JP5444827B2 - チタン薄板の製造方法 - Google Patents

チタン薄板の製造方法 Download PDF

Info

Publication number
JP5444827B2
JP5444827B2 JP2009115003A JP2009115003A JP5444827B2 JP 5444827 B2 JP5444827 B2 JP 5444827B2 JP 2009115003 A JP2009115003 A JP 2009115003A JP 2009115003 A JP2009115003 A JP 2009115003A JP 5444827 B2 JP5444827 B2 JP 5444827B2
Authority
JP
Japan
Prior art keywords
titanium
sintered
thin plate
sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009115003A
Other languages
English (en)
Other versions
JP2010261093A (ja
Inventor
孝二 星野
正弘 和田
信一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009115003A priority Critical patent/JP5444827B2/ja
Publication of JP2010261093A publication Critical patent/JP2010261093A/ja
Application granted granted Critical
Publication of JP5444827B2 publication Critical patent/JP5444827B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

この発明は、新規なチタンの薄板の製造方法に関する。
チタンは、活性金属であるが、室温付近では安定な不働態皮膜を形成することから、耐食性および耐候性に優れている。また、882℃以下での結晶構造が六方最密充填構造であることから、高強度であるが、難加工性であることが知られている。
チタンの用途は、海水プラント、製塩プラント、化学プラントなどの耐食性構造部材、ゴルフクラブ、腕時計のベルト、航空機部材、熱交換器部材、燃料電池部材、その他、多岐にわたる。
チタン薄板は、通常、クロール法によって、チタン鉱石からスポンジチタンを製造し、スポンジチタンを圧密成形および焼結してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造し、チタンインゴットを分塊、鍛造、圧延してチタンスラブとし、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延、および真空熱処理してチタン冷間圧延コイルとし、チタン冷間圧延コイルを用途に応じた形状、寸法に切断することにより製造されている。
チタン薄板のもう一つの製造方法として、チタンインゴットを分塊、水素化粉砕、脱水素、粉末解砕、および分級してチタン粉末を製造し、チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られている。
近年、地球温暖化対策、エネルギー問題対策の一環として、金属製品おいても省エネルギーの製造プロセスの開発が望まれている。しかしながら、チタン薄板に関して述べると、上述のチタンスラブを熱間圧延および冷間圧延するチタン薄板の製造方法は加工工程が多く、エネルギー的に効率のよい製造方法とは言えない。
また、チタン粉末を圧延する製造方法では、チタンが六方最密充填構造であって硬くて脆いという性質をもつことから、粉末圧延工程において圧延ロールに少量のチタン粉末を均一に供給して薄板を製造しようとすると、圧延圧密体にクラックが入りやすく、厚さ0.7mm以下の圧延圧密体を安定的に製造することが困難である。そのため、圧延圧密体を焼結および冷間圧延して得られるチタン薄板の厚さは、せいぜい0.5mm程度である。従って、厚さが0.5mmよりも薄いチタン薄板を製造するためには、さらに冷間圧延および焼鈍を繰り返す必要があり、やはりエネルギー的に効率の良い製造プロセスとは言えない。
チタン薄板製造プロセスのエネルギー効率を改善する方法として、チタンインゴットの川上材料であるスポンジチタンを直接、水素化粉砕、脱水素、および解砕してチタン粉末を製造し、得られるチタン粉末からチタン薄板を製造する方法が考えられる。それができれば、スポンジチタンからチタンインゴットを製造する工程を省くことができるので、エネルギー的に効率の良いプロセスになる。
さらに、水素化チタンは、真空中、あるいは不活性雰囲気中で加熱すると約430℃から脱水素反応が開始し、550℃以上に加熱するとほぼ全体が脱水素してチタンになる。そこで、水素化チタン粉から薄板を成形し、脱脂工程および焼結工程で脱水素してチタン薄板にできれば、前述の方法のエネルギー効率改善に加えて、水素化チタン粉を脱水素、および解砕してチタン粉を製造するプロセスを省くことができるので、さらに、エネルギー的に効率の良いプロセスになる。
しかし、スポンジチタンを水素化粉砕および脱水素して製造したチタン粉末は、炭素、酸素、窒素、シリコン、鉄などの不純物が微量に混入していて、チタンインゴットから製造したチタン粉末よりも加工性が悪く、厚さが0.5mmよりも薄いチタン薄板を製造することがよりいっそう困難になる。
さらに、水素化チタンを直接粉末圧延する場合、水素化チタンは脆性材料であって、圧延の荷重で一部が粉砕されてしまうために、厚さを薄く粉末圧延することはほとんど不可能である。
このような圧延時の不具合を解決し、厚さが0.5mm以下のチタン薄板を製造可能な金属薄板製造プロセスを開発するべく実験、検討を進めた結果、本発明者らの一人が過去に考案した焼結シート圧延法を応用、最適化することで目的を達成できるであろうという考えを得るに至った。
焼結シート圧延法は、特許文献1に示されるように、Alを7〜20%含有するFe−Cr−Al系合金箔の製造方法として考案された方法であって、原料の合金粉を有機バインダー溶液とともに混練して粘性組成物とし、ドクターブレード法等で薄板状に成形し、ネック焼結して得られる多孔質焼結薄板をプリフォームとし、それを圧延して緻密化して箔を製造する方法である。難加工性の合金箔の製造に適したプロセスであって、圧延後に中間焼鈍を施すことで折り曲げ加工性などが改善される。
特開平8−81742号公報
そこで、チタン薄板の製造に焼結シート圧延法の適用を試みたところ、チタン焼結薄板は圧延時にクラックが入りやすく、1回の圧延では密度比を93%以上に圧密することが困難であり、既存のプロセスをそのまま適用することができなかった。
この発明は、前述の事情に鑑みてなされたものであり、発明の目的は厚さ500μm以下、好ましくは厚さ200μm以下、さらに好ましくは厚さ50μm以下のチタン薄板をエネルギー的に効率の良いプロセス、すなわち工程数の少ないプロセスで製造できる新たなチタン薄板の製造方法を提供することにあり、それを達成するために、焼結シート圧延法をチタン薄板の製造に適した方法に改良することを主眼においている。
そこで、チタン薄板の製造プロセスとして、焼結シート圧延法を適用した新プロセスを完成させるべく種々の実験、検討を重ねた結果、チタン焼結薄板は圧延時にクラックが入りやすいので、1回の圧延作業で密度比を93%以上にすることは困難であるが、圧延によって密度比を少なくとも70%以上、望ましくは80%以上に圧密した焼結圧密板を1000℃〜1400℃、かつ1回目の焼結温度よりも少なくとも50℃以上高い温度で再焼結することにより、密度比が例えば98.5%以上の高密度のチタン薄板を製造できることを見出した。
さらに、本プロセスで安定的にチタン焼結薄板を製造するための管理項目を決定すべく各工程の中間体を分析し、データ整理、解析を進めた結果、圧密前の焼結薄板の炭素含有量ならびに酸素含有量が高くなると圧延工程でクラックが入りやすくなり、クラックを予防するためには、焼結体の炭素量を0.5%以下、望ましくは0.3%以下、酸素量を1%以下、望ましくは0.5%以下にするとよいことがわかった。
次に、チタン焼結薄板の炭素量と酸素量を効果的に低減する方法を検討した結果、本プロセスにおいてチタン焼結薄板は、結着剤、可塑剤、溶剤から構成される有機バインダー溶液とチタン粉末、水素化チタン粉末、および/またはチタン合金粉末(以下、チタン原料粉と呼ぶ)とを混合して製造される粘性組成物(以下、チタン含有粘性組成物と呼ぶ)をドクターブレード法等で薄板状に成形し、乾燥した後、焼結して製造されるが、この場合、チタン含有粘性組成物の、結着剤とチタン原料粉の配合比率がチタン焼結薄板の炭素量と酸素量を決定づける因子の一つであって、結着剤の配合比が高くなると、多孔質焼結薄板の炭素含有量ならびに酸素含有量が高くなって、次工程の圧延工程でクラックが入りやすくなることが判明した。それを解決するためには、結着剤を減らすとともに、結着剤を減らす代わりに可塑剤を増やし、結着剤、可塑剤、およびチタン原料粉との配合比率をある一定の範囲に収めればよい、という知見を得るに至ったのである、
本発明は、かかる知見に基づいてなされたものであり、以下の解決手段とした。
すなわち、本発明は、金属粉末、結着剤、可塑剤、溶剤を含む粘性組成物を薄板状に成形、乾燥して焼結前成形体を製造する工程、前記焼結前成形体を焼結して焼結薄板を製造する焼結工程、前記焼結薄板を圧密して焼結圧密薄板を製造する圧密工程、前記焼結圧密薄板を再焼結する再焼結工程、を含み、前記金属粉末がチタン粉末、水素化チタン粉末、および/またはチタン合金粉末である厚さ500μm以下のチタン薄板の製造方法において、前記焼結圧密板の密度比が70%以上であり、前記焼結前成形体の焼結温度をT℃、前記焼結圧密薄板の再焼結温度をT℃としたとき、900<T≦1300、1000<T≦1400、T+50<Tであることを特徴とする。
また、本発明の製造方法において、前記焼結前成形体を焼結して得られるチタン焼結薄板の炭素含有量および酸素含有量は、質量%で、炭素含有量が0.5%以下、酸素含有量が1%以下であるとよい。
また、本発明の製造方法において、前記粘性組成物の金属粉末、結着剤、可塑剤の配合比において、金属粉の質量を100としたときの結着剤の質量B、可塑剤の質量Pが、0.03<B≦3、2<P≦30、B<Pであるとよい。
また、本発明の製造方法において、前記金属粉末の平均粒子径が4μm〜200μmであるとよい。
金属粉末の平均粒子径については、必ずしも限定されるものではないが、粘性組成物に適度な粘性と流動性を付与して、薄板状に成形し易くするために、4μm〜200μmが好ましい。
また、前記焼結工程において、前記焼結温度に加熱する前に、350℃〜600℃で10〜300分の脱脂処理を行うとよい。
脱脂処理は、焼結時に一般的に行われるものでもよいが、このような脱脂処理とすることにより、炭化チタンの発生を防止できるので好ましい。
本発明のチタン薄板の製造方法によれば、例えば、密度比98.5%以上、厚さ0.03mm〜500μmの高密度かつ薄肉のチタン薄板を製造することができる。
さらに、以下のような有利点がある。
(1)ドクターブレード法等であらかじめ薄板を成形するので、原料粉の平均粒子径の3倍以上の厚さであれば平面方向に均一な厚さのプリフォームを製造することができ、そのプリフォームはネック焼結している。それを圧延するので、均一な厚さおよび荷重で圧延できる。そのため、厚さが500μm以下でも、チタンに多少の不純物が含まれていても、圧延時の破損を抑制できる。
(2)焼結体をプリフォームに使用するので、焼結工程の熱処理によって水素化チタンをチタンに脱水素することができる。従って、原料に水素化チタンを使用した場合にも、圧
延工程の段階では脱水素してチタンになっているので、原料に水素化チタンを使用することができる。
(3)スポンジチタンから水素化チタンを製造し、それを原料に使用して焼結シート圧延法の概念を適用してチタン薄板を製造すれば、スポンジチタンからチタンインゴットを製造する工程を省くことができるので、エネルギー的に効率の良いプロセスになる。
したがって、従来のチタンインゴットを出発材料とする方法に比べて、少ない工程数でチタン薄板を製造できることが明らかであり、省エネルギー化が実現できる。
本発明の焼結シート圧延法を改良したチタン薄板の製造方法を示すフローチャートである。
以下、本発明のチタン薄板の製造方法の実施形態について説明する。
この実施形態の製造方法は、図1のフローチャートに示したように、結着剤、可塑剤、溶剤とチタン原料粉を混合してチタン含有粘性組成物を調製する工程と、チタン含有粘性組成物を薄板状に成形および乾燥して焼結前成形体を製造する工程と、焼結前成形体を脱脂・焼結してチタン焼結薄板を製造する工程と、チタン焼結薄板を圧密してチタン焼結圧密薄板を製造する工程と、チタン焼結圧密薄板を再焼結する工程とを含む。
これら各工程を順に説明する。
(チタン含有粘性組成物の調製工程)
結着剤は、水溶性のものと有機溶剤溶解性のもののどちらも利用することができる。水溶性の結着剤にはたとえば、メチルセルロース系、エチルセルロース系、ポリビニルアルコール系の結着剤を使用でき、有機溶剤溶解性の結着剤にはたとえば、アクリル系、ポリビニルブチラール系、エチルセルロース系の結着剤を使用できる。
