JP2012080145A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2012080145A
JP2012080145A JP2012015448A JP2012015448A JP2012080145A JP 2012080145 A JP2012080145 A JP 2012080145A JP 2012015448 A JP2012015448 A JP 2012015448A JP 2012015448 A JP2012015448 A JP 2012015448A JP 2012080145 A JP2012080145 A JP 2012080145A
Authority
JP
Japan
Prior art keywords
semiconductor chip
substrate
chip
spacer layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012015448A
Other languages
Japanese (ja)
Inventor
Toshimichi Naruse
俊道 成瀬
Kenichi Kobayashi
健一 小林
Hajime Kobayashi
初 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012015448A priority Critical patent/JP2012080145A/en
Publication of JP2012080145A publication Critical patent/JP2012080145A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19103Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device interposed between the semiconductor or solid-state device and the die mounting substrate, i.e. chip-on-passive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device suitable for microfabrication and high integration of a semiconductor device in which a semiconductor chip and electronic components are mixedly mounted on a substrate and packaged.SOLUTION: An island, a spacer layer 3, and a discrete element 4 are stacked on a resin substrate 2 in this order. Chip capacitors 8 are formed between pad electrodes 6 and the spacer layer 3 on a first surface of the substrate 2. Pad electrodes 5 and the pad electrodes 6 are connected by bonding wires 10. On a second surface of the substrate 2, bump electrodes 11 are formed, which are electrically connected to the pad electrodes 6 via wiring. The position of the uppermost surface of the semiconductor chip 4 from the first surface of the substrate 2, that is the position of the pad electrodes 5, is raised by the spacer layer 3.

Description

本発明は半導体装置に関し、特に基板上に半導体チップと電子部品とが混載されてパッケージされた半導体装置に関するものである。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a semiconductor chip and an electronic component are mixed and packaged on a substrate.

従来より、基板上に半導体チップと、その半導体チップ内に形成することが困難な特性を有する電子部品(コンデンサ、抵抗、コイル等)とが混載されて全体として一つのチップ状にパッケージされた半導体装置が知られている。このような半導体装置について、図面を参照しながら説明する。   Conventionally, a semiconductor in which a semiconductor chip and electronic components (capacitors, resistors, coils, etc.) having characteristics that are difficult to form in the semiconductor chip are mixedly mounted on a substrate and packaged in a single chip as a whole. The device is known. Such a semiconductor device will be described with reference to the drawings.

図3に示す従来の半導体装置100では、シリコン(Si)やセラミックや樹脂等から成るベース基板(以下、単に基板と称する)101上に半導体チップ102が配置されている。半導体チップ102の表面上には、その外周に沿って当該半導体チップ102内に形成された機能素子と配線層を介して電気的に接続された複数のパッド電極103が形成されている。   In the conventional semiconductor device 100 shown in FIG. 3, a semiconductor chip 102 is disposed on a base substrate (hereinafter simply referred to as a substrate) 101 made of silicon (Si), ceramic, resin, or the like. On the surface of the semiconductor chip 102, a plurality of pad electrodes 103 are formed along the outer periphery thereof and electrically connected to the functional elements formed in the semiconductor chip 102 through a wiring layer.

基板101の表面上には、その外周に沿って複数のパッド電極104が形成されている。パッド電極104と半導体チップ102との間の基板101の表面上には、パッド電極104と電気的に接続された導体板105が形成されている。導体板105は、銅等の導電材料から成る。導体板105上には、チップコンデンサ106が半導体チップ102に隣接して配置されている。チップコンデンサ106は、電源ノイズによって電源電圧レベルが変動する影響を低減し、半導体チップ102に安定した電力を供給する観点から設けられている。   On the surface of the substrate 101, a plurality of pad electrodes 104 are formed along the outer periphery thereof. A conductor plate 105 electrically connected to the pad electrode 104 is formed on the surface of the substrate 101 between the pad electrode 104 and the semiconductor chip 102. The conductor plate 105 is made of a conductive material such as copper. A chip capacitor 106 is disposed adjacent to the semiconductor chip 102 on the conductor plate 105. The chip capacitor 106 is provided from the viewpoint of reducing the influence that the power supply voltage level fluctuates due to power supply noise and supplying stable power to the semiconductor chip 102.

パッド電極103とパッド電極104とは、チップコンデンサ106を跨ぐようにして形成されたボンディングワイヤ107によって電気的に接続されている。   The pad electrode 103 and the pad electrode 104 are electrically connected by a bonding wire 107 formed so as to straddle the chip capacitor 106.

基板101の裏面上には、外部端子としてハンダ等から成るバンプ電極108が形成されている。パッド電極104は、基板101に形成された配線(例えば、基板101を貫通する貫通電極)を介してバンプ電極108と電気的に接続されている。   On the back surface of the substrate 101, bump electrodes 108 made of solder or the like are formed as external terminals. The pad electrode 104 is electrically connected to the bump electrode 108 via a wiring (for example, a through electrode penetrating the substrate 101) formed on the substrate 101.

基板101の表面上の全面にはモールド樹脂109が形成され、半導体チップ102、チップコンデンサ106、及びボンディングワイヤ107等は当該モールド樹脂109で封止されている。   A mold resin 109 is formed on the entire surface of the substrate 101, and the semiconductor chip 102, the chip capacitor 106, the bonding wire 107 and the like are sealed with the mold resin 109.

このような半導体装置100は、バンプ電極108を介してプリント基板等に実装される。   Such a semiconductor device 100 is mounted on a printed circuit board or the like via the bump electrode 108.

本発明に関連した技術は、例えば以下の特許文献に記載されている。   Techniques related to the present invention are described in, for example, the following patent documents.

特開平5−021698号公報Japanese Patent Laid-Open No. 5-021698

上述したような半導体装置100の場合、ボンディングワイヤ107がチップコンデン
サ106と電気的に接触することを回避する必要がある。そのため、半導体チップ102及びチップコンデンサ106のサイズを考慮して、パッド電極103とチップコンデンサ106の間の長さ、及びチップコンデンサ106とパッド電極104の間の長さをそれぞれ十分に確保する方法がある。
In the case of the semiconductor device 100 as described above, it is necessary to avoid the bonding wire 107 from being in electrical contact with the chip capacitor 106. Therefore, in consideration of the sizes of the semiconductor chip 102 and the chip capacitor 106, there is a method for sufficiently securing the length between the pad electrode 103 and the chip capacitor 106 and the length between the chip capacitor 106 and the pad electrode 104. is there.

しかしながら、チップコンデンサ106の最上面の位置が図3に示すように半導体チップ102の最上面の位置よりも高い場合がある。例えば、チップコンデンサ106の高さH1が0.5mmであり、半導体チップ102の高さH2が0.2mmである。このような場合に上記方法を適用すると、ボンディングワイヤの頂部の長さが長くなり、その分パッド電極104の位置をより外側に設けないとボンディングができない不具合が発生する。これはボンディングワイヤが延在される軌跡、つまり曲率がある値で定められているからである。よってパッド電極103とパッド電極104の間の長さを長くする必要から基板2の幅Lが大きくなってしまうという問題があった。つまり上記方法では、半導体装置100のサイズの縮小を図る事が困難であるという問題があった。   However, the position of the uppermost surface of the chip capacitor 106 may be higher than the position of the uppermost surface of the semiconductor chip 102 as shown in FIG. For example, the height H1 of the chip capacitor 106 is 0.5 mm, and the height H2 of the semiconductor chip 102 is 0.2 mm. In such a case, when the above method is applied, the length of the top of the bonding wire becomes long, and accordingly, there is a problem that bonding cannot be performed unless the position of the pad electrode 104 is provided on the outer side. This is because the trajectory in which the bonding wire is extended, that is, the curvature is determined by a certain value. Therefore, since the length between the pad electrode 103 and the pad electrode 104 needs to be increased, the width L of the substrate 2 is increased. That is, the above method has a problem that it is difficult to reduce the size of the semiconductor device 100.

そこで本発明は、基板上に半導体チップと電子部品とが混載されてパッケージされた半導体装置の微細化・高集積化に好適な半導体装置を提供することを主たる目的とする。   SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a semiconductor device suitable for miniaturization and high integration of a semiconductor device in which a semiconductor chip and an electronic component are mixedly packaged on a substrate.

本発明の主な特徴は以下のとおりである。
すなわち、ディスクリートデバイスである半導体チップの配置領域に設けられた銅から成るアイランドと、前記アイランドの外周に設けられた複数の第1の電極と、前記第1の電極と前記アイランドとの間に設けられた回路素子用の第2の電極が表面に形成された樹脂材料から成る基板と、
前記アイランドに固着された銅から成るスペーサーと、
前記スペーサーに設けられ、表面には複数のパッド電極が設けられた半導体チップと、
前記第2の電極に配置された電子部品と、
前記第1の電極と前記パッド電極とを電気的に接続し、前記回路素子を跨いで設けられたボンディングワイヤとを備え、
前記アイランドの下の前記基板にはサーマルビアが設けられ、前記スペーサーは、前記回路素子よりも高く設けられ、ヒートシンクの機能を有するとともに、前記半導体チップの最上面を底上げすることで解決するものである。
The main features of the present invention are as follows.
That is, an island made of copper provided in an arrangement region of a semiconductor chip that is a discrete device, a plurality of first electrodes provided on an outer periphery of the island, and provided between the first electrode and the island A substrate made of a resin material having a second electrode for a circuit element formed thereon formed on the surface;
A spacer made of copper affixed to the island;
A semiconductor chip provided on the spacer and provided with a plurality of pad electrodes on the surface;
An electronic component disposed on the second electrode;
Electrically connecting the first electrode and the pad electrode, and a bonding wire provided across the circuit element,
The substrate under the island is provided with a thermal via, the spacer is provided higher than the circuit element, has a function of a heat sink, and is solved by raising the uppermost surface of the semiconductor chip. is there.

本発明の半導体装置は、基板と半導体チップとの間にスペーサー層が形成されている。そのため、半導体チップに形成されたパッド電極の基板表面からの位置を、従来構造に比して高い位置に設けることができる。そのため、ボンディングワイヤと電子部品との接触を低減し半導体装置の信頼性及び歩留まりを向上させるとともに、半導体装置のサイズを従来構造に比して小型にすることができる。   In the semiconductor device of the present invention, a spacer layer is formed between the substrate and the semiconductor chip. Therefore, the position of the pad electrode formed on the semiconductor chip from the substrate surface can be provided higher than the conventional structure. Therefore, the contact between the bonding wire and the electronic component can be reduced, the reliability and yield of the semiconductor device can be improved, and the size of the semiconductor device can be reduced as compared with the conventional structure.

また、スペーサー層の外周の少なくとも一部を半導体チップの外周よりも内側に配置した場合には、電子部品の一部を半導体チップとを更に近接させるか、あるいは重畳させることができる。そのため、基板の面積を有効活用することができ、半導体装置のサイズをさらに小さくすることができる。また、ボンディングワイヤと電子部品との接触をさらに回避することができる。   Further, when at least a part of the outer periphery of the spacer layer is disposed inside the outer periphery of the semiconductor chip, a part of the electronic component can be brought closer to or overlapped with the semiconductor chip. Therefore, the area of the substrate can be effectively used, and the size of the semiconductor device can be further reduced. Further, contact between the bonding wire and the electronic component can be further avoided.

本発明の第1の実施形態に係る半導体装置を説明する平面図及び正面図である。It is the top view and front view explaining the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る半導体装置を説明する平面図及び正面図である。It is the top view and front view explaining the semiconductor device which concerns on the 2nd Embodiment of this invention. 従来の半導体装置を説明する正面図である。It is a front view explaining the conventional semiconductor device.

本発明の第1の実施形態に係る半導体装置について図1A及び図1Bを参照しながら説明する。図1Aは、第1の実施形態に係る半導体装置1を示す概略平面図であり、図1Bは図1AのX方向から見た正面図に相当する。   A semiconductor device according to a first embodiment of the present invention will be described with reference to FIGS. 1A and 1B. 1A is a schematic plan view showing the semiconductor device 1 according to the first embodiment, and FIG. 1B corresponds to a front view seen from the X direction of FIG. 1A.

図1A及び図1Bに示す第1の実施形態に係る半導体装置1では、基板2の中央領域に不図示の接着層を介してスペーサー層3及び半導体チップ4がこの順に積層して配置されている。基板2は、シリコン(Si)、ポリイミドやエポキシ等の樹脂材料から成る基板、通常プリント基板やフレキシブルシートと呼ばれる基板、更にはセラミック等から成る。   In the semiconductor device 1 according to the first embodiment shown in FIGS. 1A and 1B, the spacer layer 3 and the semiconductor chip 4 are stacked in this order on the central region of the substrate 2 via an adhesive layer (not shown). . The substrate 2 is made of a substrate made of a resin material such as silicon (Si), polyimide or epoxy, a substrate usually called a printed substrate or a flexible sheet, and further made of ceramic or the like.

半導体チップ4の表面上には、その外周に沿って半導体チップ4内に形成された機能素子(例えばMOSトランジスタやバイポーラトランジスタやインバータ等の多数の半導体素子から成る集積回路)と電気的に接続された複数のパッド電極5が形成されている。パッド電極5は、例えば銅やアルミニウム等の金属材料から成り、後述するパッド電極6及びバンプ電極11からボンディングワイヤ10を介して上記機能素子に電源電圧、接地電圧、または信号を供給するための電極である。また、パッド電極5の表面は、例えばニッケル層と金層から成る積層膜が形成され、ボンディングワイヤ10が良好に接続されるようになっていても良い。   On the surface of the semiconductor chip 4, it is electrically connected to functional elements (for example, an integrated circuit made up of a number of semiconductor elements such as MOS transistors, bipolar transistors, and inverters) formed in the semiconductor chip 4 along the outer periphery thereof. A plurality of pad electrodes 5 are formed. The pad electrode 5 is made of, for example, a metal material such as copper or aluminum, and is an electrode for supplying a power supply voltage, a ground voltage, or a signal to the functional element from a pad electrode 6 and a bump electrode 11 described later via a bonding wire 10. It is. Further, the surface of the pad electrode 5 may be formed with a laminated film made of, for example, a nickel layer and a gold layer so that the bonding wire 10 can be satisfactorily connected.

基板2の表面上には、半導体チップ4の配置領域の外周に沿って銅やアルミニウム等の金属材料から成る複数のパッド電極6が例えば1μmの膜厚で形成されている。パッド電極6の表面は、パッド電極5と同様に例えばニッケル層と金層から成る積層膜が形成され、ボンディングワイヤ10が良好に接続されるようになっていても良い。   On the surface of the substrate 2, a plurality of pad electrodes 6 made of a metal material such as copper or aluminum are formed with a film thickness of, for example, 1 μm along the outer periphery of the arrangement region of the semiconductor chip 4. On the surface of the pad electrode 6, similarly to the pad electrode 5, for example, a laminated film made of a nickel layer and a gold layer may be formed so that the bonding wire 10 can be satisfactorily connected.

また、パッド電極6とスペーサー層3及び半導体チップ4との間の基板2の表面上には、図1A及び図1Bに示すように、銅やアルミニウム等の導電材料から成る複数の導体板7が例えば1μmの膜厚で形成されている。導体板7は、後述するチップコンデンサ8の各端子9a,9bに接続される電極パッドであり、図面には省略したが、導体板7と一体の配線を介して半導体チップ4と電気的に接続されている。   On the surface of the substrate 2 between the pad electrode 6 and the spacer layer 3 and the semiconductor chip 4, as shown in FIGS. 1A and 1B, a plurality of conductor plates 7 made of a conductive material such as copper or aluminum are provided. For example, it is formed with a film thickness of 1 μm. The conductor plate 7 is an electrode pad connected to each terminal 9a, 9b of a chip capacitor 8 to be described later. Although not shown in the drawing, the conductor plate 7 is electrically connected to the semiconductor chip 4 via wiring integral with the conductor plate 7. Has been.

導体板7上には、不図示の接着層(例えば、銀ペーストや半田材)を介してチップコンデンサ8が形成されている。チップコンデンサは、セラミックや有機系材料等から成る絶縁体を2つの端子で挟んだ構成をしており、本実施形態におけるチップコンデンサ8は、その載置面に端子9a,9bが形成されている。一方の端子9aは配線(不図示)を介して複数のパッド電極6のうち電源電圧を供給するパッド電極と接続され、他方の端子9bは配線(不図示)を介して複数のパッド電極6のうち接地電圧を供給するパッド電極と接続されている。このようにチップコンデンサ8は、半導体チップ4へ供給される電圧がノイズによって変動することを抑えるために、電源電圧と接地電圧間に挿入されている。なお、チップコンデンサ8は、電源電圧と接地電圧間に挿入されるだけでなく、信号ラインとして半導体チップ4と接続される場合もある。   A chip capacitor 8 is formed on the conductor plate 7 via an adhesive layer (not shown) (for example, silver paste or solder material). The chip capacitor has a structure in which an insulator made of ceramic or organic material is sandwiched between two terminals, and the chip capacitor 8 in this embodiment has terminals 9a and 9b formed on its mounting surface. . One terminal 9a is connected to a pad electrode for supplying a power supply voltage among a plurality of pad electrodes 6 through wiring (not shown), and the other terminal 9b is connected to a plurality of pad electrodes 6 through wiring (not shown). Of these, it is connected to a pad electrode for supplying a ground voltage. As described above, the chip capacitor 8 is inserted between the power supply voltage and the ground voltage in order to prevent the voltage supplied to the semiconductor chip 4 from fluctuating due to noise. The chip capacitor 8 is not only inserted between the power supply voltage and the ground voltage, but may be connected to the semiconductor chip 4 as a signal line.

パッド電極5とパッド電極6とは、チップコンデンサ8を跨ぐようにして形成された、金またはAl等から成るボンディングワイヤ10によって電気的に接続されている。   The pad electrode 5 and the pad electrode 6 are electrically connected by a bonding wire 10 made of gold, Al, or the like, formed so as to straddle the chip capacitor 8.

基板2の裏面上には、ハンダや金等から成る複数の外部端子(バンプ電極11)が形成されている。パッド電極6は不図示の配線(例えば、基板2を貫通する貫通電極)を介し
てバンプ電極11と電気的に接続されている。従って、半導体チップ4及びチップコンデンサ8は、バンプ電極11と電気的に接続されている。当然であるが、バンプ電極11やパッド電極5、6を含め、基板2の表面上または裏面上に形成される導電パターンの総数は限定されない。
On the back surface of the substrate 2, a plurality of external terminals (bump electrodes 11) made of solder, gold or the like are formed. The pad electrode 6 is electrically connected to the bump electrode 11 via a wiring (not shown) (for example, a through electrode penetrating the substrate 2). Therefore, the semiconductor chip 4 and the chip capacitor 8 are electrically connected to the bump electrode 11. As a matter of course, the total number of conductive patterns formed on the front surface or the back surface of the substrate 2 including the bump electrodes 11 and the pad electrodes 5 and 6 is not limited.

基板2の表面上の全面にはソルダーレジスト等から成るモールド樹脂12が形成され、スペーサー層3、半導体チップ4、チップコンデンサ8、及びボンディングワイヤ10等は当該モールド樹脂12で封止されている。   A mold resin 12 made of a solder resist or the like is formed on the entire surface of the substrate 2, and the spacer layer 3, the semiconductor chip 4, the chip capacitor 8, the bonding wire 10, and the like are sealed with the mold resin 12.

第1の実施形態では、スペーサー層3を設けた点が特徴である。スペーサー層3は、主として基板2の表面から半導体チップ4の最上面の位置を底上げし、パッド電極5の位置を従来構造のパッド電極103(図3参照)の位置よりも上方に設けるための層である。従って、スペーサー層3の高さに限定はないが、パッド電極5の位置がチップコンデンサ8(チップコンデンサ8よりも高い電子部品が当該位置に配置されている場合には当該電子部品)の最上面の位置よりも高く配置されるように半導体チップ4を底上げする高さであることが好ましい。かかる構成によれば、ボンディングワイヤ10を形成する際に、高い位置からボンディングワイヤ10を打ち下ろす形になり、その分パッド電極6を半導体チップ1側に近づけてもボンディングが可能となる。また、スペーサー層3の高さがチップコンデンサ8よりも高いことが好ましく、スペーサー層3と半導体チップ4の合算した高さがチップコンデンサ8よりも高いことが好ましい。例えば、スペーサー層3の高さが約0.65mmであり、半導体チップの高さが約0.2mmであり、チップコンデンサ8の高さが約0.5mmである。なお、スペーサー層3の幅は半導体チップ4とほぼ同一サイズ(例えば約2.4mm)である。   The first embodiment is characterized in that the spacer layer 3 is provided. The spacer layer 3 is a layer for mainly raising the position of the uppermost surface of the semiconductor chip 4 from the surface of the substrate 2 and providing the position of the pad electrode 5 above the position of the pad electrode 103 (see FIG. 3) having a conventional structure. It is. Accordingly, the height of the spacer layer 3 is not limited, but the uppermost surface of the chip capacitor 8 where the pad electrode 5 is located (or an electronic component when an electronic component higher than the chip capacitor 8 is disposed at the position). It is preferable that the height of the semiconductor chip 4 is raised so that the semiconductor chip 4 is positioned higher than this position. According to this configuration, when the bonding wire 10 is formed, the bonding wire 10 is pushed down from a high position, and bonding is possible even if the pad electrode 6 is brought closer to the semiconductor chip 1 side. The height of the spacer layer 3 is preferably higher than that of the chip capacitor 8, and the total height of the spacer layer 3 and the semiconductor chip 4 is preferably higher than that of the chip capacitor 8. For example, the height of the spacer layer 3 is about 0.65 mm, the height of the semiconductor chip is about 0.2 mm, and the height of the chip capacitor 8 is about 0.5 mm. The width of the spacer layer 3 is almost the same size as the semiconductor chip 4 (for example, about 2.4 mm).

スペーサー層3は、ガラス等の絶縁材料やシリコン等の半導体材料から成るものでもよいが、銅や銀等の熱伝導率の高い金属材料から成ることが好ましい。かかる構成によれば、スペーサー層3がヒートシンクまたは放熱体を兼ねるからである。そのため、半導体装置1の実際の使用時に半導体チップ4から生じる熱をスペーサー層3内に過渡的に熱を溜め、最終的にその熱をスペーサー層3を介して基板2側に逃がすことができる。そして、半導体チップ4の特性を十分に発揮させることが出来る。なお、スペーサー層3は、樹脂やセラミックス、あるいは複数の性質の異なる材料(例えば、樹脂とアルミナ)を組み合わせた材料から成るいわゆるコンポジット材から成るものでもよい。   The spacer layer 3 may be made of an insulating material such as glass or a semiconductor material such as silicon, but is preferably made of a metal material having a high thermal conductivity such as copper or silver. This is because the spacer layer 3 also serves as a heat sink or a heat radiator. Therefore, heat generated from the semiconductor chip 4 during actual use of the semiconductor device 1 can be transiently accumulated in the spacer layer 3 and finally released to the substrate 2 side through the spacer layer 3. And the characteristic of the semiconductor chip 4 can fully be exhibited. The spacer layer 3 may be made of a so-called composite material made of resin, ceramics, or a combination of a plurality of materials having different properties (for example, resin and alumina).

また、半導体チップ4と同様に機能素子が形成された半導体チップをスペーサー層3として用いることも可能である。この場合、スペーサー層として形成される半導体チップはフェイスダウンで形成され、この裏面に半導体チップ4が設けられることに成る。この場合、半導体チップ4とスペーサー層3は、以下のように接続される。   Further, a semiconductor chip in which a functional element is formed in the same manner as the semiconductor chip 4 can be used as the spacer layer 3. In this case, the semiconductor chip formed as the spacer layer is formed face down, and the semiconductor chip 4 is provided on the back surface. In this case, the semiconductor chip 4 and the spacer layer 3 are connected as follows.

つまりフェイスダウン型であるため、基板2上にはスペーサー層3の電極と対応したパッド電極があり、このパッド電極は配線(不図示)を介してパッド電極6と電気的に接続される。なお、スペーサー層3が半導体チップから成る場合、当該半導体チップはLGA(Land Grid Array)型でもよく、あるいはBGA(Ball Grid
Array)型でもよい。
That is, since it is a face-down type, there is a pad electrode corresponding to the electrode of the spacer layer 3 on the substrate 2, and this pad electrode is electrically connected to the pad electrode 6 through wiring (not shown). When the spacer layer 3 is made of a semiconductor chip, the semiconductor chip may be an LGA (Land Grid Array) type or a BGA (Ball Grid).
Array) type.

以上説明したような半導体装置1は、バンプ電極11を介してプリント基板等に実装される。第1の実施形態に係る半導体装置1では、基板2と半導体チップ4との間にスペーサー層3を備える。そのため、チップコンデンサ8を従来構造(図3参照)に比して半導体チップ4と近接させても、チップコンデンサ8とボンディングワイヤ10の接触を従来構造に比して回避することができる。そして、基板2の長さL1を従来構造の長さLに比して短くすることが出来、半導体装置1の小型化を図る事ができる。   The semiconductor device 1 as described above is mounted on a printed circuit board or the like via the bump electrodes 11. In the semiconductor device 1 according to the first embodiment, the spacer layer 3 is provided between the substrate 2 and the semiconductor chip 4. Therefore, even if the chip capacitor 8 is closer to the semiconductor chip 4 than the conventional structure (see FIG. 3), the contact between the chip capacitor 8 and the bonding wire 10 can be avoided as compared with the conventional structure. The length L1 of the substrate 2 can be made shorter than the length L of the conventional structure, and the semiconductor device 1 can be reduced in size.

また、従来構造(図3参照)に比べてボンディングワイヤの長さを短くできるため、ボンディングワイヤの断線等の不良を低減させ、半導体装置の信頼性及び歩留まりを向上させることができる。   Further, since the length of the bonding wire can be shortened as compared with the conventional structure (see FIG. 3), defects such as disconnection of the bonding wire can be reduced, and the reliability and yield of the semiconductor device can be improved.

なお、図1及び後述する図2では、チップコンデンサ8の高さが半導体チップ4の高さよりも高く描かれているが、本発明はそれらが同等の高さ、あるいはチップコンデンサ8の高さが半導体チップ4の高さよりも低い場合を排除するものではない。   In FIG. 1 and FIG. 2 to be described later, the height of the chip capacitor 8 is drawn higher than the height of the semiconductor chip 4. However, in the present invention, the height of the chip capacitor 8 is the same as that of the semiconductor chip 4. The case where it is lower than the height of the semiconductor chip 4 is not excluded.

尚、スペーサー層3がCu等の金属材料からなる場合、スペーサー層3の配置領域に対応する基板2側にCu等の金属材料からなるアイランドを設け、当該アイランド上にロウ材、導電ペースト等を用いてスペーサー層3を固着しても良い。更に、このアイランドの下の基板2にサーマルビア(貫通スルーホール)を設け、サーマルビアを通して基板2の裏面に熱を逃がしても良い。   When the spacer layer 3 is made of a metal material such as Cu, an island made of a metal material such as Cu is provided on the substrate 2 side corresponding to the arrangement region of the spacer layer 3, and a brazing material, a conductive paste or the like is placed on the island. The spacer layer 3 may be fixed by using. Furthermore, a thermal via (through through hole) may be provided in the substrate 2 below the island, and heat may be released to the back surface of the substrate 2 through the thermal via.

次に、本発明の第2の実施形態について図面を参照しながら説明する。図2Aは、第2の実施形態に係る半導体装置20を示す概略平面図であり、図2Bは図2AのY方向から見た正面図に相当する。なお、第1の実施形態と同様の構成については同一符号を示してその説明を省略するか簡略する。   Next, a second embodiment of the present invention will be described with reference to the drawings. 2A is a schematic plan view showing the semiconductor device 20 according to the second embodiment, and FIG. 2B corresponds to a front view seen from the Y direction of FIG. 2A. In addition, about the structure similar to 1st Embodiment, the same code | symbol is shown and the description is abbreviate | omitted or simplified.

図2A及び図2Bに示す第2の実施形態に係る半導体装置20では、基板2上の中央領域にスペーサー層21及び半導体チップ4が不図示の接着層を介してこの順に積層して配置されている。   In the semiconductor device 20 according to the second embodiment shown in FIGS. 2A and 2B, the spacer layer 21 and the semiconductor chip 4 are stacked and arranged in this order via an adhesive layer (not shown) in the central region on the substrate 2. Yes.

スペーサー層21は、半導体チップ4よりも横幅が狭い。そのため、スペーサー層21の外周の一部は半導体チップ4の外周よりも例えば約0.3mm程度内側に配置されている。また、スペーサー層21の高さは、チップコンデンサ8よりも高い。例えばスペーサー層21の高さが約0.65mmであり、チップコンデンサ8の高さが約0.5mmである。   The spacer layer 21 has a narrower width than the semiconductor chip 4. Therefore, a part of the outer periphery of the spacer layer 21 is disposed, for example, about 0.3 mm inside the outer periphery of the semiconductor chip 4. The height of the spacer layer 21 is higher than that of the chip capacitor 8. For example, the height of the spacer layer 21 is about 0.65 mm, and the height of the chip capacitor 8 is about 0.5 mm.

そして、チップコンデンサ8の少なくとも一部が、半導体チップ4の下方に配置されている。なお、チップコンデンサ8の全部が半導体チップ4の下方に配置されてもよい。このような半導体装置20は、バンプ電極11を介してプリント基板等に実装される。   At least a part of the chip capacitor 8 is disposed below the semiconductor chip 4. Note that the entire chip capacitor 8 may be disposed below the semiconductor chip 4. Such a semiconductor device 20 is mounted on a printed circuit board or the like via the bump electrode 11.

以上説明したように、第2の実施形態に係る半導体装置20では、スペーサー層の構成が第1の実施形態に係る半導体装置1と異なり、半導体チップ4の幅よりも狭い。そのため、半導体チップ4と基板2とスペーサー層21で囲まれた空間があり、当該の空間を有効利用して、チップコンデンサ8の少なくとも一部を半導体チップ4と重畳させている。つまり、チップコンデンサ8を第1の実施形態に比して基板2の内側に配置することができる。また、パッド電極5がチップコンデンサ8よりも高い位置に配置されている。そのため、パッド電極5とパッド電極6との間を従来構造(図3参照)に比して短くしたとしても、ボンディングワイヤ10とチップコンデンサ8との接触を回避することができる。そして、基板2の長さL2を従来構造及び第1の実施形態に係る半導体装置1に比して短くすることができ、半導体装置の小型化を図る事ができる。   As described above, in the semiconductor device 20 according to the second embodiment, the configuration of the spacer layer is different from the semiconductor device 1 according to the first embodiment and is narrower than the width of the semiconductor chip 4. Therefore, there is a space surrounded by the semiconductor chip 4, the substrate 2, and the spacer layer 21, and at least a part of the chip capacitor 8 is overlapped with the semiconductor chip 4 by effectively using the space. That is, the chip capacitor 8 can be disposed inside the substrate 2 as compared with the first embodiment. Further, the pad electrode 5 is disposed at a position higher than the chip capacitor 8. Therefore, contact between the bonding wire 10 and the chip capacitor 8 can be avoided even if the distance between the pad electrode 5 and the pad electrode 6 is shorter than that of the conventional structure (see FIG. 3). The length L2 of the substrate 2 can be made shorter than that of the conventional structure and the semiconductor device 1 according to the first embodiment, and the semiconductor device can be downsized.

なお、チップコンデンサ8と半導体チップ4とを重畳させなくても、第2の実施形態に係るスペーサー層21を有する構成によれば、従来構造及び第1の実施形態に係る半導体装置に比して小型化を図る事ができる。この点について説明する。   Even if the chip capacitor 8 and the semiconductor chip 4 are not overlapped, according to the configuration having the spacer layer 21 according to the second embodiment, compared to the conventional structure and the semiconductor device according to the first embodiment. Miniaturization can be achieved. This point will be described.

チップコンデンサ8の基板2への搭載の際には、半田材等の接着層の形成ずれやチップ
コンデンサ8の寸法のバラツキによる搭載ズレが少なからず発生する。また、スペーサー層上に半導体チップ4を搭載する際にも少なからず目的位置からの搭載ズレが生じ得る。そのため、第1の実施形態に係る半導体装置1の構成において半導体チップ4とチップコンデンサ8との水平方向の離間距離を非常に短くさせようとすると、半導体チップ4及びチップコンデンサ8のサイズによっては、チップコンデンサ8と半導体チップ4とが直接的に接触するか、あるいは直接接触しなくても近接しすぎて電気的に接触してしまう不具合が生じ得る。また、搭載ずれしたチップコンデンサ8によって半導体チップ4の搭載が出来ない不具合が生じ得る。なお、ここでいう水平方向とは基板2の面と平行する方向である。
When the chip capacitor 8 is mounted on the substrate 2, there are not a few mounting shifts due to the formation deviation of the adhesive layer such as a solder material and the variation in the dimensions of the chip capacitor 8. Further, when mounting the semiconductor chip 4 on the spacer layer, there is a considerable amount of mounting displacement from the target position. Therefore, in the configuration of the semiconductor device 1 according to the first embodiment, if the horizontal separation distance between the semiconductor chip 4 and the chip capacitor 8 is to be very short, depending on the size of the semiconductor chip 4 and the chip capacitor 8, The chip capacitor 8 and the semiconductor chip 4 may be in direct contact with each other, or even if not in direct contact, there may be a problem that the chip capacitor 8 and the semiconductor chip 4 are too close to be in electrical contact. In addition, the chip capacitor 8 which is not mounted can cause a problem that the semiconductor chip 4 cannot be mounted. The horizontal direction here is a direction parallel to the surface of the substrate 2.

これに対して第2の実施形態に係るスペーサー層21を備える構成では、半導体チップ4と基板2とスペーサー層21で囲まれた空間がある。そのため、上述したようなチップコンデンサ8あるいは半導体チップ4の搭載ズレを当該空間で吸収して上記不具合の発生を抑えることができる。従って、スペーサー層21を備える構成によれば、半導体チップ4とチップコンデンサ8の水平方向の離間距離を非常に短くし、0.1mm以下にすることができる。換言すれば、スペーサー層21を備えない構成では、半導体チップ4とチップコンデンサ8の水平方向の離間距離を0.1mm以下にすることは非常に困難である。   In contrast, in the configuration including the spacer layer 21 according to the second embodiment, there is a space surrounded by the semiconductor chip 4, the substrate 2, and the spacer layer 21. For this reason, the mounting error of the chip capacitor 8 or the semiconductor chip 4 as described above can be absorbed in the space, and the occurrence of the above-described problem can be suppressed. Therefore, according to the configuration including the spacer layer 21, the horizontal separation distance between the semiconductor chip 4 and the chip capacitor 8 can be extremely shortened to 0.1 mm or less. In other words, in the configuration without the spacer layer 21, it is very difficult to set the horizontal separation distance between the semiconductor chip 4 and the chip capacitor 8 to 0.1 mm or less.

本発明は上述した実施形態に限定されることなく、その要旨を逸脱しない範囲で変更が可能なことは言うまでもない。例えば上記実施形態では、チップコンデンサ8がパッド電極6とスペーサー層3,21との間に配置されていたが、これ以外にコイルやチップ抵抗、チップインダクタンス等が配置されていてもよく、半導体チップ4と別個の電子部品であればその機能や種類に限定はない。また、スペーサー層3,21を放熱体として用いる場合、基板2とスペーサー層3,21との接触面及び基板2の内部から裏面上にかけて熱伝導率の高い部材(例えば、銅からなる金属層)を形成し、スペーサー層3,21からの放熱特性を向上させても良い。本発明は、基板上に半導体チップと電子部品とが混載されてパッケージされた半導体装置の小型化を図るために広く適用できるものである。   It goes without saying that the present invention is not limited to the above-described embodiment, and can be changed without departing from the gist thereof. For example, in the above embodiment, the chip capacitor 8 is disposed between the pad electrode 6 and the spacer layers 3, 21, but other than this, a coil, a chip resistor, a chip inductance, or the like may be disposed. If it is an electronic component separate from 4, its function and type are not limited. Further, when the spacer layers 3 and 21 are used as a radiator, a member having a high thermal conductivity (for example, a metal layer made of copper) from the contact surface between the substrate 2 and the spacer layers 3 and 21 and from the inside of the substrate 2 to the back surface. The heat dissipation characteristics from the spacer layers 3 and 21 may be improved. The present invention can be widely applied to reduce the size of a semiconductor device in which a semiconductor chip and an electronic component are mixedly packaged on a substrate.

尚、スペーサー層3,21がCu等の金属材料からなる場合、スペーサー層3,21の配置領域に対応する基板2側にCu等の金属材料からなるアイランドを設け、当該アイランド上にロウ材、導電ペースト等を用いてスペーサー層3,21を固着しても良い。更に、このアイランドの下にサーマルビアを設け、サーマルビアを通して基板2の裏面に熱を逃がしても良い。   When the spacer layers 3 and 21 are made of a metal material such as Cu, an island made of a metal material such as Cu is provided on the substrate 2 side corresponding to the arrangement region of the spacer layers 3 and 21, and a brazing material is formed on the island. The spacer layers 3 and 21 may be fixed using a conductive paste or the like. Further, a thermal via may be provided under the island, and heat may be released to the back surface of the substrate 2 through the thermal via.

更に図面では省略したが、半導体チップは複数個積層されても良い。いわゆるMCP(Multi Chip package)と呼ばれる構造である。従って、半導体チップ4上にさらに別の半導体チップを積層させても良いし、半導体チップ4上に複数の半導体チップを平面的に配置してもよい。   Further, although omitted in the drawings, a plurality of semiconductor chips may be stacked. This is a so-called MCP (Multi Chip Package) structure. Therefore, another semiconductor chip may be stacked on the semiconductor chip 4, or a plurality of semiconductor chips may be arranged on the semiconductor chip 4 in a plane.

特に半導体チップ4がパワーMOS等のディスクリートデバイス(Discrete Device)であって、その上に配置された別の半導体チップが当該ディスクリートデバイスを制御するICチップであってもよい。あるいは、スペーサー層3,21が半導体チップ4を制御するICチップから成るものでもよい。   In particular, the semiconductor chip 4 may be a discrete device (Discrete Device) such as a power MOS, and another semiconductor chip disposed thereon may be an IC chip that controls the discrete device. Alternatively, the spacer layers 3 and 21 may be formed of an IC chip that controls the semiconductor chip 4.

1 半導体装置 2 基板 3 スペーサー層
4 半導体チップ 5 パッド電極 6 パッド電極 7 導体板
8 チップコンデンサ 9 ボンディングワイヤ 10 バンプ電極
11 モールド樹脂 20 半導体装置 21 スペーサー層
100 半導体装置 101 基板 102 半導体チップ
103 パッド電極 104 パッド電極 105 バンプ電極
106 チップコンデンサ 107 ボンディングワイヤ
108 モールド樹脂
1 Semiconductor device 2 Substrate 3 Spacer layer
4 Semiconductor chip 5 Pad electrode 6 Pad electrode 7 Conductor plate
8 Chip Capacitor 9 Bonding Wire 10 Bump Electrode 11 Mold Resin 20 Semiconductor Device 21 Spacer Layer
DESCRIPTION OF SYMBOLS 100 Semiconductor device 101 Substrate 102 Semiconductor chip 103 Pad electrode 104 Pad electrode 105 Bump electrode 106 Chip capacitor 107 Bonding wire
108 Mold resin

Claims (2)

ディスクリートデバイスである半導体チップの配置領域に設けられた銅から成るアイランドと、前記アイランドの外周に設けられた複数の第1の電極と、前記第1の電極と前記アイランドとの間に設けられた回路素子用の第2の電極が表面に形成された樹脂材料から成る基板と、
前記アイランドに固着された銅から成るスペーサーと、
前記スペーサーに設けられ、表面には複数のパッド電極が設けられた半導体チップと、
前記第2の電極に配置された電子部品と、
前記第1の電極と前記パッド電極とを電気的に接続し、前記回路素子を跨いで設けられたボンディングワイヤとを備え、
前記アイランドの下の前記基板にはサーマルビアが設けられ、前記スペーサーは、前記回路素子よりも高く設けられ、ヒートシンクの機能を有するとともに、前記半導体チップの最上面を底上げすることを特徴とする半導体装置。
An island made of copper provided in an arrangement region of a semiconductor chip that is a discrete device, a plurality of first electrodes provided on an outer periphery of the island, and provided between the first electrode and the island A substrate made of a resin material having a second electrode for a circuit element formed on the surface;
A spacer made of copper affixed to the island;
A semiconductor chip provided on the spacer and provided with a plurality of pad electrodes on the surface;
An electronic component disposed on the second electrode;
Electrically connecting the first electrode and the pad electrode, and a bonding wire provided across the circuit element,
The substrate under the island is provided with a thermal via, the spacer is provided higher than the circuit element, has a function of a heat sink, and raises the uppermost surface of the semiconductor chip. apparatus.
前記半導体チップの上には、前記第半導体チップを制御する別の半導体チップ素子が設けられることを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein another semiconductor chip element that controls the first semiconductor chip is provided on the semiconductor chip.
JP2012015448A 2012-01-27 2012-01-27 Semiconductor device Withdrawn JP2012080145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015448A JP2012080145A (en) 2012-01-27 2012-01-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015448A JP2012080145A (en) 2012-01-27 2012-01-27 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007059479A Division JP5178028B2 (en) 2007-03-09 2007-03-09 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2012080145A true JP2012080145A (en) 2012-04-19

Family

ID=46239943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015448A Withdrawn JP2012080145A (en) 2012-01-27 2012-01-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2012080145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105462B2 (en) 2013-03-01 2015-08-11 Kabushiki Kaisha Toshiba Semiconductor apparatus
US9312236B2 (en) 2013-03-01 2016-04-12 Kabushiki Kaisha Toshiba Semiconductor device, wireless device, and storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105462B2 (en) 2013-03-01 2015-08-11 Kabushiki Kaisha Toshiba Semiconductor apparatus
US9312236B2 (en) 2013-03-01 2016-04-12 Kabushiki Kaisha Toshiba Semiconductor device, wireless device, and storage device

Similar Documents

Publication Publication Date Title
JP4474431B2 (en) Semiconductor package and manufacturing method thereof
US7968991B2 (en) Stacked package module and board having exposed ends
JP6586036B2 (en) Manufacturing method of semiconductor device
CN103582945A (en) Semiconductor device
JP2010272681A (en) Wiring substrate, and semiconductor device
JP2011146489A (en) Semiconductor device
JP2006210777A (en) Semiconductor device
WO2016162938A1 (en) Semiconductor device
KR20100045331A (en) Semiconductor multi-chip package
JP2005064479A (en) Circuit module
JP4494249B2 (en) Semiconductor device
JP2008124072A (en) Semiconductor device
JP5178028B2 (en) Manufacturing method of semiconductor device
US20190304878A1 (en) Electronic device, substrate, and electronic component
JP5153364B2 (en) Stacked semiconductor package and electronic device
JP2012080145A (en) Semiconductor device
TWI681414B (en) Electronic module
US20170018487A1 (en) Thermal enhancement for quad flat no lead (qfn) packages
US20100283145A1 (en) Stack structure with copper bumps
JP2013004912A (en) Semiconductor module
JP6822254B2 (en) Semiconductor device
KR101217434B1 (en) Semiconductor device
JP2005057271A (en) Semiconductor chip package and stacked module having functional part and packaging part arranged horizontally on common plane
JP5103155B2 (en) Semiconductor device and manufacturing method thereof
US11948852B2 (en) Semiconductor device package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120207

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121116