JP5416427B2 - タイヤの高速fvの推定システム - Google Patents

タイヤの高速fvの推定システム Download PDF

Info

Publication number
JP5416427B2
JP5416427B2 JP2009028764A JP2009028764A JP5416427B2 JP 5416427 B2 JP5416427 B2 JP 5416427B2 JP 2009028764 A JP2009028764 A JP 2009028764A JP 2009028764 A JP2009028764 A JP 2009028764A JP 5416427 B2 JP5416427 B2 JP 5416427B2
Authority
JP
Japan
Prior art keywords
tire
speed
uniformity
low
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009028764A
Other languages
English (en)
Other versions
JP2010185709A (ja
Inventor
剛 伊都
雅規 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2009028764A priority Critical patent/JP5416427B2/ja
Publication of JP2010185709A publication Critical patent/JP2010185709A/ja
Application granted granted Critical
Publication of JP5416427B2 publication Critical patent/JP5416427B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タイヤ製造ラインから搬送される加硫済みのタイヤの全数に対して、その高速FV(フォースバリエーション)、例えば高速RFV(ラジアルフォースバリエーション)や、高速TFV(タンジェンシャルフォースバリエーション)等を高精度で推定しうるタイヤの高速FVの推定システムに関する。
近年、タイヤに起因した車両の振動を抑制するために、タイヤメーカでは、製造されたタイヤのユニフォミティー、とりわけタイヤを1回転させたときのタイヤ半径方向(上下)の力の変動を示すRFVや、同前後方向の力の変動を示すTFV等を測定することが行われている。
上記ユニフォミティーは、測定時のタイヤの回転速度によって、低速ユニフォミティーと高速ユニフォミティーとに大別される。低速ユニフォミティーは、実質的に遠心力が作用しない速度(せいぜい60rpm程度であり、乗用車用タイヤの場合、約7km/hに相当する。)でタイヤを回転させて測定される。従って、ユニフォミティー測定装置を用いてタイヤ全数について比較的容易に測定しうる。他方、高速ユニフォミティーは、タイヤを、遠心力が作用する速度(例えば100〜120km/h程度)で回転させた状態で測定される必要があるため、高価な専用の測定装置を必要としかつその測定にも多くの時間を必要とする。そのため、タイヤの全数について、高速ユニフォミティーを測定することは現実的ではない。
従来、このような問題を解決するために、低速ユニフォミティー、例えば低速RFVと静アンバランスとをパラメータとした推定式を用いて、高速RFVを推定する技術が提案されている(例えば下記特許文献1参照)。
特開2001−141615号公報
この技術では、前記低速RFVと静アンバランスとをベクトルとして捉えて推定式を設定するため、推定精度を高めるためには、測定する各前記パラメータの位相角度が非常に重要となってくる。特に本出願人は、推定精度をさらに向上させるために、特願2007−169500において、少なくとも低速RFVとRROとLROと静アンバランスとをパラメータとして含む推定式を用いることを提案している。この場合、推定式におけるパラメータの数が増加するため、前述の推定精度の向上のためには、各パラメータの位相角度がいっそう重要なものとなる。
本発明は、以上のような問題点に鑑み案出なされたもので、タイヤのビード部にリム組み用の潤滑剤を塗布する際のタイヤ回転を利用して、タイヤの回転方向の角度位置を予め定めた基準位置に位置合わせせしめ、常に一定の角度位置の状態にてタイヤをユニフォミティー測定装置に投入することを基本として、各パラメータを常に一定の基準にて測定することができ、高速FVを高精度で推定しうるタイヤの高速FVの推定システムを提供することを主たる目的としている。
上記課題を解決するために、本願請求項1の発明は、タイヤ製造ラインに連なり該タイヤ製造ラインから搬送される加硫済みのタイヤを順次受け取って該タイヤのビード部にリム組み用の潤滑剤を塗布する潤滑剤塗布装置と、前記潤滑を塗布されたタイヤを受け取って該タイヤの低速ユニフォミティーを測定するユニフォミティー測定装置と、前記測定された低速ユニフォミティーのデータに基づいてタイヤの高速FVを推定する推定手段とを具えるタイヤの高速FVの推定システムであって、
前記加硫済みのタイヤの一方の側面には、生タイヤにおける周方向の成形基準位置を示す識別マークが、生タイヤ成形工程において予め貼り着されるとともに、
前記潤滑剤塗布装置は、前記タイヤ製造ラインからのタイヤを受け取る受け取りコンベヤ部と、
該受け取りコンベヤ部上のタイヤをタイヤ軸芯回りで水平に回転させるタイヤ回転手段と、
タイヤとは相対的に上下移動でき、かつ上昇によって前記回転するタイヤの上下のビード部の各内周面と接触し、この内周面に潤滑剤を塗布する塗布ブラシを有する塗布手段と、
前記回転するタイヤの前記識別マークを検出する検知センサを有し、該識別マークが予め定めたタイヤの回転基準位置に一致するタイヤ基準状態にてタイヤの回転を停止させるタイヤの角度位置合わせ手段とを具え、
前記検知センサは、前記タイヤより上方位置、及び、下方位置のそれぞれに取り付けられ、
しかも、前記ユニフォミティー測定装置は、前記タイヤ基準状態にてタイヤを受け取り、かつ前記タイヤの回転基準位置をユニフォミティー測定基準位置として低速ユニフォミティーを測定することを特徴としている。

又請求項2の発明では、前記推定手段は、低速ユニフォミティーをパラメータとして高速FVを推定する推定式を記憶する第1の記憶部、前記ユニフォミティー測定装置により測定された低速ユニフォミティーの測定データを記憶する第2の記憶部、及び前記第2の記憶部の測定データと第1の記憶部の推定式とを用いて高速FVの推定値を演算して求める演算部とを具えることを特徴としている。
又請求項3の発明では、前記低速ユニフォミティーは、低速FVと、RROと、LROと、アンバランスとを少なくとも含むことを特徴としている。
又請求項4の発明では、前記識別マークは、バーコードラベルであることを特徴としている。
本発明では、製造された加硫済みのタイヤの一方の側面に、生タイヤにおける周方向の成形基準位置を示す識別マークを、生タイヤ成形工程において予め貼り着している。
前記生タイヤ成形工程では、同一品種のタイヤができるだけ同一の品質を有するように、タイヤを構成する各種の部材(例えばインナーライナ、カーカス、ベルト層、バンド層、クリンチゴム、サイドウォールゴム、トレッドゴムなど)は、各部材の周方向のジョイント位置が、タイヤ間相互でほぼ一定となるように組み立てられている。従って、生タイヤの成形基準位置を定めることにより、この成形基準位置を基準として、各タイヤの構成は、実質的に同一と見なすことができる。なおこの成形基準位置としては、例えばインナーライナのジョイント位置など、任意に選ぶことができる。
又ユニフォミティー測定装置へのタイヤの投入に先駆けて、従来からタイヤのビード部にリム組み用の潤滑剤が塗布されるが、本発明では、その潤滑剤塗布装置に、前記識別マークを検出する検知センサを有する角度位置合わせ手段を設けている。
この角度位置合わせ手段は、タイヤ製造ラインから不特定の向きで搬送されるタイヤに対し、その成形基準位置が予め定めたタイヤの回転基準位置と一致するタイヤ基準状態となるように、各タイヤの向き(角度)を順次位置合わせすることができる。そして、このタイヤ基準状態にてタイヤをユニフォミティー測定装置に投入することにより、タイヤの回転基準位置である前記成形基準位置を、原点として各低速ユニフォミティーをそれぞれ測定することが可能となる。このように、高速FVの推定式のパラメータとなるそれぞれの低速ユニフォミティーを、互いに位相を合わせて、即ち、常に一定の角度基準にて測定することができるため、高速FVを高精度で推定することができる。
又前記角度位置合わせを、潤滑剤を塗布する際のタイヤ回転を利用して行うため、装置の構成が簡易であり、しかも位置合わせのための時間も不要となるため、この推定システムをタイヤ製造ラインにインライン化した場合にも、タイヤ製造工程に及ぼす悪影響を無くすことができる。
本発明の高速FVの推定システムが、タイヤ製造ラインに連設された場合を概念的に示す平面図である。 タイヤがタイヤ支持具によって回転可能に保持された状態を示す平面図である。 そのときの内の支持ローラを示す断面図である。 タイヤがユニフォミティー測定装置に投入された状態を示す側面図である。 タイヤのリム組み状態を示す断面図である。 生タイヤの成形基準位置を概念的に説明する略断面図である。 推定システムの動作を説明するフローチャートである。 推定システムの他の例を示す概念図である。
以下、本発明の実施の一形態を、図示例とともに説明する。図1において、本実施形態の高速FVの推定システム1は、タイヤ製造ライン2に連なり該タイヤ製造ライン2から搬送される加硫済みのタイヤTを順次受け取って該タイヤTにリム組み用の潤滑剤を塗布する潤滑剤塗布装置3と、前記潤滑を塗布されたタイヤTを受け取って該タイヤの低速ユニフォミティーを測定するユニフォミティー測定装置4と、前記測定された低速ユニフォミティーのデータに基づいてタイヤの高速FVを推定する推定手段5とを具える。
そしてこれにより、加硫済みのタイヤTの全数に対して高速FVを推定し、その推定値を製造タイヤの合否の判定基準の一つとして出荷管理が行われる。本例では、推定対象となる高速FVとして、高速RFV、及び/又は高速TFVが設定される場合が示される。
ここで、図2に示すように、加硫済みのタイヤTの一方の側面(本例では上の側面)には、生タイヤにおける周方向の成形基準位置Xoを示す識別マーク6が、生タイヤ成形工程において予め貼り着される。生タイヤ成形工程では、同一品種のタイヤができるだけ同一の品質を有するように、図6に概念的に示すように、タイヤを構成する各種の部材t(例えばインナーライナt1、カーカスt2、ベルト層t3、バンド層、クリンチゴム、サイドウォールゴム、トレッドゴムなど)は、各部材tの周方向のジョイント位置jが、タイヤ間相互でほぼ一定となるように組み立てられている。従って、生タイヤNTの成形基準位置Xoを定めることにより、この成形基準位置Xoを基準として、各タイヤの内部構成は、実質的に同一と見なすことができる。なお前記成形基準位置Xoは、任意に選ぶことができ、本例では、例えばインナーライナt1のジョイント位置jを前記成形基準位置Xoに設定している。
又前記識別マーク6としては、本例では、バーコードラベルが採用される。このバーコードラベル6Aは、印刷されたバーコードによってタイヤ個々を識別でき、タイヤ製造ライン2のデータバンクには識別されたタイヤ個々の情報が記録される。
次に、前記潤滑剤塗布装置3は、図1、2に示すように、受け取りコンベヤ部7と、タイヤ回転手段8と、潤滑剤の塗布手段9と、タイヤの角度位置合わせ手段10(図3に示す)とを具える。
このうち前記受け取りコンベヤ部7は、前記タイヤ製造ライン2の搬送コンベヤ2Aに、乗り継ぎ可能に連設されるコンベヤであって、前記搬送コンベヤ2Aから搬送される加硫済みのタイヤTを受け取り、かつ
受け取ったタイヤTを搬送方向下流側のユニフォミティー測定装置4に投入する。この受け取りコンベヤ部7は、本例では、図2の如く、間隔Dを隔てて互いに平行に並設される一対のローラコンベヤ7a、7bからなり、タイヤTを該ローラコンベヤ7a、7b間に跨らせて保持する。なお前記搬送コンベヤ2Aからは、従来と同様、タイヤTは、その識別マーク6(バーコードラベル6A)が不特定の向きで搬送されている。
又前記タイヤ回転手段8は、前記受け取りコンベヤ部7上のタイヤTをタイヤ軸芯i回りで水平に回転させる。本例では、タイヤ回転手段8は、前記間隔D内を通ってタイヤ軸芯iと平行に立ち上がりかつビード部T2の内周面T2Sに接する内の支持ローラ11aと、この内の支持ローラ11aよりも本例では搬送方向上流側に位置するとともに、タイヤ軸芯iと平行に立ち上がりかつトレッド部T3の外周面に接する一対の外の支持ローラ11b、11bとを有するタイヤ支持具11を具える。前記内の支持ローラ11aは、タイヤ軸芯iを通って搬送方向にのびる中心線n上に配されるとともに、前記外の支持ローラ11b、11bは、前記中心線nを中心とした対称位置に配される。従って、この支持ローラ11a、11bによって3点支持することにより、タイヤTをタイヤ軸芯i回りで回転可能に保持しうる。
又前記タイヤTの保持状態において、本例では、一方のローラコンベヤ7aと他方のローラコンベヤ7bとが互いに逆方向に駆動される。これにより前記保持状態のタイヤTは、タイヤ軸芯i回りで水平に回転駆動される。
なお前記内の支持ローラ11aは、図3の如くタイヤTとは相対的に上下移動しうる昇降台12に、ホルダー15を介して枢支される。そして、タイヤTの搬送コンベヤ2Aからの受け取り時、及びユニフォミティー測定装置4への投入時には、前記内の支持ローラ11aが受け取りコンベヤ部7の搬送面7Sよりも下方に下降することによりタイヤTとの衝合が防止される。又前記外の支持ローラ11bは、一端が回転自在に支持される回動アーム13の他端に枢着される。そして、タイヤTの搬送コンベヤ2Aからの受け取り時、回動アーム13が受け取りコンベヤ部7の両外側に旋回して待機することにより、タイヤTとの衝合が防止される。
又前記潤滑剤の塗布手段9は、前記昇降台12に支持される塗布ブラシ14を有し、この塗布ブラシ14が上昇位置において、前記回転するタイヤTのビード部T2の内周面T2Sと接触することにより、この内周面T2Sの全周に亘って潤滑剤を塗布しうる。なお潤滑剤の塗布のために、タイヤTは2〜3回、回転させられる。又塗布ブラシ14は、前記内の支持ローラ11aと同様、受け取りコンベヤ部7の搬送面7Sよりも下方位置まで下降でき、これによってタイヤTの搬送コンベヤ2Aからの受け取り時、及びユニフォミティー測定装置4への投入時、タイヤTとの衝合が防止される。
なお前記潤滑剤は、タイヤTをユニフォミティー測定装置4の測定用の基準リムRとリム組みする際の摩擦抵抗を減じ、リム組み時のタイヤTへの損傷を防止する。
又前記角度位置合わせ手段10は、回転するタイヤTの前記識別マーク6を検出する検知センサ16(図3に示す)を有する。そして角度位置合わせ手段10は、前記検知センサ16が前記識別マーク6を検出することにより、該識別マーク6が予め定めたタイヤTの回転基準位置Pに一致するタイヤ基準状態Jにて、タイヤTの回転を停止させる。
本例では、前記回転基準位置Pとして、タイヤ軸芯iを通って搬送方向上流側にのびる座標軸Pが設定されるとともに、この座標軸P上に前記検知センサ16が取り付けられる。従って、タイヤ製造ライン2から不特定の向きで搬送されるタイヤTに対し、前記角度位置合わせ手段10は、識別マーク6が前記座標軸P(タイヤTの回転基準位置)を通過するのを検出でき、かつその識別マーク6の検出時にタイヤTの回転を停止させることにより、各タイヤTを、前記タイヤ基準状態Jに順次位置合わせすることができる。
なお前記検知センサ16として、例えば光センサー等の種々の非接触型のセンサーを用いることができる。又搬送コンベヤ2Aでは、タイヤTが、識別マーク6を上向きとして或いは下向きとして搬送される場合がある。そのため本例では、タイヤTより上方位置、及び下方位置に、それぞれ検知センサ16を取り付けている。
又潤滑剤塗布装置3では、前記塗布ブラシ14及び内の支持ローラ11aが搬送面7Sよりも下降した後、ローラコンベヤ7a、7bを前進方向に駆動する。これにより、乗り継ぎコンベヤ18を介して、タイヤTを前記タイヤ基準状態Jのままユニフォミティー測定装置4に投入できる。なお図1中の符号4Aは、ユニフォミティー測定装置4の受け入れコンベヤであって、互いに平行に並設される一対のローラコンベヤ4Aa、4Abからなり、投入されたタイヤTを、前記タイヤ基準状態Jのままローラコンベヤ4Aa、4Ab間に跨らせて保持しうる。
次に、前記ユニフォミティー測定装置4としては、タイヤTの低速ユニフォミティーを測定する所謂UBマシン等の従来的な周知の構造のものが採用でき、本例では、図4、5に示すように、回転可能な測定リム19を有するタイヤ支持手段20と、この測定リム19に装着されたタイヤTに規定内圧をインフレートする内圧充填手段21と、インフレートされたタイヤTの低速ユニフォミティーを測定する測定手段22とを具える。
前記タイヤ支持手段20の測定リム19は、2つ割リムであって、上下に分割可能な上のハーフリム19Uと、下のハーフリム19Lとから形成される。上のハーフリム19Uは、スピンドルホルダ25に回転自在に支持される垂直な前記上のスピンドル23Uの下端に固定される。なお上のスピンドル23Uの回転角度(回転回数を含む)は、例えばエンコーダなどの周知の角度センサ26により測定できる。又前記下のハーフリム19Lは、前記上のスピンドル23Uと同心をなす上下動自在な下のスピンドル23Lの上端に保持される。従って、前記下のハーフリム19Lは、下のスピンドル23Lとともに上昇し、前記ローラコンベヤ4Aa、4Ab間に跨って保持されるタイヤTを受け取った後、上方で待機する上のハーフリム19Uと連結することにより、この上下のハーフリム19U,19L間でタイヤTを挟んで高精度で保持しうる。
又前記内圧充填手段21は、コンプレッサなどの内圧供給手段Cからの高圧空気を前記装着されたタイヤTの内腔内に導く空気流路27を具える。この空気流路27は、本例では、前記上のスピンドル23Uの中心孔、及び前記上下のハーフリム19U、19L間の凹溝をへてタイヤ内腔内に導通している。
又前記測定手段22は、前記タイヤTにおける低速ユニフォミティーを測定する種々のセンサを具える。本例では、測定する低速ユニフォティーとして、例えば低速FV、RRO、LRO、及びアンバランスが含まれる。又測定時のタイヤの角度位相は、前記角度センサ26によって測定される。なお図4中の符号28は、前記タイヤTに荷重を付加して低速回転させる所謂ロードホイールであって、回転中におけるタイヤ軸力の変動を計測することにより低速FVを測定しうる。このロードホイール28は、例えば周知のボールネジ機構30等によってトレッド部T3とは接離可能に水平移動でき、かつサーボモータMによって例えば周速度10km/h以下(例えば回転数60rpm程度以下)の低速度で回転駆動させられる。
又前記推定手段5は、測定された前記低速ユニフォミティーをパラメータとして高速FVを推定する推定式を記憶する第1の記憶部5A、前記ユニフォミティー測定装置4により測定された低速ユニフォミティーの測定データを記憶する第2の記憶部5B、及び前記第2の記憶部5Bの測定データと第1の記憶部5Aの推定式とから高速FVの推定値を演算して求める演算部5Cとを具える。なお演算部5Cでは、低速ユニフォミティーの測定データを次数分析して、各次数成分データを得る機能を具える。
以下に、測定された低速ユニフォミティーのうちの低速RFV、RRO、LRO及び静アンバランスのデータを用いて、高速RFVを推定する場合を例示する。
まず、高速RFVの推定式を定めるために、推定するタイヤTと同一品種のタイヤの複数本について、低速RFV、高速RFV、RRO、LRO及び静アンバランスをそれぞれ、事前調査によって測定する。つまり事前調査において測定された低速RFV、高速RFV、RRO、LRO及び静アンバランスの関係を解析することにより、高速RFVの推定式を、低速ユニフォミティである低速RFV、RRO、LRO及び静アンバランスを用いて導き出す。
ここで、RFVは、「タイヤ周上の撓み剛性の変動」と「RROの変動×平均撓み剛性」とのベクトル和になる。しかし、高速走行時には、遠心力によってタイヤのベルト層の張力が増す。これは、前記平均撓み剛性を増加させるので、RFVに対する「RROの変動」の寄与率が高められる。従って、高速RFVの推定精度を高めるためには、RROを考慮に入れる必要がある。
また、トレッド部T3の接地圧分布は、走行速度によってタイヤ固有の変化をなすため、RFVに対するトレッド部T3の両端部T3eと中央部T3cとのRFVに対する寄与も変化する。このため、高速FVの推定精度をより高めるために、トレッド部T3の中央部T3cでのRRO(以下、単に「RRO中央」という。)及びトレッド部T3の両端部T3eでのRRO(以下、「RRO表」及び「RRO裏」という。)をともに高速RFV(又は高速TFV)の推定式に取り込むことが好ましい。具体的には、前記「RRO中央」は、トレッド部T3のタイヤ赤道Coの位置で測定されたRROを意味する。また、個々のタイヤには、製造時期などを記号化して表したステンシルが、サイドウォール部の一方にのみ加硫成形されるが、トレッド部T3の両端部T3eのうち、このステンシル側でのRROを前記「RRO表」と表示し、その反対側でのRROが「RRO裏」と表示する。
前記「LRO」は、両側のサイドウォール部のそれぞれのタイヤ軸方向の変動(幅変動)であって、本例では、前記ステンシル側のサイドウォール部で測定されたLROを「LRO表」と表示し、反対側のそれを「LRO裏」と表示する。このLROは、ビードコア間をのびるカーカスコードの長さの変動、カーカスコードの打ち込み本数の変動、及び/又はカーカスプライのジョイント部等によって発生する。一般に、LROの測定波形の凹部分に相当する位置は、上記の原因によってカーカスコードの張力が部分的に高くなっており、逆に凸部分は張力が低くなっている。通常、トレッド部T3のRROの測定波形においても、上記と同様の現象、即ちカーカスコードの張力が高い部分では測定波形において凹となり、逆にカーカスコードの張力が低い部分ではは凸となるはずである。しかしながら、トレッド部T3は、強靱なベルト層やトレッドゴムなどの周方向の寸法の変動等の影響の方がむしろ支配的であり、カーカスコードの張力のタイヤ周方向の分布を十分に反映していないことが多い。これに対して、サイドウォール部では、カーカスコードの外側に柔軟かつ厚さの小さいサイドウォールゴムしか配されていない。従って、前記推定式の設定のために、カーカスコードの張力をより直接的に表すパラメータとしてLROを導入するのが好ましい。
またタイヤTは、高速回転時には遠心力によってトレッド部T3がタイヤ半径方向外側に浮き上がるリフティングが生じる。このリフティングは、タイヤ周上で一定ではなく、カーカスコードの張力が低い部分で大きく、カーカスコードの張力が大きい部分で小さくなる。従って、高速走行時のRROは、カーカスコードの張力の分布に基づいて、低速時から変化し、その変化の仕方はLROと強い相関を示す。つまり、LROは、RROの速度による変化を代表する特性を表す。このように、LROは、低速RROでは検知することができない高速走行時のタイヤの回転半径の変動をより明瞭に代表するので、該LROを前記推定式のパラメータとして取り込むことにより、より正確な高速RFVの推定が可能になる。
又静アンバランスは、高速回転時には遠心力によってタイヤに新たな径変動を生じさせ、これによって高速回転時には低速回転時とは別の新たなRFVが発生する。従って、静アンバランスを前記推定式のパラメータとして取り込むことにより、より正確な高速RFVの推定が可能になる。
上述の測定は、データの信頼性を高めるために、同一品種のタイヤの少なくとも10本以上、より好ましくは50本以上、さらに好ましくは100本程度について行うのが望ましい。
次に、前述の事前調査によって得た事前データをパラメータとして推定式が設定される。本例では、推定式は、下記式(1)で示されるように、上記各パラメータに係数を乗じたベクトル量の和によって、高速RFVが推定される。
高速RFV(n次)=A1・低速RFV(n次)+B1・RRO中央(n次)+C1・RRO表(n次)+D1・RRO裏(n次)+E1・LRO表(n次)+F1・LRO裏(n次)+G1・静バランス(1次)+バイアス …(1)
また、高速TFVも、同様に、上記各パラメータに係数を乗じたベクトル量の和からなる下記の式(2)によって推定される。
高速TFV(n次)=A2・低速RFV(n次)+B2・RRO中央(n次)+C2・RRO表(n次)+D2・RRO裏(n次)+E2・LRO表(n次)+F2・LRO裏(n次)+G2・静バランス(1次)+バイアス …(2)
上記各推定式(1)、(2)において、括弧書きの”n”は、次数を示す。例えば1次の高速RFVを推定する場合、nに1が代入される。また、符号A1、A2、B1、B2、C1、C2、D1、D2、E1、E2、F1、F2、G1及びG2はいずれも係数であり、いずれも大きさと位相角度を持ったベクトル量である(伝達関数)。ただし、静アンバランスは、一次のベクトルのため、2次以上の高速RFV(又は高速TFV)を推定する際には、この項は省略される。また、前記バイアスは、測定誤差などを補填するためのベクトルである。
上記各係数は、高速RFVの実測値のベクトル量Xmiと、高速RFVの推定値のベクトル量Xpiとの差分{Σ|Xmi−Xpi|}が最小となるよう重回帰分析を行って決定することができる(iはサンプリング数である)。
そしてこれら係数を定めた推定式(1)及び(2)は、前記推定手段5の第1の記憶部5Aに予め記憶される。そして本例では、高速RFVが未知の前記品種のタイヤTについて、高速RFVの推定に必要なパラメータ、即ち本例では、低速RFV、RRO中央、RRO表、RRO裏、LRO表、LRO裏及び静アンバランスを前記ユニフォミティー測定装置4によって順次測定し、その各測定データを、第2の記憶部5Bに記憶させる。そして、演算部5Cでは、この第2の記憶部5Bの前記測定データと、前記第1の記憶部5Aに予め記憶させた前記推定式とを用いて、高速RFVの推定値を演算して求める。又求まる推定値に基づき、製造タイヤの出荷選別が行われる。前記選別には、種々の方法が採用でき、例えば、高速RFVの実測値と推定値との相関線から、推定精度の95%信頼区間などを設定し、その下限値を閾値として出荷選別することもできる。なお高速TFVの場合も同様である。
以上説明したように、本例では、タイヤの高速RFV(又は高速TFV)の推定に、低速RFVや静アンバランスのみならず、トレッド部の中央部でのRRO、トレッド部の両端部でのRRO及び両サイドウォール部のLROをパラメータとして含めている。そのため、より精度の高い高速FVの推定が可能となる。しかしこの場合、推定式におけるパラメータの数が大幅に増加するため、推定精度の向上を確実なものとするためには、各パラメータの位相角度がいっそう重要なものとなる。
そこで本発明の推定システム1では、不特定の向きで搬送されるタイヤTに対し、その成形基準位置Xoを、タイヤの回転基準位置Pに順次位置合わせしてユニフォミティー測定装置4に投入できる。従って、前記ユニフォミティー測定装置4では、それぞれの低速ユニフォミティーを、常に成形基準位置Xoを原点とする一定の角度基準にて測定することができる。そのため、高速FVを高精度で推定することが可能となる。しかも前記位置合わせを、潤滑剤を塗布する際のタイヤ回転を利用して行うため、位置合わせのための時間が不要となり、従ってタイヤ製造工程に悪影響を及ぼすこともなくなる。
次に、図7のフローチャートを用いて、前記推定システム1の動作をより具体的に説明する。
図7に示すように、推定システム1では、製造ライン2から搬送させる加硫済みのタイヤTは、順次、潤滑剤塗布装置3の受け取りコンベヤ部7に乗り継ぎされかつ受け取られる。このとき製造ライン2のデータバンクからは、搬送されたタイヤTのサイズなどの情報が、潤滑剤塗布装置3に送信される。
しかる後、受け取ったタイヤTをそのタイヤ軸芯i回りで水平に回転駆動し、ビード部T2の内周面T2Sに潤滑剤を塗布する塗布工程が行われる。この塗布工程では、まず前記昇降台12を作動せしめ、前記内の支持ローラ11aと塗布ブラシ14とを、受け取りコンベヤ部7の搬送面7Sよりも上方の位置までに上昇させるとともに、前記回動アーム13を受け取りコンベヤ部7の両外側から内側に向かって旋回させる。これにより、タイヤTを内の支持ローラ11aに押し付け、前記内の支持ローラ11aと外の支持ローラ11b、11bとの間で、タイヤTを三点支持する。そしてこの三点支持状態で、前記一方のローラコンベヤ7aと他方のローラコンベヤ7bとを互いに逆方向に駆動する。これにより、タイヤTをタイヤ軸芯i回りで水平回転でき、このとき前記塗布ブラシ14が、ビード部T2の内周面T2Sと接触することで、該内周面T2Sに潤滑剤を塗布することができる。この塗布工程では、タイヤの回転回数、或いは回転時間が制御される。前記回転回数としては2〜3回程度、又回転時間としては20秒程度が好ましい。
しかる後、角度位置合わせ手段10が作動し、タイヤTの識別マーク6が予め定めたタイヤの回転基準位置Pに一致するタイヤ基準状態Jにてタイヤの回転を停止させる位置合わせ工程が行われる。本例では、塗布工程後に、前記検知センサ16が識別マーク6を検出しかつタイヤの回転を停止させる。これにより、識別マーク6を、タイヤTの回転基準位置Pに位置合わせする。なお停止後も、識別マーク6がタイヤTの回転基準位置Pに位置合わせされているかどうかを検知センサ16で確認し、位置合わせの成功、失敗の結果を、推定手段5、或いはその上位の前記データバンクに記録する。
又タイヤ基準状態Jに位置合わせされたタイヤTは、このタイヤ基準状態Jのままユニフォミティー測定装置4に投入される(投入工程)。このとき、前記データバンクからは、測定仕様などの情報がユニフォミティー測定装置4に送信される。又ユニフォミティー測定装置4では、この測定仕様の情報に基づき、前記タイヤの回転基準位置Pを、原点、即ちユニフォミティー測定基準位置として、必要な低速ユニフォミティーを順次測定する(測定工程)。
測定した低速ユニフォミティーの測定データは、推定手段5の第2の記憶部5Bに記憶されるとともに、この記憶された測定データと、前記第1の記憶部5Aの推定式とによって高速FVの推定値を演算して求める(推定工程)。そしてこの推定値に基づいて、製造タイヤの合否の判定が行われる(判定工程)。合格と判定されたタイヤは、マーク打点装置に送られ、例えばアンバランスの軽点、RROの最大点などがマーキングされた後、出荷工程へと移送される。なお前記データバンクには、前記低速ユニフォミティーの測定データ、及び高速FVの推定値などが、タイヤ個別情報として記録され、タイヤの商品管理が行われる。
なお前記判定工程において不合格と判定されたタイヤは、高速FV実測工程に送られる。そして高速ユニフォミティー測定装置を用いて高速FVが実測され、製造タイヤの合否の判定が行われるとともに、合格と判定されたタイヤは、マーク打点装置に送られた後、出荷工程へと移送される。
又本例の推定システム1では、1台のユニフォミティー測定装置4によって推定式のパラメータとなる低速ユニフォミティーをそれぞれ測定する場合を例示している。しかしながら、図8に概念的に示すように、低速ユニフォミティーのうち、例えばアンバランスを所謂バランス測定装置である第1のユニフォミティー測定装置4Aで測定し、他の低速FV、RRO、LROなどを第2のユニフォミティー測定装置4Bにて測定するなど、複数台のユニフォミティー測定装置4によって推定式のパラメータとなる低速ユニフォミティーを測定することもできる。係る場合には、各ユニフォミティー測定装置4の搬送方向上流側にそれぞれ前述の潤滑剤塗布装置3を配置することで、タイヤTを、それぞれタイヤ基準状態Jに位置合わせした状態にて各ユニフォミティー測定装置4に投入する。
そして各ユニフォミティー測定装置4で測定された低速ユニフォミティーの各測定データは、順次前記第2の記憶部5Bに送られて記憶される。そして推定に必要な測定データが揃った段階で、推定工程が行われる。
なおバランス測定装置などでは、装置自体のユニフォミティー測定基準位置が毎回変わる場合がある。係る場合には、前回の測定終了時のユニフォミティー測定基準位置を順次記録し、この記録に基づき測定原点を補正することで、正確な測定データを得ることができる。
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
1 高速FVの推定システム
2 タイヤ製造ライン
3 潤滑剤塗布装置
4 ユニフォミティー測定装置
5 推定手段
5A 第1の記憶部
5B 第2の記憶部
5C 演算部
6 識別マーク
6A バーコードラベル
7 受け取りコンベア部
8 タイヤ回転手段
9 塗布手段
10 タイヤの角度位置合わせ手段
14 塗布ブラシ
16 検知センサ
i タイヤ軸芯
J タイヤ基準状態
P タイヤの回転基準位置
T タイヤ
T2 ビード部
Xo 成形基準位置

Claims (4)

  1. タイヤ製造ラインに連なり該タイヤ製造ラインから搬送される加硫済みのタイヤを順次受け取って該タイヤのビード部にリム組み用の潤滑剤を塗布する潤滑剤塗布装置と、前記潤滑を塗布されたタイヤを受け取って該タイヤの低速ユニフォミティーを測定するユニフォミティー測定装置と、前記測定された低速ユニフォミティーのデータに基づいてタイヤの高速FVを推定する推定手段とを具えるタイヤの高速FVの推定システムであって、
    前記加硫済みのタイヤの一方の側面には、生タイヤにおける周方向の成形基準位置を示す識別マークが、生タイヤ成形工程において予め貼り着されるとともに、
    前記潤滑剤塗布装置は、前記タイヤ製造ラインからのタイヤを受け取る受け取りコンベヤ部と、
    該受け取りコンベヤ部上のタイヤをタイヤ軸芯回りで水平に回転させるタイヤ回転手段と、
    タイヤとは相対的に上下移動でき、かつ上昇によって前記回転するタイヤの上下のビード部の各内周面と接触し、この内周面に潤滑剤を塗布する塗布ブラシを有する塗布手段と、
    前記回転するタイヤの前記識別マークを検出する検知センサを有し、該識別マークが予め定めたタイヤの回転基準位置に一致するタイヤ基準状態にてタイヤの回転を停止させるタイヤの角度位置合わせ手段とを具え、
    前記検知センサは、前記タイヤより上方位置、及び、下方位置のそれぞれに取り付けられ、
    しかも、前記ユニフォミティー測定装置は、前記タイヤ基準状態にてタイヤを受け取り、かつ前記タイヤの回転基準位置をユニフォミティー測定基準位置として低速ユニフォミティーを測定することを特徴とするタイヤの高速FVの推定システム。

  2. 前記推定手段は、低速ユニフォミティーをパラメータとして高速FVを推定する推定式を記憶する第1の記憶部、前記ユニフォミティー測定装置により測定された低速ユニフォミティーの測定データを記憶する第2の記憶部、及び前記第2の記憶部の測定データと第1の記憶部の推定式とを用いて高速FVの推定値を演算して求める演算部とを具えることを特徴とする請求項1記載のタイヤの高速FVの推定システム。
  3. 前記低速ユニフォミティーは、低速FVと、RROと、LROと、アンバランスとを少なくとも含むことを特徴とする請求項1又は2記載のタイヤの高速FVの推定システム。
  4. 前記識別マークは、バーコードラベルであることを特徴とする請求項1〜3の何れかに記載のタイヤの高速FVの推定システム。
JP2009028764A 2009-02-10 2009-02-10 タイヤの高速fvの推定システム Expired - Fee Related JP5416427B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028764A JP5416427B2 (ja) 2009-02-10 2009-02-10 タイヤの高速fvの推定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028764A JP5416427B2 (ja) 2009-02-10 2009-02-10 タイヤの高速fvの推定システム

Publications (2)

Publication Number Publication Date
JP2010185709A JP2010185709A (ja) 2010-08-26
JP5416427B2 true JP5416427B2 (ja) 2014-02-12

Family

ID=42766460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028764A Expired - Fee Related JP5416427B2 (ja) 2009-02-10 2009-02-10 タイヤの高速fvの推定システム

Country Status (1)

Country Link
JP (1) JP5416427B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692626B (zh) * 2017-07-03 2020-05-01 日商神戶製鋼所股份有限公司 輪胎試驗機

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661427B2 (ja) * 2010-11-01 2015-01-28 大和製衡株式会社 塗布装置
JP5731240B2 (ja) * 2011-03-08 2015-06-10 大和製衡株式会社 タイヤバランス測定システム
JP5784347B2 (ja) * 2011-04-07 2015-09-24 株式会社神戸製鋼所 タイヤ試験機用コンベア
JP5897835B2 (ja) * 2011-07-21 2016-03-30 株式会社テクノオーミ 計測装置
JP5886679B2 (ja) * 2012-04-19 2016-03-16 株式会社ブリヂストン タイヤ印刷装置及びタイヤ印刷方法
JP6173964B2 (ja) 2014-04-16 2017-08-02 株式会社神戸製鋼所 タイヤ試験機
EP3227656B1 (en) * 2014-12-05 2021-06-02 Pirelli Tyre S.p.A. Method and apparatus for checking tyres, in a process and in a plant for manufacturing tyres for vehicle wheels
JP7063093B2 (ja) * 2018-05-01 2022-05-09 横浜ゴム株式会社 タイヤ製造情報把握方法および装置
JP7077900B2 (ja) * 2018-09-28 2022-05-31 住友ゴム工業株式会社 タイヤの高速ユニフォミティの推定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617709A (en) * 1979-07-19 1981-02-19 Toyo Tire & Rubber Co Ltd Tire loading device for uniformity machine
DE3406719A1 (de) * 1984-02-24 1985-08-29 Collmann GmbH & Co, Spezialmaschinenbau KG, 2400 Lübeck Vorrichtung zum positionieren von reifen
JPH0813517B2 (ja) * 1987-05-28 1996-02-14 横浜ゴム株式会社 タイヤビード部の潤滑剤塗布装置
JP2733437B2 (ja) * 1993-12-10 1998-03-30 住友ゴム工業株式会社 空気入りタイヤの製造方法
JPH0866975A (ja) * 1994-08-30 1996-03-12 Sumitomo Rubber Ind Ltd 空気入りタイヤの製造方法
JPH08257460A (ja) * 1995-03-28 1996-10-08 Kobe Steel Ltd タイヤビードルブリケータ装置
US6082191A (en) * 1997-01-24 2000-07-04 Illinois Tool Works, Inc. Inlet conveyor for tire testing systems
US6417918B1 (en) * 1999-09-22 2002-07-09 Bridgestone Corporation Tire Inspecting method and apparatus
JP3507945B2 (ja) * 1999-11-17 2004-03-15 東洋ゴム工業株式会社 タイヤの高速ユニフォミティ推定方法およびタイヤの選別方法
JP2006084310A (ja) * 2004-09-15 2006-03-30 Bridgestone Corp タイヤユニフォミティ測定装置
JP4376172B2 (ja) * 2004-11-22 2009-12-02 株式会社神戸製鋼所 ユニフォミティ装置とユニフォミティ検査ライン
JP5080882B2 (ja) * 2007-06-27 2012-11-21 住友ゴム工業株式会社 タイヤの高速ユニフォミティの推定方法
JP4979559B2 (ja) * 2007-12-12 2012-07-18 株式会社アルティア ワーク搬送装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692626B (zh) * 2017-07-03 2020-05-01 日商神戶製鋼所股份有限公司 輪胎試驗機
US11193857B2 (en) 2017-07-03 2021-12-07 Kobe Steel, Ltd. Tire tester machine having a lubricator in a conveying direction

Also Published As

Publication number Publication date
JP2010185709A (ja) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5416427B2 (ja) タイヤの高速fvの推定システム
US20070023122A1 (en) Method and apparatus for inspecting pneumatic tire during production
US6257956B1 (en) Method to identify and remove machine contributions from tire uniformity measurements
CN105910835B (zh) 轮胎试验机的轮辋更换方法
JP2008096451A (ja) タイヤ均一性試験の改良
JP6559637B2 (ja) タイヤユニフォミティマシンの特性化システムおよび方法
US6705156B2 (en) Cross-correlation method for identification and removal of machine contribution from tire uniformity measurements
JP2006308320A (ja) タイヤ複合測定装置
US8011235B2 (en) Apparatus and method for measuring local tire stiffness
CN105021411B (zh) 轮胎试验机
JP5080882B2 (ja) タイヤの高速ユニフォミティの推定方法
JP4142677B2 (ja) タイヤの外径異常検出方法、および外径異常検出装置
CN107894205B (zh) 用于分析机中的测试轮
TWI700478B (zh) 輪胎試驗機及輪胎的標記方法
JP4005262B2 (ja) タイヤとホイールの組付方法及び組付装置
JPH0325009A (ja) タイヤとホイールとの組付方法
AU2006200179B2 (en) Improvements in tire uniformity testing
JP2006242581A (ja) タイヤユニフォミティ修正方法
JP2019181824A (ja) ゴムストリップの巻付状態の検査方法
JP2011021891A (ja) タイヤの金属ワイヤ検出方法及びその装置
JP2020052019A (ja) タイヤの高速ユニフォミティの推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees