ・tan(h)・cosA ・・・(6)
dh/dH= -sinA・cosφ ・・・(7)
また、星座等の複数の星を撮影する場合、それらの星は、天の極を中心に、地平線に対して回転しながら動いている。その変化は図1、2の角θの変化量dθ/dHで表され、次式(8)で算出できる。
dθ/dH=cosA・cosφ/cos(h) ・・・(8)
なお、説明を簡単にするために撮影光学系の光軸延長上に星(恒星S)があるとしてあるが、撮影するにあたり光軸をどれかの星に一致させる必要が無いことは言うまでも無い。
今、緯度φの地点において、方位A、高度hにある天体の観測を開始したとすると、その後の天体の軌跡、つまり撮影光学系のイメージサークルの初期位置に対して相対移動する天体像の移動軌跡は(1)〜(5)式により予め算出することができる。この移動軌跡に合わせてデジタルカメラの向きを制御しながら露出を行えば、天体の追尾撮影が可能となる。また、(6)〜(8)により露出中の各時間においてデジタルカメラを移動させる速度とデジタルカメラを回転させる速度も算出することができる。
デジタルカメラの移動・回転に替えて、撮像センサを所定の方向に所定の軌跡で移動させることで追尾撮影が可能になる。撮像センサを、光軸Oに直交する平面上でXY方向移動及び回転運動もできるよう構成された防振ユニット(振れ補正装置)を備えたデジタルカメラでは、機構的には上記の天体追尾撮影を、カメラ本体は固定のままで、撮像センサだけを所定の方向に所定の軌跡で移動させることで実現できる。この場合、撮像センサのXY軸方向の移動量は、デジタルカメラに装着された撮影レンズの焦点距離fによって変化する。
デジタルカメラが水平に構えられている場合に、水平をX軸、垂直をY軸と定義すれば、天体の方位がX軸、高度がY軸に対応することになる。天体の運動による変位角のうち、方位成分はdA/dH、高度成分はdh/dHである。ここで、天体を図14のような半球に見立てる。球面上において、同一高度hで方位が角度ΔAだけ異なる点Sと点S′を考えると、球の中心である撮影地点Oから見た点Sと点S′の水平方向の角度差はΔαとなる。この天体を撮影した場合のX方向の移動量は、このΔαに比例する。点S及び点S′の高度をhとすると、球面三角ZSS′において球面三角の公式より、
cosΔα = cos2(90 − h)+ sin2(90 − h)・cosΔA
= sin2(h)+ cos2(h)・cosΔA
よって、角度差Δαは、次式により算出できる。
Δα= arccos(sin2(h)+ cos2(h)・cosΔA)
以上より、天体の単位時角あたりの方位変化量がdA/dHの場合、撮像素子上におけるX方向の単位時角あたりの移動量ΔXは、レンズ焦点距離fを加味して、式
dα/dH= arccos(sin2(h)+ cos2(h) ・cos(dA/dH))
より、
ΔX=f・tan(dα/dH) ・・・(9)
となる。但し、dαは、単位時角あたりに同一高度で変化した天体の方位角変化量である。
撮像素子上におけるY方向の単位時角あたりの移動量ΔYは、レンズ焦点距離fを加味して、
ΔY=f・tan(dh/dH) ・・・(10)
となる。
したがって、追尾撮影を行うために要する撮像センサの単位時角あたりの移動量ΔX、ΔYは、上記式(9)及び(10)となる。
天体の回転移動の単位時角あたりの変位角dθ/dHは、カメラの撮像センサ面においても同様であるから、追尾撮影の間は天体の回転に合わせて、
Δθ=dθ/dH ・・・(11)
の速度で撮像センサを回転させればよい。なお、カメラの水平は、カメラに装着又は搭載された電子水準器等を利用して使用者が設定する。
防振ユニットによる撮像センサの可動範囲には機械的リミットがある。この機械的リミットにより露出時間が制限される。各機械的リミットのうちX方向をLx、Y方向をLy、回転の機械的リミットをLθとすると、それぞれのリミットに達するまでの時角ΔHは次式(12)、(13)、(14)で算出できる。
ΔH(x)= arctan(Lx/f)/(dα/dH) ・・・(12)
ΔH(y)= arctan(Ly/f)/(dh/dH) ・・・(13)
ΔH(θ)=Lθ/(dθ/dH) ・・・(14)
上記の3つのΔHのうち最小値をΔHminとすると、機械的リミットにより制限された最長露出時間Tlimit[秒]は、次式(15)により算出される。
Tlimit=ΔHmin・3600/15 ・・・(15)
次に、このように光軸と直交する放射方向の振れ補正だけでなく、回転方向の振れを補正できる防振ユニットを備えたデジタルカメラに本発明を適用した実施形態について、図3乃至図13を参照して説明する。
まず、本発明を適用したデジタルカメラの実施形態について、図3に示したブロック回路図を参照して説明する。このデジタルカメラ10は、カメラ全体の機能を制御し、演算し、駆動制御する演算手段及び制御手段として機能するCPU61を備えている。CPU61は、撮像センサ20を駆動制御し、撮影した画像信号を処理してLCDモニタ63に表示するとともに、メモリーカード65に書き込む。またCPU61は、撮影レンズ100の焦点距離検出装置110から焦点距離f情報を入力し、X方向、Y方向、回転検出ジャイロセンサGSX、GSY、GSRが検出した信号を入力して、防振ユニット25を駆動制御する。
このデジタルカメラ10は、スイッチ類として、電源スイッチ67、レリーズスイッチ68、設定スイッチ69を備えている。CPU61は、これらのスイッチ67、68、69の状態に応じた演算及び制御を実行する。例えば、電源スイッチ67の操作を受けて、図示しないバッテリからの電力供給をオン/オフし、レリーズスイッチ68の操作を受けて焦点調節処理及び測光処理、さらに撮影処理を実行し、設定スイッチ69の操作を受けて天体撮影、その他の撮影モード等を設定する。
さらにCPU61には、カメラの位置情報入力手段としてGPSユニット71、方位情報入力手段としての方位センサ73、及び高度情報入力手段としての重力センサ75から緯度情報、方位情報及び高度情報が入力される。図では、これらのGPSユニット71、方位センサ73、重力センサ75はデジタルカメラに内蔵してあるが、別の実施形態ではいずれか又は全て外付けとして、アクセサリーシューに、あるいはブラケットに装備して底板に装着し、アクセサリーシューの接点を介して、あるいはUSBコネクタを介してCPU61に入力する構成とする。緯度情報、方位情報、高度情報は、設定スイッチ69を利用して使用者が手入力する構成にもできる。
このデジタルカメラ10の天体撮影モードは、緯度φ情報、方位A情報、高度h情報、焦点距離f情報に基づき、撮像センサ20の駆動方向及び駆動速度を演算して撮像センサ20を追尾移動させて、天体の像を静止状態で撮影する追尾撮影を可能にした構成である。さらに、演算した駆動方向及び駆動速度で撮像センサ20を駆動制御した場合に撮像センサ20が可動リミットに到達する迄に駆動可能な可動時間を求めて最長露出時間を設定する。そうして、演算した駆動方向及び駆動速度で撮像センサ20が運動するように防振ユニット25を駆動しながら撮像センサ20により撮像し、設定された露出時間が経過したら撮像を終了して画像信号を取り込み、所定フォーマットの画像ファイルに変換してメモリーカード65に書き込む。
このデジタルカメラ10による天体撮影(天体追尾撮影)について、図4及び図5に示したフローチャートを参照して説明する。なお、これらのフローチャートは天体撮影モードに特化してあって、天体撮影の理解に不要な制御等は省略してある。
図4は、このデジタルカメラの天体撮影処理に関するメインフローであって、電源スイッチ67のオン操作で入る。メインフローに入ると、先ず、設定スイッチ69の操作を受けてカメラの動作モードを設定する(S101)。この実施形態では、天体撮影モード又はその他の撮影モードの設定を行うが、ここでは天体撮影モードが設定され、任意の長秒時の露出時間Tが設定されたものとする。AF装置及びAF対応撮影レンズ100が装着されたデジタルカメラの実施形態の場合は、天体撮影モードが設定されたときは、焦点を無限遠合焦状態に固定する。少なくとも、天体撮影処理の前に無限遠合焦処理を実行することが好ましい。
次に、電源スイッチ67がオフされたかどうかチェックし(S103)、オフされている場合(S103:YES)は、電源をオフして終了する。電源スイッチ67がオフされていない場合(S103:NO)は、レリーズスイッチ68がオンしているかどうかチェックする(S105)。レリーズスイッチ68がオンしていない場合(S105:NO)はS101に戻る。レリーズスイッチ68がオンしている場合(S105:YES)は、天体撮影モードかどうかチェックし(S107)、天体撮影モードの場合(S107:YES)は天体撮影処理(S109)を実行してS101に戻り、天体撮影モードでない場合(S107:NO)は通常撮影処理(S111)を実行してステップS101に戻る。
次に、ステップS109で実行される天体撮影処理について、図5に示したフローチャートを参照して説明する。
天体撮影処理に入ると、まず、防振ユニット25の初期化を実行する(S201)。ここでは、撮像センサ20を中央位置(初期位置)に保持する。
GPSユニット71より緯度φ情報を、方位センサ73より方位A情報を、重力センサ75より高度h情報を、撮影レンズ100(焦点距離検出装置101)から焦点距離f情報を入力する(S203)。そうして、方位Aの変位量dA/dHを式(6)により、高度hの変位量dh/dHを式(7)により、回転量θの変化量dθ/dHを式(8)により算出する(S205)。
防振ユニット25の可動リミットLx、Ly及びLθ、焦点距離f、方位Aの変位量dA/dH、高度hの変位量dh/dH、回転量θの変化量dθ/dHより、最長露出時間Tlimitを算出する(S207)。
露出時間Tは最長露出時間Tlimit以内かどうかチェックし(S209)、以内であれば(S209:YES)そのままステップS213に進み、以内でなければ(S209:NO)、露出時間Tを最長露出時間Tlimitで置き換えて(S211)、ステップS213に進む。ステップS213では、露出を開始する。つまり、図示しないシャッタを開放し、撮像センサ20による撮像を開始する。なお、絞りは、通常、開放状態で撮影されるが、撮影者により任意に設定可能である。
露出中に、GPSユニット71より緯度φ情報を、方位センサ73より方位A情報を、重力センサ75より高度h情報を、撮影レンズ100から焦点距離f情報を入力し(S215)、方位Aの変位量dA/dHを式(6)により、高度hの変位量dh/dHを式(7)により、回転量θの変化量dθ/dHを式(8)により算出する(S217)。次いで、焦点距離情報fと各変位量dA/dH、dh/dH、dθ/dHより、撮像センサ20の単位時角あたりの移動量ΔX、ΔY、単位時角あたりの回転角Δθを式(9)、(10)、(11)によりそれぞれ算出し(S218)、算出結果に基づき防振ユニット25により撮像センサ20を、X軸方向にΔX、Y軸方向にΔY、回転方向にΔθの単位時角あたりの移動量、単位時角あたりの回転角で駆動制御する(S219)。そうして、露出時間Tが経過したかどうかチェックし(S221)、経過していなければ(S221:NO)ステップS215に戻る。
露出時間Tが経過したら(S221:YES)、露出終了処理、つまりシャッタを閉じ(S223)、撮影画像データを取得、つまり撮像センサ20から画像データを読み出し(S225)、画像処理、つまり画像データにつきホワイトバランス調整、所定フォーマットへの変更等の画像信号処理を施す(S227)。そうして、撮影画像をLCDモニタ63に表示するとともに撮影画像を所定フォーマットの画像ファイルとしてメモリーカード65に書き込み(S229)、リターンする。
以上の通り本発明によれば、天体の運動に応じて撮像センサ20上の天体像が移動しないように、つまり、日周運動に同期して撮像センサ20を移動するので、デジタルカメラ10を固定した状態で、星が流れない天体撮影が可能になる。
本発明は、撮像センサ20を駆動して手振れを補正する防振ユニット25を備えたデジタルカメラであれば、他のデジタルカメラにも適用できる。
デジタルカメラの位置、つまり撮影地点の緯度φは地図からも特定できるので、GPSユニットを使用せずに、使用者が設定スイッチ69を使用して手入力する構成にしてもよい。
また、デジタルカメラ10がフラッシュ内蔵又は装着されている場合は、露出開始直後、又は露出終了直前にフラッシュを発光させて、近距離の景色又は人物を露出するようにすれば、天体とその撮影した状況、人物を含む写真撮影が可能になる。露出開始直後にフラッシュを発光させる場合であっても、セルフタイマーと連動させれば、撮影者自身も写り込むことが可能になる。露出終了直前にフラッシュを発光させる場合は、LCDモニタ63に残り露出時間を表示するとともにセルフタイマー撮影時のピープ音を出力するように構成すれば、フラッシュ発光のタイミングが撮影者に分かり、撮影者自身も容易に写り込むことができる。
次に、デジタルカメラ10の防振ユニット(撮像素子移動機構)25の構成について、図6〜図13を参照して説明する。このデジタルカメラのより詳細な基本構成は、特許文献3に記載されている。
図6に示すように、デジタルカメラ(カメラ)10の撮影レンズ100内には、複数のレンズL1、L2、L3からなる撮影光学系Lが配設されており、レンズL3の後方には撮像素子として撮像センサ20が配設されている。上記撮影光学系Lの光軸Oに対して直交する撮像センサ20の撮像面21の光軸O方向位置は、該撮影光学系Lの設計上の結像(焦点)位置と一致している。撮像センサ20はデジタルカメラ10に内蔵された防振ユニット25に固定されている。防振ユニット25は、図7〜図13に示す構造となっている。
図8に示すように、後方から視たときに方形(長方形)をなし、その中央部に方形(長方形)の収容孔31が穿設された平板状の固定支持基板30は、図示を省略した固定手段によりデジタルカメラ10のカメラボディ12(図10参照)の内面に固定されている。固定支持基板30は光軸Oに対して直交しており、収容孔31の中心が光軸Oと略一致している。固定支持基板30の後面には、収容孔31の左右両側に位置する突部32と突部33が後ろ向きに突設されている。突部32と突部33は共に上下一対であり、上下の突部32の間及び上下の突部33の間には取付用凹部34と取付用凹部35が形成されている。
図7及び図9に示すように、取付用凹部34と取付用凹部35には、断面形状がコ字形をなす金属製のヨークYXの前板部YX1がそれぞれ固着されている。ヨークYXの前板部YX1の後面には、そのN極とS極が矢印X方向(図7の左右方向)に並ぶ、ヨークYXには永久磁石(X用磁束発生装置)MXが固着されている。図9に示すように、ヨークYXの後板部YX2は永久磁石(Y用磁束発生装置)MXと対向しており、両者の間に高磁束密度空間が形成されている。
固定支持基板30の後面の下端部には、そのX方向幅がヨークYXのY方向幅より広い、断面形状がコ字形をなす金属製のヨークYYの前板部YY1が固着されている。ヨークYYの前板部YY1の後面には、そのN極とS極が矢印Y方向(図7の上下方向)に並ぶ、ヨークYYには永久磁石MYが固着されている。図10及び図11に示すように、ヨークYYの後板部YY2は永久磁石MYと対向しており、両者の間に高磁束密度空間が形成されている。
固定支持基板30の突部32及び突部33の後面には、それぞれ同一形状の支持用突部36と支持用突部37が突設されている。各支持用突部36及び支持用突部37の後面には、半球状の支持用凹部38と支持用凹部39が凹設されている。支持用凹部38と支持用凹部39には共にボールB1とボールB2がそれぞれ約半分露出した状態で回転自在に嵌合している。
各ボールB1、ボールB2は、支持用凹部38、支持用凹部39から露出した部分が固定支持基板30と平行(光軸Oに対して直交する基準平面と平行)な補強板(ステージ部材)40の前面(被写体側面)に常に接触している。そうして各ボールB1、ボールB2は、補強板40に対して光軸Oと直交する方向に力が作用すると、補強板40の前面の移動に従って転動して、補強板40を光軸Oと直交する面内において直線及び回転移動自在に支持している。支持用凹部46aにはボールB3が、略半分露出した状態で回転自在に嵌合している。図10に示すように、ボールB3は、支持用凹部46aから露出した部分が常にカメラボディ12の基準平面と平行な接触面(内面)12aに接触している。そうしてボールB3は、電気基板45に対して接触面12aと平行な方向に力が作用すると、電気基板45の移動に従って接触面12a上を転動し、電気基板45を光軸Oと直交する面内において移動、回転自在に支持している。
このように補強板40と電気基板45は、ボールB1及びボールB2とボールB3により前後方向から挟持されており、各ボールB1、ボールB2が補強板40を平行移動自在に支持し、かつ、ボールB3が電気基板45を平行移動自在に支持しているので、補強板40及び電気基板45は、固定支持基板30に対して光軸Oに対して直交する基準平面内において移動及び回転自在である。具体的には、補強板40及び電気基板45は、図7に示す初期位置から、基準平面内において任意の方向に直線移動だけでなく回転移動自在に支持されている。ボールB1、B2、B3は金属製でもよいが、弾性を有する低摩擦素材、例えばアセタール樹脂製が好ましい。
補強板40の前面中央部には、撮像センサ20が固着されている。図7に示すように撮像センサ20は正面視で長方形をなし、X方向と平行な上下一対のX方向側辺20Xと、Y方向と平行な左右一対のY方向側辺20Yとを具備している。撮像センサ20は有効撮像領域を有し、本実施形態においては、説明の簡単化のためその有効撮像領域は、上記X方向側辺20X及びY方向側辺20Yで表される長方形状と一致しているものとする。電気基板45が図7に示す初期位置にあるときは、光軸Oが撮像センサ20の有効撮像領域の中心を通る。
補強板40の前面にはさらに、撮像センサ20を囲むように中空箱状の撮像センサ保持部材(ステージ部材)50の後面が固着されている(図10)。撮像センサ保持部材50は、後方から視たときに収容孔31より小寸である。撮像センサ保持部材50の前端部は、固定支持基板30の収容孔31内に相対移動可能に位置し、撮像センサ保持部材50の前面には正面視方形の開口51が穿設されている。撮像センサ保持部材50の内部にはローパスフィルタ52と撮像センサ20が正面視方形環状の押さえ部材53を挟んだ状態で収納されており、正面から視ると撮像センサ20の撮像面21は開口51と前後方向に対向する。
電気基板45の左右2カ所及び下端部には3つの舌片47、舌片48、舌片49が突設されている。図7及び図9に示すように、舌片47と舌片48はヨークYXの前板部YX1と後板部YX2の間に位置している。舌片47と舌片48には同一仕様の一対のX方向駆動用コイルCXA及びCXBがプリント基板により形成されている。X方向駆動用コイルCXA、CXBは基準平面と平行な平面コイルであり、左右のX方向駆動用コイルCXA、CXB同士はX方向側辺20Xと平行な方向に並んでいる(図7においてX方向に並んでいる)。別言すると、左右のX方向駆動用コイルCXA、CXB同士のY方向側辺20Yと平行な方向の位置(図7においてはY方向の位置)は一致している。図7及び図12に示すように、X方向駆動用コイルCXA、CXBは、各辺が直線状をなす渦巻き状をなしており、右辺CX1と、左辺CX2と、上辺CX3と、下辺CX4とからなっている。右辺CX1及び左辺CX2はY方向側辺20Yと平行であり、上辺CX3及び下辺CX4はX方向側辺20Xと平行である。
電気基板45と固定支持基板30の間には、図示を省略した移動範囲規制手段が設けられている。この移動範囲規制手段の作用によって、電気基板45の固定支持基板30に対する相対移動可能な範囲は一定の範囲に制限され、X方向駆動用コイルCXA、CXBの右辺CX1と永久磁石MXのN極は常にZ方向(図1の矢印Zの方向、即ち、光軸O方向)に重合し、かつ、左辺CX2と永久磁石MXのS極は常にZ方向に重合している。ここで、電気基板45が初期位置から移動可能なリミット、つまり撮像センサ20のX方向の可動リミットを可動リミットLx、Y方向の可動リミットを可動リミットLy、回転可能な角度リミットを可動リミットLθとする。
舌片48には、右側のX方向駆動用コイルCXBの近傍に位置し、このX方向駆動用コイルCXBのX方向の変位を検出するホールセンサSXが固定されている。左側のX方向駆動用コイルCXAのX方向の変位は右側のものと同じなのでホールセンサSXによって同時に検出される。ホールセンサSXは、永久磁石MXとヨークYXの間に生じている磁束の変化を検出して、X方向駆動用コイルCXA、CXBのX方向の変位を検出する。
X方向駆動用コイルCXA、CXBに電流を流したときの動作は、概略、次の通りである。例えば、電気基板45が図7に示す初期位置にあるときに、X方向駆動用コイルCXA、CXBに図12に矢線で示す方向の電流が流れると、右辺CX1と左辺CX2には図7及び図12に矢印FX1方向の力が生じ、X方向駆動用コイルCXA、CXBに逆方向の電流が流れると、右辺CX1と左辺CX2には図7及び図12に矢印FX2方向の力が生じる。電気基板45が図7に示す初期位置にあるとき、FX1方向及びFX2方向は相反する方向でX方向と一致する。従って、電気基板45が初期位置にあるときにX方向駆動用コイルCXA、CXBに図12に矢線で示す方向の電流が流れると、FX1方向の力により、補強板40及び電気基板45が固定支持基板30に対してFX1方向に直線的に移動しようとする。この際、上辺CX3と下辺CX4にも力が生じるが、これらの力は互いに打ち消し合うので補強板40及び電気基板45には力を及ぼさない。一方、X方向駆動用コイルCXA、CXBに図12の矢線と逆向きの電流を流すと、右辺CX1と左辺CX2には矢印FX2方向の直線的な力が生じ、補強板40及び電気基板45が固定支持基板30に対してFX2方向に直線的に移動しようとする。つまり、X方向駆動用コイルCXA、CXBへ流す電流の向きを調整することにより、右辺CX1がN極とZ方向に重合し左辺CX2がS極とZ方向に重合する範囲内で、補強板40及び電気基板45が固定支持基板30に対してFX1方向又はFX2方向に直線移動させることができる。
X方向駆動用コイルCXA、CXBへの給電を停止すると、FX1方向又はFX2方向の駆動力が失われて、補強板40及び電気基板45は移動不能となる。
X方向駆動用コイルCXA、CXBに流れる電流の大きさと生じる力は略比例するので、X方向駆動用コイルCXA、CXBへの電流を制御回路により調整することにより、X方向手振れによる像振れの速度に応じた速度で撮像センサ20をX方向に移動させることができる。
図7、図10及び図11に示すように、舌片49はヨークYYの前板部YY1と後板部YY2の間に位置している。舌片49には互いに同一仕様のY方向駆動用コイルCYAとY方向駆動用コイルCYBがプリント基板により形成されている。Y方向駆動用コイルCYAとY方向駆動用コイルCYBは共に基準平面と平行な平面コイルであり、Y方向駆動用コイルCYAとY方向駆動用コイルCYBは下側のX方向側辺20Xに沿って並んでいる(図7においてはX方向に並んでいる)。図7に示すX方向直線LX1は、Y方向駆動用コイルCYAの中心及びY方向駆動用コイルCYBの中心を通るX方向側辺20Xと平行な直線である。ただし、Y方向駆動用コイルCYAとY方向駆動用コイルCYBのX方向側辺20Xと平行な方向の位置(図7におけるX方向位置)はオーバーラップしていない。
撮像センサ20の有効撮像領域の中心を通りY方向側辺20Yと平行な直線LCに対して、一対のX方向駆動用コイルCXAとCXBは対称に配置されている。同様に一対のY方向駆動用コイルCYAとY方向駆動用コイルCYBもまた直線LCに対して対称に、撮像センサ20の長辺に沿って配置されている。
図7及び図13に示すように、Y方向駆動用コイルCYA及びY方向駆動用コイルCYBは、各辺が直線状をなす渦巻き状をなしており、右辺CY1と、左辺CY2と、上辺CY3と、下辺CY4とからなっている。右辺CY1及び左辺CY2はY方向側辺20Yと平行であり、上辺CY3及び下辺CY4はX方向側辺20Xと平行である。そして、このY方向駆動用コイルCYA及びY方向駆動用コイルCYBと、上記ヨークYY、及び永久磁石MYによってY方向駆動手段が構成されている。
さらに、上記移動範囲規制手段の作用によって電気基板45の固定支持基板30に対する相対移動可能な範囲は一定の範囲に制限され、Y方向駆動用コイルCYA及びY方向駆動用コイルCYBの上辺CY3と永久磁石MYのN極は常にZ方向に重合し、かつ、下辺CY4と永久磁石MYのS極は常にZ方向に重合する範囲内に規制されている。
舌片49には、Y方向駆動用コイルCYAの近傍に位置するホールセンサ(Y方向変位検出センサ)SYAと、Y方向駆動用コイル(Y方向変位検出センサ)CYBの近傍に位置するホールセンサSYBが固定されている。ホールセンサSYAは、永久磁石MYとヨークYYの間に生じた磁束を利用して、Y方向駆動用コイルCYAのY方向の変位を検出する。一方、ホールセンサSYBは、永久磁石MYとヨークYYの間に生じている磁束の変化を検出して、Y方向駆動用コイルCYBのY方向の変位を検出する。
本実施形態では図7に示すように、ホールセンサSYAをY方向駆動用コイルCYAの左側に配置し、かつ、ホールセンサSYBをY方向駆動用コイルCYBの右側に配置している。ホールセンサSYAとホールセンサSYBをY方向駆動用コイルCYAとY方向駆動用コイルCYBの間に配置する場合に比べて、ホールセンサSYAとホールセンサSYBの間の直線距離が長くなる。つまり、電気基板45が回転した場合に、ホールセンサSYAとホールセンサSYBの検出値の差が大きくなり、回転量をより正確に検出できるので、後述する回転振れ補正をより正確に行なえる。
Y方向駆動用コイルCYA、CYBに電流を流したときの動作は、概略、次の通りである。例えば、電気基板45が図7に示す初期位置にあるときに、Y方向駆動用コイルCYA、CYBに図13に矢線で示す方向の同じ大きさの電流が流れると、Y方向駆動用コイルCYA、CYBの上辺CY3と下辺CY4には図7及び図13に矢印FY1で示すFY1方向の直線的な力が生じ、Y方向駆動用コイルCYAとY方向駆動用コイルCYBに図13の矢線と逆向きの同じ大きさの電流を流すと、Y方向駆動用コイルCYAとY方向駆動用コイルCYBの上辺CY3と下辺CY4には矢印FY2方向の同じ大きさの直線的な力が生じる。電気基板45が図7に示す初期位置にあるときは、FY1方向及びFY2方向は相反する方向でY方向と平行である。従って、Y方向駆動用コイルCYAとY方向駆動用コイルCYBに流れる電流の大きさを等しくすれば、Y方向駆動用コイルCYA及びY方向駆動用コイルCYBに生じるFY1方向、FY2方向の力は同じ大きさとなるので、補強板40及び電気基板45が固定支持基板30に対してFY1方向に直線的に平行移動しようとする。この際、右辺CY1と左辺CY2にも力が生じるが、これらの力は互いに打ち消し合うので、補強板40及び電気基板45には力を及ぼさない。
このようにY方向駆動用コイルCYA及びY方向駆動用コイルCYBへ流す電流の向きを調整することにより、補強板40及び電気基板45がヨークYY(固定支持基板30)に対してFY1方向又はFY2方向に直線移動しようとする。
Y方向駆動用コイルCYA及びY方向駆動用コイルCYBへの給電を停止すると、FY1方向とFY2方向の駆動力が失われ、補強板40及び電気基板45は移動不能となる。Y方向駆動用コイルCYA及びY方向駆動用コイルCYBに流れる電流の大きさと生じる力は略比例するので、Y方向駆動用コイルCYA及びY方向駆動用コイルCYBへ給電する電流を大きくすれば、FY1方向とFY2方向の力は大きくなる。このY方向駆動用コイルCYA、CYBへの電流を制御回路により調整することにより、Y方向の手振れによる像振れの速度に応じた速度で撮像センサ20をY方向に移動させることができる。
さらに、Y方向駆動用コイルCYAとY方向駆動用コイルCYBに流す電流の値を個別に設定すると、Y方向駆動用コイルCYAとY方向駆動用コイルCYBには異なる力が生じ、補強板40及び電気基板45を固定支持基板30に対して相対回転させることができる。
デジタルカメラ10には、手振れ(カメラ振れ)を検出するセンサとして、例えば、光軸Oの縦(Y)方向角速度、横(X)方向角速度及び光軸O周りの回転角速度を検出する振動検出センサとして、Y方向ジャイロセンサGSY、X方向ジャイロセンサGSX及び回転検出ジャイロセンサGSRが設けられている。Y方向、X方向、回転検出ジャイロセンサGSY、GSX、GSRは、図示しないが、例えば、デジタルカメラ10の正面視右下隅に設けられる。Y方向ジャイロセンサGSYは、ジャイロセンサ軸GSYOが横方向(X方向と平行)に配置され、このジャイロセンサ軸GSYO(X軸)周りの角速度、つまりカメラボディ12の縦(Y)方向角速度を検出する。X方向ジャイロセンサGSXはジャイロセンサ軸が縦方向(Y方向と平行)に配置され、このジャイロセンサ軸(Y軸)周りの角速度、つまりカメラボディ12の横(X)方向角速度を検出する。回転検出ジャイロセンサGSRはそのジャイロセンサ軸GSROが光軸O(Z方向)と平行に配置され、このジャイロセンサ軸GSRO(Z軸)周りの角速度、つまりカメラボディ12の光軸O周りの角速度を検出する。
次に、このような構成の防振ユニット25の動作について、図3の制御回路ブロック図を参照して説明する。撮影者の手振れによりデジタルカメラ10が揺れると、光軸Oの角度振れ及び回転振れ(基準平面内での回転振れ)が生じ、撮像面21上の画像に揺れが生じる。像振れ補正は、この画像の揺れを打ち消すように行われる。
撮影レンズL(レンズL1乃至L3)を透過した被写体光は、開口51からローパスフィルタ52を通って撮像センサ20の撮像面21に被写体像を形成する。この際、デジタルカメラ10の像振れ補正スイッチSW(図1参照)がONにされていると、デジタルカメラ10にX方向とY方向の手振れ及び光軸O周りの手振れが生じたときに、X方向ジャイロセンサGSXの出力、Y方向ジャイロセンサGSYの出力、回転検出ジャイロセンサGSRの出力が積分され、X方向、Y方向の角度振れ量に応じた出力値及び光軸O周りの回転振れ量に応じた出力値に変換され、出力される。
最初に、回転補正無しのX方向及びY方向の像振れ補正動作について説明する。
X方向ジャイロセンサGSXの出力値(デジタルカメラ10のX方向の振動量に応じた横振れ信号)とホールセンサSXの出力値(撮像センサ20(X方向駆動用コイルCXA、CXBの固定支持基板30に対するX方向の移動量信号)が比較され、その差信号に基づいてX方向ジャイロセンサGSXの出力値とホールセンサSXの出力との差が小さくなるようにX方向駆動用コイルCXA、CXBに印加する電圧に関する信号が演算される。そうして、その演算結果に基づいて駆動信号がX方向駆動用コイルCXA、CXBに印加される。すると、X方向駆動用コイルCXA、CXBにFX1方向又はFX2方向の駆動力が発生し、この駆動力によって、X方向ジャイロセンサGSXの出力とホールセンサSXの出力の差が小さくなるように撮像センサ20(補強板40及び電気基板45)がFX1方向又はFX2方向に移動する。
Y方向も同様に、Y方向駆動用コイルCYA、CYBにFY1方向又はFY2方向の駆動力が発生し、この駆動力によって、Y方向ジャイロセンサGSYの出力値とホールセンサSYの出力値の差が小さくなるように撮像センサ20(補強板40及び電気基板45)がFY1方向又はFY2方向に移動する。
このように、手振れによる光軸Oの角度振れ量に追従して、撮像センサ20(補強板40及び電気基板45)がFX1方向又はFX2方向とFY1方向又はFY2方向に直線移動して、手振れによる撮像センサ20上の像振れが軽減(補正)される。なお、撮像センサ20がFX1、FX2方向及びFY1、FY2方向に直線移動している間、撮像センサ20の撮像面21は常に光軸Oと直交状態を維持する。
次に、回転像振れ補正動作について説明する。デジタルカメラ10に光軸O回りの回転(回転振れ)が生じると、回転検出ジャイロセンサGSRの出力を撮像センサ20の回転振れ量に対応する出力値に変換する。
さらに、回転検出ジャイロセンサGSRの出力と、ホールセンサSYAとホールセンサSYBの出力の差が比較される。そうして、これらの差が小さくなるように、Y方向駆動用コイルCYA、CYBに印加する電圧に関する値が演算される。演算結果に基づいて、駆動信号がY方向駆動用コイルCYA、Y方向駆動用コイルCYBに印加される。これにより、Y方向駆動用コイルCYAとY方向駆動用コイルCYBには駆動力差が発生するので、撮像センサ20(補強板40及び電気基板45)が光軸Oと平行な軸を中心として固定支持基板30に対してFY1又はFY2方向に回転し、デジタルカメラ10の回転振れも補正される。
理解を容易にするためにX方向、Y方向、回転方向の像振れ補正制御及び回転像振れ補正制御を別個に説明したが、通常はこれらの像ぶれが同時に発生するので、X方向及びY方向の像振れ補正制御及び回転像振れ補正制御が同時に実行される。
以上、本発明を適用したデジタルカメラの防振ユニット25は、撮像センサ20を光軸と直交する面内において縦、横方向移動及び回転移動自在に支持する機構の実施形態であるが、防振ユニット25に適用できるステージ装置は図示実施形態に限定されず、ステージ部材をX方向及びY方向と平行な基準平面上を移動及び回転自由な装置を利用可能である。また、本発明を適用できる振れ補正装置は、撮像素子を光軸と直交する面内で任意の方向に移動可能であり、かつ回転可能であればよい。
また、上記実施例では撮像素子の移動だけで天体追尾撮影を説明したが、本発明は、撮像素子の移動と、例えば撮影光学系の一部のレンズを光軸に垂直な面内で移動させて被写体像を移動させる動作とを併用する構成としてもよい。その実施形態であるカメラボディ10−1及び撮影レンズ200を図15に示した。図3と同一の機能を有する部材には同一の符号を付して説明を省略する。この実施形態では、撮影レンズ200内に、防振レンズSLを偏心移動(基準光軸から変位)させて被写体像を撮像センサ20の撮像面上で移動させることで像振れ補正する防振駆動ユニット210と、防振に関する動作及びカメラボディ10−1との間でカメラ情報、防振に関する情報などの通信を統括的に制御するレンズCPU220を内蔵している。
一方、カメラボディ10−1には、撮像センサ20を、撮像面の中心を通る撮影レンズ200の基準光軸を中心として回転させる回転駆動ユニット25−1を備えている。
天体追尾撮影では、ボディCPU61は、レンズCPU220から焦点距離f情報、防振駆動ユニット210及び防振レンズSLによる像面移動に関する情報を入力し、前述の緯度情報、方位情報を入力して、入力した焦点距離f情報、緯度情報、方位情報から、防振レンズSLの単位時角あたりの移動量ΔX、ΔY及び撮像センサ20の単位時角あたりの回転角Δθを演算する。
そうしてボディCPU61は、レンズCPU220に単位時角あたりの移動量ΔX、ΔYデータを送り、撮影開始信号を送ると同時に、撮影の開始及び単位時角あたりの回転角Δθに基づいて回転駆動ユニット25−1による撮像センサ20の回転を開始する。レンズCPU220は、撮影開始信号を受けて、入力した単位時角あたりの移動量ΔX、ΔYに基づき、防振駆動ユニット210を起動して防振レンズSLを偏心移動させる。なお、天体追尾撮影を開始するときにレンズCPU220は、最初に、防振レンズSLを初期位置に移動させる。この防振レンズSL初期化処理により、撮影レンズ200のイメージサークルが初期位置に設定される。
CPU61は、露出時間が終了すると、撮影終了信号をレンズCPU220に送信するとともに撮影終了処理を実行して、天体追尾撮影を終了する。
なおこの実施形態において、ボディCPU61は、ΔX、ΔY及びΔθを、式(6)、(7)、(8)、(9)、(10)、(11)によって演算する。さらに撮影レンズ100の防振レンズSLの機械的可動リミットによる被写体像移動のX方向をLx、Y方向をLy、上記回転駆動ユニット25−1による撮像センサ20の回転方向の機械的回転リミットをLθとすると、及びLθを上記式、PU61はこれらのそれぞれのリミットに達するまでの時(y)、ΔH(θ)式)、ΔH(θ)式、(12)、(13)、(14)により算出し、これらの時角の内最小値をΔHminとすると、機械的リミットにより制限された最長露出時間Tlimit[秒]を式(15)により算出する。
10 10−1 デジタルカメラ20 撮像センサ(撮像素子)
20X X方向側辺
20Y Y方向側辺
21 撮像面
25 防振ユニット(被写体像移動機構、撮像素子移動機構)
25−1 回転駆動ユニット(被写体像移動機構・撮像素子回転機構)
30 固定支持基板
31 収容孔
32 33 突部
34 35 取付用凹部
36 37 支持用突部
38 39 支持用凹部
40 補強板
45 電気基板
46 支持用突部
47 48 49 舌片
50 撮像センサ保持部材
51 開口
53 押さえ部材
55 取付孔
61 CPU(制御手段)
63 LCDモニタ
71 GPSユニット(位置情報入力手段)
73 方位センサ(方位情報入力手段)
75 重力センサ(高度情報入力手段)
100 撮影レンズ
110 焦点距離検出装置
200 撮影レンズ
210 防振駆動ユニット(被写体像移動機構)
220 レンズCPU
LS 防振レンズ(被写体像移動機構)
CX X方向駆動用コイル
CXA CXB X方向駆動用コイル
CYA CYB Y方向駆動用コイル
GSX X方向ジャイロセンサ
GSY Y方向ジャイロセンサ
GSR 回転検出ジャイロセンサ
LX1 LX2 LX3 X方向直線
MX 磁石(X用磁束発生装置)
MY 磁石(Y用磁束発生装置)
O 光軸
SX ホールセンサ
SYA SYB SYC ホールセンサ(Y方向変位検出センサ)
X X方向(左右方向)
Y Y方向(上下方向)
Z Z方向(前後方向)

Claims (15)

  1. 撮影光学系による被写体像を、該撮影光学系の光軸に対して直交する面内において所定の軌跡で移動させることができる被写体像移動機構を備えたデジタルカメラであって、
    該デジタルカメラの位置情報、撮影方位情報及び撮影高度情報を入力する入力手段と、
    撮影光学系の焦点距離情報を入力する焦点距離入力手段と、
    上記撮影光学系による被写体像を撮像素子上に露光する露出時間を設定する露出時間設定手段と、
    上記被写体像移動機構の可動範囲を規定する可動リミット情報に基づいて、該可動リミットを超えない範囲で上記被写体像移動機構を駆動制御する制御手段と、
    入力された位置情報、撮影方位情報、撮影高度情報及び焦点距離情報から、上記露出時間内における地球の自転によって上記撮影光学系のイメージサークルの初期位置に対して相対移動する上記被写体像である天体像の移動軌跡を演算する演算手段と、を備え、
    上記制御手段は、上記演算手段が演算した移動軌跡と上記可動リミット情報に基づいて、該可動リミットを超えない範囲で上記被写体像移動機構を駆動制御して、上記天体像の撮像素子上での位置を一定に維持すること、
    を特徴とするデジタルカメラ。
  2. 請求項1記載のデジタルカメラにおいて、上記被写体像移動機構は、撮像素子を、撮影光学系の光軸に対して直交する面内において所定の軌跡で移動させることができる撮像素子移動機構であって、
    上記演算手段は、上記入力された位置情報、撮影方位情報、撮影高度情報及び焦点距離情報から、上記露出時間内における地球の自転によって上記撮影光学系のイメージサークルに対して相対移動する上記被写体像である天体像の移動軌跡を演算し、上記制御手段は、上記演算手段が演算した移動軌跡と上記可動リミット情報に基づいて、該可動リミットを超えない範囲で上記撮像素子移動機構を駆動制御して、上記天体像の撮像素子上での位置を一定に維持することを特徴とするデジタルカメラ。
  3. 請求項2記載のデジタルカメラにおいて、上記位置情報は該デジタルカメラが位置する場所の緯度φであり、上記撮影方位情報は上記撮影光学系が狙う天体の方位Aであり、上記撮影高度情報は上記天体の高度hであり、上記演算手段は、入力した緯度φ情報、方位A情報、高度h情報及び撮影光学系の焦点距離f情報から、単位時角Hにおける上記天体の方位Aの変位量dA/dHを下記式(6)、高度hの変位量dh/dHを下記式(7)、天球面上において、天の極と上記天体とを最短で結ぶ曲線と、天頂と上記天体とを最短で結ぶ曲線とがなす角θの変化量dθ/dHを下記式(8)、
    dA/dH=sinφ+cosφ・tan(h)・cosA ・・・(6)
    dh/dH=-sinA・cosφ ・・・(7)
    dθ/dH=cosA・cosφ/cos(h) ・・・(8)
    により算出するデジタルカメラ。
  4. 請求項3記載のデジタルカメラにおいて、上記演算手段は、上記デジタルカメラが水平に構えられているときの、水平をX軸、垂直をY軸と定義したとき、上記天体像の撮像素子上での位置を一定に維持する追尾撮影を行うための撮像素子の単位時角あたりの移動量ΔX、ΔY、単位時角あたりの回転角Δθを式(9)、(10)、(11)で求め、
    ΔX=f・tan(dα/dH) ・・・(9)
    ΔY=f・tan(dh/dH) ・・・(10)
    Δθ=dθ/dH ・・・(11)
    (但し、dαは、単位時角に同一高度で変化した天体の方位角変化量)
    上記制御手段は、上記撮像素子移動機構により撮像素子を単位時間あたりΔX、ΔY、Δθの速度で駆動制御するデジタルカメラ。
  5. 請求項4記載のデジタルカメラにおいて、上記演算手段は、上記撮像素子駆動機構の機械的可動リミットのうちX方向をLx、Y方向をLy、回転の機械的可動リミットをLθとすると、それぞれの機械的可動リミットに達するまでの時角ΔHを下記式、(12)、(13)、(14)により算出し、
    ΔH(x)=arctan(Lx/f)/(dα/dH) ・・・(12)
    ΔH(y)=arctan(Ly/f)/(dh/dH) ・・・(13)
    ΔH(θ)=Lθ/(dθ/dH) ・・・(14)
    (但し、dαは、単位時角に同一高度で変化した天体の方位角変化量)
    上記の3個の時角ΔHのうち最小値をΔHminとすると、機械的可動リミットにより制限された最長露出時間Tlimit[秒]を下記式(15)、
    Tlimit=ΔHmin・3600/15 ・・・(15)
    により設定するデジタルカメラ。
  6. 請求項1記載のデジタルカメラにおいて、上記位置情報は該デジタルカメラが位置する場所の緯度φであり、上記撮影方位情報は撮影光学系が狙う天体の方位Aであり、上記撮影高度情報は上記天体の高度hであり、上記演算手段は、入力した緯度φ情報、方位A情報、高度h情報及び撮影光学系の焦点距離f情報から、単位時角Hにおける上記天体の方位Aの変位量dA/dHを下記式(6)、高度hの変位量dh/dHを下記式(7)、天球面上において、天の極と上記天体とを最短で結ぶ曲線と、天頂と上記天体とを最短で結ぶ曲線とがなす角θの変化量dθ/dHを下記式(8)、
    dA/dH=sinφ+cosφ・tan(h)・cosA ・・・(6)
    dh/dH=-sinA・cosφ ・・・(7)
    dθ/dH=cosA・cosφ/cos(h) ・・・(8)
    により算出するデジタルカメラ。
  7. 請求項6記載のデジタルカメラにおいて、上記演算手段は、上記デジタルカメラが水平に構えられているときの、水平をX軸、垂直をY軸と定義したとき、上記天体像の撮像面上における単位時角あたりの移動量ΔX、ΔY、単位時角あたりの回転角Δθを式(9)、(10)、(11)で求め、
    ΔX=f・tan(dα/dH) ・・・(9)
    ΔY=f・tan(dh/dH) ・・・(10)
    Δθ=dθ/dH ・・・(11)
    (但し、dαは、単位時角に同一高度で変化した天体の方位角変化量)
    上記被写体像移動機構は、上記撮影光学系の一部の光学系を偏心させることによって単位時間あたりΔX、ΔYの速度で上記天体像を移動させる撮影光学系偏心機構と、上記撮像素子を撮像面に垂直で該撮像素子の中心を通る上記撮影光学系の基準光軸に対して単位時間あたりΔθの速度で回転駆動させ撮像素子回転機構を備えたデジタルカメラ。
  8. 請求項7記載のデジタルカメラにおいて、上記演算手段は、上記撮影光学系偏心機構の機械的可動リミットによる被写体像移動のX方向をLx、Y方向をLy、上記撮像素子回転機構の機械的可動リミットをLθとすると、それぞれの機械的可動リミットに達するまでの時角ΔHを下記式、(12)、(13)、(14)により算出し、
    ΔH(x)=arctan(Lx/f)/(dα/dH) ・・・(12)
    ΔH(y)=arctan(Ly/f)/(dh/dH) ・・・(13)
    ΔH(θ)=Lθ/(dθ/dH) ・・・(14)
    (但し、dαは、単位時角に同一高度で変化した天体の方位角変化量)
    上記の3個の時角ΔHのうち最小値をΔHminとすると、機械的可動リミットにより制限された最長露出時間Tlimit[秒]を下記式(15)、
    Tlimit=ΔHmin・3600/15 ・・・(15)
    により設定するデジタルカメラ。
  9. 請求項1乃至8のいずれか一項記載のデジタルカメラにおいて、上記位置情報は該デジタルカメラが位置する場所の緯度情報であって、該緯度情報は、デジタルカメラに搭載された入力手段を介して手入力されるか、又はGPSユニットから入力されるデジタルカメラ。
  10. 請求項1乃至9のいずれか一項記載のデジタルカメラにおいて、上記撮影方位情報は、該デジタルカメラに搭載された入力手段を介して手入力されるか、又は方位センサから入力されるデジタルカメラ。
  11. 請求項1乃至10のいずれか一項記載のデジタルカメラにおいて、上記撮影高度情報は、該デジタルカメラに搭載された入力手段を介して手入力されるか、又は重力センサから入力されるデジタルカメラ。
  12. 請求項1乃至11のいずれか一項記載のデジタルカメラは、該デジタルカメラの振れを検出するジャイロセンサを備え、上記被写体像移動機構は、上記ジャイロセンサが検出したカメラ振れに基づき、撮像素子上の被写体像が移動しない方向及び速度で上記被写体像移動機構を駆動制御する防振機構を有するデジタルカメラ。
  13. 請求項1乃至12のいずれか一項記載のデジタルカメラにおいて、上記演算手段は、上記被写体像移動機構の可動リミット情報に基づいて露出限界時間を算出し、該露出限界時間を越えない範囲で露出時間を決定するデジタルカメラ。
  14. 請求項13記載のデジタルカメラにおいて、上記演算手段は、デジタルカメラに備えられたレリーズスイッチがオンされた後、上記露出限界時間の算出を開始するデジタルカメラ。
  15. 請求項1乃至14のいずれか一項記載のデジタルカメラにおいて、上記演算手段は、デジタルカメラに備えられたレリーズスイッチがオンされた後、上記天体像の移動軌跡の演算を開始するデジタルカメラ。
JP2009243620A 2008-10-23 2009-10-22 デジタルカメラ Active JP5458802B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243620A JP5458802B2 (ja) 2008-10-23 2009-10-22 デジタルカメラ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008272777 2008-10-23
JP2008272777 2008-10-23
JP2009243620A JP5458802B2 (ja) 2008-10-23 2009-10-22 デジタルカメラ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014005082A Division JP5812120B2 (ja) 2008-10-23 2014-01-15 撮影装置

Publications (2)

Publication Number Publication Date
JP2010122672A JP2010122672A (ja) 2010-06-03
JP5458802B2 true JP5458802B2 (ja) 2014-04-02

Family

ID=42117083

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2009243620A Active JP5458802B2 (ja) 2008-10-23 2009-10-22 デジタルカメラ
JP2014005082A Active JP5812120B2 (ja) 2008-10-23 2014-01-15 撮影装置
JP2015119162A Pending JP2015165722A (ja) 2008-10-23 2015-06-12 撮影装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2014005082A Active JP5812120B2 (ja) 2008-10-23 2014-01-15 撮影装置
JP2015119162A Pending JP2015165722A (ja) 2008-10-23 2015-06-12 撮影装置

Country Status (2)

Country Link
US (1) US8212860B2 (ja)
JP (3) JP5458802B2 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509920B2 (en) 2010-04-28 2016-11-29 Ricoh Imaging Company, Ltd. Method of automatically tracking and photographing celestial objects, and camera employing this method
KR101630307B1 (ko) * 2010-05-12 2016-06-14 삼성전자주식회사 디지털 촬영 장치, 그 제어 방법, 및 컴퓨터 판독가능 저장매체
JP5779968B2 (ja) 2010-05-19 2015-09-16 リコーイメージング株式会社 天体自動追尾撮影方法及びカメラ
JP5742465B2 (ja) * 2010-05-25 2015-07-01 リコーイメージング株式会社 天体自動追尾撮影方法及び天体自動追尾撮影装置
JP5751014B2 (ja) * 2010-05-28 2015-07-22 リコーイメージング株式会社 天体自動追尾撮影方法及び天体自動追尾撮影装置
JP5696429B2 (ja) * 2010-10-27 2015-04-08 リコーイメージング株式会社 撮影装置
US8477419B1 (en) 2010-12-31 2013-07-02 Celestron, Llc System and method for automatically aligning a telescope without requiring user intervention
US8401307B1 (en) * 2010-12-31 2013-03-19 Celestron, Llc Determining celestial coordinates for an image
US8947524B2 (en) 2011-03-10 2015-02-03 King Abdulaziz City For Science And Technology Method of predicting a trajectory of an asteroid
JP5762087B2 (ja) * 2011-03-31 2015-08-12 日本電産サンキョー株式会社 振れ補正機能付き光学ユニット
JP5849448B2 (ja) 2011-06-14 2016-01-27 リコーイメージング株式会社 3軸電子コンパスを用いた方位測定方法および方位測定装置
JP5790188B2 (ja) 2011-06-16 2015-10-07 リコーイメージング株式会社 天体自動追尾撮影方法及び天体自動追尾撮影装置
JP5751040B2 (ja) * 2011-06-17 2015-07-22 リコーイメージング株式会社 天体自動追尾撮影方法及び天体自動追尾撮影装置
KR101291780B1 (ko) * 2011-11-14 2013-07-31 주식회사 아이티엑스시큐리티 보안용 카메라 및 그 오토 포커싱 제어방법
WO2013144331A1 (en) * 2012-03-29 2013-10-03 Anteleon Imaging Sàrl Imaging device for capturing images of moving objects
WO2015071174A1 (en) * 2013-11-18 2015-05-21 Tamiola Kamil Controlled long-exposure imaging of a celestial object
US9813601B2 (en) 2014-05-06 2017-11-07 Urugus S.A. Imaging device for scenes in apparent motion
JP6257439B2 (ja) * 2014-05-08 2018-01-10 オリンパス株式会社 撮像装置及び撮像方法
JP2015233250A (ja) * 2014-06-10 2015-12-24 キヤノン株式会社 画像処理装置及びその制御方法
CN106210495A (zh) * 2015-05-06 2016-12-07 小米科技有限责任公司 图像拍摄方法和装置
US9749522B2 (en) 2015-06-02 2017-08-29 Alan Holmes Tracking device for portable astrophotography of the night sky
US11181606B1 (en) 2017-03-13 2021-11-23 Celestron Acquisition, Llc Pointing system for manual telescope
JP6922652B2 (ja) * 2017-10-27 2021-08-18 トヨタ自動車株式会社 撮像装置
JP6745416B2 (ja) * 2017-12-27 2020-08-26 富士フイルム株式会社 像ぶれ補正装置、撮像装置、像ぶれ補正方法、及び像ぶれ補正プログラム
CN108322665B (zh) * 2018-01-09 2020-04-24 陈加志 一种望远镜智能拍摄系统及智能拍摄方法
JP7304193B2 (ja) 2019-04-10 2023-07-06 Omデジタルソリューションズ株式会社 追尾装置および追尾方法
CN111093266B (zh) * 2019-12-20 2021-06-15 维沃移动通信有限公司 一种导航校准方法及电子设备
CN111854696A (zh) * 2020-07-02 2020-10-30 中国科学院光电技术研究所 高可靠性步进画幅式凝视立体成像空间相机及其实现方法
CN113472991B (zh) * 2021-07-09 2023-04-25 Oppo广东移动通信有限公司 控制方法、控制装置、摄像头组件、电子设备和介质
CN117941367A (zh) * 2021-09-03 2024-04-26 Oppo广东移动通信有限公司 成像设备、图像处理方法以及程序
CN114500719A (zh) * 2021-12-31 2022-05-13 四川九天惯通科技有限公司 一种带天体定位功能的手机及天体定位方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3426946C2 (de) * 1984-07-21 1986-10-30 Krauss-Maffei AG, 8000 München Beobachtungs- und Aufklärungssystem für Fahrzeuge
US4746976A (en) * 1986-05-23 1988-05-24 Ford Aerospace & Communications Corporation Star sightings by satellite for image navigation
JPH0651384A (ja) * 1990-12-07 1994-02-25 Olympus Optical Co Ltd カメラのぶれ防止装置
JP2003259184A (ja) 2002-03-06 2003-09-12 Olympus Optical Co Ltd 撮像装置
JP3999121B2 (ja) * 2002-12-27 2007-10-31 ペンタックス株式会社 赤道儀
JP2006279135A (ja) 2005-03-28 2006-10-12 Nec Corp 星空撮影装置及び星空撮影方法並びにプログラム
WO2006109423A1 (ja) * 2005-04-01 2006-10-19 Matsushita Electric Industrial Co., Ltd. 物品位置推定装置、物品位置推定方法、物品検索システム、及び物品位置推定用プログラム
JP2006337680A (ja) * 2005-06-01 2006-12-14 Konica Minolta Photo Imaging Inc 駆動装置、振れ補正ユニット及び撮像装置
JP2007025616A (ja) 2005-06-15 2007-02-01 Pentax Corp ステージ装置及びこのステージ装置を利用したカメラの像振れ補正装置
KR101103115B1 (ko) * 2005-08-12 2012-01-04 소니 컴퓨터 엔터테인먼트 인코포레이티드 얼굴 화상표시장치, 얼굴 화상표시방법 및 얼굴 화상표시 프로그램
JP5034343B2 (ja) * 2006-07-06 2012-09-26 カシオ計算機株式会社 撮像装置及びプログラム
CN101287066A (zh) 2007-04-12 2008-10-15 Hoya株式会社 摄像装置
US8952982B2 (en) * 2007-04-24 2015-02-10 Sony Corporation Image display device, image display method and information recording medium for displaying and scrolling objects on a display
JP2008289052A (ja) * 2007-05-21 2008-11-27 Toshiba Corp 撮影装置および撮影方法
JP2009053226A (ja) 2007-08-23 2009-03-12 Hoya Corp 撮影システムおよびデジタルカメラ

Also Published As

Publication number Publication date
JP2010122672A (ja) 2010-06-03
JP5812120B2 (ja) 2015-11-11
US8212860B2 (en) 2012-07-03
JP2014116962A (ja) 2014-06-26
US20100103251A1 (en) 2010-04-29
JP2015165722A (ja) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5812120B2 (ja) 撮影装置
JP5590121B2 (ja) 天体自動追尾撮影方法及びカメラ
US10142546B2 (en) Shake-correction device and shake-correction method for photographing apparatus
JP5849448B2 (ja) 3軸電子コンパスを用いた方位測定方法および方位測定装置
JP5742465B2 (ja) 天体自動追尾撮影方法及び天体自動追尾撮影装置
JP6237698B2 (ja) 天体自動追尾撮影方法及び天体自動追尾撮影装置
US8761460B2 (en) Method of automatically tracking and photographing celestial objects, and celestial-object auto-tracking photographing apparatus
JP6257439B2 (ja) 撮像装置及び撮像方法
JP2013005214A (ja) 天体自動追尾撮影方法及び天体自動追尾撮影装置
JP2023126838A (ja) 天体追尾装置および天体追尾方法
US20170155847A1 (en) Stage apparatus, image projector apparatus having stage apparatus, and imaging apparatus having stage apparatus
CN104040420B (zh) 抖动校正装置、镜头镜筒以及摄影装置
JP6137286B2 (ja) 方位測定方法及び方位測定装置
JP2011114357A (ja) 撮像装置
JP4767531B2 (ja) 像振れ補正装置および撮像装置
JP7269354B2 (ja) 撮像装置、システム、像ぶれ補正方法、プログラム、及び記録媒体
JP2013005009A (ja) 天体自動追尾撮影方法及び天体自動追尾撮影装置
JP2021145325A (ja) 撮影装置、撮影方法、撮影システム及び電子機器
JP2018128624A (ja) 撮影装置、撮影補助機器及び撮影システム
JP2017227697A (ja) レンズ鏡筒およびそれを有する光学機器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250