可塑剤は、水溶性結着剤を使用する場合にはグリセリン、エチレングリコール、ポリエチレングリコールなどを使用でき、有機溶剤溶解性結着剤を使用する場合にはフタル酸エステルなどを使用できる。
溶剤は、水溶性結着剤を使用する場合には水を使用し、有機溶剤溶解性結着剤を使用する場合にはエタノール、トルエン、イソプロパノール、ターピネオール、ブチルカルビトール、シクロヘキサン、メチルエチルケトンなどが使用できる。ただし、工程の環境負荷低減を考慮すると水溶性の結着剤を使用することが望ましい。
チタン原料粉はチタン粉、水素化チタン粉、チタン合金粉の1種または2種以上の混合粉を使用できる。チタン原料粉の粒子径は、チタン含有粘性組成物が適度な粘性と流動性を示し、薄板状に成形しやすくできるような粒子径が望ましく、平均粒子径4μm〜200μm、さらに望ましくは8μm〜50μmの範囲がよい。この平均粒子径は、レーザー回折法により測定される。
チタン含有粘性組成物の配合組成において、チタン原料粉に対する結着剤の割合が、後述する焼結前成形体の強さを決めるので、焼結前成形体の強さという観点からは結着剤の割合が高い方がよい。しかし、それが高くなると、焼結前成形体を焼結して得られるチタン焼結薄板に含まれる炭素量と酸素量が増加して、次工程の圧密時に破損しやすくなる。従って、チタン原料粉に対する結着剤の割合を低く抑制する必要があり、その結果、チタン原料粉に対する結着剤の配合比率Bは質量%で0.03%〜3%、望ましくは0.1%〜1%の範囲がよい。
しかし、チタン原料粉に対する結着剤の配合比率が質量%で1%を下回ると、焼結前成形体の強さが不十分になり、例えばドクターブレード法で成形する場合にキャリヤシートから焼結前成形体を剥離できなくなるなどの不具合が生じる。そこで、その問題を解決するために種々の検討を行った結果、可塑剤の配合比率を調整することで不具合を克服できることを見出した。すなわち、チタン原料粉に対する可塑剤の配合比率を質量%で2%以上とすることで焼結前成形体に可撓性と伸び性が付与されて破損しにくくなる。一方で可塑剤の配合比率が30%を超えると乾燥時にベナードセル(コーティングした塗料の乾燥過程において未乾燥の塗料が対流して塗膜表面に多数発生する特殊なセル構造)が形成して焼結前成形体の密度が不均一になったり、乾燥しにくくなったりすることから、チタン原料粉に対する可塑剤の配合比率Pは2〜30%、望ましくは4%〜20%になるように配合するとよい。
(成形および乾燥工程)
次に、前述のように調製したチタン含有粘性組成物を薄板状に成形し、溶剤を蒸発させて、板状の焼結前成形体を製造する。
チタン含有粘性組成物の成形は、ドクターブレード法などの粘性組成物をキャリヤシート上に直接塗布する方法、リップコーティング法などの粘性組成物をキャリヤシート上に押出しながら塗布する方法、オフセット印刷、グラビア印刷などの粘性組成物を転写塗布する方法、のいずれの方法を利用してもよい。ドクターブレード法、リップコーティング法は、チタン含有粘性組成物が均一分散し易いので成形方法として好ましい。
乾燥は、溶剤の蒸発が速すぎると焼結前成形体にクラックが入ってしまうことがあるので、クラックが入らない温度および風量を選んで行う。
(焼結工程)
次に、焼結前成形体を焼結してチタン焼結薄板を製造する。
焼結前成形体はチタン原料粉の他に結着剤と可塑剤を含んでいる。可塑剤は通常、300℃以下で蒸発してしまうのでチタンの焼結に悪影響を及ぼさない。これに対して、結着剤は、非酸化性雰囲気では約500℃までにほぼ90%以上が熱分解するが、一部が残炭成分として800℃以上まで残り、800℃を超えると残炭成分がチタンと反応して炭化チタン粒子を形成するようになる。炭化チタン粒子が形成するとチタン焼結薄板が脆くなって、次工程の圧密工程で破損する原因となる。従って、焼結の昇温過程では、残炭量を少なく抑制するために結着剤を十分に分解、除去できるように、結着剤の熱分解温度の前後で昇温速度を遅くしたり、保持時間を設定したりすることが望ましい。具体的には、350〜600℃の温度範囲に10〜300分保持するとよい。
焼結の雰囲気は、チタンは酸化しやすく、窒化しやすいので、アルゴン雰囲気、もしくは真空中で行う。焼結の温度(T)は、この焼結工程ではあまり粒成長させない方が次工程の圧密工程をスムーズに行えることから、ネック焼結する程度の温度に加熱すればよく、チタン原料粉の粒径および保持時間にも依存するが、900℃〜1300℃で行うとよい。
(圧密工程)
次に、チタン焼結薄板を圧密し、チタン焼結圧密板を製造する。
圧密の方法は一軸プレス、ロール圧延、その他、どのような方法を用いてもよいが、長尺品を連続的に製造する場合にはロール圧延法が適している。焼結シート圧延法では、被圧延材の面内の密度分布が小さいので、難加工材でも容易にロール圧延できる。圧密体の密度比が70%未満であると、次工程の再焼結工程で密度比98.5%以上の緻密なチタン薄板を得るために例えば1450℃を超える高温で保持する必要が生じるなど、プロセスのエネルギー効率が悪くなり、一方、93%を超えると圧延割れが生じやすくなる。従って、圧密工程では、得られるチタン焼結圧密板の密度比が70%〜93%の範囲、望ましくは80%〜92%に収まるように圧密するとよい。この密度比は、寸法および質量から算出される。
(再焼結工程)
次に、チタン焼結圧密板を再焼結して、チタン薄板を製造する。
再焼結の雰囲気は、焼結工程と同様に、アルゴン雰囲気、もしくは真空中で行う。焼結工程ではネック焼結する程度の温度に加熱すればよかったのに対して、この再焼結工程では密度比98.5%以上の緻密なチタン薄板を焼成するので、焼結工程よりも少なくとも50℃以上、望ましくは100℃以上高い温度に加熱するとよい。チタン原料粉の粒径および保持時間にも依存するが、再焼結温度(T)を950℃〜1400℃、望ましくは1000〜1360℃とすることにより、密度比98.5%以上の緻密なチタン薄板が得られる。
以下、本発明の効果確認のために行った試験結果について説明する。
チタン含有粘性組成物としては、表1に示す成分組成のチタン原料粉、結着剤、可塑剤を混合して調整した。表1中、実施例4のチタン原料粉は、チタン(Ti)粉末と水素化チタン(TiH)粉末とを10:90の質量比で混合して得た混合粉である。また、結着剤の配合比B及び可塑剤の配合比Pは、それぞれチタン原料粉の質量を100としたときの質量比である。
Figure 0005444827
次に、この表1に示す各試料をドクターブレード法により薄板状に成形し、これを乾燥して焼結前成形体を製造した。この焼結前成形体の厚さは0.07〜0.35mmであった。
そして、この焼結前成形体を表2に示す条件で脱脂処理を行った後に焼結処理することにより、チタン焼結薄板を製造した。焼結工程はアルゴン雰囲気で行った。製造されたチタン焼結薄板の厚さ、密度比、炭素量、酸素量を測定した。炭素量は、燃焼−赤外線吸収法により、酸素量は、不活性ガス融解−赤外線吸収法により、それぞれ測定した。
Figure 0005444827
次に、表2のようにして得られたチタン焼結薄板をロール圧延により圧密してチタン焼結圧密板とし、これを表3に示す条件で再焼結して、目的のチタン薄板を製造した。この再焼結工程も、アルゴン雰囲気で行った。中間製造体であるチタン焼結圧密板の厚さ、密度比、及び最終製品であるチタン薄板の厚さ、密度比はそれぞれ表3に示す通りであった。
Figure 0005444827
この表3から明らかなように、実施例の方法とすることにより、高密度で薄肉のチタン薄板を製造することができる。この場合、いずれの実施例も炭素量は0.3%以下、酸素量は0.5%以下で、従来のチタン薄板の用途において実用上問題ない純度であった。一方、比較例の方法の場合、試料6では、チタン焼結圧密板にクラックが生じたものがあったため、クラックが生じなかった密度比66%のチタン圧密板を再焼結した。密度比は実施例のものに比べると若干低いが、96.5%であった。試料7は、再焼結の温度が不十分のため、チタン薄板を所望の密度比にまで高めることはできなかった。
以上、本発明の実施形態について説明したが、本発明は前記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。たとえば、水溶性の結着剤を使用する場合に粘性塑性物にアルコールなどの消泡剤を添加するなどしてもよい。
また、表の試料6は、一部にクラックが生じるものがあったため比較例としたが、クラックが生じないものから密度比96.5%の高密度品を製造可能であり、本発明の範囲から必ずしも除外されるものではない。
本発明の製造方法は、高密度で薄いチタン薄板を製造することができるので、海水プラントや製塩プラントの部材、化学反応容器やタンク等の表面被覆材、電圧印荷状態で長時間使用される電極材や電池の容器材、熱交換器部材、屋根材等の建材など、耐食性および耐候性が要求される構造部材の製造に適している。

Claims (5)

  1. 金属粉末、結着剤、可塑剤、溶剤を含む粘性組成物を薄板状に成形、乾燥して焼結前成形体を製造する工程、前記焼結前成形体を焼結して焼結薄板を製造する焼結工程、前記焼結薄板を圧密して焼結圧密薄板を製造する圧密工程、前記焼結圧密薄板を再焼結する再焼結工程、を含み、前記金属粉末がチタン粉末、水素化チタン粉末、および/またはチタン合金粉末である厚さ500μm以下のチタン薄板の製造方法において、
    前記焼結圧密板の密度比が70%以上であり、
    前記焼結前成形体の焼結温度をT℃、前記焼結圧密薄板の再焼結温度をT℃としたとき、
    900<T≦1300、
    1000<T≦1400、
    +50<T
    であることを特徴とするチタン薄板の製造方法。
  2. 前記焼結前成形体を焼結して得られる焼結薄板の炭素含有量および酸素含有量は、質量%で、炭素含有量が0.5%以下、酸素含有量が1%以下であることを特徴とする請求項1に記載のチタン薄板の製造方法。
  3. 前記粘性組成物の金属粉末、結着剤、可塑剤の配合比において、金属粉の質量を100としたときの結着剤の質量B、可塑剤の質量Pが、
    0.03<B≦3、
    2<P≦30、
    B<P
    であることを特徴とする請求項1又は2に記載のチタン薄板の製造方法。
  4. 前記金属粉末の平均粒子径が4μm〜200μmであることを特徴とする請求項1〜3のいずれか一項に記載のチタン薄板の製造方法。
  5. 前記焼結工程において、前記焼結温度に加熱する前に、350〜600℃で10〜300分の脱脂処理を行うことを特徴とする請求項1〜4のいずれか一項に記載のチタン薄板の製造方法。
JP2009115003A 2009-05-11 2009-05-11 チタン薄板の製造方法 Expired - Fee Related JP5444827B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115003A JP5444827B2 (ja) 2009-05-11 2009-05-11 チタン薄板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115003A JP5444827B2 (ja) 2009-05-11 2009-05-11 チタン薄板の製造方法

Publications (2)

Publication Number Publication Date
JP2010261093A JP2010261093A (ja) 2010-11-18
JP5444827B2 true JP5444827B2 (ja) 2014-03-19

Family

ID=43359425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115003A Expired - Fee Related JP5444827B2 (ja) 2009-05-11 2009-05-11 チタン薄板の製造方法

Country Status (1)

Country Link
JP (1) JP5444827B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149402A (en) * 1981-03-12 1982-09-16 Fujitsu Ltd Production of thin metal sheet
JP2756407B2 (ja) * 1993-12-28 1998-05-25 大同メタル工業株式会社 耐腐食性と耐摩耗性に優れた摺動材料およびその製造方法
JP2007162052A (ja) * 2005-12-12 2007-06-28 Kobe Steel Ltd 発泡金属用素材およびその製造方法

Also Published As

Publication number Publication date
JP2010261093A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5476855B2 (ja) チタン薄板の製造方法
EP2388345B1 (en) Fine grain niobium wrought products obtained by VAR ingot metallurgy
JP6165499B2 (ja) 多孔質チタン薄膜の製造方法
WO2012002337A1 (ja) Cu、In、GaおよびSeの元素を含有する粉末、焼結体およびスパッタリングターゲット、並びに上記粉末の製造方法
CN110484886A (zh) 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法
CN104988466A (zh) 一种利用双辉等离子渗金属技术低温制备α-Al2O3涂层的方法
CN108998716A (zh) 一种电弧熔敷粉芯丝材及其高熵合金涂层的制备方法
CN100575521C (zh) 一种铝-钛-碳-硼-氮中间合金及其制备方法
JPH0433265A (ja) 溶融炭酸塩型燃料電池用電極の製造方法
TW201245094A (en) Sintered material, and process for producing same
Cheng et al. Surface modification of Ti-45Al-8.5 Nb alloys by microarc oxidation to improve high-temperature oxidation resistance
CN111606355A (zh) 一种固相反应法制备ws2纳米片的方法
CN114411125A (zh) 一种高熵金属氧化物涂层及其制备方法与应用
JP5444827B2 (ja) チタン薄板の製造方法
JP2008024976A (ja) 除膜性に優れた硬質皮膜
CN109732087B (zh) 一种粉末冶金Ti-Ta二元金属-金属基层状复合材料的制备方法
CN101823147A (zh) 一种通过大强度电流生产铝钛合金靶材的方法
Gao et al. Plasma spray synthesis of La10 (SiO4) 6O3 as a new electrolyte for intermediate temperature solid oxide fuel cells
CN113026013B (zh) 一种耐蚀锆基非晶合金复合材料涂层的制备方法
WO2015064808A1 (ko) 방전 플라즈마 소결을 이용한 lcd glass 제조용 산화물 분산 강화형 백금-로듐 합금의 제조 방법
CN108085526A (zh) 一种低密度铌基复合材料及制备方法
JP2014109049A (ja) チタン多孔体の製造方法
US20240200174A1 (en) Lightweight steel and preparation method thereof, steel structural part, and electronic device
CN107723646A (zh) 一种抗磨耐候合金板材的制备工艺及其合金板材
CN111590071B (zh) 一种钼铌合金靶材及其制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees