JP5444715B2 - 有機エレクトロルミネッセンス素子、照明装置及び表示装置 - Google Patents

有機エレクトロルミネッセンス素子、照明装置及び表示装置 Download PDF

Info

Publication number
JP5444715B2
JP5444715B2 JP2008533133A JP2008533133A JP5444715B2 JP 5444715 B2 JP5444715 B2 JP 5444715B2 JP 2008533133 A JP2008533133 A JP 2008533133A JP 2008533133 A JP2008533133 A JP 2008533133A JP 5444715 B2 JP5444715 B2 JP 5444715B2
Authority
JP
Japan
Prior art keywords
group
compound
organic
ring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008533133A
Other languages
English (en)
Other versions
JPWO2008029729A1 (ja
Inventor
利恵 片倉
達夫 田中
秀雄 ▲高▼
弘志 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008533133A priority Critical patent/JP5444715B2/ja
Publication of JPWO2008029729A1 publication Critical patent/JPWO2008029729A1/ja
Application granted granted Critical
Publication of JP5444715B2 publication Critical patent/JP5444715B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/145Heterocyclic containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

本発明は、有機エレクトロルミネッセンス素子、照明装置及び表示装置に関する。
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
今後の実用化に向けた有機EL素子の開発としては、更に低消費電力で、効率よく高輝度に発光する有機EL素子が望まれているわけであり、例えば、特許第3093796号公報には、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術が開示され、特開昭63−264692号公報には、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子が開示されており、特開平3−255190号公報には、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子等が知られている。
上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。
ところが、M.A.Baldo et al.,nature、395巻、151〜154ページ(1998年)により、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされて以来、M.A.Baldo et al.,nature、403巻、17号、750〜753ページ(2000年)、米国特許第6,097,147号明細書により、室温で燐光を示す材料の研究が活発になってきている。
更に、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)には、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされている。
また、有機EL素子は、電極と電極の間を厚さわずか0.1μm程度の有機材料の膜で構成するオールソリッド素子であり、なおかつその発光が2V〜20V程度の比較的低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されている技術である。
しかしながら、有機EL素子は、その発光機構が有機材料の励起状態から基底状態への失活を利用した発光現象をもとにするものであることから、青色や青緑色等の波長が短い領域を発光させるには、バンドギャップを大きくする必要があり、従ってその大きなギャップを励起させるために高い電圧が必要になる。
更に、励起状態自体が高いレベルに位置することから基底状態に戻る際のダメージが大きく、緑色や赤色の発光に比べ寿命が短くなる傾向にあり、特に三重項励起状態からの発光を利用するリン光発光ではその傾向が顕著となる。
上記のような問題点を解決する手段としては、種々の技術があるが、例えば、有機エレクトロルミネッセンス素子の構成層を成膜した後に、高分子量化するという技術があり、分子内にビニル基を2つ有する2官能性のトリフェニルアミン誘導体が記載されており、その化合物を成膜した後に紫外線照射により3次元架橋されたポリマーを形成する(例えば、特許文献1参照。)、2つ以上のビニル基を有する材料を複数の層に添加する技術が開示され、重合反応は、陰極を積層する前の有機層成膜時点で紫外線や熱の照射で行う方法(例えば、特許文献2参照。)、リン光発光性ドーパントの末端にビニル基を有する材料と同様にビニル基を有するコモノマーの混合物にラジカル発生剤であるAIBN(アゾイソブチロニトリル)を添加して成膜時に重合反応を進行させる製造方法(例えば、特許文献3参照。)、同一層内の2分子間でディールスアルダー反応を起こさせて架橋させる製造方法(例えば、特許文献4参照。)等が挙げられる。
上記のように、リン光発光ドーパント、特に青色に適用できるリン光発光ドーパントはバンドギャップが非常に大きく、このようなドーパントのホストとして使用でき、高い発光効率と長寿命を同時に達成し、更に、塗布法(湿式法ともいう)に適用可能な材料は知られていない。
特開平5−271166号公報 特開2001−297882号公報 特開2003−73666号公報 特開2003−86371号公報
本発明の目的は、外部取り出し量子効率が高く、且つ、発光寿命が長い有機エレクトロルミネッセンス素子を提供し、さらに該有機エレクトロルミネッセンス素子を具備した照明装置および表示装置を提供することである。
本発明の上記目的は下記の構成1〜22により達成された。
1.支持基板上に少なくとも陽極、陰極を有し、該陽極と該陰極間に少なくとも1層の発光層を有する有機エレクトロルミネッセンス素子において、
下記一般式(a)で表される部分構造および反応性基を有する化合物Aを少なくとも一部として含み、且つ、前記反応性基を介して前記化合物Aが重合してなる重合体を含有することを特徴とする有機エレクトロルミネッセンス素子。
〔式中、Xは、O、SまたはSiR’R”を表す。R’、R”は、各々水素原子または置換基を表す。Arは芳香環を表す。〕
2.前記Xが、OまたはSを表すことを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
3.前記Xが、Oを表すことを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
4.前記Ar、カルバゾール環、カルボリン環またはベンゼン環であることを特徴とする前記1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
5.前記Arが、置換基を有するベンゼン環であることを特徴とする前記1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
6.前記Arが、カルバゾリル基を有するベンゼン環であることを特徴とする前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
7.前記一般式(a)が、下記一般式(a′)で表されることを特徴とする前記1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
〔式中、Xは、O、SまたはSiR’R”を表す。R’、R”は、各々水素
原子または置換基を表す。Arは芳香環を表す。〕
8.前記反応性基が、下記一般式(2)〜(5)のいずれかで表されることを特徴とする前記1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
〔式中、Rは、水素原子またはメチル基を表し、Qは、下記一般式(c)、(d)及び(e)からなる2価の連結基群から選択されるひとつまたは該2価の連結基の複数の組み合わせで表される基を表す。〕
〔式中、R1、R2は、各々水素原子またはメチル基を表し、Cyは、3員または4員の環状エーテルを表す。nは1以上の整数を表す。〕
9.前記化合物Aまたは該化合物Aの重合体が、発光層に含有されることを特徴とする前記1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
10.前記発光層が、前記重合体とリン光発光性ドーパントを含有していることを特徴とする前記1〜9のいずれか1項に記載の有機エレクトロルミネッセンス素子。
11.前記重合体が、前記化合物Aとリン光発光性ドーパントとの共重合体であることを特徴とする前記1〜10のいずれか1項に記載の有機エレクトロルミネッセンス素子。
12.前記リン光発光性ドーパントがIr錯体であることを特徴とする前記10または11に記載の有機エレクトロルミネッセンス素子。
13.前記リン光発光性ドーパントのリン光波長の0−0遷移バンドが485nm以下であることを特徴とする前記10〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
14.前記リン光発光性ドーパントが、下記一般式(1)で表される金属錯体であることを特徴とする前記13に記載の有機エレクトロルミネッセンス素子。
〔式中、Zは結合する窒素原子から数えて3番目の原子の少なくとも1つに、立体パラメーター値(Es値)が−0.5以下の置換基を結合している炭化水素環または複素環を表す。X及びYは炭素原子または窒素原子を表し、AはX−Cと共に5〜6員の炭化水素環または複素環を形成するのに必要な原子群を表す。Bは−C(R01)=C(R02)−、−N=C(R02)−、−C(R01)=N−または−N=N−を表し、R01及びR02は水素原子または置換基を表す。XL1−Xは2座の配位子を表し、X、Xは各々独立に炭素原子、窒素原子または酸素原子を表す。L1はX、Xと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。中心金属であるMは元素周期表における8〜10族の金属を表す。〕
15.前記化合物Aまたは該化合物Aの重合体のリン光波長の0−0遷移バンドが460nm以下であることを特徴とする前記1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
16.前記化合物Aまたは該化合物Aの重合体を含有する層が、湿式法で形成されたことを特徴とする前記1〜15のいずれか1項に記載の有機エレクトロルミネッセンス素子。
17.前記化合物Aを塗布後、重合することを特徴とする前記1〜16のいずれか1項に記載の有機エレクトロルミネッセンス素子。
18.構成層として、複数の有機化合物層を有することを特徴とする前記1〜17のいずれか1項に記載の有機エレクトロルミネッセンス素子。
19.前記陽極と前記発光層との間に少なくとも1層の陽極バッファー層または前記陰極と前記発光層の間に少なくとも1層の陰極バッファー層を有しており、前記発光層の少なくとも1層が、前記化合物または該化合物の重合体を含有し、且つ、該発光層が湿式法で形成されることを特徴とする前記1〜18のいずれか1項に記載の有機エレクトロルミネッセンス素子。
20.白色に発光することを特徴とする前記1〜19のいずれか1項に記載の有機エレクトロルミネッセンス素子。
21.前記1〜20のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
22.前記1〜20のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
本発明により、外部取り出し量子効率が高く、且つ、発光寿命が長い有機エレクトロルミネッセンス素子を提供し、さらに該有機エレクトロルミネッセンス素子を具備した照明装置および表示装置を提供することができた。
有機ELフルカラー表示装置の概略構成図を示す。 照明装置の概略図である。 照明装置の断面図である。
符号の説明
101 ガラス基板
102 ITO透明電極
103 隔壁
104 正孔注入層
105B、105G、105R 発光層
207 透明電極付きガラス基板
206 有機EL層
205 陰極
202 ガラスカバー
208 窒素ガス
209 捕水剤
本発明の有機エレクトロルミネッセンス素子(有機EL素子ともいう)においては、構成1〜20のいずれか1に記載の構成を有することにより、外部取り出し量子効率が高く、且つ、発光寿命が長い有機エレクトロルミネッセンス素子を得ることが出来た。
また、前記有機エレクトロルミネッセンス素子を具備した、高輝度の表示装置、照明装置を得ることにも併せて成功した。
以下、本発明に係る各構成要素の詳細について、順次説明する。
《化合物A、該化合物の重合体》
本発明に係る化合物A、該化合物Aの重合体について説明する。
本発明において、化合物Aが重合してなる重合体とは、重合体の一部に化合物Aが含有されていればよく、また、反応性基(或いは重合性基)を介して化合物Aが重合しているものである。
本発明に係る化合物Aまたは該化合物Aの重合体は、溶液または分散液として調製することができ、塗布によって作製された膜は均一であり有機エレクトロルミネッセンス素子として十分利用可能である。
また、前記化合物Aまたは該化合物Aの重合体は青色のリン光発光ドーパントに対するホストとして利用できる十分に広いバンドギャップを有しており、外部取り出し量子効率が高く、且つ、発光寿命が長い有機エレクトロルミネッセンス素子を提供することができ、更には、該有機エレクトロルミネッセンス素子を具備した照明装置および表示装置を提供することが出来る。
本発明の有機EL素子においては、化合物Aの状態、即ち、重合前の状態(単量体、モノマーともいう)で素子に組み込まれていてもよく、予め、該化合物Aの重合体として調製され、素子の構成層に組み込まれていてもよい。
特に、塗布等の湿式法により素子の構成層が形成される場合、例えば、該化合物Aが発光層の形成時に単量体として組み込まれた場合には、紫外線照射等の光重合や加熱による熱重合等を行う工程を経て重合体を形成して得られた発光層上に、電子輸送層等を設けることが好ましい。
一方、本発明に係る化合物Aを単量体(重合前の状態)のままで、蒸着等により本発明の有機EL素子の構成層に組み込むことも可能である。
その場合は、有機EL素子が形成された後、通電が行われて発生する活性種等により、化合物Aは重合反応により重合体形成が行われる。
化合物Aの塗布膜を作製後、重合前に、例えば塗布溶媒の沸点より少し高い温度での加熱等、重合前に乾燥プロセスを入れることも好ましい。また、塗布膜を重合した後、適当な(重合膜を溶解しない)溶媒にて重合膜をリンスして不溶物を除いた後、更に上層を積層塗布する等のプロセスを付加することも好ましい。
このように素子を使用することにより、重合反応が進行する場合には、発光寿命の長寿命化という、素子の特性向上効果を得ることが出来る。
前記一般式(a)で表される部分構造および反応性基を有する化合物Aにおいて、反応性基としては下記のような置換基例が挙げられるが、これらに限定されない。中でも、好ましい反応性置換基としては、炭素−炭素二重結合を含む置換基、更に好ましくは、ビニル基が挙げられる。また、化合物Aは、反応性置換基を2つ以上有していることが好ましい。
尚、化合物Aが2以上の反応性基を有する場合、反応性基は同じであっても異なっていてもよい。
化合物Aは、前記一般式(a)で表される部分構造および反応性基を有し、Xは、O、S、CR’R”またはSiR’R”を表すが、更に好ましくは、OまたはSであり、特に好ましくは、XがOである。
一般式(a)のXにおいて、R’、R”で、各々表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1−プロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
一般式(a)において、Arで表される芳香環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、該芳香環は単環でもよく、縮合環でもよく、更に未置換でも、後述するような置換基を有していてもよい。
一般式(a)において、Arで表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は更に置換基を有していてもよい。
一般式(a)において、Arで表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。これらの環は更に置換基を有していてもよい。
上記の中でも、一般式(a)において、Arで表される芳香環として、好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環であり、特に好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環である。
上記の中でも、置換基を有するベンゼン環が好ましく、特に好ましくは、カルバゾリル機を有するベンゼン環が好ましい。
また、一般式(a)において、Arで表される芳香環としては、下記に示すような、各々3環以上の縮合環が好ましい一態様であり、3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。
尚、これらの環は更に、置換基を有していてもよい。
また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。尚、これらの環は更に置換基を有していてもよい。
ここで、一般式(a)において、Arで表される芳香環が有してもよい置換基は、一般式(1)のXにおいて、R’、R”で、各々表される置換基と同義である。
また、本発明に係る化合物Aの反応性基は、好ましい態様としては、前記一般式(2)〜(5)のいずれかで表されることが好ましい。尚ここにおいて、*は反応性基の結合位置を示す。
一般式(2)〜(5)の各々において、Qは、上記一般式(c)、(d)及び(e)からなる2価の連結基群から選択されるひとつまたは該2価の連結基の複数の組み合わせで表される基を表し、R、R1、R2は、各々水素原子またはメチル基を表し、Cyは、3員または4員の環状エーテルを表す。前記3員、4員の環状エーテルは、上記の一般式(1)のXにおいて、R’、R”で、各々表される置換基を有していてもよい。
《化合物Aの重合体の分子量、分子量分布(Mw/Mn)》
本発明に係る化合物Aの重合体の分子量(重量平均分子量Mw)は、1000000以下であることが好ましく、更に好ましくは、10000〜200000の範囲である。更に、本発明に係る、重量平均分子量(Mw)と数平均分子量(Mn)との比率(分子量分布)は、3以下であることが好ましい。
本発明に係る化合物Aの重合体の重量平均分子量(Mw)、数平均分子量(Mn)の測定は、THF(テトラヒドロフラン)をカラム溶媒として用いるGPC(ゲルパーミエーションクロマトグラフィー)を用いて分子量測定を行うことができる。
また、化合物Aが重合前の状態で、有機EL素子の発光層等に組み込まれ、その後、有機EL素子に通電が行われ、発光層中において重合が進行して得られる重合体の分子量については、予め、化合物Aのみを含む層を別途作製しておき、紫外線照射時間を調整した光重合後の試料を複数(例えば、10サンプル程度)作製し、紫外線照射時間と重合体の分子量(重量平均、数平均分子量等)の検量線を予め作成しておき、紫外線照射時間から、分子量(重量平均分子量、数平均分子量や分子量分布)を求めることが出来る。
一方、重合体そのものの分子量の測定は、従来公知の方法により測定できる。
具体的には、測定試料を1mgに対してTHF(脱気処理を行ったものを用いる)を1ml加え、室温下にてマグネチックスターラーを用いて撹拌を行い、充分に溶解させる。ついで、ポアサイズ0.45μm〜0.50μmのメンブランフィルターで処理した後に、GPC(ゲルパーミエーションクロマトグラフ)装置に注入する。
GPC測定条件は、40℃にてカラムを安定化させ、THF(テトラヒドロフラン)を毎分1mlの流速で流し、1mg/mlの濃度の試料を約100μl注入して測定する。
カラムとしては、市販のポリスチレンジェルカラムを組み合わせて使用することが好ましい。例えば、昭和電工社製のShodex GPC KF−801、802、803、804、805、806、807の組合せや、東ソー社製のTSKgelG1000H、G2000H、G3000H、G4000H、G5000H、G6000H、G7000H、TSK guard column等の組合せ等が好ましい。
検出器としては、屈折率検出器(RI検出器)、あるいはUV検出器が好ましく用いられる。試料の分子量測定では、試料の有する分子量分布を単分散のポリスチレン標準粒子を用いて作成した検量線を用いて算出する。検量線作成用のポリスチレンとしては10点程度用いることが好ましい。
本発明では、下記の測定条件にて分子量測定を行った。
(測定条件)
装置:東ソー高速GPC装置 HLC−8220GPC
カラム:TOSOH TSKgel Super HM−M
検出器:RI及び/またはUV
溶出液流速:0.6ml/分
試料濃度:0.1質量%
試料量:100μl
検量線:標準ポリスチレンにて作製:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000〜500迄の13サンプルを用いて検量線(校正曲線ともいう)を作成、分子量の算出に使用した。13サンプルは、ほぼ等間隔にすることが好ましい。
《化合物Aまたは該化合物Aの重合体の0−0遷移バンド》
本発明に係る化合物Aまたは該化合物Aの重合体は、後述する本発明の有機EL素子の構成層のいずれの層においても用いることが出来るが、本発明に記載の効果(外部取り出し量子効率の向上、発光寿命の長寿命化)の観点からは、発光層に含有されることが好ましい。
また、本発明に係る化合物Aまたは該化合物Aの重合体のリン光0−0遷移バンドが460nm以下の化合物が好ましい化合物として挙げられる。
尚、0−0遷移バンドの測定方法については、後述する発光ドーパントのところで、詳細に説明する。
また、このような発光ドーパントとしては、前記一般式(1)で表される金属錯体が好ましい。これについても後述する。
以下、本発明に係る化合物Aまたは該化合物Aの重合体の具体例を示すが、本発明はこれらに限定されない。
尚、本発明に係る化合物A、該化合物Aの重合体は、新高分子実験学2 高分子の合成・反応(共立出版株式会社)等に記載の従来公知の文献等を参照して合成することが出来る。
《有機EL素子の構成層、有機化合物層》
本発明の有機EL素子の構成層、有機化合物層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
《有機化合物層(有機層ともいう)》
本発明に係る有機化合物層について説明する。
本発明の有機EL素子は、構成層として複数の有機化合物層を有することが好ましく、該有機化合物層としては、例えば、上記の層構成の中で、正孔輸送層、発光層、正孔阻止層、電子輸送層等が挙げられるが、その他、正孔注入層、電子注入層等、有機EL素子の構成層に含有される有機化合物が含有されていれば、本発明に係る有機化合物層として定義される。
更に、陽極バッファー層、陰極バッファー層等に有機化合物が用いられる場合には、陽極バッファー層、陰極バッファー層等も、各々有機化合物層を形成していることになる。
尚、前記有機化合物層には、『有機EL素子の構成層に使用可能な有機EL素子材料』等を含有する層も含まれる。
本発明の有機EL素子においては、青色発光層の発光極大波長は430nm〜480nmにあるものが好ましく、緑色発光層は発光極大波長が510nm〜550nm、赤色発光層は発光極大波長が600nm〜640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
本発明の有機EL素子を構成する各層について説明する。
《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm〜5μmの範囲に調整することが好ましく、さらに好ましくは2nm〜200nmの範囲に調整され、特に好ましくは、10nm〜20nmの範囲である。
発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。
本発明の有機EL素子の発光層には、発光ホスト化合物と、発光ドーパント(リン光発光性ドーパント(リン光発光性ドーパントともいう)や蛍光ドーパント等)の少なくとも1種類とを含有することが好ましい。
(ホスト化合物(発光ホスト等ともいう))
本発明に用いられるホスト化合物について説明する。
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でも良い。
併用してもよい従来公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。
従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
(発光ドーパント)
本発明に係る発光ドーパントについて説明する。
本発明に係る発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光発光性ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光発光性ドーパントを含有することが好ましい。
(リン光発光性ドーパント)
本発明に係るリン光発光性ドーパントについて説明する。
本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
リン光発光性ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こりリン光発光性ドーパントからの発光が得られるというキャリアトラップ型が挙げられる。
上記のいずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
リン光発光性ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
本発明に係るリン光発光性ドーパントとしては、好ましくは元素周期表で8族〜10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物(Ir錯体)、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物(Ir錯体)である。
以下に、リン光発光性ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
《0−0遷移バンド》
本発明に係るリン光発光性ドーパントは、リン光波長の0−0遷移バンドが485nm以下であることが好ましく、リン光発光性ドーパントのイオン化ポテンシャルが5.5eV以下であることが好ましい。
(0−0遷移バンドの測定方法)
本発明に係るリン光発光性ドーパントのリン光の0−0遷移バンドの測定方法について説明する。
まず、リン光スペクトルの測定方法について説明する。
測定する化合物(リン光発光性ドーパントでも、ホスト化合物でも同様に測定可能である。)を、よく脱酸素されたエタノール/メタノール=4/1(vol/vol)の混合溶媒に溶かし、リン光測定用セルに入れた後液体窒素温度77°Kで励起光を照射し、励起光照射後100msでの発光スペクトルを測定する。リン光は蛍光に比べ発光寿命が長いため、100ms後に残存する光はほぼリン光であると考えることができる。
なお、リン光寿命が100msより短い化合物に対しては遅延時間を短くして測定しても構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうとリン光と蛍光が分離できないので問題となるため、その分離が可能な遅延時間を選択する必要がある。
また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意の溶剤を使用してもよい(実質上、上記測定法ではリン光波長の溶媒効果はごくわずかなので問題ない)。
次に0−0遷移バンドの求め方であるが、本発明においては、上記測定法で得られたリン光スペクトルチャートのなかで最も短波長側に現れる発光極大波長をもって0−0遷移バンドと定義する。
リン光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判別が難しくなるケースがある。このような場合には励起光照射直後の発光スペクトル(便宜上これを定常光スペクトルと言う)を拡大し、励起光照射後100ms後の発光スペクトル(便宜上これをリン光スペクトルと言う)と重ねあわせリン光スペクトルに由来する定常光スペクトル部分からピーク波長を読みとることで決定することができる。
また、リン光スペクトルをスムージング処理することでノイズとピークを分離しピーク波長を読みとることもできる。なお、スムージング処理としては、Savitzky&Golayの平滑化法等を適用することができる。
本発明に係るリン光発光性ドーパントのイオン化ポテンシャル(Ip)は、5.5eV以下であることが好ましく、更に好ましくは4.5〜5.5eVである。ここで、本発明に係るイオン化ポテンシャルとは、化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、具体的には膜状態(層状態)の化合物から電子を取り出すのに必要なエネルギーであり、これらは光電子分光法で直接測定することができる。本発明では、アルバック−ファイ(株)製ESCA 5600UPS(ultraviolet photoemission spectroscopy)にて測定される値を用いている。
また、本発明において好ましいリン光発光性ドーパントとして、前記一般式(1)で表される金属錯体が好ましい。
ここで、前記一般式(1)で表される金属錯体について説明する。
一般式(1)において、Zは結合する窒素原子から数えて3番目の原子の少なくとも1つに、立体パラメーター値(Es値)が−0.5以下の置換基を結合している炭化水素環または複素環(それぞれの互変異性体も含む)を表す。ここで、Es値とは化学反応性より誘導された立体パラメーターであり、この値が小さければ小さいほど立体的に嵩高い置換基ということができる。
以下、Es値について説明する。一般に、酸性条件下でのエステルの加水分解反応においては、置換基が反応の進行に対して及ぼす影響は立体障害だけと考えてよいことが知られており、この事を利用して置換基の立体障害を数値化したものがEs値である。
置換基XのEs値は、次の化学反応式
X−CH2COORX+H2O→X−CH2COOH+RXOH
で表される、酢酸のメチル基の水素原子1つを置換基Xで置換したα位モノ置換酢酸から誘導されるα位モノ置換酢酸エステルを酸性条件下で加水分解する際の反応速度定数kXと、次の化学反応式
CH3COORY+H2O→CH3COOH+RYOH
(RXはRYと同じである)で表される、上記のα位モノ置換酢酸エステルに対応する酢酸エステルを酸性条件下で加水分解する際の反応速度定数kHから次の式で求められる。
Es=log(kX/kH)
置換基Xの立体障害により反応速度は低下し、その結果kX<kHとなるのでEs値は通常負となる。実際にEs値を求める場合には、上記の二つの反応速度定数kXとkHを求め、上記の式により算出する。
Es値の具体的な例は、Unger,S.H.,Hansch,C.,Prog.Phys.Org.Chem.,12,91(1976)に詳しく記載されている。また、『薬物の構造活性相関』(化学の領域増刊122号、南江堂)、「American Chemical Society Professional Reference Book,’Exploring QSAR’p.81 Table 3−3」にも、その具体的な数値の記載がある。次にその一部を表1に示す。
ここで、注意するのは本明細書で定義するところのEs値は、メチル基のそれを0として定義したのではなく、水素原子を0としたものであり、メチル基を0としたEs値から1.24を差し引いたものである。
本発明においてEs値は−0.5以下である。好ましくは−7.0以上−0.6以下である。最も好ましくは−7.0以上−1.0以下である。
ここで、本発明においては、立体パラメーター値(Es値)が−0.5以下の置換基、例えば、R及びR′にケト−エノール互変異性体が存在し得る場合、ケト部分はエノールの異性体としてEs値を換算している。他の互変異性が存在する場合も同様の換算方法においてEs値を換算する。更にEs値が−0.5以下の置換基は、電子的効果においては電子供与性の置換基であることが好ましい。
本発明において、電子供与性の置換基とは下記に記載のハメットのσp値が負の値を示す置換基のことであり、そのような置換基は水素原子と比べて結合原子側に電子を与えやすい特性を有する。
電子供与性を示す置換基の具体例としては、ヒドロキシル基、アルコキシ基(例えば、メトキシ基、)、アセチルオキシ基、アミノ基、ジメチルアミノ基、アセチルアミノ基、アルキル基(例えば、メチル基、エチル基、プロピル基、t−ブチル基等)、アリール基(例えば、フェニル基、メシチル基等)が挙げられる。またハメットのσp値については、例えば、下記文献等が参照できる。
本発明に係るハメットのσp値とはハメットの置換基定数σpを指す。ハメットのσpの値は、Hammett等によって安息香酸エチルの加水分解に及ぼす置換基の電子的効果から求められた置換基定数であり、『薬物の構造活性相関』(南江堂:1979年)、『Substituent Constants for Correlation Analysis in Chemistry and Biology』(C.Hansch and A.Leo,John Wiley&Sons,New York,1979年)等に記載の基を引用することができる。
以下に一般式(1)におけるZの好ましい例を挙げるが、Zは以下の例示以外にも更に置換基を有していてもよいなどこれらの例に限定されない。なお、*は結合位置を表す。
一般式(1)において、Yは炭素原子または窒素原子を表し、好ましくは炭素原子である。Bは−C(R01)=C(R02)−、−N=C(R02)−、−C(R01)=N−または−N=N−を表す。
Yを含む含窒素複素環基の好ましい例としては、2−イミダゾリル基、2−(1,3,4−トリアゾリル)基、2−(1,3,5−トリアゾリル)基、2−テトラゾリル基等が挙げられる。これらの含窒素複素環基で最も好ましくは2−イミダゾリル基である。
01及びR02は水素原子または置換基を表す。置換基の例としてはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。これらの置換基は上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
一般式(1)のA−C−Xで表される炭化水素環基または複素環基において、Xは炭素原子または窒素原子を表し、好ましくは炭素原子である。
A−C−Xで表される炭化水素環基が芳香族炭化水素環基のとき、4n+2π系の芳香族炭化水素化合物から任意の位置の水素原子を1つ取り除いたものであり、具体的にはフェニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、1−アントリル基、9−フェナントリル基、2−トリフェニレニル基、3−ペリレニル基等が挙げられる。更に該炭化水素環基は、例えば、R01で説明した置換基によって置換されていてもよく、更に縮合環(例えば、9−フェナントリル基に炭化水素環を縮合させた9−ピレニル基、フェニル基に複素環を縮合させた8−キノリル基等)を形成してもよい。
A−C−Xで表される複素環基が芳香族複素環基のとき、該芳香族複素環基は含窒素芳香族複素環に結合する部分の少なくとも片隣接位が炭素原子であり、且つ4n+2π系の芳香族基であれば特に制限はないが、含窒素芳香族複素環に結合する部分の両隣接位が炭素原子であることが好ましい。具体的には、3−ピリジル基、5−ピリミジル基、4−ピリダジル基、5−ピリダジル基、4−イソオキサゾリル基、4−イソチアゾリル基、4−ピラゾリル基、3−ピロロ基、3−フリル基、3−チエニル基等が挙げられる。更に該複素環は、例えば、R01で説明した置換基によって置換されていてもよく、更に縮合環を形成してもよい。
一般式(1)において、X1−L1−X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。X1−L1−X2で表される2座の配位子の具体例としては、置換または無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。中でも、m2は0である場合が好ましい。
一般式(1)において、中心金属であるM1は元素周期表における8〜10族の金属を表すが、中でも好ましくはイリジウムまたは白金である。
以下、本発明に係るリン光発光性ドーパントの具体例を示すが、本発明はこれらに限定されない。
(蛍光ドーパント(蛍光性化合物ともいう))
蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。
また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm〜100nmであり、更に好ましくは5nm〜30nmである。
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
更に、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。
このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。
また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm〜1000nm、好ましくは10nm〜200nmの範囲で選ばれる。
《陰極》
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。尚、発光した光を透過させる
ため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10-3cm/(m2・24h・M
Pa)以下、水蒸気透過度が、10-5g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。
ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126−1987に準拠した方法で測定された酸素透過度が1×10-3cm/(m2・24h・MPa)以下、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m2・24h)以下のものであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つ、ピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。
本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000Cd/m2でのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。
以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
また、以下に実施例で使用する化合物の構造を示す。
実施例1
《有機EL素子1−1の作製》:比較例
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの第一正孔輸送層を設けた。
この基板を窒素雰囲気下に移し、第一正孔輸送層上に、50mgの化合物A0を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により成膜した。180秒間紫外光を照射し、光重合・架橋を行い、膜厚約25nmの第二正孔輸送層とした。
この第二正孔輸送層上に、100mgの比較化合物1と10mgの化合物2−2を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により成膜した。15秒間紫外光を照射し、光重合・架橋を行わせ、さらに真空中150℃で1時間加熱を行って、膜厚約50nmの発光層とした。
次にこの発光層上に、50mgのtBu−PBDを10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により成膜し、60℃で1時間真空乾燥し、膜厚約25nmの電子輸送層とした。
これを真空蒸着装置に取付け、次いで、真空槽を4×10-4Paまで減圧し、陰極バッファー層としてフッ化リチウム1.0nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。
《有機EL素子1−2〜1−8の作製》
有機EL素子1−1の作製において、比較化合物1およびtBu−PBDを表2に記載の化合物を用いた以外は同様にして、有機EL素子1−2〜1−8を各々作製した。
《有機EL素子の評価》
得られた有機EL素子1−1〜1−8について、下記のようにして、外部取り出し量子効率及び発光寿命を評価した。
《外部取り出し量子効率》
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。
得られた結果を表2に示す。外部取り出し量子効率の測定結果は、有機EL素子1−1の測定値を100とした時の相対値で表した。
《発光寿命》
2.5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ1/2)として寿命の指標とした。尚、測定には分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。得られた結果を表2に示す。尚、表2の発光寿命の測定結果は、有機EL素子1−1を100とした時の相対値で表した。
表2から、比較の有機EL素子1−1に比べて、本発明の有機EL素子1−3〜1−8の各々と比較して、外部取り出し量子効率、発光寿命ともに著しく良好な特性を示すことが判る。
また、反応性基を持たない比較化合物2を用いて作製した、比較の有機EL素子1−2では、電子輸送層の塗布時に発光層の構成成分が溶出し、電子輸送層を成膜することができず、結果的に有機素子を作製することができなかった。
一方、本発明の有機EL素子1−3〜1−9は、各々、塗布溶剤への溶解耐性の高い、架橋密度を持った有機薄膜が形成出来ているため、塗布法にて積層可能であり、また、素子性能としても、高い外部取り出し量子効率を示すと同時に、発光寿命の長い素子を得ることができた。
実施例2
《有機EL素子2−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの第一正孔輸送層を設けた。
この基板を窒素雰囲気下に移し、第一正孔輸送層上に、50mgの化合物A0を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により成膜した。180秒間紫外光を照射し、光重合・架橋を行い、膜厚約25nmの第二正孔輸送層とした。
この第二正孔輸送層上に、50mgのポリビニルカルバゾールと5mgのIr−1を10mlのジクロロエタンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により成膜し発光層とした。
次にこの基板を真空蒸着装置に取付け、次いで、真空槽を4×10-4Paまで減圧し、陰極バッファー層としてフッ化リチウム1.0nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2−1を作製した。
《有機EL素子2−2の作製》
有機EL素子2−1の作製において、ポリビニルカルバゾールを化合物1−22(n=22000のポリマーを用いた)に置き換えた以外は有機EL素子2−1と同じ方法で2−2を作製した。
《有機EL素子の評価》
以下のようにして作製した有機EL素子2−1、2−2の評価を行い、その結果を下記に示す。
《外部取り出し量子効率》
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には同様に分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。
外部取り出し量子効率の測定結果は、有機EL素子2−1の測定値を100とした時の相対値で表した。
《発光寿命》
2.5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ1/2)として寿命の指標とした。なお測定には分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。寿命の測定結果は、有機EL素子2−1を100とした時の相対値で表した。
得られた結果を下記に示す。
有機EL素子No. 外部取り出し量子効率 発光寿命 備考
2−1 100 100 比較
2−2 132 1350 本発明
上記から、本発明に係る化合物Aの重合体の一態様である、化合物1−22(繰り返し単位として、カルバゾール環、ジベンゾフラン環を部分構造として有する)を含有する、本発明の有機EL素子2−2は、比較の有機EL素子2−1に比べて、外部取り出し量子効率、発光寿命共に著しく改善されていることが判る。
実施例3
《有機ELフルカラー表示装置の作製》
図1は有機ELフルカラー表示装置の概略構成図を示す。陽極としてガラス基板101上にITO透明電極(102)を100nm成膜した基板(NHテクノグラス社製NA45)に100μmのピッチでパターニングを行った後、このガラス基板上でITO透明電極の間に非感光性ポリイミドの隔壁103(幅20μm、厚さ2.0μm)をフォトリソグラフィーで形成させた。
ITO電極上ポリイミド隔壁の間に下記組成の正孔注入層組成物を、インクジェットヘッド(エプソン社製;MJ800C)を用いて吐出注入し、紫外光を30秒間照射し、60℃、10分間の乾燥処理により膜厚40nmの正孔注入層104を作製した。
この正孔注入層上に、各々下記の青色発光層組成物、緑色発光層組成物、赤色発光層組成物を同様にインクジェットヘッドを使用して吐出注入し、紫外光を30秒間照射し、60℃、10分間乾燥処理し、それぞれの発光層(105B,105G,105R)を形成させた。最後に発光層105を覆うように、陰極としてAl(106)を真空蒸着して有機EL素子を作製した。
作製した有機EL素子はそれぞれの電極に電圧を印加することにより各々青色、緑色、赤色の発光を示し、フルカラー表示装置として利用できることがわかった。
(正孔注入層組成物)
化合物A0 20質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(青色発光層組成物)
化合物1−26 0.7質量部
Ir−15 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(緑色発光層組成物)
化合物1−26 0.7質量部
Ir−1 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
(赤色発光層組成物)
化合物1−26 0.7質量部
Ir−14 0.04質量部
シクロヘキシルベンゼン 50質量部
イソプロピルビフェニル 50質量部
また、Ir−15、Ir−1、Ir−14の代りに化合物2−1〜2−16を、化合物1−26の代りに化合物1−1〜1−7、1−25または化合物1−8〜1−23、1−27〜1−35を用いて作製した有機EL素子でも、同様にフルカラー表示装置として利用できることがわかった。
実施例4
《白色の有機EL素子4−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの第一正孔輸送層を設けた。
この基板を窒素雰囲気下に移し、第一正孔輸送層上に、50mgの化合物A0を10mlのトルエンに溶解した溶液を1000rpm、30秒の条件下、スピンコート法により成膜した。180秒間紫外光を照射し、光重合・架橋を行った後、60℃で1時間真空乾燥し第2正孔輸送層とした。
次に、化合物1−26(60mg)、化合物2−6(3.0mg)、化合物2−7(3.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した。15秒間紫外光を照射し、光重合・架橋を行わせ、さらに真空中150℃で1時間加熱を行い、発光層とした。
更に、化合物B(20mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により成膜した。15秒間紫外光を照射し、光重合・架橋を行わせ、さらに真空中80℃で1時間加熱を行い、正孔阻止層とした。
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取り付けた。真空槽を4×10-4Paまで減圧した後、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記電子輸送層の上に蒸着して、更に膜厚40nmの電子輸送層を設けた。
なお、蒸着時の基板温度は室温であった。
引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、有機EL素子4−1を作製した。
この素子に通電したところほぼ白色の光が得られ、照明装置として使用出来ることが判った。尚、例示の他の化合物に置き換えても同様に白色の発光が得られることが判った。
実施例5
《有機EL素子5−1の作製》:本発明
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70質量%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入・輸送層を設けた。
この正孔注入・輸送層上に、化合物1−37を30mgをトルエン3mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により成膜し、60℃で1時間真空乾燥し、膜厚80nmの発光層とした。
これを真空蒸着装置に取付け、次いで、真空槽を4×10-4Paまで減圧し、陰極バッファー層としてカルシウム10nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子5−1を作製した。
《有機EL素子5−2の作製》:比較例
有機EL素子5−1の作製において、3mlの化合物1−37の溶液を下記の溶液[A]に置き換えた以外は全く同様にして、有機EL素子5−2を作製した。
(溶液[A]の調製)
従来公知の発光層形成材料である、ポリビニルカルバゾール(PVCzともいう)30mgとIr−13(青発光性オルトメタル化錯体)1.5mgとをトルエン3mlに溶解し、調製した溶液
《有機EL素子5−1〜5−2の評価》
得られた有機EL素子5−1〜5−2を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図2、図3に示すような照明装置を形成して評価した。
図2は、照明装置の概略図を示し、有機EL素子201は、ガラスカバー202で覆われている。尚、ガラスカバーでの封止作業は、有機EL素子201を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下で行った)。
図3は、本発明の照明装置の一態様を示す断面図であり、図3において、205は陰極、206は有機EL層、207は透明電極付きガラス基板を示す。尚、ガラスカバー202内には窒素ガス208が充填され、捕水剤209が設けられている。
次いで、下記のようにして外部取り出し量子効率および発光寿命を測定した。
《外部取り出し量子効率》
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を印加した時の外部取り出し量子効率(%)を測定した。尚、測定には分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。
《発光寿命》
23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2の一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ1/2)として寿命の指標とした。尚、測定には同様に、分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。
有機EL素子5−1〜5−2の外部取り出し量子効率、発光寿命の測定結果は、有機EL素子5−2のデータを100とした時の相対評価を行った。
得られた結果を下記に示す。
有機EL 発光層 外部取り出し 発光寿命 発光色 備考
素子No. 形成材料 量子効率(%)
(相対値)
5−1 1−37 143 150 青 本発明
5−2 PVCz 100 100 青 比較例
+Ir−13
上記評価結果から、比較に比べて、本発明の有機EL素子5−1は、外部取り出し量子効率が大幅に向上し、消費電力が抑制され、且つ、発光寿命も改善されることが明らかである。

Claims (22)

  1. 支持基板上に少なくとも陽極、陰極を有し、該陽極と該陰極間に少なくとも1層の発光層を有する有機エレクトロルミネッセンス素子において、
    下記一般式(a)で表される部分構造および反応性基を有する化合物Aを少なくとも一部として含み、且つ、前記反応性基を介して前記化合物Aが重合してなる重合体を含有することを特徴とする有機エレクトロルミネッセンス素子。
    〔式中、Xは、O、SまたはSiR’R”を表す。R’、R”は、各々水素原子または置換基を表す。Arは芳香環を表す。〕
  2. 前記Xが、OまたはSを表すことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 前記Xが、Oを表すことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  4. 前記Ar、カルバゾール環、カルボリン環またはベンゼン環であることを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  5. 前記Arが、置換基を有するベンゼン環であることを特徴とする請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  6. 前記Arが、カルバゾリル基を有するベンゼン環であることを特徴とする請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  7. 前記一般式(a)が、下記一般式(a′)で表されることを特徴とする請求項1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    〔式中、Xは、O、SまたはSiR’R”を表す。R’、R”は、各々水素原子または置換基を表す。Arは芳香環を表す。〕
  8. 前記反応性基が、下記一般式(2)〜(5)のいずれかで表されることを特徴とする請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    〔式中、Rは、水素原子またはメチル基を表し、Qは、下記一般式(c)、(d)及び(e)からなる2価の連結基群から選択されるひとつまたは該2価の連結基の複数の組み合わせで表される基を表す。〕
    〔式中、R、Rは、各々水素原子またはメチル基を表し、Cyは、3員または4員の環状エーテルを表す。nは1以上の整数を表す。〕
  9. 前記化合物Aまたは該化合物Aの重合体が、発光層に含有されることを特徴とする請求項1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  10. 前記発光層が、前記重合体とリン光発光性ドーパントを含有していることを特徴とする請求項1〜9のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  11. 前記重合体が、前記化合物Aとリン光発光性ドーパントとの共重合体であることを特徴とする請求項1〜9のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  12. 前記リン光発光性ドーパントがIr錯体であることを特徴とする請求項10または11に記載の有機エレクトロルミネッセンス素子。
  13. 前記リン光発光性ドーパントのリン光波長の0−0遷移バンドが485nm以下であることを特徴とする請求項10〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  14. 前記リン光発光性ドーパントが、下記一般式(1)で表される金属錯体であることを特徴とする請求項13に記載の有機エレクトロルミネッセンス素子。
    〔式中、Zは結合する窒素原子から数えて3番目の原子の少なくとも1つに、立体パラメーター値(Es値)が−0.5以下の置換基を結合している炭化水素環または複素環を表す。X及びYは炭素原子または窒素原子を表し、AはX−Cと共に5〜6員の炭化水素環または複素環を形成するのに必要な原子群を表す。Bは−C(R01)=C(R02)−、−N=C(R02)−、−C(R01)=N−または−N=N−を表し、R01及びR02は水素原子または置換基を表す。XL1−Xは2座の配位子を表し、X、Xは各々独立に炭素原子、窒素原子または酸素原子を表す。L1はX、Xと共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。中心金属であるMは元素周期表における8〜10族の金属を表す。〕
  15. 前記化合物Aまたは該化合物Aの重合体のリン光波長の0−0遷移バンドが460nm以下であることを特徴とする請求項1〜14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  16. 前記化合物Aまたは該化合物Aの重合体を含有する層が、湿式法で形成されたことを特徴とする請求項1〜15のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  17. 前記化合物Aを塗布後、重合することを特徴とする請求項1〜16のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  18. 構成層として、複数の有機化合物層を有することを特徴とする請求項1〜17のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  19. 前記陽極と前記発光層との間に少なくとも1層の陽極バッファー層または前記陰極と前記発光層の間に少なくとも1層の陰極バッファー層を有しており、前記発光層の少なくとも1層が、前記化合物または該化合物の重合体を含有し、且つ、該発光層が湿式法で形成されることを特徴とする請求項1〜18のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  20. 白色に発光することを特徴とする請求項1〜19のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  21. 請求項1〜20のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
  22. 請求項1〜20のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
JP2008533133A 2006-09-08 2007-08-31 有機エレクトロルミネッセンス素子、照明装置及び表示装置 Active JP5444715B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008533133A JP5444715B2 (ja) 2006-09-08 2007-08-31 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006244027 2006-09-08
JP2006244027 2006-09-08
JP2007020756 2007-01-31
JP2007020756 2007-01-31
PCT/JP2007/067006 WO2008029729A1 (fr) 2006-09-08 2007-08-31 Dispositif électroluminescent organique, dispositif d'éclairage et affichage utilisant un tel dispositif
JP2008533133A JP5444715B2 (ja) 2006-09-08 2007-08-31 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013266341A Division JP5708781B2 (ja) 2006-09-08 2013-12-25 有機エレクトロルミネッセンス素子

Publications (2)

Publication Number Publication Date
JPWO2008029729A1 JPWO2008029729A1 (ja) 2010-01-21
JP5444715B2 true JP5444715B2 (ja) 2014-03-19

Family

ID=39157159

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008533133A Active JP5444715B2 (ja) 2006-09-08 2007-08-31 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013266341A Active JP5708781B2 (ja) 2006-09-08 2013-12-25 有機エレクトロルミネッセンス素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013266341A Active JP5708781B2 (ja) 2006-09-08 2013-12-25 有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (2) JP5444715B2 (ja)
WO (1) WO2008029729A1 (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090048299A (ko) * 2007-11-08 2009-05-13 주식회사 엘지화학 새로운 유기 발광 소자 재료 및 이를 이용한 유기 발광소자
EP2460866B1 (en) * 2008-05-13 2019-12-11 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
US8685541B2 (en) 2008-06-02 2014-04-01 Basf Se Dibenzofurane polymers for electroluminiscent devices
JPWO2009157477A1 (ja) * 2008-06-26 2011-12-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法及び白色発光有機エレクトロルミネッセンス素子
JP5577579B2 (ja) * 2008-10-20 2014-08-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス材料、表示装置および照明装置
WO2010103951A1 (ja) * 2009-03-09 2010-09-16 昭和電工株式会社 有機発光素子材料、ならびに有機発光素子およびその製造方法
JP5939984B2 (ja) 2009-10-28 2016-06-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ヘテロレプティックなカルベン錯体及び該錯体を有機エレクトロニクスで用いる使用
US9487548B2 (en) 2009-12-14 2016-11-08 Udc Ireland Limited Metal complexes comprising diazabenzimidazolocarbene ligands and the use thereof in OLEDs
JP5261611B2 (ja) * 2010-03-31 2013-08-14 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US8691401B2 (en) 2010-04-16 2014-04-08 Basf Se Bridged benzimidazole-carbene complexes and use thereof in OLEDS
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
JP5330429B2 (ja) 2011-03-08 2013-10-30 株式会社東芝 有機電界発光素子、表示装置および照明装置
US9315724B2 (en) 2011-06-14 2016-04-19 Basf Se Metal complexes comprising azabenzimidazole carbene ligands and the use thereof in OLEDs
JP6300722B2 (ja) 2011-06-14 2018-03-28 ユー・ディー・シー アイルランド リミテッド アザベンズイミダゾールカルベン配位子を有する金属錯体および有機発光ダイオードにおける当該金属錯体の使用
WO2013008765A1 (en) * 2011-07-08 2013-01-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting module, light-emitting device, and method for manufacturing the light-emitting module
KR102008034B1 (ko) * 2011-07-11 2019-08-06 메르크 파텐트 게엠베하 유기 전계발광 소자용 화합물
KR101891308B1 (ko) * 2011-09-12 2018-08-23 신닛테츠 수미킨 가가쿠 가부시키가이샤 유기 전계 발광 소자
WO2014012972A1 (en) 2012-07-19 2014-01-23 Basf Se Dinuclear metal complexes comprising carbene ligands and the use thereof in oleds
US10374172B2 (en) 2013-03-20 2019-08-06 Udc Ireland Limited Azabenzimidazole carbene complexes as efficiency booster in OLEDs
KR102098340B1 (ko) 2013-04-29 2020-04-13 유디씨 아일랜드 리미티드 카르벤 리간드를 갖는 전이 금속 착물 및 oled에서의 그의 용도
KR20160027087A (ko) 2013-07-02 2016-03-09 바스프 에스이 유기 발광 다이오드에 사용하기 위한 일치환된 디아자벤즈이미다졸 카르벤 금속 착체
WO2015014835A1 (en) 2013-07-31 2015-02-05 Basf Se Luminescent diazabenzimidazole carbene metal complexes
JP6462698B2 (ja) 2013-12-20 2019-01-30 ユー・ディー・シー アイルランド リミテッド 非常に短い減衰時間を有する高効率のoledデバイス
KR102330660B1 (ko) 2014-03-31 2021-11-24 유디씨 아일랜드 리미티드 o-치환된 비-사이클로메탈화 아릴 그룹을 갖는 카르벤 리간드를 포함하는 금속 착체 및 유기 발광 다이오드에서의 이의 용도
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
EP2982676B1 (en) 2014-08-07 2018-04-11 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215B1 (en) 2014-09-04 2019-06-19 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
EP3015469B1 (en) 2014-10-30 2018-12-19 Idemitsu Kosan Co., Ltd. 5-(benzimidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
US10424746B2 (en) 2014-11-18 2019-09-24 Udc Ireland Limited Pt- or Pd-carbene complexes for use in organic light emitting diodes
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3053918B1 (en) 2015-02-06 2018-04-11 Idemitsu Kosan Co., Ltd. 2-carbazole substituted benzimidazoles for electronic applications
EP3054498B1 (en) 2015-02-06 2017-09-20 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
EP3061759B1 (en) 2015-02-24 2019-12-25 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
EP3070144B1 (en) 2015-03-17 2018-02-28 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3072943B1 (en) 2015-03-26 2018-05-02 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3075737B1 (en) 2015-03-31 2019-12-04 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
US20180182980A1 (en) 2015-06-03 2018-06-28 Udc Ireland Limited Highly efficient oled devices with very short decay times
EP3150606B1 (en) 2015-10-01 2019-08-14 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
EP3150604B1 (en) 2015-10-01 2021-07-14 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolylyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
US20180269407A1 (en) 2015-10-01 2018-09-20 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
US20180319813A1 (en) 2015-11-04 2018-11-08 Idemitsu Kosan Co., Ltd Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
US20180370981A1 (en) 2015-12-21 2018-12-27 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
US10968229B2 (en) 2016-04-12 2021-04-06 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
EP3618134A4 (en) * 2017-04-27 2021-01-06 Sumitomo Chemical Company Limited LIGHT EMITTING ELEMENT
JP6651041B1 (ja) * 2018-10-25 2020-02-19 住友化学株式会社 発光素子
CN114195699B (zh) * 2021-12-02 2024-03-19 常州大学 有机小分子手性主体材料及其应用
CN114560851B (zh) * 2022-03-14 2023-12-26 南京邮电大学 一类基于环氧丁烷的咔唑类衍生物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064003A (ja) * 2001-05-22 2003-03-05 Korea Inst Of Science & Technology 官能基を含有したフルオレン系化合物及びその重合体並びにそれらを利用したel素子
JP2003109758A (ja) * 2001-09-27 2003-04-11 Konica Corp 有機エレクトロルミネッセンス素子
JP2004503640A (ja) * 2000-06-12 2004-02-05 マックスデム インコーポレイテッド ポリマーマトリックス・エレクトロルミネッセンス材料及び装置
JP2004234952A (ja) * 2003-01-29 2004-08-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2005049689A2 (en) * 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds and conjugated oligomers or polymers based thereon
JP2005524725A (ja) * 2002-04-26 2005-08-18 ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド 溶液処理可能な燐光物質

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7090929B2 (en) * 2002-07-30 2006-08-15 E.I. Du Pont De Nemours And Company Metallic complexes covalently bound to conjugated polymers and electronic devices containing such compositions
DE10249723A1 (de) * 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-Einheiten enthaltende konjugierte Polymere, deren Darstellung und Verwendung
WO2006025219A1 (ja) * 2004-09-01 2006-03-09 Hirose Engineering Co., Ltd. 新規なポリマー、新規な化合物、新規なポリマーの製造方法、新規な化合物の製造方法及び青色発光素子
US8795781B2 (en) * 2004-09-03 2014-08-05 The Regents Of The University Of California Methods and devices utilizing soluble conjugated polymers
JP4614735B2 (ja) * 2004-10-29 2011-01-19 住友化学株式会社 高分子材料及びそれを用いた高分子発光素子
JP5274754B2 (ja) * 2005-06-22 2013-08-28 住友化学株式会社 高分子材料及び高分子発光素子
GB2433509A (en) * 2005-12-22 2007-06-27 Cambridge Display Tech Ltd Arylamine polymer
JP5140945B2 (ja) * 2006-05-31 2013-02-13 住友化学株式会社 高分子組成物及びそれを用いた高分子発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004503640A (ja) * 2000-06-12 2004-02-05 マックスデム インコーポレイテッド ポリマーマトリックス・エレクトロルミネッセンス材料及び装置
JP2003064003A (ja) * 2001-05-22 2003-03-05 Korea Inst Of Science & Technology 官能基を含有したフルオレン系化合物及びその重合体並びにそれらを利用したel素子
JP2003109758A (ja) * 2001-09-27 2003-04-11 Konica Corp 有機エレクトロルミネッセンス素子
JP2005524725A (ja) * 2002-04-26 2005-08-18 ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド 溶液処理可能な燐光物質
JP2004234952A (ja) * 2003-01-29 2004-08-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2005049689A2 (en) * 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds and conjugated oligomers or polymers based thereon

Also Published As

Publication number Publication date
JPWO2008029729A1 (ja) 2010-01-21
JP2014075605A (ja) 2014-04-24
WO2008029729A1 (fr) 2008-03-13
JP5708781B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5708781B2 (ja) 有機エレクトロルミネッセンス素子
JP5332614B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5186843B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5691170B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5593696B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5967057B2 (ja) 有機エレクトロルミネッセンス素子とその製造方法、照明装置及び表示装置
JP5648710B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及びディスプレイ装置
JP5018891B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5304010B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5600891B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5724204B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5531446B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置および照明装置
JP5577650B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5103781B2 (ja) 化合物、該化合物を含む有機エレクトロルミネッセンス素子、照明装置
JP5088025B2 (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008311608A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008066569A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2009182298A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JPWO2008140114A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007311460A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5629970B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5482313B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
JP5600884B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP5488053B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP5359088B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5444715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250