JP5448393B2 - Stacked semiconductor package and stacked semiconductor device - Google Patents

Stacked semiconductor package and stacked semiconductor device Download PDF

Info

Publication number
JP5448393B2
JP5448393B2 JP2008217895A JP2008217895A JP5448393B2 JP 5448393 B2 JP5448393 B2 JP 5448393B2 JP 2008217895 A JP2008217895 A JP 2008217895A JP 2008217895 A JP2008217895 A JP 2008217895A JP 5448393 B2 JP5448393 B2 JP 5448393B2
Authority
JP
Japan
Prior art keywords
conductor
terminal portion
terminal
semiconductor package
terminal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008217895A
Other languages
Japanese (ja)
Other versions
JP2010056202A (en
Inventor
正尚 株元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008217895A priority Critical patent/JP5448393B2/en
Publication of JP2010056202A publication Critical patent/JP2010056202A/en
Application granted granted Critical
Publication of JP5448393B2 publication Critical patent/JP5448393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、積層型半導体パッケージおよび、これを有する積層型半導体装置に関するものである。
The present invention is a stacked semiconductor package and to a stacked type semiconductor device having the same.

近年、電子機器の小型化や高機能化に伴う高集積化に対応して、半導体素子をはじめとする電子部品が高密度に搭載された半導体パッケージに関する開発が活発に行なわれている。例えば、グリッド状にランドを持つBGA(Ball Grid Array)パッケージやCSP(Chip Scale Package)が採用されている。また更なる高密度化に対応するために、複数の半導体パッケージを上下に積み重ねて一体的に積層したPOP(Package On Package)と呼ばれる積層型半導体パッケージが使用されるようになってきている。   2. Description of the Related Art In recent years, development of a semiconductor package in which electronic components such as semiconductor elements are mounted at high density has been actively carried out in response to high integration due to miniaturization and high functionality of electronic devices. For example, a BGA (Ball Grid Array) package or CSP (Chip Scale Package) having lands in a grid shape is employed. In order to cope with higher density, a stacked type semiconductor package called POP (Package On Package) in which a plurality of semiconductor packages are stacked one above the other and integrated is increasingly used.

しかしながら、POP構造は半導体素子を実装した半導体パッケージが3次元的に接続されるので、上層に存在するパッケージに実装された半導体素子ほど、下層の半導体パッケージを介して接続されるために電源供給線路の接続点が多くなり、接続距離も長くなる。従って、電源供給経路のインダクタンスが大きくなり、電源バウンスが発生して、安定した信号品質が保てなくなってしまう。   However, in the POP structure, the semiconductor package on which the semiconductor element is mounted is three-dimensionally connected, so that the semiconductor element mounted on the package existing in the upper layer is connected via the lower-layer semiconductor package. The number of connection points increases and the connection distance also increases. Therefore, the inductance of the power supply path is increased, power bounce occurs, and stable signal quality cannot be maintained.

ここで、電源バウンスとは上記インダクタンス成分により逆起電圧が生じ、電源供給線路の電圧が変動することである。この解決法として、2層目の半導体パッケージの裏面に1層目の半導体パッケージと接合する半田ボール群と、プリント配線基板と直接接合する電源用のはんだ群とを設けることにより、2層目の半導体パッケージの電源供給経路を簡素化する方法が提案されている(例えば、特許文献1参照)。
特開2006−295136号公報
Here, the power bounce means that a back electromotive voltage is generated by the inductance component and the voltage of the power supply line fluctuates. As a solution to this problem, by providing a solder ball group to be bonded to the first layer semiconductor package and a power supply solder group to be directly bonded to the printed wiring board on the back surface of the second layer semiconductor package, A method for simplifying a power supply path of a semiconductor package has been proposed (see, for example, Patent Document 1).
JP 2006-295136 A

しかしながら、上記従来の方法は、プリント配線基板と直接接合する半田群を設ける必要があることから、1層目の半導体パッケージよりも2層目の半導体パッケージのサイズが大きくなってしまい、積層型半導体パッケージ全体の実装面積が大きくなるという問題がある。   However, in the above conventional method, since it is necessary to provide a solder group that is directly bonded to the printed wiring board, the size of the second-layer semiconductor package becomes larger than the first-layer semiconductor package. There is a problem that the mounting area of the entire package becomes large.

よって、実装面積を大きくすることなく、電源バウンスを減少させ、安定した信号品質を供給する積層型半導体パッケージが求められている。   Therefore, there is a need for a stacked semiconductor package that reduces power supply bounce and provides stable signal quality without increasing the mounting area.

本発明の一つの態様によれば、積層型半導体パッケージは、第1半導体パッケージと、該第1半導体パッケージに積層された第2半導体パッケージと、第1半導体パッケージと第2半導体パッケージとの間に設けられ、第1半導体パッケージおよび第2半導体パッケージに接続されるコンデンサとを有し、コンデンサは、対向する平板状の第1導体および第2導体からなる少なくとも1つの導体対と、第1導体から該第1導体と同一平面上にそれぞれ延在するとともに少なくとも一部同士が第1導体を挟んで対向する第1端子部および第2端子部と、第2導体から該第2導体と同一平面上にそれぞれ延在するとともに少なくとも一部同士が第2導体を挟んで対向する第3端子部および第4端子部とを有し、第1端子部および第3端子部は、第2半導体パッケージに接続され、第2端子部および第4端子部は、第1半導体パッケージに接続される。この積層型半導体パッケージを、第1積層型半導体パッケージという。また、第1積層型半導体パッケージにおいて、コンデンサにおける第1導体および第2導体はそれぞれ四角形状であり、第1端子部および第2端子部は、第1導体の対向する2辺の中央部からそれぞれ延在し、第3端子部および第4端子部は、第2導体の対向する2辺の中央部からそれぞれ延在している。この積層型半導体パッケージを、第2積層型半導体パッケージという。また、第2積層型半導体パッケージにおいて、コンデンサにおける導体対を第1導体と第2導体の対向方向に平面透視したときに、第1端子部と第3端子部は一部のみ重複し、第2端子部と第4端子部は一部のみ重複している。この積層型半導体パッケージを、第3積層型半導体パッケージという。
According to one aspect of the present invention, a stacked semiconductor package includes a first semiconductor package, a second semiconductor package stacked on the first semiconductor package, and the first semiconductor package and the second semiconductor package. A capacitor connected to the first semiconductor package and the second semiconductor package, wherein the capacitor is composed of at least one conductor pair composed of opposing first and second flat plate conductors, and a first conductor. A first terminal portion and a second terminal portion that extend on the same plane as the first conductor and at least partially face each other across the first conductor, and from the second conductor on the same plane as the second conductor Each of the first terminal portion and the third terminal portion has a third terminal portion and a fourth terminal portion that face each other with the second conductor interposed therebetween. Connected to the semiconductor package, the second terminal portion and the fourth terminal portions are connected to the first semiconductor package. This stacked semiconductor package is referred to as a first stacked semiconductor package. Further, in the first stacked semiconductor package, the first conductor and the second conductor in the capacitor are each in a quadrangular shape, and the first terminal portion and the second terminal portion are respectively from the central portions of the two opposite sides of the first conductor The third terminal portion and the fourth terminal portion extend from the central portions of the two opposite sides of the second conductor, respectively. This stacked semiconductor package is referred to as a second stacked semiconductor package. Further, in the second stacked semiconductor package, when the conductor pair in the capacitor is seen in a plan view in the opposing direction of the first conductor and the second conductor, the first terminal portion and the third terminal portion partially overlap, Only a part of the terminal portion and the fourth terminal portion overlap. This stacked semiconductor package is referred to as a third stacked semiconductor package.

また、第積層型半導体パッケージにおいて、好ましくは、コンデンサは、第1端子部に接続される第1端子電極と、第2端子部に接続される第2端子電極と、第3端子部に接続される第3端子電極と、第4端子部に接続される第4端子電極とを有し、第1端子電極および第2端子電極は、第1端子部および第2端子部の対向方向に垂直な面をそれぞれ有し、第3端子電極および第4端子電極は、第3端子部および第4端子部の対向方向に垂直な面をそれぞれ有する。この積層型半導体パッケージを、第積層型半導体パッケージという。
Further, Oite the third stacked semiconductor package, preferably, the capacitor has a first terminal electrode connected to the first terminal portion, and a second terminal electrode connected to the second terminal unit, the third terminal A third terminal electrode connected to the first terminal portion and a fourth terminal electrode connected to the fourth terminal portion, wherein the first terminal electrode and the second terminal electrode are opposed to the first terminal portion and the second terminal portion. The third terminal electrode and the fourth terminal electrode have surfaces perpendicular to the opposing direction of the third terminal portion and the fourth terminal portion, respectively. This stacked semiconductor package is referred to as a fourth stacked semiconductor package.

また、第3または積層型半導体パッケージにおいて、好ましくは、コンデンサにおける導体対を第1導体と第2導体の対向方向に平面透視したときに、第1端子部と第2端子部の対向方向に垂直な直線に関して、第3端子部は第1端子部と同じ側にあり、第4端子部は、第2端子部と同じ側にあり、放電時には、第1導体から第1端子部を通って第1端子電極へと第1電流が流れると共に、該第1電流とは逆極性の第2電流が第3端子電極から第3端子部を通って第2導体へと流れる電流ループが形成され、充電時には、第2端子電極から第2端子部を通って第1導体へ第3電流が流れると共に、該第3電流とは逆極性の第4電流が第2導体から第4端子部を通って第4端子電極へと流れる電流ループが形成される。この積層型半導体パッケージを、第6積層型半導体パッケージという。
The third or fourth stacked semiconductor package Oite di, preferably, when the conductor pairs in a plan perspective in the opposing direction of the first conductor and the second conductor in the capacitor, the first terminal portion and second terminal portion , The third terminal portion is on the same side as the first terminal portion, the fourth terminal portion is on the same side as the second terminal portion, and the first conductor to the first terminal during discharge A first current flows through the first terminal electrode to the first terminal electrode, and a second current having a polarity opposite to the first current flows from the third terminal electrode through the third terminal section to the second conductor. When charging, a third current flows from the second terminal electrode through the second terminal portion to the first conductor, and a fourth current having a polarity opposite to that of the third current flows from the second conductor to the fourth terminal. A current loop that flows through the portion to the fourth terminal electrode is formed. This stacked semiconductor package is referred to as a sixth stacked semiconductor package.

本発明の一つの態様によれば、積層型半導体装置は、上記積層型半導体パッケージのいずれかと、第1半導体パッケージに搭載される第1半導体素子と、第2半導体パッケージに搭載される第2半導体素子とを有する。
According to one aspect of the present invention, a stacked semiconductor device includes any one of the stacked semiconductor packages, a first semiconductor element mounted on the first semiconductor package, and a second semiconductor mounted on the second semiconductor package. Device.

本発明の積層型半導体パッケージによれば、実装面積を大きくすることなく、電源バウンスを減少させ、安定した信号品質を供給する積層型半導体パッケージを実現することができる。   According to the stacked semiconductor package of the present invention, it is possible to realize a stacked semiconductor package that reduces power supply bounce and supplies stable signal quality without increasing the mounting area.

以下に、添付の図面を参照して、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の積層型半導体パッケージの実施の形態の一例を示す断面図である。本実施の形態による積層型半導体パッケージ1は、第1基板2aを有する第1半導体パッケージと、第2基板2bを有する第2半導体パッケージとを備える。第2半導体パッケージは、第1半導体パッケージに積層されている。半導体素子4a,4bは、それぞれ第1基板2aおよび第2基板2bに搭載されている。また、第1基板2aと第2基板2bとの間には、コンデンサ3が設けられている。コンデンサ3は、隣接する第1基板2aおよび第2基板2bの電源配線同士および接地配線同士を接続する。第1基板2aおよび第2基板2bの信号配線同士は、半田ボール5bによって接続される。なお、第1半導体パッケージおよび第2半導体パッケージに半導体素子4a,4bを搭載することにより、積層型半導体装置が構成される。     FIG. 1 is a sectional view showing an example of an embodiment of a stacked semiconductor package of the present invention. The stacked semiconductor package 1 according to the present embodiment includes a first semiconductor package having a first substrate 2a and a second semiconductor package having a second substrate 2b. The second semiconductor package is stacked on the first semiconductor package. The semiconductor elements 4a and 4b are mounted on the first substrate 2a and the second substrate 2b, respectively. A capacitor 3 is provided between the first substrate 2a and the second substrate 2b. Capacitor 3 connects power supply wirings and ground wirings of adjacent first substrate 2a and second substrate 2b. The signal wirings of the first substrate 2a and the second substrate 2b are connected by solder balls 5b. A stacked semiconductor device is configured by mounting the semiconductor elements 4a and 4b on the first semiconductor package and the second semiconductor package.

また、第1基板2aは、半田ボール5aによって、プリント配線基板6に接続される。第1基板2aの金属配線は、プリント配線基板6上に形成された外部電気回路に、半田ボール5bによって、電気的に接続される。   The first substrate 2a is connected to the printed wiring board 6 by solder balls 5a. The metal wiring of the first substrate 2a is electrically connected to an external electric circuit formed on the printed wiring board 6 by solder balls 5b.

半導体素子4aには、スイッチング動作に必要な電荷が、半田ボール5a、および第1基板2aの金属配線を介して供給される。一方、半導体素子4bには、スイッチング動作に必要な電荷が、コンデンサ3から第2基板2bの金属配線を介して供給される。コンデンサ3は、電荷を蓄積している。これらの電荷は、プリント配線基板6から、半田ボール5aおよび第1基板2aの金属配線を介してコンデンサ3に供給される。   The electric charge necessary for the switching operation is supplied to the semiconductor element 4a through the solder ball 5a and the metal wiring of the first substrate 2a. On the other hand, the charge necessary for the switching operation is supplied to the semiconductor element 4b from the capacitor 3 through the metal wiring of the second substrate 2b. The capacitor 3 stores electric charges. These charges are supplied from the printed wiring board 6 to the capacitor 3 via the solder balls 5a and the metal wiring of the first board 2a.

このように、半導体素子4bの動作に必要な電荷は、第1基板2aおよび第2基板2bの間に配置されたコンデンサ3から供給されるため、半導体素子4bへの電荷供給経路が短くなる。これによって、電源供給経路に付随するインダクタンスにより生じる電圧の変動、すなわち半導体素子4bに供給される電源供給回路の電源バウンスは小さくなる。   As described above, since the charge necessary for the operation of the semiconductor element 4b is supplied from the capacitor 3 disposed between the first substrate 2a and the second substrate 2b, the charge supply path to the semiconductor element 4b is shortened. As a result, the voltage fluctuation caused by the inductance associated with the power supply path, that is, the power bounce of the power supply circuit supplied to the semiconductor element 4b is reduced.

次に、本実施の形態による積層型半導体パッケージ1において、第1基板2aおよび第2基板2bの間に配置されるコンデンサ3の構造を説明する。   Next, the structure of the capacitor 3 arranged between the first substrate 2a and the second substrate 2b in the stacked semiconductor package 1 according to the present embodiment will be described.

図2は、コンデンサ3の参考例の1つを示し、(a)は斜視図、(b)〜(c)はコンデンサ3における導体が形成された一部の誘電体層を導体の面方向に垂直に平面視した場合の平面図である。これらの図に示すコンデンサ3は、積層コンデンサであり、交互に配置された第1導体21および第2導体22と、第1導体21と第2導体22との間に配置された誘電体層31とを有する。複数の誘電体層31は、1つの積層体32を構成する。
FIG. 2 shows one of reference examples of the capacitor 3, (a) is a perspective view, and (b) to (c) are a part of the dielectric layers on which the conductors in the capacitor 3 are formed in the conductor plane direction. It is a top view at the time of planarly viewing vertically. The capacitor 3 shown in these drawings is a multilayer capacitor, and the first conductor 21 and the second conductor 22 arranged alternately, and the dielectric layer 31 arranged between the first conductor 21 and the second conductor 22. And have. The plurality of dielectric layers 31 constitute one stacked body 32.

また、コンデンサ3は、第1端子部23、第2端子部24、第3端子部25および第4端子部26を備える。第1端子部23および第2端子部24は、第1導体21から該第1導体21と同一平面上にそれぞれ延在している。第1端子部23および第2端子部24は、少なくとも一部同士が第1導体21を挟んで対向している。第3端子部25および第4端子部26は、第2導体22から該第2導体21と同一平面上にそれぞれ延在している。第3端子部25および第4端子部26は、少なくとも一部同士が第2導体22を挟んで対向している。   The capacitor 3 includes a first terminal portion 23, a second terminal portion 24, a third terminal portion 25, and a fourth terminal portion 26. The first terminal portion 23 and the second terminal portion 24 extend from the first conductor 21 on the same plane as the first conductor 21. The first terminal portion 23 and the second terminal portion 24 are at least partially opposed to each other with the first conductor 21 in between. The third terminal portion 25 and the fourth terminal portion 26 respectively extend from the second conductor 22 on the same plane as the second conductor 21. The third terminal portion 25 and the fourth terminal portion 26 are at least partially opposed to each other with the second conductor 22 in between.

ここで、第3端子部は、第1端子部と第2端子部が対向する方向に垂直な直線に関して、第1端子部と同じ側にあり、第4端子部は、第2端子部と同じ側にある。そして、第1端子部と第3端子部は、半導体素子収納用パッケージ2bに接続され、第2端子部と第4端子部は、半導体素子収納用パッケージ2aに接続される。   Here, the third terminal portion is on the same side as the first terminal portion with respect to a straight line perpendicular to the direction in which the first terminal portion and the second terminal portion face each other, and the fourth terminal portion is the same as the second terminal portion. On the side. The first terminal portion and the third terminal portion are connected to the semiconductor element housing package 2b, and the second terminal portion and the fourth terminal portion are connected to the semiconductor element housing package 2a.

さらに、コンデンサ3は、第1端子部23に接続される第1端子電極27と、第2端子部24に接続される第2端子電極28と、第3端子部25に接続される第3端子電極29と、第4端子部26に接続される第4端子電極30とを備える。   Further, the capacitor 3 includes a first terminal electrode 27 connected to the first terminal portion 23, a second terminal electrode 28 connected to the second terminal portion 24, and a third terminal connected to the third terminal portion 25. An electrode 29 and a fourth terminal electrode 30 connected to the fourth terminal portion 26 are provided.

積層体32は、1層あたり1μm〜5μmの厚みに形成された長方形の複数の誘電体層31を、例えば70層〜600層積層することにより構成される直方体状の誘電体ブロックである。誘電体層31の材料としては、例えば、チタン酸バリウム,チタン酸カルシウム,またはチタン酸ストロンチウムを主成分とする誘電体材料が用いられる。   The laminated body 32 is a rectangular parallelepiped dielectric block configured by laminating, for example, 70 to 600 layers of a plurality of rectangular dielectric layers 31 formed to have a thickness of 1 μm to 5 μm per layer. As the material of the dielectric layer 31, for example, a dielectric material mainly composed of barium titanate, calcium titanate, or strontium titanate is used.

第1導体21および第2導体22は、0.5μm〜2μmの厚みに形成された導体パターンである。第1導体21および第2導体22は、積層体32の内部で誘電体層31を挟んで互いに対向するように交互に配置されている。第1導体21および第2導体22の材料としては、例えば、ニッケル,銅,ニッケル−銅,または銀−パラジウム等の金属を主成分とする導体材料が用いられる。   The first conductor 21 and the second conductor 22 are conductor patterns formed to a thickness of 0.5 μm to 2 μm. The first conductors 21 and the second conductors 22 are alternately arranged inside the multilayer body 32 so as to face each other with the dielectric layer 31 in between. As the material of the first conductor 21 and the second conductor 22, for example, a conductor material mainly composed of a metal such as nickel, copper, nickel-copper, or silver-palladium is used.

第1端子部23および第2端子部24は、第1導体21の対向する2辺の中央部からそれぞれ積層体32の周囲に引き出された導体パターンである。第1端子部23および第2端子部24は、積層体32の周囲に形成された第1端子電極27および第2端子電極28にそれぞれ電気的に接続される。また、第3端子部25および第4端子部26は、第2導体22の対向する2辺の中央部からそれぞれ積層体32の周囲に引き出された導体パターンである。第3端子部25および第4端子部26は、積層体32の周囲に形成された第3端子電極29および第4端子電極30にそれぞれ電気的に接続される。   The first terminal portion 23 and the second terminal portion 24 are conductor patterns drawn out from the central portions of two opposing sides of the first conductor 21 to the periphery of the multilayer body 32. The first terminal portion 23 and the second terminal portion 24 are electrically connected to a first terminal electrode 27 and a second terminal electrode 28 formed around the multilayer body 32, respectively. In addition, the third terminal portion 25 and the fourth terminal portion 26 are conductor patterns drawn out from the central portions of the two opposing sides of the second conductor 22 to the periphery of the multilayer body 32, respectively. The third terminal portion 25 and the fourth terminal portion 26 are electrically connected to a third terminal electrode 29 and a fourth terminal electrode 30 formed around the multilayer body 32, respectively.

第1端子電極27、第2端子電極28、第3端子電極29、および第4端子電極30は、それぞれ積層体32の周囲に配置される帯状の電極である。これらの端子電極27−30の厚みは、2μm〜70μmである。第1端子電極27は、積層体32の積層方向の上下に位置する第1端子部23同士を電気的に接続する。第2端子電極28は、積層体32の積層方向の上下に位置する第2端子部24同士を電気的に接続する。第3端子電極29は、積層体32の積層方向の上下に位置する第3端子部25同士を電気的に接続する。第4端子電極29は、積層体32の積層方向の上下に位置する第4端子部26同士を電気的に接続する。   The first terminal electrode 27, the second terminal electrode 28, the third terminal electrode 29, and the fourth terminal electrode 30 are band-shaped electrodes that are respectively arranged around the stacked body 32. The thickness of these terminal electrodes 27-30 is 2 μm to 70 μm. The first terminal electrode 27 electrically connects the first terminal portions 23 positioned above and below in the stacking direction of the stacked body 32. The second terminal electrode 28 electrically connects the second terminal portions 24 positioned above and below in the stacking direction of the stacked body 32. The third terminal electrode 29 electrically connects the third terminal portions 25 positioned above and below in the stacking direction of the stacked body 32. The fourth terminal electrode 29 electrically connects the fourth terminal portions 26 positioned above and below in the stacking direction of the stacked body 32.

第1端子電極27、第2端子電極28、第3端子電極29、および第4端子電極30の材料としては、例えば、ニッケル,銅,銀,またはパラジウム等の金属を主成分とする導体材料が用いられる。   As a material of the first terminal electrode 27, the second terminal electrode 28, the third terminal electrode 29, and the fourth terminal electrode 30, for example, a conductive material whose main component is a metal such as nickel, copper, silver, or palladium is used. Used.

以下に、コンデンサ3の動作について説明する。積層型半導体パッケージ1において、半導体素子4bがスイッチング動作を行う場合、半導体素子4bにより消費される電荷を補うためにコンデンサ3に蓄えられた電荷が放電される。放電時には、第1導体21から第1端子部23を通って第1端子電極27へと電流(A)が流れると共に、これとは逆極性の電流(B)が第3端子電極29から第3端子部25を通って第2導体22へと流れる電流ループを形成する。また、充電時には、第2端子電極28から第2端子部24を通って第1導体21へ電流(A’)が流れると共に、これとは逆極性の電流(B’)が第2導体22から第4端子部26を通って第4端子電極30へと流れる電流ループを形成する。コンデンサ3の寄生インダクタンスはこの電流ループを貫く磁束の大きさによって決定される。磁束は電流の流れ方向に対し垂直に電流を右回りに取り巻く様に発生するため、電流の向きが逆向きの場合、磁束も逆向きとなり互いに打ち消しあう。   Hereinafter, the operation of the capacitor 3 will be described. In the stacked semiconductor package 1, when the semiconductor element 4b performs a switching operation, the charge stored in the capacitor 3 is discharged in order to supplement the charge consumed by the semiconductor element 4b. At the time of discharging, a current (A) flows from the first conductor 21 through the first terminal portion 23 to the first terminal electrode 27, and a current (B) having a polarity opposite to that flows from the third terminal electrode 29 to the third terminal electrode 29. A current loop that flows through the terminal portion 25 to the second conductor 22 is formed. At the time of charging, a current (A ′) flows from the second terminal electrode 28 through the second terminal portion 24 to the first conductor 21, and a current (B ′) having a polarity opposite to that flows from the second conductor 22. A current loop flowing through the fourth terminal portion 26 to the fourth terminal electrode 30 is formed. The parasitic inductance of the capacitor 3 is determined by the magnitude of the magnetic flux passing through this current loop. Since the magnetic flux is generated so as to surround the current in the clockwise direction perpendicular to the current flow direction, when the current direction is reversed, the magnetic flux is also reversed and cancel each other.

このように、放電時および充電時において、コンデンサ3に流れる電流の向きが逆方向となるため、第1導体21と第2導体22との間、および第1端子部23と第3端子部25との間、および第2端子部22と第4端子部26との間のおのおので、互いに発生する磁束を弱め合い、コンデンサ3の寄生インダクタンスを小さくすることができる。これにより、積層型半導体装置の電源バウンスを減少させ、安定して半導体素子を動作させることができる。   As described above, the direction of the current flowing through the capacitor 3 is reversed during discharging and charging, and therefore, between the first conductor 21 and the second conductor 22 and between the first terminal portion 23 and the third terminal portion 25. And between the second terminal portion 22 and the fourth terminal portion 26, the magnetic fluxes generated with each other can be weakened and the parasitic inductance of the capacitor 3 can be reduced. Thereby, the power source bounce of the stacked semiconductor device can be reduced and the semiconductor element can be operated stably.

層型半導体パッケージによれば、第2半導体パッケージのサイズを大きくし、プリント配線板から直接電荷を供給することなく、安定した電源供給が行える。さらに、第1半導体パッケージと第2半導体パッケージとの間に設けられたコンデンサにより、第1の半導体パッケージに搭載された半導体素子と第2の半導体パッケージの間に一定の距離を置くことができ、熱の滞留を防ぐことができるため、安定して半導体素子を動作させることができる。
According to the product layer type semiconductor package, the size of the second semiconductor package is increased, without supplying direct charge from the printed wiring board, can be performed stable power supply. Furthermore, a capacitor provided between the first semiconductor package and the second semiconductor package can place a certain distance between the semiconductor element mounted on the first semiconductor package and the second semiconductor package, Since heat retention can be prevented, the semiconductor element can be stably operated.

層型半導体パッケージ1において、第1基板2aおよび第2基板2bは、例えば、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ムライト質焼結体、またはガラスセラミックス等の無機絶縁材料からなる。
In the product layer type semiconductor package 1, the first substrate 2a and the second substrate 2b, for example, aluminum sintered body oxide, aluminum sintered body nitride, silicon carbide sintered body, a silicon nitride sintered body, mullite It consists of an inorganic insulating material such as a sintered material or glass ceramics.

また、金属配線は、半導体素子4a,4bとプリント配線基板6とを電気的に接続する機能を有している。このような金属配線は、例えば、タングステン(W),モリブデン(Mo),モリブデン−マンガン(Mo−Mn),銅(Cu),銀(Ag)、もしくは銀−パラジウム(Ag−Pd)等の金属粉末メタライズ、または銅(Cu),銀(Ag),ニッケル(Ni),クロム(Cr),チタン(Ti),金(Au)、もしくはニオブ(Nb)またはそれらの合金等で形成される。この金属配線は、メタライズ法等の厚膜法や、薄膜法等の金属層形成手法により、所定パターンに形成すればよい。   The metal wiring has a function of electrically connecting the semiconductor elements 4a and 4b and the printed wiring board 6. Such a metal wiring is, for example, a metal such as tungsten (W), molybdenum (Mo), molybdenum-manganese (Mo-Mn), copper (Cu), silver (Ag), or silver-palladium (Ag-Pd). It is formed of powder metallization, or copper (Cu), silver (Ag), nickel (Ni), chromium (Cr), titanium (Ti), gold (Au), niobium (Nb), or an alloy thereof. The metal wiring may be formed in a predetermined pattern by a thick film method such as a metallization method or a metal layer formation method such as a thin film method.

例えば金属配線を厚膜法で形成する場合、W粉末に適当な有機バインダや溶剤等を添加混合して得た金属ペーストを、セラミックグリーンシートに所定のパターンで印刷塗布し、これらセラミックグリーンシートを積層して積層体とするとともに焼成することによって形成することができる。   For example, when a metal wiring is formed by a thick film method, a metal paste obtained by adding and mixing an appropriate organic binder or solvent to W powder is printed and applied in a predetermined pattern on a ceramic green sheet. It can be formed by stacking to form a laminate and firing.

また、第1基板2aおよび第2基板2bの無機絶縁材料は、例えばセラミックグリーンシート積層法や、押し出し成形法等の基板形成手段によって形成される。   Moreover, the inorganic insulating material of the 1st board | substrate 2a and the 2nd board | substrate 2b is formed by board | substrate formation means, such as a ceramic green sheet lamination method and an extrusion molding method, for example.

これらの無機絶縁材料は以下のようにして作製される。無機絶縁材料が例えば酸化アルミニウム質焼結体から成る場合、まず、酸化アルミニウム,酸化珪素,酸化カルシウムまたは酸化マグネシウム等の原料粉末に適当な有機バインダや溶剤等を添加混合して泥漿状となし、これをドクターブレード法等でシート状となすことによってセラミックグリーンシートを得る。そして、セラミックグリーンシートに各金属配線と成る金属ペーストを所定のパターンに印刷塗布して、これらを上下に積層し、最後にこの積層体を還元雰囲気中で約1600℃の温度で焼成することによって製作される。   These inorganic insulating materials are produced as follows. When the inorganic insulating material is made of, for example, an aluminum oxide sintered body, first, a suitable organic binder or solvent is added to and mixed with the raw material powder such as aluminum oxide, silicon oxide, calcium oxide or magnesium oxide to form a slurry. A ceramic green sheet is obtained by making this into a sheet by a doctor blade method or the like. Then, a metal paste for forming each metal wiring is printed and applied in a predetermined pattern on the ceramic green sheet, and these are laminated up and down, and finally the laminate is fired at a temperature of about 1600 ° C. in a reducing atmosphere. Produced.

また、第1基板2aおよび第2基板2bの無機絶縁材料は、ポリイミド,エポキシ樹脂,フッ素樹脂,ポリノルボルネン、若しくはベンゾシクロブテン等の有機絶縁材料、またはセラミック粉末等の無機絶縁物粉末を、エポキシ樹脂等の熱硬化性樹脂で結合して成る複合絶縁材料等の電気的な絶縁材料から成っていてもよい。   The inorganic insulating material of the first substrate 2a and the second substrate 2b is an organic insulating material such as polyimide, epoxy resin, fluororesin, polynorbornene, or benzocyclobutene, or inorganic insulating powder such as ceramic powder. You may consist of electrical insulation materials, such as a composite insulation material formed by couple | bonding with thermosetting resins, such as resin.

例えば、複合絶縁材料からなる場合、まず酸化アルミニウム質焼結体から成るセラミックスを混合した熱硬化性のエポキシ樹脂、あるいはガラス繊維を織り込んだ布にエポキシ樹脂を含浸させて成るガラスエポキシ樹脂等から成る絶縁層の上面に、有機樹脂前駆体をスピンコート法もしくはカーテンコート法等により被着させ、これを熱硬化処理することによって絶縁層を形成する。この絶縁層と、銅層を無電解めっき法や蒸着法等の薄膜形成技術およびフォトリソグラフィ技術を採用することによって形成して成る薄膜配線導体層とを交互に積層し、約170℃程度の温度で加熱硬化することによって製作される。これらの積層された無機絶縁材料の厚みは、使用する材料の特性に応じて、要求される仕様に対応する機械的強度や電気的特性等の条件を満たすように設定される。   For example, in the case of a composite insulating material, first, a thermosetting epoxy resin mixed with ceramics made of an aluminum oxide sintered body, or a glass epoxy resin made by impregnating a glass fiber woven cloth with an epoxy resin, etc. An organic resin precursor is deposited on the upper surface of the insulating layer by a spin coating method or a curtain coating method, and the insulating layer is formed by thermosetting the organic resin precursor. This insulating layer and a thin film wiring conductor layer formed by adopting a copper layer by employing a thin film forming technique such as an electroless plating method or a vapor deposition method and a photolithography technique are alternately laminated, and a temperature of about 170 ° C. It is manufactured by heating and curing. The thickness of these laminated inorganic insulating materials is set so as to satisfy the conditions such as mechanical strength and electrical characteristics corresponding to the required specifications in accordance with the characteristics of the materials used.

また、積層型半導体パッケージ1において、第1基板2aおよび第2基板2bの表面には、高速で動作するIC,LSI等の半導体素子や半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子4a,4bが搭載される。この半導体素子4a,4bは、裏面側に信号用や電源用、接地用の端子(図示せず)が形成され、各端子が第1基板2aおよび第2基板2bの表面に形成されたフリップチップ用電極パッド(図示せず)に、錫−鉛(Sn−Pb)合金や錫-銀-銅(Sn−Ag−Cu)等の半田または金(Au)等から成るフリップチップ接続用導体バンプを介して電気的に接続されて実装される。   Further, in the stacked semiconductor package 1, on the surfaces of the first substrate 2a and the second substrate 2b, semiconductor elements such as IC and LSI that operate at high speed, and optical semiconductors such as a semiconductor laser (LD) and a photodiode (PD). Elements 4a and 4b are mounted. The semiconductor elements 4a and 4b are flip-chips in which terminals for signal, power supply, and ground (not shown) are formed on the back side, and each terminal is formed on the surface of the first substrate 2a and the second substrate 2b. Flip chip connecting conductor bumps made of solder such as tin-lead (Sn-Pb) alloy, tin-silver-copper (Sn-Ag-Cu), gold (Au), etc. It is mounted by being electrically connected.

各フリップチップ用電極パッドは、第1基板2aおよび第2基板2bに形成されている金属配線(図示せず)と、第1基板2aおよび第2基板2bの表面から内部にかけて形成されたビア導体等の貫通導体等(図示せず)とを介してそれぞれ所望の回路に電気的に接続され、半導体素子4a,4bの各端子が、対応する回路配線と電気的に接続される。   Each flip-chip electrode pad includes a metal wiring (not shown) formed on the first substrate 2a and the second substrate 2b, and a via conductor formed from the surface to the inside of the first substrate 2a and the second substrate 2b. The terminals of the semiconductor elements 4a and 4b are electrically connected to the corresponding circuit wirings, respectively, through a through conductor (not shown) or the like.

また、第1基板2aおよび第2基板2b内に形成された貫通導体(図示せず)は、セラミックグリーンシートに貫通孔を金型やパンチングによる打ち抜き方法またはレーザ加工等の加工方法により形成しておき、WやCu粉末に適当な有機バインダや溶剤等を添加混合して得た金属ペーストを貫通孔の内側側面の所定の領域に塗布し、これをセラミックグリーンシートの積層体とともに焼成することによって形成することができる。   The through conductors (not shown) formed in the first substrate 2a and the second substrate 2b are formed by forming a through hole in the ceramic green sheet by a punching method using a die or punching or a processing method such as laser processing. By applying a metal paste obtained by adding and mixing an appropriate organic binder, solvent, etc. to W or Cu powder to a predetermined region on the inner side surface of the through hole, and firing this together with a laminate of ceramic green sheets Can be formed.

積層型半導体パッケージ1において、信号波形を伝送する第1基板2aおよび第2基板2b内に形成された線路導体(図示せず)は、各線路導体の配線幅および第1基板2aおよび第2基板2b内に形成された絶縁層の厚みを設定することにより、線路導体の特性インピーダンスを任意の値に設定することができる。そのため、例えば複数の線路導体により、良好な伝送特性を有する線路導体を形成することが可能となる。各線路導体の特性インピーダンスは一般的には50Ωに設定される。なお、複数の線路導体は、それぞれ異なる電気信号を伝送するものとしてもよい。   In the stacked semiconductor package 1, the line conductors (not shown) formed in the first substrate 2a and the second substrate 2b that transmit the signal waveforms are the wiring width of each line conductor, the first substrate 2a, and the second substrate. By setting the thickness of the insulating layer formed in 2b, the characteristic impedance of the line conductor can be set to an arbitrary value. Therefore, for example, a line conductor having good transmission characteristics can be formed by a plurality of line conductors. The characteristic impedance of each line conductor is generally set to 50Ω. The plurality of line conductors may transmit different electrical signals.

図3は、コンデンサ3の別の参考例の1つを示し、(a)は斜視図、(b)〜(c)はコンデンサ3における導体が形成された一部の誘電体層を導体の面方向に垂直に平面視した場合の平面図である。この参考例では、第1端子部23および第2端子部24は、第1導体21から該第1導体21と同一平面上にそれぞれ延在しており、第3端子部25および第4端子部26は、第2導体22から該第2導体21と同一平面上にそれぞれ延在している。また、第1端子部23および第2端子部24は、第1導体21の対向する2辺の端部から、その2辺に垂直な方向に延在している。第1端子部23、第2端子部24、および第1導体21は、T字型の導体パターンを構成する。同様に、第3端子部25および第4端子部26は、第2導体22の対向する2辺の端部から、その2辺に垂直な方向に延在している。第3端子部24、第4端子部25、および第2導体22は、T字型の導体パターンを構成する。
FIG. 3 shows another reference example of the capacitor 3, (a) is a perspective view, and (b) to (c) are parts of the dielectric layer on which the conductor in the capacitor 3 is formed. It is a top view at the time of planar view perpendicular | vertical to a direction. In this reference example, the first terminal portion 23 and the second terminal portion 24 extend from the first conductor 21 on the same plane as the first conductor 21, respectively, and the third terminal portion 25 and the fourth terminal portion. 26 extends from the second conductor 22 on the same plane as the second conductor 21. Further, the first terminal portion 23 and the second terminal portion 24 extend from the ends of the two opposite sides of the first conductor 21 in a direction perpendicular to the two sides. The first terminal part 23, the second terminal part 24, and the first conductor 21 constitute a T-shaped conductor pattern. Similarly, the 3rd terminal part 25 and the 4th terminal part 26 are extended in the direction perpendicular | vertical to the 2 sides from the edge part of 2 sides which the 2nd conductor 22 opposes. The third terminal portion 24, the fourth terminal portion 25, and the second conductor 22 constitute a T-shaped conductor pattern.

図3に示すコンデンサ3では、第1導体21および第2導体22は対向するように配置される。ここで、コンデンサ3を、第1導体21および第2導体22の面方向に垂直に、すなわち第1導体21及び第2導体22の対向方向に平面透視したとき、第1端子部23と第3端子部24は、第1導体21または第2導体22に関して同じ側に、それぞれ離間して位置している。また、第3端子部25と第4端子部26は、第1導体21または第2導体22に関して同じ側に、それぞれ離間して位置している。   In the capacitor 3 shown in FIG. 3, the first conductor 21 and the second conductor 22 are arranged to face each other. Here, when the capacitor 3 is viewed in a plane perpendicular to the surface direction of the first conductor 21 and the second conductor 22, that is, in the opposing direction of the first conductor 21 and the second conductor 22, the first terminal portion 23 and the third conductor 3 The terminal portions 24 are spaced apart from each other on the same side with respect to the first conductor 21 or the second conductor 22. In addition, the third terminal portion 25 and the fourth terminal portion 26 are located on the same side with respect to the first conductor 21 or the second conductor 22 and are spaced apart from each other.

図3の構成においても、図2の構成と同様に、放電時および充電時において、コンデンサ3に流れる電流の向きが逆方向となるため、第1導体21と第2導体22との間、および第1端子部23と第3端子部25との間、および第2端子部22と第4端子部26との間のおのおので、互いに発生する磁束を弱め合い、コンデンサ3の寄生インダクタンスを小さくすることができる。   Also in the configuration of FIG. 3, as in the configuration of FIG. 2, the direction of the current flowing through the capacitor 3 is reversed during discharging and charging, and therefore, between the first conductor 21 and the second conductor 22, and Between the first terminal portion 23 and the third terminal portion 25 and between the second terminal portion 22 and the fourth terminal portion 26, the magnetic flux generated between each other is weakened, and the parasitic inductance of the capacitor 3 is reduced. be able to.

また、第1端子部23と第3端子部25が離間しており、第2端子部24と第4端子部26が離間していることから、第1端子部23と第1端子電極27、第2端子部24と第2端子電極28、第3端子部25と第3端子電極29、および第4端子部26と第4端子電極30のそれぞれの電気的接続をより容易に行うことができる。さらに、半導体素子4bのスイッチング動作が高速で繰り返された場合に生じる、第2端子部24,第1導体21,および第1端子部23を介して、第2端子電極28と第1端子電極27との間を流れる貫通電流および、第3端子部25,第2導体22,および第4端子部26を介して、第3端子電極29と第4端子電極30との間を流れる貫通電流の経路を短くすることができ、コンデンサ3の寄生インダクタンスをより小さくすることができる。ここで、貫通電流とは、高速で繰り返される半導体素子4bのスイッチングによって、第2端子電極28と第1端子電極27との間、および第3端子電極29と第4端子電極30と間を直接流れる電流であり、電荷の充電および放電に直接寄与しない電流のことである。   Moreover, since the 1st terminal part 23 and the 3rd terminal part 25 are spaced apart and the 2nd terminal part 24 and the 4th terminal part 26 are spaced apart, the 1st terminal part 23 and the 1st terminal electrode 27, The second terminal portion 24 and the second terminal electrode 28, the third terminal portion 25 and the third terminal electrode 29, and the fourth terminal portion 26 and the fourth terminal electrode 30 can be more easily electrically connected. . Furthermore, the second terminal electrode 28 and the first terminal electrode 27 are generated via the second terminal portion 24, the first conductor 21, and the first terminal portion 23 that are generated when the switching operation of the semiconductor element 4 b is repeated at a high speed. And a through current flowing between the third terminal electrode 29 and the fourth terminal electrode 30 via the third terminal portion 25, the second conductor 22, and the fourth terminal portion 26. The parasitic inductance of the capacitor 3 can be further reduced. Here, the through-current is directly between the second terminal electrode 28 and the first terminal electrode 27 and between the third terminal electrode 29 and the fourth terminal electrode 30 by switching of the semiconductor element 4b repeated at high speed. It is a current that flows and does not directly contribute to charge charging and discharging.

図4は、コンデンサ3の本願発明の実施例を示し、(a)は斜視図、(b)〜(c)はコンデンサ3における導体が形成された一部の誘電体層を導体の面方向に垂直に平面視した場合の平面図である。この実施例では、第1端子部23および第2端子部24は、第1導体21の対向する2辺の中央部から、その2辺に垂直な方向に延在している。
4A and 4B show an embodiment of the present invention of the capacitor 3, wherein FIG. 4A is a perspective view, and FIGS. 4B to 4C are diagrams showing a part of the dielectric layer formed with the conductor in the capacitor 3 in the plane direction of the conductor. It is a top view at the time of planarly viewing vertically. In this embodiment , the first terminal portion 23 and the second terminal portion 24 extend from the central portion of the two opposite sides of the first conductor 21 in a direction perpendicular to the two sides.

本実施例では、第1導体21と第2導体22の対向方向に平面透視したときに、第1端子部23と第3端子部25は一部のみ重複し、第2端子部24と第4端子部26は一部のみ重複している。これにより、図2のコンデンサと比較して、第1端子部23と第1端子電極27、第2端子部24と第2端子電極28、第3端子部25と第3端子電極29、および第4端子部26と第4端子電極30の電気的接続をより容易に行うことができる。   In the present embodiment, when seen in a plan view in the opposing direction of the first conductor 21 and the second conductor 22, the first terminal portion 23 and the third terminal portion 25 partially overlap, and the second terminal portion 24 and the fourth terminal Only a part of the terminal portion 26 is overlapped. Thus, compared with the capacitor of FIG. 2, the first terminal portion 23 and the first terminal electrode 27, the second terminal portion 24 and the second terminal electrode 28, the third terminal portion 25 and the third terminal electrode 29, and the The electrical connection between the four terminal portion 26 and the fourth terminal electrode 30 can be more easily performed.

また、図4で示した実施例において、第1端子電極27および第2端子電極28は、第1端子部23および第2端子部24の対向方向に垂直な面をそれぞれ有し、第3端子電極29および第4端子電極30は、第3端子部25および第4端子部26の対向方向に垂直な面をそれぞれ有している。よって、第1端子電極27から第4端子電極30の間で、半
導体素子4bのスイッチング動作が高速で繰り返された場合に生じる第2端子電極28から第1端子電極27へと電流が流れる方向および、第3端子電極29から第4端子電極30へと電流が流れる方向に、第1導体21と第2導体22からなる導体対が並列に複数配置されるため、多くの電流経路を確保することができ、コンデンサ3の寄生インダクタンスを小さくすることができる。
Moreover, at the embodiment shown in FIG. 4, the first terminal electrode 27 and second terminal electrode 28 has respectively a plane perpendicular to the opposing direction of the first terminal portion 23 and the second terminal portion 24, the The three terminal electrode 29 and the fourth terminal electrode 30 have surfaces perpendicular to the facing direction of the third terminal portion 25 and the fourth terminal portion 26, respectively. Therefore, the direction in which current flows from the second terminal electrode 28 to the first terminal electrode 27 that occurs when the switching operation of the semiconductor element 4b is repeated at high speed between the first terminal electrode 27 and the fourth terminal electrode 30; Since a plurality of conductor pairs including the first conductor 21 and the second conductor 22 are arranged in parallel in the direction in which current flows from the third terminal electrode 29 to the fourth terminal electrode 30, a large number of current paths must be ensured. The parasitic inductance of the capacitor 3 can be reduced.

なお、本発明の積層型半導体パッケージは、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
Incidentally, the stacked semiconductor package of the present invention is not intended to be limited to the above embodiments, and various modifications as long as it does not depart from the gist of the present invention are possible.

本発明の積層型半導体パッケージの実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the laminated semiconductor package of this invention. (a)はコンデンサ構造の参考例を示す斜視図であり、(b)〜(c)はコンデンサにおける導体が形成された一部の誘電体層を導体の面方向に垂直に平面視した場合の平面図である。(A) is a perspective view which shows the reference example of a capacitor | condenser structure, (b)-(c) is the case where the one part dielectric material layer in which the conductor in the capacitor | condenser was formed was planarly viewed perpendicularly to the surface direction of a conductor. It is a top view. (a)はコンデンサ構造の参考例を示す斜視図であり、(b)〜(c)はコンデンサにおける導体が形成された一部の誘電体層を導体の面方向に垂直に平面視した場合の平面図である。(A) is a perspective view which shows the reference example of a capacitor | condenser structure, (b)-(c) is the case where the one part dielectric material layer in which the conductor in the capacitor | condenser was formed was planarly viewed perpendicularly to the surface direction of a conductor. It is a top view. (a)はコンデンサ構造の本願発明の実施例を示す斜視図であり、(b)〜(c)はコンデンサにおける導体が形成された一部の誘電体層を導体の面方向に垂直に平面視した場合の平面図である。(A) is a perspective view which shows the Example of this invention of a capacitor | condenser structure, (b)-(c) planarly views some dielectric layers in which the conductor in the capacitor was formed perpendicularly to the surface direction of the conductor FIG.

符号の説明Explanation of symbols

1 ・・・積層型半導体パッケージ
2a,2b ・・・基板
3 ・・・コンデンサ
4a,4b ・・・半導体素子
5a,5b ・・・半田ボール
6 ・・・プリント配線基板
21,22 ・・・第1〜第2導体
23,24,25,26 ・・・第1〜第4端子部
27,28,29,30 ・・・第1〜第4端子電極
31 ・・・誘電体
32 ・・・積層体
DESCRIPTION OF SYMBOLS 1 ... Stacked-type semiconductor package 2a, 2b ... Board | substrate 3 ... Capacitor 4a, 4b ... Semiconductor element 5a, 5b ... Solder ball 6 ... Printed wiring board 21, 22 ... First 1st-2nd conductor 23,24,25,26 ... 1st-4th terminal part 27,28,29,30 ... 1st-4th terminal electrode 31 ... Dielectric 32 ... Lamination | stacking body

Claims (4)

第1半導体パッケージと、
該第1半導体パッケージに積層された第2半導体パッケージと、
前記第1半導体パッケージと前記第2半導体パッケージとの間に設けられ、前記第1半導体パッケージおよび前記第2半導体パッケージに接続されるコンデンサと
を有する積層型半導体パッケージであって、
前記コンデンサは、
対向する平板状の第1導体および第2導体からなる少なくとも1つの導体対と、
前記第1導体から該第1導体と同一平面上にそれぞれ延在するとともに少なくとも一部同士が前記第1導体を挟んで対向する第1端子部および第2端子部と、
前記第2導体から該第2導体と同一平面上にそれぞれ延在するとともに少なくとも一部同士が前記第2導体を挟んで対向する第3端子部および第4端子部と
を有し、
前記第1端子部および前記第3端子部は、前記第2半導体パッケージに接続され、
前記第2端子部および前記第4端子部は、前記第1半導体パッケージに接続され
前記第1導体および前記第2導体はそれぞれ四角形状であり、
前記第1端子部および第2端子部は、前記第1導体の対向する2辺の中央部からそれぞれ延在し、
前記第3端子部および第4端子部は、前記第2導体の対向する2辺の中央部からそれぞれ延在しており、
前記導体対を前記第1導体と前記第2導体の対向方向に平面透視したときに、前記第1端子部と前記第3端子部は一部のみ重複し、前記第2端子部と前記第4端子部は一部のみ重複している積層型半導体パッケージ。
A first semiconductor package;
A second semiconductor package stacked on the first semiconductor package;
A stacked semiconductor package having a capacitor provided between the first semiconductor package and the second semiconductor package and connected to the first semiconductor package and the second semiconductor package;
The capacitor is
At least one conductor pair composed of opposing first and second flat-plate conductors;
A first terminal portion and a second terminal portion that extend from the first conductor on the same plane as the first conductor and at least partially face each other across the first conductor;
A third terminal portion and a fourth terminal portion respectively extending from the second conductor on the same plane as the second conductor and facing each other with the second conductor interposed therebetween,
The first terminal portion and the third terminal portion are connected to the second semiconductor package,
The second terminal portion and the fourth terminal portion are connected to the first semiconductor package ,
Each of the first conductor and the second conductor has a quadrangular shape,
The first terminal portion and the second terminal portion extend from central portions of two opposite sides of the first conductor, respectively.
The third terminal portion and the fourth terminal portion respectively extend from the central portions of the two opposing sides of the second conductor,
When the conductor pair is seen in a plan view in the opposing direction of the first conductor and the second conductor, the first terminal portion and the third terminal portion partially overlap, and the second terminal portion and the fourth terminal A stacked semiconductor package with terminal portions partially overlapping .
前記コンデンサは、前記第1端子部に接続される第1端子電極と、前記第2端子部に接続される第2端子電極と、前記第3端子部に接続される第3端子電極と、前記第4端子部に接続される第4端子電極とを有し、
前記第1端子電極および前記第2端子電極は、前記第1端子部および前記第2端子部の対向方向に垂直な面をそれぞれ有し、
前記第3端子電極および前記第4端子電極は、前記第3端子部および前記第4端子部の対向方向に垂直な面をそれぞれ有する請求項1に記載の積層型半導体パッケージ。
The capacitor includes a first terminal electrode connected to the first terminal portion, a second terminal electrode connected to the second terminal portion, a third terminal electrode connected to the third terminal portion, A fourth terminal electrode connected to the fourth terminal portion,
The first terminal electrode and the second terminal electrode each have a surface perpendicular to the facing direction of the first terminal portion and the second terminal portion,
2. The stacked semiconductor package according to claim 1, wherein the third terminal electrode and the fourth terminal electrode each have a surface perpendicular to a facing direction of the third terminal portion and the fourth terminal portion.
前記コンデンサにおける前記導体対を前記第1導体と前記第2導体の対向方向に平面透視したときに、前記第1端子部と前記第2端子部の対向方向に垂直な直線に関して、前記
第3端子部は前記第1端子部と同じ側にあり、前記第4端子部は、前記第2端子部と同じ側にあり、放電時には、前記第1導体から前記第1端子部を通って前記第1端子電極へと第1電流が流れると共に、該第1電流とは逆極性の第2電流が前記第3端子電極から前記第3端子部を通って前記第2導体へと流れる電流ループが形成され、充電時には、前記第2端子電極から前記第2端子部を通って前記第1導体へ第3電流が流れると共に、該第3電流とは逆極性の第4電流が前記第2導体から前記第4端子部を通って前記第4端子電極へと流れる電流ループが形成される請求項1または請求項に記載の積層型半導
体パッケージ。
The third terminal with respect to a straight line perpendicular to the opposing direction of the first terminal portion and the second terminal portion when the conductor pair in the capacitor is seen in a plan view in the opposing direction of the first conductor and the second conductor. Part is on the same side as the first terminal part, the fourth terminal part is on the same side as the second terminal part, and during discharge, the first conductor passes through the first terminal part and passes through the first terminal part. A current loop is formed in which a first current flows to the terminal electrode and a second current having a polarity opposite to the first current flows from the third terminal electrode to the second conductor through the third terminal portion. During charging, a third current flows from the second terminal electrode through the second terminal portion to the first conductor, and a fourth current having a polarity opposite to the third current is transmitted from the second conductor to the first conductor. A current loop that flows through the four terminal portions to the fourth terminal electrode is formed. The stacked semiconductor package according to claim 1 or claim 2 that.
請求項1から請求項のいずれかに記載の積層型半導体パッケージと、
前記第1半導体パッケージに搭載される第1半導体素子と、
前記第2半導体パッケージに搭載される第2半導体素子と
を有する積層型半導体装置。
A stacked semiconductor package according to any one of claims 1 to 3 ,
A first semiconductor element mounted on the first semiconductor package;
A stacked semiconductor device comprising: a second semiconductor element mounted on the second semiconductor package.
JP2008217895A 2008-08-27 2008-08-27 Stacked semiconductor package and stacked semiconductor device Expired - Fee Related JP5448393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217895A JP5448393B2 (en) 2008-08-27 2008-08-27 Stacked semiconductor package and stacked semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217895A JP5448393B2 (en) 2008-08-27 2008-08-27 Stacked semiconductor package and stacked semiconductor device

Publications (2)

Publication Number Publication Date
JP2010056202A JP2010056202A (en) 2010-03-11
JP5448393B2 true JP5448393B2 (en) 2014-03-19

Family

ID=42071823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217895A Expired - Fee Related JP5448393B2 (en) 2008-08-27 2008-08-27 Stacked semiconductor package and stacked semiconductor device

Country Status (1)

Country Link
JP (1) JP5448393B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056661A1 (en) * 2010-10-25 2012-05-03 パナソニック株式会社 Electronic components assembly
CN103227170A (en) * 2013-03-29 2013-07-31 日月光半导体制造股份有限公司 Stacked type semiconductor structure and manufacturing method thereof
WO2019005616A1 (en) * 2017-06-29 2019-01-03 Avx Corporation Surface mount multilayer coupling capacitor and circuit board containing the same
JP2022166463A (en) 2021-04-21 2022-11-02 太陽誘電株式会社 Ceramic electronic component and mounting substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864271B2 (en) * 2002-10-17 2012-02-01 株式会社村田製作所 Multilayer capacitor
JP2006344789A (en) * 2005-06-09 2006-12-21 Canon Inc Electronic circuit module and semiconductor package

Also Published As

Publication number Publication date
JP2010056202A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP6791719B2 (en) Substrate for mounting electronic components, electronic devices and electronic modules
US20200105658A1 (en) Electronic component mounting substrate, electronic device, and electronic module
JP5448393B2 (en) Stacked semiconductor package and stacked semiconductor device
JP5155582B2 (en) Wiring board and electronic device
JP5318360B2 (en) Wiring board and electronic device
JP5153364B2 (en) Stacked semiconductor package and electronic device
JP5958454B2 (en) Built-in module
JP2005243864A (en) Wiring board
JP5014380B2 (en) Multilayer substrate and semiconductor device
JP2008311682A (en) Wiring board
JP2009004809A (en) Wiring substrate
JP2007200971A (en) Multilayer wiring substrate
JP3825293B2 (en) Multilayer wiring board
JP4373752B2 (en) Wiring board
JP3798959B2 (en) Multilayer wiring board
JP4557768B2 (en) Semiconductor device
US10388628B2 (en) Electronic component package
JP5178028B2 (en) Manufacturing method of semiconductor device
JP4349827B2 (en) Wiring board
JP2007173429A (en) Wiring circuit board
JP3792483B2 (en) Multilayer wiring board
JP2012080145A (en) Semiconductor device
JP2005159080A (en) Wiring board
JP2009206230A (en) Stacked semiconductor package
JP4986500B2 (en) Laminated substrate, electronic device and manufacturing method thereof.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5448393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees