JP5014380B2 - Multilayer substrate and semiconductor device - Google Patents

Multilayer substrate and semiconductor device Download PDF

Info

Publication number
JP5014380B2
JP5014380B2 JP2009127293A JP2009127293A JP5014380B2 JP 5014380 B2 JP5014380 B2 JP 5014380B2 JP 2009127293 A JP2009127293 A JP 2009127293A JP 2009127293 A JP2009127293 A JP 2009127293A JP 5014380 B2 JP5014380 B2 JP 5014380B2
Authority
JP
Japan
Prior art keywords
power supply
conductor layer
ground
conductors
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009127293A
Other languages
Japanese (ja)
Other versions
JP2010278101A (en
Inventor
慎二 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009127293A priority Critical patent/JP5014380B2/en
Publication of JP2010278101A publication Critical patent/JP2010278101A/en
Application granted granted Critical
Publication of JP5014380B2 publication Critical patent/JP5014380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、半導体素子が搭載される多層基板およびその多層基板を用いた半導体装置に関するものである。   The present invention relates to a multilayer substrate on which a semiconductor element is mounted and a semiconductor device using the multilayer substrate.

近年、半導体素子の動作速度の高速化が進む中で、LSI,IC等の半導体素子が搭載される多層配線基板(以下、多層基板ともいう)においては、半導体素子のスイッチング動作が同時に複数発生した場合、半導体素子の電源電位および接地電位が変動し、その結果、半導体素子の誤動作を引き起こす同時スイッチングノイズの問題が生じている。また、半導体素子のスイッチング動作が同時に複数発生した場合、スイッチングノイズによる電磁波が他の電子機器に障害を与える電磁障害(Electro-Magnetic Interference:EMI)ノイズの問題が発生している。   In recent years, as the operation speed of semiconductor elements has been increased, a plurality of semiconductor element switching operations have occurred simultaneously in a multilayer wiring board (hereinafter also referred to as a multilayer board) on which semiconductor elements such as LSI and IC are mounted. In this case, the power supply potential and the ground potential of the semiconductor element fluctuate, and as a result, a problem of simultaneous switching noise that causes malfunction of the semiconductor element occurs. In addition, when a plurality of semiconductor element switching operations occur simultaneously, there is a problem of electromagnetic interference (EMI) noise in which electromagnetic waves due to switching noise interfere with other electronic devices.

そこで、これらの問題に対しては、インターネット等の通信システムのサーバー装置およびパーソナルコンピュータ内に設置されるマザーボードと呼ばれる多層基板から半導体素子への電流経路に生じる抵抗およびインダクタンスを抑制すること、また、その電流経路に電気的な容量(コンデンサ)を設けて電源電位および接地電位を安定化させること、また、その電流経路にデカップリングコンデンサを設けてスイッチングノイズ等のノイズを減衰させることが有効である。このようなコンデンサまたはデカップリングコンデンサを形成する方法として、具体的には、電源電位を有する面状導体(通称「ベタ導体」または「ベタプレーン」と呼ばれるもの)および接地電位を有する面状導体を、コンデンサのそれぞれの対向電極として多層基板の内部に形成する方法がある。   Therefore, for these problems, it is possible to suppress resistance and inductance generated in a current path from a multilayer substrate called a motherboard installed in a server device and a personal computer of a communication system such as the Internet, It is effective to provide an electric capacity (capacitor) in the current path to stabilize the power supply potential and the ground potential, and to provide a decoupling capacitor in the current path to attenuate noise such as switching noise. . As a method of forming such a capacitor or decoupling capacitor, specifically, a planar conductor having a power supply potential (commonly referred to as “solid conductor” or “solid plane”) and a planar conductor having a ground potential are used. There is a method in which each counter electrode of a capacitor is formed inside a multilayer substrate.

また、デカップリングコンデンサを有する多層基板として、多層基板を平面視して、角部以外の領域に限定して電源電位配線および接地電位配線の外縁に突起部を設け、それぞれの突起部において、電源電位配線および接地電位配線が、多層基板上に設けられた共通のデカップリングコンデンサに接続されている構成のものが知られている(例えば、特許文献1参照)。   In addition, as a multilayer substrate having a decoupling capacitor, a projection is provided on the outer edge of the power supply potential wiring and the ground potential wiring in a plan view of the multilayer substrate in a region other than the corner portion. A configuration in which the potential wiring and the ground potential wiring are connected to a common decoupling capacitor provided on a multilayer substrate is known (for example, see Patent Document 1).

この構成により、電源電位配線および接地電位配線を流れる電流経路の断面積を大きくすることができるため、その電流経路に発生する抵抗およびインダクタンスを低減することができ、かつ互いに対向する2つのベタプレーンによって電源電位配線と接地電位配線との間に容量を形成することが可能となり、その容量形成部から半導体素子へ電源電圧を供給できるために電流経路を短くするとともに、その経路に付随する抵抗およびインダクタンスを抑制することができるため、同時スイッチングノイズの影響を抑制することが可能となる。また、電源電位配線および接地電位配線に流れこんだノイズを突起部に集めて、デカップリングコンデンサに流すことにより、電流の共振による電磁障害ノイズを低減することが可能となる。   With this configuration, the cross-sectional area of the current path flowing through the power supply potential wiring and the ground potential wiring can be increased, so that the resistance and inductance generated in the current path can be reduced, and two solid planes facing each other This makes it possible to form a capacitor between the power supply potential wiring and the ground potential wiring, so that the power supply voltage can be supplied from the capacitance forming portion to the semiconductor element, so that the current path is shortened, and the resistance associated with the path and Since the inductance can be suppressed, the influence of simultaneous switching noise can be suppressed. Further, by collecting the noise flowing into the power supply potential wiring and the ground potential wiring in the protruding portion and flowing them through the decoupling capacitor, it is possible to reduce electromagnetic interference noise due to current resonance.

また、上記の電流経路に発生する抵抗およびインダクタンスを低減する他の構成として、以下の構成の多層基板が提案されていた。複数の絶縁層およびその絶縁層間に形成された電源導体層ならびに電源導体層が形成された絶縁層間と異なる絶縁層間に形成された接地導体層を有するとともに、下面の外周部に複数の信号端子ならびに中央部に複数の電源端子および複数の接地端子を有する半導体素子を搭載する搭載部を上面に有する基体と、基体の搭載部の中央部から基体の下面側に向かって形成された、電源導体層に電気的に接続された複数の電源貫通導体および接地導体層に電気的に接続された複数の接地貫通導体と、基体の搭載部の外周部から基体の下面側に向かって形成された複数の信号貫通導体とを備えており、複数の電源貫通導体および複数の接地貫通導体は、平面視で搭載部に互いに隣接するように交互に配列されている多層基板である。   As another configuration for reducing the resistance and inductance generated in the current path, a multilayer substrate having the following configuration has been proposed. A plurality of insulating layers, a power supply conductor layer formed between the insulation layers, a ground conductor layer formed between different insulation layers from the insulation layer formed with the power supply conductor layer, and a plurality of signal terminals on the outer periphery of the lower surface A base body having a mounting portion on the upper surface for mounting a semiconductor element having a plurality of power supply terminals and a plurality of ground terminals in the central portion, and a power supply conductor layer formed from the central portion of the base mounting portion toward the lower surface side of the base body A plurality of power supply through conductors electrically connected to each other and a plurality of ground through conductors electrically connected to the ground conductor layer, and a plurality of ground through conductors formed from the outer peripheral portion of the base mounting portion toward the lower surface side of the base The plurality of power supply through conductors and the plurality of ground through conductors are multilayer boards that are alternately arranged so as to be adjacent to the mounting portion in plan view.

特開2008−251805号公報JP 2008-251805 A

しかしながら、上記従来の技術においては、近年の半導体素子の動作周波数の高周波数化に起因して、以下のような問題点が生じるようになってきている。   However, in the above conventional technique, the following problems have arisen due to the recent increase in operating frequency of semiconductor elements.

半導体素子が搭載される多層基板内部の電源電位配線および接地電位配線に、電源電位を有する面状導体および接地電位を有する面状導体を、2つの対向電極として形成したデカップリングコンデンサを設けることにより、同時スイッチングノイズを抑制する方法の場合、信号配線を信号が伝送される際に、電源電位配線および接地電位配線の信号配線と対向する部分を中心とする電源電位配線および接地電位配線に、信号配線を伝送される信号の電磁放射による帰路電流が重畳される。すなわち、信号配線を伝送される信号がノイズとなって電源電位配線および接地電位配線に重畳される。   By providing a decoupling capacitor in which a planar conductor having a power supply potential and a planar conductor having a ground potential are formed as two opposing electrodes on the power supply potential wiring and the ground potential wiring inside the multilayer substrate on which the semiconductor element is mounted. In the case of the method of suppressing the simultaneous switching noise, when the signal is transmitted through the signal wiring, the signal is supplied to the power supply potential wiring and the ground potential wiring centering on the portion facing the signal wiring of the power supply potential wiring and the ground potential wiring. The return current due to electromagnetic radiation of the signal transmitted through the wiring is superimposed. That is, a signal transmitted through the signal wiring becomes noise and is superimposed on the power supply potential wiring and the ground potential wiring.

このとき、電源電位配線および接地電位配線に発生した信号の一部(帰路電流)は、デカップリングコンデンサの面状導体に広く拡散して流れるため、拡散した帰路電流の高調波成分の波長と面状導体の電気長が近づくことによって共振現象が発生する。その結果、面状導体に発生した共振現象によって同時スイッチングノイズおよびEMIノイズが発生したり、面状導体の共振により発生したノイズが信号配線に干渉し重畳されて、信号配線の伝送特性の劣化を引き起こす。そのため、半導体素子を安定して動作させることが難しくなるという問題点があった。   At this time, part of the signal (return current) generated in the power supply potential wiring and the ground potential wiring is widely diffused and flows in the planar conductor of the decoupling capacitor, so the wavelength and surface of the harmonic component of the diffused return current The resonance phenomenon occurs when the electrical length of the conductors approaches. As a result, simultaneous switching noise and EMI noise are generated by the resonance phenomenon generated in the planar conductor, or noise generated by the resonance of the planar conductor interferes with and is superimposed on the signal wiring, thereby degrading the transmission characteristics of the signal wiring. cause. Therefore, there is a problem that it is difficult to operate the semiconductor element stably.

また、特許文献1に記載された多層基板の場合、突起部を設けることによって共振を抑制しても、電源電位配線および接地電位配線に発生する抵抗およびインダクタンスの大きさは変わらないため、同時スイッチングノイズが低減できず、その結果、半導体素子を安定して動作させることが難しいという問題点があった。   In the case of the multilayer substrate described in Patent Document 1, even if resonance is suppressed by providing a protrusion, the magnitudes of resistance and inductance generated in the power supply potential wiring and the ground potential wiring do not change. There is a problem that noise cannot be reduced, and as a result, it is difficult to stably operate the semiconductor element.

また、複数の電源貫通導体および複数の接地貫通導体が平面視で半導体素子の搭載部に互いに隣接するように交互に配列されている多層基板においては、電源貫通導体と接地貫通導体とが隣接していることによって相互インダクタンスを大きくし、上記の電流経路の合計のインダクタンスを小さくすることができる。   Further, in a multilayer substrate in which a plurality of power supply through conductors and a plurality of ground through conductors are alternately arranged so as to be adjacent to each other in a plan view, the power supply through conductor and the ground through conductor are adjacent to each other. Thus, the mutual inductance can be increased, and the total inductance of the current paths can be reduced.

なお、合計のインダクタンス(ループインダクタンスともいう)は、Lr=Ls+Lgnd−2×Lm(Lrはループインダクタンス、Lsは電源導体層のインダクタンス、Lgndは接地導体層のインダクタンス、Lmは相互インダクタンス)で表される。   The total inductance (also referred to as loop inductance) is represented by Lr = Ls + Lgnd−2 × Lm (Lr is loop inductance, Ls is power supply conductor layer inductance, Lgnd is ground conductor layer inductance, and Lm is mutual inductance). The

しかしながら、相互インダクタンスを大きくすることができても、電源導体層のインダクタンスおよび接地導体層のインダクタンスを小さくすることができず、その結果、ループインダクタンスの低減効果が不十分であった。   However, even if the mutual inductance can be increased, the inductance of the power supply conductor layer and the inductance of the ground conductor layer cannot be reduced, and as a result, the effect of reducing the loop inductance is insufficient.

電源導体層および接地導体層を流れる信号の一部(帰路電流)に対する抵抗およびインダクタンスが大きくなると、半導体素子の駆動電圧を低電圧化した際に、駆動信号の減衰が大きくなり、駆動信号のノイズに対するマージンが小さくなり、駆動信号に対するノイズの影響が大きくなるため、半導体素子が誤動作しやすくなる。   When the resistance and inductance to a part of the signal (return current) flowing through the power supply conductor layer and the ground conductor layer are increased, the drive signal attenuation is increased when the drive voltage of the semiconductor element is lowered, and the noise of the drive signal is increased. Since the margin for the noise is reduced and the influence of noise on the drive signal is increased, the semiconductor element is liable to malfunction.

従って、本発明は、上記問題点を解決するために案出されたものであり、その目的は、電源電位配線および接地電位配線に、信号配線を伝送される信号の電磁放射による帰路電流が重畳されたとしても、電源電位配線および接地電位配線に発生する抵抗およびインダクタンスを小さくして同時スイッチングノイズを低減することができ、その結果、半導体素子の動作を良好なものとすることが可能な多層基板、およびそれを用いた半導体装置を提供することにある。   Accordingly, the present invention has been devised to solve the above problems, and its purpose is to superimpose a return current due to electromagnetic radiation of a signal transmitted through the signal wiring on the power supply potential wiring and the ground potential wiring. Even if the power supply potential wiring and the ground potential wiring are reduced, the simultaneous switching noise can be reduced by reducing the resistance and the inductance generated in the power supply potential wiring and the ground potential wiring. A substrate and a semiconductor device using the same are provided.

本発明の多層基板は、複数の絶縁層および該絶縁層間に形成された電源導体層ならびに該電源導体層が形成された前記絶縁層間と異なる前記絶縁層間に形成された接地導体層を有するとともに、下面の外周部に複数の信号端子ならびに中央部に複数の電源端子および複数の接地端子を有する半導体素子を搭載する搭載部を上面に有する基体と、該基体の前記搭載部の中央部から前記基体の下面側に向かって形成された、前記電源導体層に電気的に接続された複数の電源貫通導体および前記接地導体層に電気的に接続された複数の接地貫通導体と、前記基体の前記搭載部の外周部から前記基体の下面側に向かって形成された複数の信号貫通導体とを備えており、複数の前記電源貫通導体および複数の前記接地貫通導体は、平面視で前記搭載部の中心から外周側に向かって交互に環状に配列されており、前記電源導体層は、平面視で環状に配列された複数の前記接地貫通導体が貫通する部位を含む環状の電源導体層非形成部を有しており、前記接地導体層は、平面視で環状に配列された複数の前記電源貫通導体が貫通する部位を含む環状の接地導体層非形成部を有していることを特徴とするものである。   The multilayer substrate of the present invention has a plurality of insulating layers and a power conductor layer formed between the insulating layers, and a ground conductor layer formed between the insulating layers different from the insulating layer on which the power conductor layers are formed, A base body having a mounting portion on the top surface for mounting a semiconductor element having a plurality of signal terminals on the outer peripheral portion of the lower surface and a plurality of power supply terminals and a plurality of ground terminals in the central portion, and from the central portion of the mounting portion to the base body A plurality of power supply through conductors electrically connected to the power supply conductor layer, a plurality of ground through conductors electrically connected to the ground conductor layer, and the mounting of the base body. A plurality of signal through conductors formed from the outer periphery of the unit toward the lower surface side of the base, and the plurality of power supply through conductors and the plurality of ground through conductors of the mounting unit in plan view The power supply conductor layers are arranged in an annular shape alternately from the center toward the outer peripheral side, and the power supply conductor layer includes an annular power supply conductor layer non-forming portion including a portion through which the plurality of grounding through conductors arranged in a ring shape penetrate in a plan view. The grounding conductor layer has an annular grounding conductor layer non-forming portion including a portion through which the plurality of power supply through conductors arranged in a ring shape in a plan view passes. It is.

また、本発明の多層基板は、上記の構成において、複数の前記電源貫通導体は、複数種の電源電位ごとの群を成しており、該群ごとにその群間に複数の前記接地貫通導体を挟んで、平面視で前記搭載部の中心から外周側に向かって環状に配列されていることを特徴とするものである。   In the multilayer substrate of the present invention, in the above configuration, the plurality of power supply through conductors form a group for each of a plurality of types of power supply potentials, and each group includes a plurality of the ground through conductors between the groups. Is arranged in an annular shape from the center of the mounting portion toward the outer periphery in a plan view.

また、本発明の多層基板は、上記の構成において、平面視で前記搭載部の中央部の最外周に複数の前記接地貫通導体が環状に配列されていることを特徴とするものである。   Further, the multilayer substrate of the present invention is characterized in that, in the above configuration, a plurality of the ground through conductors are arranged in a ring shape on the outermost periphery of the central portion of the mounting portion in plan view.

また、本発明の半導体装置は、上記本発明の多層基板と、該多層基板の前記搭載部に搭載された半導体素子とを備えていることを特徴とするものである。   A semiconductor device of the present invention includes the multilayer substrate of the present invention and a semiconductor element mounted on the mounting portion of the multilayer substrate.

本発明の多層基板によれば、複数の絶縁層および絶縁層間に形成された電源導体層ならびに電源導体層が形成された絶縁層間と異なる絶縁層間に形成された接地導体層を有するとともに、下面の外周部に複数の信号端子ならびに中央部に複数の電源端子および複数の接地端子を有する半導体素子を搭載する搭載部を上面に有する基体と、基体の搭載部の中央部から基体の下面側に向かって形成された、電源導体層に電気的に接続された複数の電源貫通導体および接地導体層に電気的に接続された複数の接地貫通導体と、基体の搭載部の外周部から基体の下面側に向かって形成された複数の信号貫通導体とを備えており、複数の電源貫通導体および複数の接地貫通導体は、平面視で搭載部の中心から外周側に向かって交互に環状に配列されており、電源導体層は、平面視で環状に配列された複数の接地貫通導体が貫通する部位を含む環状の電源導体層非形成部を有しており、接地導体層は、平面視で環状に配列された複数の電源貫通導体が貫通する部位を含む環状の接地導体層非形成部を有していることから、電源貫通導体同士の間の電流経路が短く、電流幅が大きくなるため、電源導体層における抵抗およびインダクタンスが小さくなる。また、接地貫通導体同士の間の電流経路が短く、電流幅が大きくなるため、接地導体層における抵抗およびインダクタンスが小さくなる。その結果、同時スイッチングノイズを効果的に抑制することによって、半導体素子の誤動作が抑制され、半導体素子の作動性を良好なものとすることができる。   According to the multilayer substrate of the present invention, the power supply conductor layer formed between the plurality of insulation layers and the insulation layers, the ground conductor layer formed between the insulation layers different from the insulation layer formed with the power supply conductor layers, A base body having a mounting portion for mounting a semiconductor element having a plurality of signal terminals on the outer peripheral portion and a plurality of power supply terminals and a plurality of ground terminals in the central portion, and from the central portion of the base mounting portion toward the lower surface side of the base body. A plurality of power supply through conductors electrically connected to the power supply conductor layer and a plurality of ground through conductors electrically connected to the ground conductor layer, and a lower surface side of the substrate from the outer periphery of the substrate mounting portion A plurality of signal through conductors and a plurality of power through conductors and a plurality of ground through conductors are alternately arranged in an annular shape from the center of the mounting portion toward the outer periphery in a plan view. Oh The power supply conductor layer has an annular power supply conductor layer non-forming portion including a portion through which a plurality of ground through conductors arranged in a ring shape in plan view penetrates, and the ground conductor layer is arranged in a ring shape in plan view Since there is an annular ground conductor layer non-forming portion including a portion through which a plurality of power supply through conductors penetrated, the current path between the power supply through conductors is short and the current width is large. The resistance and inductance in the layer is reduced. In addition, since the current path between the ground through conductors is short and the current width is large, the resistance and inductance in the ground conductor layer are small. As a result, the simultaneous switching noise is effectively suppressed, so that the malfunction of the semiconductor element is suppressed and the operability of the semiconductor element can be improved.

また、電源導体層は、平面視で環状に配列された複数の接地貫通導体が貫通する部位を含む環状の電源導体層非形成部を有しており、接地導体層は、平面視で環状に配列された複数の電源貫通導体が貫通する部位を含む環状の接地導体層非形成部を有していることから、電源電圧および接地電圧の電圧レベルの変動(通称バウンズという)を低減することができる。   In addition, the power supply conductor layer has an annular power supply conductor layer non-forming portion including a portion through which a plurality of ground through conductors arranged in a ring shape in a plan view passes, and the ground conductor layer has a ring shape in a plan view. Since the ring-shaped ground conductor layer non-forming portion including the portion through which the plurality of arranged power supply through conductors penetrates is provided, fluctuations in the voltage level of the power supply voltage and the ground voltage (commonly referred to as bounce) can be reduced. it can.

すなわち、略面状導体である電源導体層は、電源貫通導体から流れてきた信号の一部が電源導体層の面内で拡散および反射を繰り返し、その結果、電源電圧の電圧レベルが変動することとなるが、環状の電源導体層非形成部が形成されていると、電源導体層における連続した面状の部分の面積が小さくなり、信号の一部の拡散および反射の度合いが小さくなる。従って、電源電圧の電圧レベルの変動が抑えられる。また、同様に接地電圧の電圧レベルの変動が抑えられる。   In other words, the power supply conductor layer, which is a substantially planar conductor, has a part of the signal flowing from the power supply through conductor repeatedly diffused and reflected in the plane of the power supply conductor layer, and as a result, the voltage level of the power supply voltage fluctuates. However, if the annular power supply conductor layer non-forming portion is formed, the area of the continuous planar portion in the power supply conductor layer is reduced, and the degree of diffusion and reflection of a part of the signal is reduced. Therefore, fluctuations in the voltage level of the power supply voltage can be suppressed. Similarly, fluctuations in the voltage level of the ground voltage can be suppressed.

また、本発明の多層基板は、複数の電源貫通導体は、複数種の電源電位ごとの群を成しており、その群ごとにその群間に複数の接地貫通導体を挟んで、平面視で搭載部の中心から外周側に向かって環状に配列されているときには、複数種の電源電位に対して同時スイッチングノイズを効果的に抑制するとともに、電源電圧の電圧レベルの変動を抑えることができる。   In the multilayer substrate of the present invention, the plurality of power supply through conductors form a group for each of a plurality of types of power supply potentials, and each group has a plurality of grounding through conductors sandwiched between the groups in plan view. When arranged in an annular shape from the center of the mounting portion toward the outer peripheral side, simultaneous switching noise can be effectively suppressed for a plurality of types of power supply potentials, and fluctuations in the voltage level of the power supply voltage can be suppressed.

また、本発明の多層基板は、平面視で搭載部の中央部の最外周に複数の接地貫通導体が環状に配列されているときには、複数の接地貫通導体が電磁遮蔽(シールディング)の効果を有するものとなり、外部から侵入しようとする電磁波のノイズを効果的に抑制することが可能となり、半導体素子の作動性を良好なものとすることができる。   In the multilayer substrate of the present invention, when a plurality of grounding through conductors are arranged in an annular shape on the outermost periphery of the central portion of the mounting portion in plan view, the plurality of grounding through conductors have the effect of electromagnetic shielding (shielding). Therefore, it is possible to effectively suppress noise of electromagnetic waves entering from the outside, and the operability of the semiconductor element can be improved.

また、本発明の半導体装置は、上記本発明の多層基板と、多層基板の搭載部に搭載された半導体素子とを備えていることから、搭載された半導体素子の動作特性が良好なものとなる。   In addition, since the semiconductor device of the present invention includes the multilayer substrate of the present invention and a semiconductor element mounted on the mounting portion of the multilayer substrate, the mounted semiconductor element has good operating characteristics. .

本発明の多層基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the multilayer substrate of this invention. 図1に示す多層基板における電源貫通導体、接地貫通導体および信号貫通導体が形成された絶縁層の平面図である。It is a top view of the insulating layer in which the power supply penetration conductor, the grounding penetration conductor, and the signal penetration conductor in the multilayer substrate shown in FIG. 1 were formed. 図1に示す多層基板における、環状の接地導体層非形成部を有している接地導体層が形成された絶縁層の平面図である。It is a top view of the insulating layer in which the ground conductor layer which has a cyclic | annular ground conductor layer non-formation part in the multilayer substrate shown in FIG. 1 was formed.

以下、添付の図面を参照して、本発明の多層基板(多層配線基板)の実施の形態の例について説明する。図1は、本実施の形態の例の多層基板の断面図である。また、図2は、図1の多層基板における電源貫通導体、接地貫通導体および信号貫通導体が形成された絶縁層の平面図である。また、図3は、図1に示す多層基板における、環状の接地導体層非形成部を有している接地導体層が形成された絶縁層の平面図である。   Hereinafter, an example of an embodiment of a multilayer substrate (multilayer wiring substrate) of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a multilayer substrate according to an example of the present embodiment. FIG. 2 is a plan view of an insulating layer in which the power supply through conductor, the ground through conductor, and the signal through conductor are formed in the multilayer substrate of FIG. FIG. 3 is a plan view of an insulating layer in which a ground conductor layer having a ring-shaped ground conductor layer non-forming portion is formed in the multilayer substrate shown in FIG.

本実施の形態の多層基板1は、複数の絶縁層2a〜2jおよび絶縁層2b,2c間に形成された電源導体層7ならびに電源導体層7が形成された絶縁層2b,2c間と異なる絶縁層2a,2b間に形成された接地導体層8を有するとともに、下面の外周部に複数の信号端子ならびに中央部に複数の電源端子および複数の接地端子を有する半導体素子3を搭載する搭載部1aを上面に有する基体20と、基体20の搭載部1aの中央部から基体20の下面側に向かって形成された、電源導体層7に電気的に接続された複数の電源貫通導体10および接地導体層8に電気的に接続された複数の接地貫通導体11と、基体20の搭載部1aの外周部から基体20の下面側に向かって形成された複数の信号貫通導体12とを備えており、複数の電源貫通導体10および複数の接地貫通導体11は、平面視で搭載部1aの中心から外周側に向かって交互に環状に配列されており、電源導体層7は、平面視で環状に配列された複数の接地貫通導体11が貫通する部位を含む環状の電源導体層非形成部を有しており、接地導体層8は、平面視で環状に配列された複数の電源貫通導体10が貫通する部位を含む環状の接地導体層非形成部を有している。   The multilayer substrate 1 according to the present embodiment includes a plurality of insulating layers 2a to 2j and a power source conductor layer 7 formed between the insulating layers 2b and 2c, and an insulation different from that between the insulating layers 2b and 2c where the power source conductor layer 7 is formed. A mounting portion 1a having a ground conductor layer 8 formed between the layers 2a and 2b and mounting a semiconductor element 3 having a plurality of signal terminals on the outer peripheral portion of the lower surface and a plurality of power supply terminals and a plurality of ground terminals in the central portion. And a plurality of power supply through conductors 10 and ground conductors electrically connected to the power supply conductor layer 7 formed from the central portion of the mounting portion 1a of the substrate 20 toward the lower surface side of the substrate 20. A plurality of grounding through conductors 11 electrically connected to the layer 8, and a plurality of signal through conductors 12 formed from the outer peripheral portion of the mounting portion 1a of the base body 20 toward the lower surface side of the base body 20, Multiple power feedthroughs 10 and multiple grounds The through conductors 11 are alternately arranged in an annular shape from the center of the mounting portion 1a in the plan view toward the outer peripheral side, and the power supply conductor layer 7 is penetrated by a plurality of grounding through conductors 11 arranged in an annular shape in the plan view. The grounding conductor layer 8 includes a portion where the plurality of power supply through conductors 10 arranged in a ring shape in plan view penetrates the grounding conductor layer 8. It has a forming part.

上記の構成により、電源貫通導体10同士の間の電流経路が短く、電流幅が大きくなるため、電源導体層7における抵抗およびインダクタンスが小さくなる。また、接地貫通導体11同士の間の電流経路が短く、電流幅が大きくなるため、接地導体層8における抵抗およびインダクタンスが小さくなる。その結果、同時スイッチングノイズを効果的に抑制することによって、半導体素子3の誤動作が抑制され、半導体素子3の作動性を良好なものとすることができる。   With the above configuration, since the current path between the power supply through conductors 10 is short and the current width is large, the resistance and inductance in the power supply conductor layer 7 are small. Further, since the current path between the ground through conductors 11 is short and the current width is increased, the resistance and inductance in the ground conductor layer 8 are reduced. As a result, the simultaneous switching noise is effectively suppressed, so that the malfunction of the semiconductor element 3 is suppressed and the operability of the semiconductor element 3 can be improved.

また、電源導体層7は、平面視で環状に配列された複数の接地貫通導体11が貫通する部位を含む環状の電源導体層非形成部を有しており、接地導体層8は、平面視で環状に配列された複数の電源貫通導体10が貫通する部位を含む環状の接地導体層非形成部を有していることから、電源電圧および接地電圧の電圧レベルの変動(通称バウンズという)を低減することができる。   Further, the power supply conductor layer 7 has an annular power supply conductor layer non-forming portion including a portion through which a plurality of grounding through conductors 11 arranged in a ring shape in a plan view passes, and the ground conductor layer 8 has a plan view. Since there is a ring-shaped ground conductor layer non-forming portion including a portion through which a plurality of power supply through conductors 10 arranged in a ring shape penetrate, fluctuations in the voltage level of the power supply voltage and the ground voltage (commonly called bounces) Can be reduced.

すなわち、略面状導体である電源導体層7は、電源貫通導体10から流れてきた信号の一部が電源導体層7の面内で拡散および反射を繰り返し、その結果、電源電圧の電圧レベルが変動することとなるが、環状の電源導体層非形成部が形成されていると、電源導体層7における連続した面状の部分の面積が小さくなり、信号の一部の拡散および反射の度合いが小さくなる。従って、電源電圧の電圧レベルの変動が抑えられる。また、同様に接地電圧の電圧レベルの変動が抑えられる。   That is, the power supply conductor layer 7 that is a substantially planar conductor repeats diffusion and reflection of a part of the signal flowing from the power supply through conductor 10 within the surface of the power supply conductor layer 7, and as a result, the voltage level of the power supply voltage is increased. If the annular power supply conductor layer non-forming portion is formed, the area of the continuous planar portion in the power supply conductor layer 7 is reduced, and the degree of diffusion and reflection of a part of the signal is reduced. Get smaller. Therefore, fluctuations in the voltage level of the power supply voltage can be suppressed. Similarly, fluctuations in the voltage level of the ground voltage can be suppressed.

本実施の形態の多層基板1は、上面に形成された半導体素子3に電気的に接続される上面側の電極パッド6、下面に形成された外部の駆動装置、プリント配線基板の配線等に電気的に接続される下面側の電極パッド13、複数の絶縁層2、配線導体層および貫通導体を有する。絶縁層2は、複数の絶縁層2a〜2jを総称するものである。下面側の電極パッド13は、外部の駆動装置等に電気的に接続するための外部接続導体バンプ14が接続されている。   The multilayer substrate 1 according to the present embodiment is electrically connected to an electrode pad 6 on the upper surface side that is electrically connected to the semiconductor element 3 formed on the upper surface, an external driving device formed on the lower surface, wiring on the printed wiring board, and the like. The electrode pad 13 on the lower surface side, the plurality of insulating layers 2, the wiring conductor layer, and the through conductor are connected to each other. The insulating layer 2 is a general term for the plurality of insulating layers 2a to 2j. The electrode pads 13 on the lower surface side are connected to external connection conductor bumps 14 for electrical connection to an external driving device or the like.

多層基板1の配線導体層は、絶縁層2b,2c間に形成された電源導体層7、絶縁層2a,2b間に形成された接地導体層8、絶縁層2g,2h間に形成された信号導体層9を含む。貫通導体は、半導体素子3の電源端子と電源導体層7とを電気的に接続する電源貫通導体10、半導体素子3の接地端子と接地導体層8とを電気的に接続する接地貫通導体11、半導体素子3の信号端子と信号導体層9とを電気的に接続する信号貫通導体12を含む。   The wiring conductor layer of the multilayer substrate 1 includes a power source conductor layer 7 formed between the insulating layers 2b and 2c, a ground conductor layer 8 formed between the insulating layers 2a and 2b, and a signal formed between the insulating layers 2g and 2h. A conductor layer 9 is included. The through conductor includes a power supply through conductor 10 that electrically connects the power supply terminal of the semiconductor element 3 and the power supply conductor layer 7, a grounding through conductor 11 that electrically connects the ground terminal of the semiconductor element 3 and the ground conductor layer 8, A signal through conductor 12 that electrically connects the signal terminal of the semiconductor element 3 and the signal conductor layer 9 is included.

半導体素子3は、多層基板1の上面側電極パッド6に電気的に接続される電極パッド4が下面に形成されており、上面側の電極パッド6と電極パッド4とは導体バンプ5を介して電気的に接続されている。   In the semiconductor element 3, an electrode pad 4 electrically connected to the upper surface side electrode pad 6 of the multilayer substrate 1 is formed on the lower surface, and the upper surface side electrode pad 6 and the electrode pad 4 are connected via a conductor bump 5. Electrically connected.

また、絶縁層2a〜2jは、それぞれがさらに複数の絶縁層から成っていてもよい。すなわち、絶縁層2a〜2fは、それぞれより薄い絶縁層が複数積層されて成るものであっても良い。   Moreover, each of the insulating layers 2a to 2j may further include a plurality of insulating layers. That is, each of the insulating layers 2a to 2f may be formed by stacking a plurality of thinner insulating layers.

本実施の形態による多層基板1において、絶縁層2a〜2jは、酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,炭化珪素質焼結体,窒化珪素質焼結体,ムライト質焼結体またはガラスセラミックス等の無機絶縁材料からなる。絶縁層2a〜2jは、例えば、セラミックグリーンシート積層法、押し出し成形法等の方法によって形成される。   In the multilayer substrate 1 according to the present embodiment, the insulating layers 2a to 2j are made of an aluminum oxide sintered body, an aluminum nitride sintered body, a silicon carbide sintered body, a silicon nitride sintered body, and a mullite sintered body. Or it consists of inorganic insulating materials, such as glass ceramics. The insulating layers 2a to 2j are formed by a method such as a ceramic green sheet lamination method or an extrusion molding method.

絶縁層2は、無機絶縁材料を用いて以下のようにして作製される。無機絶縁材料が例えば酸化アルミニウム質焼結体から成る場合、まず、酸化アルミニウム,酸化珪素,酸化カルシウムまたは酸化マグネシウム等の原料粉末に適当な有機バインダおよび溶剤等を添加混合して泥漿状となし、これをドクターブレード法、カレンダ法、リバースコータ法等でシート状と成すことによってセラミックグリーンシートを得る。そして、セラミックグリーンシートに各配線導体層および電極パッドと成る導電性ペーストを所定のパターンで印刷塗布して、これらを積層して積層体を形成し、最後にこの積層体を還元雰囲気中で約1600℃の温度で焼成することによって製作される。   The insulating layer 2 is produced as follows using an inorganic insulating material. When the inorganic insulating material is made of, for example, an aluminum oxide sintered body, first, an appropriate organic binder and solvent are added to and mixed with raw material powders such as aluminum oxide, silicon oxide, calcium oxide or magnesium oxide to form a slurry. This is formed into a sheet by a doctor blade method, a calendar method, a reverse coater method or the like to obtain a ceramic green sheet. Then, a conductive paste serving as each wiring conductor layer and electrode pad is printed and applied to the ceramic green sheet in a predetermined pattern, and these are laminated to form a laminate. Finally, this laminate is reduced in a reducing atmosphere. Manufactured by firing at a temperature of 1600 ° C.

また、絶縁層2は、ポリイミド,エポキシ樹脂,フッ素樹脂,ポリノルボルネンもしくはベンゾシクロブテン等の有機絶縁材料、またはセラミック粉末等の無機絶縁物粉末をエポキシ樹脂等の熱硬化性樹脂に混合して成る複合絶縁材料等の電気的に絶縁性の材料から成っていてもよい。   The insulating layer 2 is formed by mixing an organic insulating material such as polyimide, epoxy resin, fluororesin, polynorbornene or benzocyclobutene, or inorganic insulating powder such as ceramic powder in a thermosetting resin such as epoxy resin. You may consist of electrically insulating materials, such as a composite insulating material.

例えば、絶縁層2が複合絶縁材料から成る場合、まず酸化アルミニウム質焼結体から成るセラミックス粉末を混合した熱硬化性のエポキシ樹脂、またはガラス繊維を織り込んだ布にエポキシ樹脂を含浸させたガラスエポキシ樹脂から成る絶縁層の上面に、液状の樹脂前駆体をスピンコート法またはカーテンコート法等により塗布し、これを予備熱硬化処理する。次に、絶縁層2の主面に、配線導体層を無電解めっき法、蒸着法等の薄膜形成法およびフォトリソグラフィ法によって形成し、複数の絶縁層2を積層して約170℃程度の温度で加熱硬化することによって、基体20が作製される。基体20の厚みは、使用する材料の特性に応じて、また要求される仕様に対応する機械的強度および電気的特性等の条件を満たすように設定される。   For example, when the insulating layer 2 is made of a composite insulating material, first, a thermosetting epoxy resin mixed with ceramic powder made of an aluminum oxide sintered body, or a glass epoxy obtained by impregnating a glass fiber woven cloth with an epoxy resin. A liquid resin precursor is applied to the upper surface of the insulating layer made of resin by a spin coat method, a curtain coat method, or the like, and this is preliminarily cured. Next, a wiring conductor layer is formed on the main surface of the insulating layer 2 by a thin film forming method such as an electroless plating method or a vapor deposition method and a photolithography method, and a plurality of insulating layers 2 are laminated to a temperature of about 170 ° C. The substrate 20 is produced by heat curing at The thickness of the substrate 20 is set so as to satisfy the conditions such as mechanical strength and electrical characteristics corresponding to the required specifications according to the characteristics of the material used.

電極パッド4,6,13、電源導体層7、接地導体層8、信号導体層9、電源貫通導体10、接地貫通導体11および信号貫通導体12は、例えば、タングステン(W),モリブデン(Mo),モリブデン−マンガン(Mo−Mn)合金,銅(Cu),銀(Ag)または銀−パラジウム(Ag−Pd)合金等の導体層、または銅(Cu),銀(Ag),ニッケル(Ni),クロム(Cr),チタン(Ti),金(Au)もしくはニオブ(Nb)の導体層、またはそれらの合金の導体層等から成る。   The electrode pads 4, 6, 13, the power supply conductor layer 7, the ground conductor layer 8, the signal conductor layer 9, the power supply through conductor 10, the ground through conductor 11, and the signal through conductor 12 are, for example, tungsten (W), molybdenum (Mo) , Molybdenum-manganese (Mo-Mn) alloy, copper (Cu), silver (Ag) or silver-palladium (Ag-Pd) alloy conductor layer, or copper (Cu), silver (Ag), nickel (Ni) , Chromium (Cr), titanium (Ti), gold (Au) or niobium (Nb) conductor layer, or a conductor layer thereof.

導体層の形成方法としては、厚膜法、薄膜形成法等の方法があげられる。例えば、信号導体層9を厚膜法で形成する場合、Cu粉末に適当な有機バインダーおよび溶剤等を添加混合して得た導電性ペーストを、セラミックグリーンシートに所定のパターンで印刷塗布し、このセラミックグリーンシートを複数積層して積層体とし、焼成することによって形成することができる。   Examples of the method for forming the conductor layer include a thick film method and a thin film formation method. For example, when the signal conductor layer 9 is formed by a thick film method, a conductive paste obtained by adding and mixing a suitable organic binder and solvent to Cu powder is printed and applied in a predetermined pattern on a ceramic green sheet. It can be formed by laminating a plurality of ceramic green sheets to form a laminate and firing.

なお、導体層は、セラミックグリーンシートの積層時に導体層の端部に大きな段差がついて不良とならない程度に厚くすることによって、導体層の抵抗およびインピーダンスを低くすることができ、結果として導体層に重畳するノイズを抑制することが可能となる。   The conductor layer can be reduced in resistance and impedance by increasing the thickness of the conductor layer to such an extent that a large step is not formed at the end of the conductor layer when the ceramic green sheets are laminated. It is possible to suppress the superimposed noise.

また、導体層の形成に用いられる導電性ペーストは、導電性粒子および絶縁性粒子を含む場合、導電性ペーストにおける絶縁性粒子の含有率を導電性粒子の含有率よりも小さくすることにより、導体層の抵抗およびインピーダンスを低くすることができ、ノイズを抑制する効果がより向上する。   In addition, when the conductive paste used for forming the conductor layer includes conductive particles and insulating particles, the conductive paste contains a conductive particle by making the content of the insulating particles smaller than the content of the conductive particles. The resistance and impedance of the layer can be lowered, and the effect of suppressing noise is further improved.

絶縁層2に形成される電源貫通導体10、接地貫通導体11および信号貫通導体12等の貫通導体は、以下のような方法によって形成される。まず、金型またはパンチングによる打ち抜き法、炭酸ガス(CO)レーザ装置、UV−YAGレーザ装置等を用いたレーザ加工法等により、セラミックグリーンシートに貫通孔を形成する。次に、Cu等の導電性粒子、有機バインダー、溶剤、ガラス粉末、樹脂ビーズおよびフィラー等を添加混合して得た導電性ペーストを貫通孔に充填し、このようにして形成されたセラミックグリーンシートを所望の枚数積層し、焼成することによって、貫通導体を形成することができる。 The through conductors such as the power through conductor 10, the ground through conductor 11, and the signal through conductor 12 formed in the insulating layer 2 are formed by the following method. First, through holes are formed in the ceramic green sheet by a punching method using a die or punching, a laser processing method using a carbon dioxide gas (CO 2 ) laser device, a UV-YAG laser device, or the like. Next, a conductive paste obtained by adding and mixing conductive particles such as Cu, an organic binder, a solvent, glass powder, resin beads and a filler is filled in the through holes, and the ceramic green sheet thus formed A through conductor can be formed by laminating a desired number of layers and firing.

また、貫通導体を形成するための導電性ペーストが導体性粒子と絶縁性粒子とを含む場合、導電性ペーストにおける絶縁性粒子の含有率を導体性粒子の含有率に比較して低くすることにより、貫通導体の抵抗およびインピーダンスをより低くすることができ、ノイズを抑制する効果がより向上する。   Further, when the conductive paste for forming the through conductor contains conductive particles and insulating particles, the content of the insulating particles in the conductive paste is made lower than the content of the conductive particles. The resistance and impedance of the through conductor can be further reduced, and the effect of suppressing noise is further improved.

本実施の形態の多層基板1は、図2に示すように、複数の電源貫通導体10および複数の接地貫通導体11は、平面視で搭載部1aの中心から外周側に向かって交互に環状に配列されている。さらに、搭載部1aの最外周に信号貫通導体12が環状に配列されている。   As shown in FIG. 2, the multilayer substrate 1 according to the present embodiment includes a plurality of power supply through conductors 10 and a plurality of ground through conductors 11 that are alternately annular from the center of the mounting portion 1a toward the outer periphery in a plan view. It is arranged. Further, the signal through conductors 12 are arranged in an annular shape on the outermost periphery of the mounting portion 1a.

このように貫通導体を環状に配列することによって、貫通導体同士の間の距離(電流経路)が短くなる。また、電流経路の幅が大きくなる。例えば、電源貫通導体10の電流経路であれば、電源貫通導体10の両側に隣接する接地貫通導体11同士の間の距離が長くなる。その結果、電源導体層7における抵抗およびインダクタンスが小さくなる。   Thus, by arranging the through conductors in a ring shape, the distance (current path) between the through conductors is shortened. In addition, the width of the current path is increased. For example, in the current path of the power supply through conductor 10, the distance between the ground through conductors 11 adjacent to both sides of the power supply through conductor 10 is increased. As a result, the resistance and inductance in the power supply conductor layer 7 are reduced.

例えば、複数の電源貫通導体および複数の接地貫通導体が平面視で半導体素子3の搭載部1aにおいて互いに隣接するように交互に配列されている従来の多層基板の場合、電源貫通導体10の電流経路の長さは360μm程度であったものが、本実施の形態の多層基板1においては、200〜300μm程度と短くすることができる。また、上記の従来の多層基板の場合、電源貫通導体10の電流幅の大きさは50μm程度であったものが、本実施の形態の多層基板1においては、100〜200μm程度と大きくすることができる。   For example, in the case of a conventional multilayer substrate in which a plurality of power supply through conductors and a plurality of ground through conductors are alternately arranged so as to be adjacent to each other in the mounting portion 1a of the semiconductor element 3 in plan view, the current path of the power supply through conductor 10 In the multilayer substrate 1 of the present embodiment, the length can be shortened to about 200 to 300 μm. Further, in the case of the above-described conventional multilayer substrate, the current width of the power supply through conductor 10 is about 50 μm, but in the multilayer substrate 1 of the present embodiment, it can be increased to about 100 to 200 μm. it can.

このような効果を奏するためには、環状の形状は、図2のような四角形状に限らず、三角形状、五角形状以上の多角形状、円形状、楕円形状等の種々の形状であってもよい。   In order to achieve such an effect, the annular shape is not limited to the quadrangular shape as shown in FIG. 2, but may be various shapes such as a triangular shape, a polygonal shape of pentagonal shape or more, a circular shape, and an elliptical shape. Good.

また、本実施の形態の多層基板1は、複数の電源貫通導体10は、複数種の電源電位ごとの群を成しており、その群ごとにその群間に複数の接地貫通導体11を挟んで、平面視で搭載部1aの中心から外周側に向かって環状に配列されている構成であってもよい。この場合、複数種の電源電位に対して同時スイッチングノイズを効果的に抑制するとともに、電源電圧の電圧レベルの変動を抑えることができる。また、環状に配列されている複数の電源貫通導体10の群を、1つの電源導体層7に複数群接続することができる。また、接地貫通導体11および接地導体層8についても同様の構成を採り得る。従って、多層基板1を大幅に薄型化することができる。   Further, in the multilayer substrate 1 of the present embodiment, the plurality of power supply through conductors 10 form a group for each of a plurality of types of power supply potentials, and a plurality of ground through conductors 11 are sandwiched between the groups for each group. Thus, it may be configured to be arranged in an annular shape from the center of the mounting portion 1a toward the outer peripheral side in plan view. In this case, simultaneous switching noise can be effectively suppressed for a plurality of types of power supply potentials, and fluctuations in the voltage level of the power supply voltage can be suppressed. Further, a plurality of groups of power supply through conductors 10 arranged in a ring shape can be connected to a single power supply conductor layer 7. The ground through conductor 11 and the ground conductor layer 8 can have the same configuration. Therefore, the multilayer substrate 1 can be significantly reduced in thickness.

例えば、1つの電源導体層7に複数群の電源貫通導体10を接続する場合、10000〜15000群程度の電源貫通導体10を接続することができる。接地貫通導体11および接地導体層8についても同様である。   For example, when a plurality of groups of power supply through conductors 10 are connected to one power supply conductor layer 7, about 10,000 to 15000 groups of power supply through conductors 10 can be connected. The same applies to the ground through conductor 11 and the ground conductor layer 8.

図2に示すように、搭載部1aの中心部から接地貫通導体11、電源貫通導体10の順に交互に環状に配列する場合の環状の群の数は、半導体素子3の大きさおよび貫通導体間の距離、貫通導体の径より決めることができる。例えば、半導体素子3の平面視における大きさが縦20mm×横20mmであり、電源貫通導体10と接地貫通導体11との間の距離、および電源貫通導体10と信号貫通導体12との間の距離が200μm、電源貫通導体10、接地貫通導体11および電源貫通導体10のそれぞれ径が50μmである場合、環状に配列された複数の接地貫通導体11の群の数、および環状に配列された複数の電源貫通導体10の群の数は、それぞれ約100個程度である。   As shown in FIG. 2, the number of annular groups in the case where the grounding through conductors 11 and the power supply through conductors 10 are alternately arranged in this order from the center of the mounting portion 1a depends on the size of the semiconductor element 3 and the distance between the through conductors. And the diameter of the through conductor. For example, the size of the semiconductor element 3 in plan view is 20 mm long × 20 mm wide, the distance between the power supply through conductor 10 and the ground through conductor 11, and the distance between the power supply through conductor 10 and the signal through conductor 12 Is 200 μm, and each of the power supply through conductor 10, the ground through conductor 11 and the power supply through conductor 10 has a diameter of 50 μm, the number of groups of the plurality of ground through conductors 11 arranged in a ring, and the plurality of rings arranged in a ring The number of groups of power supply through conductors 10 is about 100 each.

また、本実施の形態の多層基板1は、平面視で搭載部1aの中央部の最外周に複数の接地貫通導体11が環状に配列されていることが好ましい。この場合、最外周に配列された複数の接地貫通導体11が電磁遮蔽(シールディング)の効果を有するものとなり、外部から侵入しようとする電磁波のノイズを効果的に抑制することが可能となり、半導体素子3の作動性を良好なものとすることができる。   In the multilayer substrate 1 of the present embodiment, it is preferable that a plurality of grounding through conductors 11 are arranged in an annular shape on the outermost periphery of the central portion of the mounting portion 1a in plan view. In this case, the plurality of grounding through conductors 11 arranged on the outermost periphery have the effect of electromagnetic shielding (shielding), and it is possible to effectively suppress the noise of electromagnetic waves trying to enter from the outside. The operability of the element 3 can be improved.

また、本実施の形態による多層基板1は、図3に示すように、電源導体層7は、平面視で環状に配列された複数の接地貫通導体11が貫通する部位を含む環状の電源導体層非形成部7aを有している。同様にして、接地導体層8は、平面視で環状に配列された複数の電源貫通導体10が貫通する部位を含む環状の接地導体層非形成部(図示せず)を有している。   Further, in the multilayer substrate 1 according to the present embodiment, as shown in FIG. 3, the power supply conductor layer 7 includes an annular power supply conductor layer including a portion through which a plurality of ground through conductors 11 arranged in a ring shape in plan view penetrate. It has a non-forming part 7a. Similarly, the ground conductor layer 8 has an annular ground conductor layer non-forming portion (not shown) including a portion through which a plurality of power supply through conductors 10 arranged in an annular shape in a plan view pass.

電源導体層非形成部7aの幅は、接地貫通導体11の径(50〜100μm程度)よりも大きければよく、接地貫通導体11の径よりも30〜40%程度大きいことが好ましい。この範囲内とすることにより、接地貫通導体11を形成するための導電性ペーストが電源導体層7に接触して不良品となることを大幅に抑えることができ、また、電源導体層非形成部7aの幅が大きくなりすぎて多層基板1が大型化されることを抑えることができる。また、接地導体層非形成部の幅の大きさについても、同様の理由で同様の構成とすることができる。   The width of the power supply conductor layer non-forming portion 7a may be larger than the diameter of the grounding through conductor 11 (about 50 to 100 μm), and preferably about 30 to 40% larger than the diameter of the grounding through conductor 11. Within this range, the conductive paste for forming the grounding through conductor 11 can be largely prevented from coming into contact with the power supply conductor layer 7 and becoming a defective product. It can suppress that the width | variety of 7a becomes large too much and the multilayer substrate 1 is enlarged. Further, the width of the ground conductor layer non-forming portion can be configured similarly for the same reason.

また、本実施の形態の半導体装置は、上記本発明の多層基板1と、多層基板1の搭載部1aに搭載された半導体素子3とを備えている。このことから、多層基板1に搭載された半導体素子3の動作特性が良好なものとなる。   The semiconductor device of the present embodiment includes the multilayer substrate 1 of the present invention and the semiconductor element 3 mounted on the mounting portion 1a of the multilayer substrate 1. For this reason, the operation characteristics of the semiconductor element 3 mounted on the multilayer substrate 1 are good.

半導体素子3は、IC,LSI等の集積回路素子、半導体レーザ(LD),フォトダイオード(PD)等の光半導体素子などである。   The semiconductor element 3 is an integrated circuit element such as an IC or LSI, or an optical semiconductor element such as a semiconductor laser (LD) or a photodiode (PD).

この半導体素子3は、例えば、下面の外周部に多数の信号端子、下面の中央部に多数の電源端子および多数の接地端子が形成されており、各端子が多層基板1の上面に形成された電極パッド6に、錫−鉛(Sn−Pb)合金,錫−銀−銅(Sn−Ag−Cu)合金等の半田または金(Au)等から成る導体バンプ5を介して、電気的に接続されて、搭載部1aに搭載される。   In this semiconductor element 3, for example, a large number of signal terminals are formed on the outer peripheral portion of the lower surface, a large number of power terminals and a large number of ground terminals are formed in the central portion of the lower surface, and each terminal is formed on the upper surface of the multilayer substrate 1. Electrically connected to the electrode pad 6 through conductor bumps 5 made of solder such as tin-lead (Sn-Pb) alloy, tin-silver-copper (Sn-Ag-Cu) alloy, or gold (Au). And mounted on the mounting portion 1a.

また、多層基板1において信号を伝送する信号配線を有する信号導体層9は、信号配線の配線幅および信号導体層9が形成される絶縁層2hの厚みを適宜設定することにより、特性インピーダンスを所望の値に設定することができる。その結果、良好な伝送特性を有する信号導体層9を形成することが可能となる。信号導体層9の特性インピーダンスは一般的には50Ωに設定される。なお、信号導体層9が複数ある場合、それぞれ異なる信号を伝送するものとしてもよい。   In addition, the signal conductor layer 9 having signal wiring for transmitting signals in the multilayer substrate 1 has a desired characteristic impedance by appropriately setting the wiring width of the signal wiring and the thickness of the insulating layer 2h on which the signal conductor layer 9 is formed. Value can be set. As a result, it is possible to form the signal conductor layer 9 having good transmission characteristics. The characteristic impedance of the signal conductor layer 9 is generally set to 50Ω. If there are a plurality of signal conductor layers 9, different signals may be transmitted.

なお、信号配線を有する信号導体層9が形成された絶縁層2h上に、信号配線と対向する部位に導体が形成されていない接地導体層8が形成された絶縁層2gを積層し、接地導体層8と信号導体層9の間の距離を適宜調整することによって、特性インピーダンスの調整がより容易になる。   An insulating layer 2g in which a ground conductor layer 8 in which no conductor is formed is laminated on a portion facing the signal wiring is laminated on the insulating layer 2h in which the signal conductor layer 9 having the signal wiring is formed. By appropriately adjusting the distance between the layer 8 and the signal conductor layer 9, the characteristic impedance can be adjusted more easily.

半導体素子3にて処理された信号は、信号貫通導体12を通り、信号導体層9の信号配線にて伝送され、再度信号貫通導体12を通って、多層基板1が実装される外部のプリント配線基板等に形成された外部電気回路に伝送される。   The signal processed by the semiconductor element 3 passes through the signal through conductor 12, is transmitted through the signal wiring of the signal conductor layer 9, and again passes through the signal through conductor 12 to be external printed wiring on which the multilayer substrate 1 is mounted. It is transmitted to an external electric circuit formed on a substrate or the like.

また、電源電圧については、電源貫通導体10を通り、電源導体層7上で他の電源貫通導体10から伝送されてきた電源電圧の信号と繋がり、再度貫通導体10を通り、半導体素子3へ供給される。   The power supply voltage passes through the power supply through conductor 10, is connected to the power supply voltage signal transmitted from the other power supply through conductor 10 on the power supply conductor layer 7, and is supplied again to the semiconductor element 3 through the through conductor 10. Is done.

また、接地電位については、接地貫通導体11、接地導体層8を通り、再度貫通導体11を経て半導体素子3に電気的に接続される。   The ground potential is electrically connected to the semiconductor element 3 through the grounding through conductor 11 and the grounding conductor layer 8 and again through the through conductor 11.

なお、本実施の形態の多層基板1に搭載されるものは、半導体素子3に限らず、チップ抵抗、薄膜抵抗、コイルインダクタ、クロスインダクタ、チップキャパシタまたは電解キャパシタ等であってもよく、従って、本実施の形態の半導体装置はこれらの電子部品を搭載した電子回路モジュール等であってもよい。   In addition, what is mounted on the multilayer substrate 1 of the present embodiment is not limited to the semiconductor element 3, but may be a chip resistor, a thin film resistor, a coil inductor, a cross inductor, a chip capacitor, an electrolytic capacitor, or the like. The semiconductor device of the present embodiment may be an electronic circuit module on which these electronic components are mounted.

また、多層基板1の平面視における形状は、正方形状、長方形状の他に、菱形形状、六角形状、八角形状、円形状等の形状であってもよい。このような多層基板1は、半導体素子収納用パッケージ、電子部品搭載用基板、多数の半導体素子3が搭載されたいわゆるマルチチップモジュールおよびマルチチップパッケージ、マザーボード等としても使用される。   Further, the shape of the multilayer substrate 1 in plan view may be a rhombus shape, a hexagonal shape, an octagonal shape, a circular shape or the like in addition to the square shape and the rectangular shape. Such a multilayer substrate 1 is also used as a package for housing semiconductor elements, a substrate for mounting electronic components, a so-called multichip module and multichip package on which a large number of semiconductor elements 3 are mounted, a motherboard, and the like.

本発明の多層基板の実施例について以下に説明する。   Examples of the multilayer substrate of the present invention will be described below.

図1に示す本発明の実施例の多層基板1を以下のようにして作製した。まず、ガラスセラミックと呼ばれるガラスを含んだ無機絶縁材料の原料粉末に有機バインダーおよび溶剤を添加混合して泥漿状となし、これをドクターブレード法によってシート状と成すことによってセラミックグリーンシートを作製した。   The multilayer substrate 1 of the example of the present invention shown in FIG. 1 was produced as follows. First, an organic binder and a solvent were added to a raw material powder of an inorganic insulating material containing glass called glass ceramic to form a slurry, and this was formed into a sheet by a doctor blade method to produce a ceramic green sheet.

次に、UV−YAGレーザ装置を用いたレーザ加工法等により、セラミックグリーンシートに貫通孔を形成し、Cuの導電性粒子、有機バインダー、溶剤、ガラス粉末、樹脂ビーズおよびフィラーを添加混合して得た導電性ペーストを貫通孔に充填した。また、セラミックグリーンシートに各導体層および電極パッドと成る、Cuの導電性粒子を含む導電性ペーストを所定のパターンで印刷塗布した。得られたセラミックグリーンシートを所定の枚数積層して積層体を形成し、この積層体を還元雰囲気中で約900℃の温度で焼成することによって、多層基板1を作製した。   Next, through holes are formed in the ceramic green sheet by a laser processing method using a UV-YAG laser device, and Cu conductive particles, organic binder, solvent, glass powder, resin beads and filler are added and mixed. The obtained conductive paste was filled in the through holes. In addition, a conductive paste containing Cu conductive particles, which becomes each conductor layer and electrode pad, was printed and applied to the ceramic green sheet in a predetermined pattern. A predetermined number of the obtained ceramic green sheets were laminated to form a laminate, and this laminate was fired in a reducing atmosphere at a temperature of about 900 ° C., thereby producing a multilayer substrate 1.

そして、図2、図3に示すように、複数の電源貫通導体10および複数の接地貫通導体11は、平面視で搭載部1aの中心から外周側に向かって交互に環状に配列されており、電源導体層7は、平面視で環状に配列された複数の接地貫通導体11が貫通する部位を含む環状の電源導体層非形成部7aを有しており、接地導体層8は、平面視で環状に配列された複数の電源貫通導体10が貫通する部位を含む環状の接地導体層非形成部を有しているものとした。   As shown in FIGS. 2 and 3, the plurality of power supply through conductors 10 and the plurality of ground through conductors 11 are alternately arranged in an annular shape from the center of the mounting portion 1a toward the outer periphery in a plan view. The power supply conductor layer 7 has an annular power supply conductor layer non-forming portion 7a including a portion through which a plurality of grounding through conductors 11 arranged in a ring shape in a plan view passes, and the ground conductor layer 8 has a plan view in a plan view. An annular ground conductor layer non-forming portion including a portion through which a plurality of power supply through conductors 10 arranged in an annular shape passes is assumed.

電源貫通導体10の径は50μm、接地貫通導体11の径は50μmとした。電源貫通導体10同士の間の距離である電流経路の長さは175μm、電源貫通導体10の電流経路の幅は200μmとした。接地貫通導体11の電流経路の長さおよび幅も同様とした。   The diameter of the power supply through conductor 10 was 50 μm, and the diameter of the ground through conductor 11 was 50 μm. The length of the current path, which is the distance between the power supply through conductors 10, is 175 μm, and the width of the current path of the power supply through conductor 10 is 200 μm. The same applies to the length and width of the current path of the ground through conductor 11.

1つの電源導体層7に接続された、四角形の環状に配列された複数の電源貫通導体10の群は80群、1つの接地導体層8に接続された、四角形の環状に配列された複数の接地貫通導体11の群は80群とした。従って、図2に示す絶縁層においては、80群の環状に配列された複数の電源貫通導体10と、80群の環状に配列された複数の接地貫通導体11とが存在することとなる。   A group of a plurality of power supply through conductors 10 arranged in a square ring shape connected to one power supply conductor layer 7 is a group of 80, a plurality of a plurality of square ring arrangements connected to one ground conductor layer 8. The group of ground through conductors 11 was 80. Therefore, in the insulating layer shown in FIG. 2, there are a plurality of power supply through conductors 10 arranged in a ring of 80 groups and a plurality of grounding through conductors 11 arranged in a ring of 80 groups.

電源導体層非形成部7aの幅は75μmであり、電源貫通導体10の径よりも50%大きいものとした。接地導体層非形成部の幅および接地貫通導体11の径についても同様とした。   The width of the power supply conductor layer non-forming portion 7a is 75 μm, and is 50% larger than the diameter of the power supply through conductor 10. The same applies to the width of the portion where the ground conductor layer is not formed and the diameter of the ground through conductor 11.

この多層基板1の上面に、半導体素子3として、動作周波数5GHz、電源電圧1V、接地電位0VのLSIを搭載し、半導体装置を作製した。   An LSI having an operating frequency of 5 GHz, a power supply voltage of 1 V, and a ground potential of 0 V was mounted as the semiconductor element 3 on the upper surface of the multilayer substrate 1 to manufacture a semiconductor device.

また、比較例の半導体装置として、複数の電源貫通導体および複数の接地貫通導体が平面視で半導体素子3の搭載部1aにおいて互いに隣接するように交互に配列されている構成の多層基板を、上記と同様にして作製した。比較例の多層基板において、電源貫通導体の径は50μm、接地貫通導体の径は50μmとした。電源貫通導体同士の間の距離である電流経路の長さは360μm、電源貫通導体の電流経路の幅は50μmとした。接地貫通導体の電流経路の長さおよび幅も同様とした。また、電源貫通導体は、1個ずつが接地導体層において直径150μmの円形の接地導体層非形成部を貫通し、接地貫通導体は、1個ずつが電源導体層において直径150μmの円形の電源導体層非形成部を貫通するものとした。   Further, as a semiconductor device of a comparative example, a multilayer substrate having a configuration in which a plurality of power supply through conductors and a plurality of ground through conductors are alternately arranged so as to be adjacent to each other in the mounting portion 1a of the semiconductor element 3 in plan view, It produced similarly. In the multilayer substrate of the comparative example, the diameter of the power supply through conductor was 50 μm, and the diameter of the ground through conductor was 50 μm. The length of the current path, which is the distance between the power supply through conductors, was 360 μm, and the width of the current path of the power supply through conductor was 50 μm. The same applies to the length and width of the current path of the ground through conductor. Each power feedthrough conductor passes through a circular ground conductor layer non-forming portion having a diameter of 150 μm in the ground conductor layer, and each ground feed conductor is a circular power conductor having a diameter of 150 μm in the power supply conductor layer. The layer non-formed part was penetrated.

これらの半導体装置についてそれぞれ、コンピュータシュミレーションにより、ループインダクタンスLrを、Ls+Lgnd−2×Lm(Lsは電源導体層のインダクタンス、Lgndは接地導体層のインダクタンス、Lmは相互インダクタンス)から求めた。   For each of these semiconductor devices, the loop inductance Lr was obtained from computer-simulated Ls + Lgnd−2 × Lm (Ls is the inductance of the power supply conductor layer, Lgnd is the inductance of the ground conductor layer, and Lm is the mutual inductance).

実施例の半導体装置は、電源導体層および接地導体層のLsが216.14(pH)、Lmが104.10(pH)であることより、Lrが224.08(pH)であった。また、貫通導体部の電源貫通導体および接地貫通導体のLsがそれぞれ12.33(pH)、Lmが10.06(pH)であることより、Lrが4.54(pH)であった。従って、導体層および貫通導体部を含むLrは228.62(pH)となった。   In the semiconductor device of the example, Lr was 224.08 (pH) because Ls of the power supply conductor layer and the ground conductor layer was 216.14 (pH) and Lm was 104.10 (pH). Moreover, Lr was 4.54 (pH) because Ls of the power supply through conductor and the ground through conductor of the through conductor portion was 12.33 (pH) and Lm was 10.06 (pH), respectively. Therefore, Lr including the conductor layer and the through conductor portion was 228.62 (pH).

比較例の半導体装置は、電源導体層および接地導体層のLsが284.54(pH)、Lmが138.64(pH)であることより、Lrが291.80(pH)であった。また、貫通導体部の電源貫通導体および接地貫通導体のLsがそれぞれ14.50(pH)、Lmが13.05(pH)であることより、Lrが2.91(pH)であった。従って、導体層および貫通導体部を含むLrが294.71(pH)となった。   In the semiconductor device of the comparative example, Lr was 291.80 (pH) because Ls of the power supply conductor layer and the ground conductor layer was 284.54 (pH) and Lm was 138.64 (pH). Moreover, Lr was 2.91 (pH) because Ls of the power supply through conductor and the ground through conductor of the through conductor portion was 14.50 (pH) and Lm was 13.05 (pH), respectively. Therefore, Lr including the conductor layer and the through conductor portion was 294.71 (pH).

また、これらの半導体装置についてそれぞれ、コンピュータシュミレーションにより、バウンズ特性を求めたところ、実施例の半導体装置は、1Vの入力電源電圧におけるバウンズによる入力電源電圧のレベルの揺れ幅が0.121(V)であった。それに対して、比較例の半導体装置は、1Vの入力電源電圧におけるバウンズによる入力電源電圧のレベルの揺れ幅が0.197(V)であった。従って、実施例の半導体装置は比較例の半導体装置よりもバウンズによる入力電源電圧のレベルの揺れ幅が約38.5%低減された。   In addition, when the bounce characteristics were obtained for each of these semiconductor devices by computer simulation, the fluctuation width of the level of the input power supply voltage due to the bounce at the input power supply voltage of 1 V was 0.121 (V) in the semiconductor device of the example. It was. In contrast, in the semiconductor device of the comparative example, the fluctuation width of the level of the input power supply voltage due to the bounce at the input power supply voltage of 1V was 0.197 (V). Therefore, the fluctuation width of the level of the input power supply voltage due to the bounce is reduced by about 38.5% in the semiconductor device of the example compared to the semiconductor device of the comparative example.

なお、本発明は上述の実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更は可能である。   The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.

1・・・多層基板
2a〜2j・・・絶縁層
3・・・半導体素子
7・・・電源導体層
7a・・・電源導体層非形成部
8・・・接地導体層
9・・・信号導体層
10・・・電源貫通導体
11・・・接地貫通導体
12・・・信号貫通導体
DESCRIPTION OF SYMBOLS 1 ... Multilayer board | substrates 2a-2j ... Insulating layer 3 ... Semiconductor element 7 ... Power supply conductor layer 7a ... Power supply conductor layer non-formation part 8 ... Grounding conductor layer 9 ... Signal conductor Layer 10... Power supply through conductor 11... Ground through conductor 12... Signal through conductor

Claims (4)

複数の絶縁層および該絶縁層間に形成された電源導体層ならびに該電源導体層が形成された前記絶縁層間と異なる前記絶縁層間に形成された接地導体層を有するとともに、下面の外周部に複数の信号端子ならびに中央部に複数の電源端子および複数の接地端子を有する半導体素子を搭載する搭載部を上面に有する基体と、該基体の前記搭載部の中央部から前記基体の下面側に向かって形成された、前記電源導体層に電気的に接続された複数の電源貫通導体および前記接地導体層に電気的に接続された複数の接地貫通導体と、前記基体の前記搭載部の外周部から前記基体の下面側に向かって形成された複数の信号貫通導体とを備えており、複数の前記電源貫通導体および複数の前記接地貫通導体は、平面視で前記搭載部の中心から外周側に向かって交互に環状に配列されており、前記電源導体層は、平面視で環状に配列された複数の前記接地貫通導体が貫通する部位を含む環状の電源導体層非形成部を有しており、前記接地導体層は、平面視で環状に配列された複数の前記電源貫通導体が貫通する部位を含む環状の接地導体層非形成部を有していることを特徴とする多層基板。   A plurality of insulating layers, a power source conductor layer formed between the insulating layers, a ground conductor layer formed between the insulating layers different from the insulating layer on which the power source conductor layer is formed, and a plurality of outer peripheral portions on the lower surface A base having a mounting portion on the upper surface for mounting a signal element and a semiconductor element having a plurality of power supply terminals and a plurality of ground terminals in the central portion, and formed from the central portion of the mounting portion of the base toward the lower surface side of the base A plurality of power supply through conductors electrically connected to the power supply conductor layer, a plurality of ground through conductors electrically connected to the ground conductor layer, and an outer peripheral portion of the mounting portion of the base body A plurality of signal through conductors formed toward the lower surface side of the plurality of power supply through conductors and the plurality of ground through conductors from the center of the mounting portion toward the outer peripheral side in plan view. And the power supply conductor layer has a ring-shaped power supply conductor layer non-forming portion including a portion through which the plurality of grounding through conductors arranged in a ring shape in a plan view penetrates, The multi-layer substrate, wherein the ground conductor layer has a ring-shaped ground conductor layer non-forming portion including a portion through which the plurality of power supply through conductors arranged in a ring shape in plan view. 複数の前記電源貫通導体は、複数種の電源電位ごとの群を成しており、該群ごとにその群間に複数の前記接地貫通導体を挟んで、平面視で前記搭載部の中心から外周側に向かって環状に配列されていることを特徴とする請求項1記載の多層基板。   The plurality of power supply through conductors form a group for each of a plurality of types of power supply potentials, and the plurality of ground through conductors are sandwiched between the groups for each group, and the outer periphery from the center of the mounting portion in plan view The multilayer substrate according to claim 1, wherein the multilayer substrate is arranged in an annular shape toward the side. 平面視で前記搭載部の中央部の最外周に複数の前記接地貫通導体が環状に配列されていることを特徴とする請求項1または請求項2に記載の多層基板。   3. The multilayer substrate according to claim 1, wherein a plurality of the ground through conductors are annularly arranged on an outermost periphery of a central portion of the mounting portion in a plan view. 請求項1乃至請求項3のいずれかに記載の多層基板と、該多層基板の前記搭載部に搭載された半導体素子とを備えていることを特徴とする半導体装置。   A semiconductor device comprising: the multilayer substrate according to claim 1; and a semiconductor element mounted on the mounting portion of the multilayer substrate.
JP2009127293A 2009-05-27 2009-05-27 Multilayer substrate and semiconductor device Expired - Fee Related JP5014380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127293A JP5014380B2 (en) 2009-05-27 2009-05-27 Multilayer substrate and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127293A JP5014380B2 (en) 2009-05-27 2009-05-27 Multilayer substrate and semiconductor device

Publications (2)

Publication Number Publication Date
JP2010278101A JP2010278101A (en) 2010-12-09
JP5014380B2 true JP5014380B2 (en) 2012-08-29

Family

ID=43424822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127293A Expired - Fee Related JP5014380B2 (en) 2009-05-27 2009-05-27 Multilayer substrate and semiconductor device

Country Status (1)

Country Link
JP (1) JP5014380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054093A (en) * 2016-05-25 2016-10-26 国网辽宁省电力有限公司电力科学研究院 Anti-power line interference capability assessment device of grounding device tester

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732357B2 (en) * 2011-09-09 2015-06-10 新光電気工業株式会社 Wiring board and semiconductor package
US9917026B2 (en) 2014-12-24 2018-03-13 Renesas Electronics Corporation Semiconductor device
JP6817906B2 (en) * 2017-07-27 2021-01-20 京セラ株式会社 Wiring board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637461A (en) * 1992-07-13 1994-02-10 Ibiden Co Ltd Multilayer printed wiring board
JP3441199B2 (en) * 1994-11-22 2003-08-25 京セラ株式会社 Package for storing semiconductor elements
JP4041253B2 (en) * 1999-11-19 2008-01-30 京セラ株式会社 Integrated circuit device mounting substrate and integrated circuit device
JP2001203470A (en) * 2000-01-21 2001-07-27 Toshiba Corp Wiring board, semiconductor package and semiconductor device
JP3796104B2 (en) * 2000-08-01 2006-07-12 京セラ株式会社 Multilayer wiring board
JP2003188305A (en) * 2001-12-14 2003-07-04 Ngk Spark Plug Co Ltd Wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054093A (en) * 2016-05-25 2016-10-26 国网辽宁省电力有限公司电力科学研究院 Anti-power line interference capability assessment device of grounding device tester

Also Published As

Publication number Publication date
JP2010278101A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
KR101740816B1 (en) Chip inductor
JP2009111658A (en) Multilayer wiring board
JP5155582B2 (en) Wiring board and electronic device
JP5014380B2 (en) Multilayer substrate and semiconductor device
JP5318360B2 (en) Wiring board and electronic device
JP2005243864A (en) Wiring board
JP2008311682A (en) Wiring board
JP5153364B2 (en) Stacked semiconductor package and electronic device
JP3878795B2 (en) Multilayer wiring board
JP5448393B2 (en) Stacked semiconductor package and stacked semiconductor device
JP2009004809A (en) Wiring substrate
JP3825324B2 (en) Multilayer wiring board
JP4373752B2 (en) Wiring board
JP4340131B2 (en) Wiring board
JP3798978B2 (en) Multilayer wiring board
JP4349827B2 (en) Wiring board
JP3798959B2 (en) Multilayer wiring board
JP2007200971A (en) Multilayer wiring substrate
JP4601369B2 (en) Wiring board
JP4511294B2 (en) Wiring board
JP4557768B2 (en) Semiconductor device
JP2002217545A (en) Multilayer wiring board
JP3825293B2 (en) Multilayer wiring board
JP2004253746A (en) Wiring board
JP2008186965A (en) Multilayer wiring board and manufacturing method thereof, and electronic device using multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees