JP5365686B2 - スイッチング電源装置、集積回路およびスイッチング電源装置の動作状態設定方法 - Google Patents

スイッチング電源装置、集積回路およびスイッチング電源装置の動作状態設定方法 Download PDF

Info

Publication number
JP5365686B2
JP5365686B2 JP2011503876A JP2011503876A JP5365686B2 JP 5365686 B2 JP5365686 B2 JP 5365686B2 JP 2011503876 A JP2011503876 A JP 2011503876A JP 2011503876 A JP2011503876 A JP 2011503876A JP 5365686 B2 JP5365686 B2 JP 5365686B2
Authority
JP
Japan
Prior art keywords
power supply
circuit
supply device
switching
switching power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011503876A
Other languages
English (en)
Other versions
JPWO2010104172A1 (ja
Inventor
建 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011503876A priority Critical patent/JP5365686B2/ja
Publication of JPWO2010104172A1 publication Critical patent/JPWO2010104172A1/ja
Application granted granted Critical
Publication of JP5365686B2 publication Critical patent/JP5365686B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、電源動作に関する状態設定機能を有するスイッチング電源装置、その制御を行う集積回路およびその動作状態設定方法に関し、とくに機能パラメータおよび/または動作モードを簡単に設定できるスイッチング電源装置、集積回路およびその動作状態設定方法に関するものである。
スイッチング電源装置は、たとえば携帯電話機、デジタルカメラなどの電子機器に搭載され、入力電圧を昇圧または降圧して負荷へ供給するために用いられている。こうしたスイッチング電源装置においては電子機器が要求する電源仕様に応じて、電源動作に関する状態を様々な方法で設定している。
スイッチング電源装置に関するスイッチング周波数などの重要パラメータは、電源ノイズ特性、部品サイズ、部品の耐圧、温度上昇などに影響を与えるため、いくつかの設定方法が考えられている。下記の特許文献1に示されるスイッチング電源回路は、直流電源から供給される直流電圧を昇圧して負荷である6個の白色発光ダイオードLED1〜LED6に供給し、これらの白色発光ダイオードLED1〜LED6を駆動しようとするものである。このスイッチング電源回路には、スイッチング周波数を調整するために、昇圧チョッパレギュレータの発振回路に外付け抵抗R1が調整抵抗として設けられている。
通常、スイッチング電源回路を携帯機器や液晶テレビやDVDプレーヤなどの電子機器に使用する場合、スイッチング電源回路から発生するノイズには、電子機器内の他のLSIに悪影響を及ぼすノイズと及ぼさないノイズとがある。特許文献1に示されたスイッチング電源回路の発明は、外付け抵抗R1の抵抗値とスイッチング周期とが線形関係にあって、そのため電子機器の設計者は外付け抵抗R1一つの取替えで自由にスイッチング周期を変化させることができ、発生ノイズの調整が容易である。しかし、昇圧チョッパレギュレータを含む電源制御IC(集積回路)に対してこの発明を適用するためには、新たに周波数調整抵抗を接続する専用端子が必要になるといった問題が残されている。
スイッチング電源装置を制御するための電源制御ICは、コストやパッケージ面積などを抑えるという要請からその端子数が限られてくる。そのため、電源制御ICには、上述したスイッチング周波数以外のパラメータを設定する専用端子が設けられていないケースが多い。この場合、多様な電子機器の電源仕様に応じるために、電源制御IC自体のラインアップを増やすことで対応せざるをえない。
しかし、電子機器の電源仕様別に電源制御ICのラインアップが増えれば、製品のコストアップにも繋がる。そこで、電子機器のコスト低減のためには、一つの電源制御ICで必要な複数種類の動作状態の選択が可能な製品が求められてくる。
こうした要請に応じるものとして、下記の特許文献2には多機能キャパシタを利用して電源制御ICの端子数を増やすことなしに、電源制御ICの初期化期間中に動作状態の設定を行う「時間計測に基づきパラメータ/モードを選択する方法および装置」の発明が開示されている。この発明は、複数の機能パラメータや動作モードから選択を行うために、たとえば集積回路のピンに結合される特定の多機能キャパシタの容量値を選択するなどして、単一部品で複数の動作状態の設定を実現しようとするものである。ここで、多機能キャパシタとは、初期化期間において機能パラメータ、動作モードまたは他のデバイス特性を設定する以外に、通常の集積回路の動作中に何らかの通常機能を有するものである。たとえば、VCCピンデカップリングキャパシタまたはフィードバックピンループ補償キャパシタなどが初期化中におけるパラメータ/モード選択キャパシタとして利用することができる。
この特許文献2では、上述したVCCピンデカップリングキャパシタやフィードバックピンループ補償キャパシタなど、本来は他の目的で配置されたキャパシタをモード設定に流用すべく、キャパシタの容量値が決定され、適切にモード設定が行われる。しかし、初期化期間でのモード設定が終了した後には、当該キャパシタはその本来の目的のために使われることになる。そのため、これらのキャパシタの容量値は、その本来の目的を実現するために適した大きさに設定されていなければならない。
ここで、フィードバックピンループ補償キャパシタは、本来の目的が電源制御ICのフィードバックピンループの周波数特性を補償することであって、スイッチング電源装置における電源制御のフィードバックループが不安定にならないように配置されるものである。このフィードバックピンループ補償キャパシタは、容量値がフィードバックループの安定に最適な値より小さく設定されていれば、系は不安定になって発振する。反対に、最適値より大きく設定されていれば、電源システムとしての応答が遅くなり、たとえば負荷が変動してもすぐには出力電圧を回復できない。したがって、このキャパシタの容量値は、フィードバック系の応答へ与える影響が大きく、その変更によって位相補償の調整が制限されたり、電源が異常発振したりするなど、スイッチング電源装置の設計自体を制約するという問題があった。
また、一般に、電源制御ICにVCC電圧を供給する方法には、つぎの3種類のケースが想定される。第1のケースは、上述した特許文献2のように別の端子に接続された外部電源から内部レギュレータでVCC電圧を作るものである。第2のケースは、起動時の初期化期間には外部電源に接続された(第1のケースの内部レギュレータに相当する)起動回路により生成される起動電流でVCC電圧を作り、通常動作時には補助巻線からVCC電圧の供給を受けるものである。第3のケースは、外部のVCC電源を利用するものである。
VCCピンデカップリングキャパシタを多機能キャパシタとして利用するために、当該キャパシタを充電するための定電流を生成するレギュレータが電源制御IC内に必要である。VCCピンデカップリングキャパシタは、電源制御IC自体に電源を供給するために、電源制御ICのVCCピン(とGNDとの間)に接続されるものだからである。ところが、VCCピンデカップリングキャパシタは、電源制御ICの消費電流が大きくなって電源供給が間に合わなくなったり、電源電圧の変動があったりしたときのバッファとして機能するものであり、またVCCライン上のリップルなどのノイズを除去するためにも機能している。そこで、こうした本来の目的を実現するうえでは、VCCピンデカップリングキャパシタの容量値をある程度大きくする必要がある。そのため、短期間に定電流でVCCピンデカップリングキャパシタの大きな容量値を充電しようとするとき、レギュレータからの定電流値を大きく設定しておく必要があり、大きい定電流を発生させるために規模の大きなレギュレータを用いなければならなかった。従い、コストに問題が生じる。
また、第3のケースでは、VCCピンを外部電源に接続して電源を供給しているため、常にVCCピンデカップリングキャパシタが外部電源と接続された状態になる。ところが、このような接続状態でVCCピンデカップリングキャパシタを定電流により充電しても、外部電源からの電流で充電されたのか、電源制御ICで生成された定電流で充電されたのかの判別ができない。すなわち、VCCピンデカップリングキャパシタを初期化期間にモード設定に利用するには、VCCピンを外部電源から切り離す必要があって、この切り離しのための回路が電源制御ICの外部に設けられることになる。したがって、特許文献2の方法は、第3のケースに適用してパラメータ/モードを設定するには不適切なものといえる。
以上、特許文献2の多機能キャパシタを利用する方法は、通常の機能に直接影響してしまうため使い方が難しい、規模の大きなレギュレータを設ける必要があってコストアップに繋がる、VCC電圧の供給方式によっては適用することができない、などの問題があった。
さらに別の特許文献3には、端子数を増加させずにモードの切り替え信号を入力するようにした半導体集積回路についての記載がある。ここでは、通常動作に必要な端子のうち通常動作時の入力電圧範囲が電源電圧および接地電位との間に差がある端子を利用して、当該端子に電源電圧近くの電圧または接地電位近くの電圧を入力したとき、半導体集積回路のモードの切り替えを行うようにしている。したがって、特許文献3の技術によれば、端子数を増加させることなくモードの切り替え信号を入力することができる半導体集積回路が提供される。
特開2007−14082号公報(段落番号[0039]〜[0046]など参照) 特開2007−73954号公報(段落番号[0003]〜[0028]など参照) 特開2007−258294号公報(段落番号[0023]〜[0027]など参照)
ところが、特許文献3では、電源制御ICのフィードバック信号Vfbが入力されるフィードバック端子FBを使って、テストモードと通常動作モードの切り替えを行うようにしている。したがって、FB端子に対してモード設定信号とフィードバック信号とを切り替えて供給するためには、電源制御ICの外部に、モード設定信号を発生するとともにモード設定信号とフィードバック信号とを切り替える回路を設けなければならない。こうしたモード切り替えのやり方は、電源制御ICを製品に実装する前のテストであれば問題ないが、スイッチング電源装置に実装した後では実行することは困難である。
図15は、従来の平均電流制御のスイッチング電源装置を示す回路図である。
このスイッチング電源装置は、電源制御IC10によって負荷に一定の電圧を印加するように構成されたもので、その入力端子11は、リアクトルL1とダイオードD1を直列に介して、図示しない負荷を接続した出力端子12と接続されている。リアクトルL1とダイオードD1の接続点は、たとえばNチャネル型のパワーMOSFETなどのスイッチング素子Q1のドレイン端子と接続され、スイッチング素子Q1のソース端子は接地されている。また、ダイオードD1と出力端子12の接続点は、コンデンサC2を介して接地され、これらのダイオードD1とコンデンサC2によって整流平滑用回路が構成されている。
電源制御IC10は、その内部に制御回路1、VCC検出回路2、発振回路3、ドライブ回路4、出力電圧検出回路5などにより構成されている。また、この電源制御IC10は、制御出力用のOUT端子、電源入力用のVCC端子、入力端子11の電圧検出用のVDET端子、電流フィードバック系のエラーアンプの位相補償用のIcomp端子、電圧フィードバック系のエラーアンプの位相補償用のVcomp端子、センス電流信号入力用のIS端子、電圧フィードバック系のフィードバック信号入力用のFB端子、およびグランド接続用のGND端子を備えている。
OUT端子は、抵抗R1を介して接地されたスイッチング素子Q1のゲート端子に接続され、そこから出力される制御電圧Voutによりスイッチング素子Q1のオンオフを制御している。VCC端子には、電源端子13から電源電圧Vccが供給されている。VDET端子は、入力端子11と接地(グランド)との間に直列接続された抵抗R11,R12の接続点と接続されている。Icomp端子、Vcomp端子は、それぞれコンデンサC3,C4を介して接地されている。IS端子は、入力端子11と接地との間に直列接続されたコンデンサC1、抵抗R21の接続点と接続されている。FB端子は、出力端子12と接地との間に直列接続された抵抗R13,R14の接続点と接続されている。
この電源制御IC10は、入力電源電圧Viが入力端子11に供給されたとき、入力電源電圧Viと負荷の間に配置されたスイッチング素子Q1が制御電圧Voutによってオンオフ制御される。こうして、スイッチング電源装置の出力端子12に接続された負荷に出力電圧Voを供給するように動作する。
この電源制御IC10は、発振回路3の発振周波数を調整するための端子がないが、周波数調整用の端子を増設すると端子数が8ピンから9ピンに増加してしまう。8ピンのパッケージと9ピン以上のパッケージでは大きさ・コストが大きく異なるため、周波数調整用のピンを新たに設けることは困難である。
このように構成されている従来のスイッチング電源装置では、上述した特許文献1,2などの技術を適用して電子機器の備える電源要求仕様に応じた動作状態をあらかじめ設定しようとしても、状態設定端子を新たに設けたり、コストアップしたり、電源設計を困難なものとしたりする不都合が残る。また、特許文献3の技術を適用した場合は、スイッチング電源装置に電源制御ICを実装した後でモード切り替えを行うことが困難であった。
本発明は、このような点に鑑みてなされたものであり、スイッチング電源の初期化期間中に、集積回路のOUT端子もしくはIS端子とグランドの間に繋がっている抵抗の抵抗値を調整して動作状態の設定が可能なスイッチング電源装置、集積回路およびその動作状態設定方法を提供することを目的とする。
本発明では、上記問題を解決するために、入力電源と負荷の間にトランスまたはリアクトルと、スイッチング素子とを配置し、該スイッチング素子のオンオフを制御することによって前記負荷に一定の出力電圧を印加するための電源制御用の集積回路を有するスイッチング電源装置が提供される。このスイッチング電源装置の前記集積回路は、前記スイッチング素子をオンオフするドライブ回路と、前記スイッチング電源装置の動作状態を指示するための状態指示信号を出力する状態設定回路と、前記状態設定回路に対して前記スイッチング電源装置の動作状態を決定するよう指示する制御回路と、を備え、所定の大きさに調整された抵抗値を有する第1の抵抗を前記集積回路の前記スイッチング素子へのドライブ信号が出力される制御出力用の外部端子または前記トランスもしくはリアクトルに流れる電流を検出したセンス電流信号が入力される電流信号入力用の外部端子に接続するとともに、前記集積回路への電源供給開始直後から前記スイッチング素子のオンオフ制御が開始されるまでの初期化期間内に前記スイッチング電源装置の動作状態を設定するようにしたことを特徴とする。
このスイッチング電源装置では、一般に、スイッチング素子のゲート端子の電位が無制御時にフローティングとならないように、4.7kΩ〜47kΩに設定されているプルダウン抵抗が設けられていることから、この抵抗値を調整することによって、電源制御ICの初期化期間中に、内部に設けられた状態設定回路で電源状態を設定するようにした。
また、負荷からのセンス電流信号が入力される電流信号入力用の外部端子には、一般に、ノイズ除去のためにフィルタ回路が設けられていることから、このフィルタ抵抗を前記第1の抵抗とみなして、その抵抗値を調整することも可能である。
また、本発明の動作状態設定方法では、スイッチング素子のオンオフを制御する電源制御用集積回路を有し、入力電源と負荷の間に前記スイッチング素子を配置し、前記スイッチング素子のオンオフを制御することによって前記負荷に一定の出力電圧を印加するようにしたスイッチング電源装置において、該スイッチング電源装置に対する電源供給開始直後から前記スイッチング素子のオンオフ制御が開始されるまでの初期化期間内に動作状態を設定する。
この設定方法では、前記スイッチング素子のゲートに接続される前記電源制御用集積回路の外部端子またはトランスもしくはリアクトルに流れる電流を検出したセンス電流信号が入力される電流信号入力用の外部端子から所定の電流を出力する第1工程と、前記外部端子の電圧を検出し、その検出結果に基づき状態指示信号を形成し、該状態指示信号により前記スイッチング電源装置の動作状態を設定する第2工程と、前記状態指示信号に基づいて設定された前記スイッチング電源装置の動作状態を初期化期間経過後において継続して保持する第3工程と、を含む。
本発明によれば、電源制御ICに専用の状態設定端子を追加することなく、スイッチング素子のゲート端子に接続されている抵抗の抵抗値、またはノイズ除去のために外部端子に接続されているフィルタ抵抗などの抵抗値を選択することで、初期化期間中に特定の動作状態に精度良く設定することができる。また、通常動作に悪影響を与えることがなく、特許文献2においてVCCピンデカップリングキャパシタを利用した場合のように、大きな電流を外部に供給する必要もない。
本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本発明の実施の形態1に係る平均電流制御のスイッチング電源装置を示す回路図である。 実施の形態1〜5に用いる状態設定回路の一例を示す回路構成図である。 図2に示す状態設定回路の各入出力信号状態の一例を示すタイムチャートである。 図2に示す状態設定回路における設定動作の一例を示すフローチャートである。 スイッチング素子のスイッチング周波数を設定する発振回路の一例を示す回路構成図である。 図5に示す発振回路において、状態指示信号と充電電流とによって決まる発振周波数を示す図である。 図5に示す発振回路で選択可能な発振周波数の一例を示す図である。 本発明の実施の形態2に係るスイッチング電源装置を示す回路図である。 本発明の実施の形態3に係るスイッチング電源装置を示す回路図である。 本発明の実施の形態4に係るスイッチング電源装置を示す回路図である。 実施の形態1〜5に用いる状態設定回路の、図2とは別の例を示す回路構成図である。 図11に示す状態設定回路の各信号状態の一例を示すタイムチャートである。 図11に示す状態設定回路で設定可能な状態指示信号による動作状態の数を示す図である。 本発明の実施の形態5に係るスイッチング電源装置を示す回路図である。 従来の平均電流制御のスイッチング電源装置を示す回路図である。
以下、図面を参照してこの発明の実施の形態について説明する。
[実施の形態1]
図1は、本発明の実施の形態1に係る平均電流制御のスイッチング電源装置を示す回路図である。図15の従来装置と異なる点は、スイッチング電源装置を制御する電源制御IC100内に状態設定回路6が設けられていることである。この状態設定回路6は、ドライブ回路4とともにOUT端子に接続され、さらに制御回路1との間で後述するスタート信号、エンド信号をやり取りすることによって、発振回路3の発振周波数を制御するように機能するものである。
つぎに、状態設定回路6の詳細構成について説明する。
図2は、実施の形態1および後述の実施の形態2〜5に用いる状態設定回路の一例を示す回路構成図である。以下、実施の形態1に用いた場合について説明する。
状態設定回路6は、制御回路1からのワンショットのスタート信号STARTが入力されるSTART端子61、制御出力用のOUT端子と接続されて、OUT端子の電圧Voutが入力されるとともに、初期化期間中に定電流を出力するための入出力端子62、エンド信号ENDを出力するEND端子63、および2つの状態指示信号CS1,CS2を出力する状態設定端子64,65を備えている。START端子61は、RSフリップフロップ回路21のセット端子Sと接続され、RSフリップフロップ回路21の出力端子Qは第1の遅延回路22と接続されている。この第1の遅延回路22では、出力端子Qからの状態信号Q(簡便化のために、端子と信号に同じ符号を付す。)のL(Low)からH(High)への立ち上がりが入力されるとき、時間Taだけ遅延した出力信号Ta_outが生成される。なお、状態信号QのHからLへの立ち下がりは遅延されず、状態信号QがLになると出力信号Ta_outも直ちにLとなる。内部電源端子VDDと接続された定電流源23は、スイッチS1を介して入出力端子62に接続されている。
第1の遅延回路22の出力信号Ta_outは、そのレベルがHのときスイッチS1をオンさせるとともに、第2の遅延回路24の入力信号となっている。そして、第2の遅延回路24では、第1の遅延回路22の出力信号Ta_outが入力されてから、時間Tbだけ遅延した出力信号Tb_outが生成される。また、第2の遅延回路24の出力信号Tb_outは、さらに時間Tcだけ遅延した出力信号を生成する第3の遅延回路25の入力信号とされ、その出力信号Tc_outがそれぞれワンショット回路26とRSフリップフロップ回路21のリセット端子に供給されている。
この電源制御IC100は、初期化期間中に状態設定回路6でスイッチS1を介して入出力端子62に定電流Ioutを流すように動作して、この定電流IoutがOUT端子を介して電源制御IC100に外付けされた抵抗R1に注入される。また、ドライブ回路4は、制御回路1に制御されて、初期化期間中の定電流Ioutを抵抗R1に注入する期間は出力を高インピーダンスとする。そして、第1、第2のコンパレータ27a,27bには、各反転入力端子が入出力端子62と接続され、それぞれ非反転入力端子に基準電圧Vref1,Vref2(ただし、Vref1<Vref2)が接続される。これにより、第1、第2のコンパレータ27a,27bでは外付けされた抵抗R1の端子電圧が互いに異なる2つの基準電圧Vref1,Vref2と比較され、その比較結果を2値レベル(HあるいはL)信号Co1,Co2として対応するD型フリップフロップ回路28a,28bのD入力端子に供給するように構成されている。
なお、基準電圧Vref1,Vref2は電源制御IC100の状態設定回路6で生成すれば良く、たとえば0.45Vと0.75Vに設定できる。
D型フリップフロップ回路28a,28bでは、先行してD入力端子に入力された2値レベル信号Co1,Co2が、クロック端子Cに後から到達したクロック信号、すなわち第2の遅延回路24の出力信号Tb_outに同期して読み込まれ、出力端子Qからそれぞれ状態指示信号CS1,CS2として出力される。また、D型フリップフロップ回路28a,28bのリセット端子RはSTART端子61と接続され、電源制御IC100の初期化期間の開始にあたって制御回路1からのスタート信号を受けて、状態設定回路6に設定されている内部状態をリセットするようにしている。
こうして電源制御IC100では、状態設定回路6の状態設定端子64,65から出力される状態指示信号CS1,CS2により発振回路3の発振周波数を決定し、これによってスイッチング素子Q1のスイッチング周波数が設定される。すなわち、電源制御IC100は、そのOUT端子に接続されたドライブ回路4をハイインピーダンスにして、そこから外部接続されている抵抗R1に定電流源23からの定電流Ioutを注入している。そして、このときOUT端子に現れる制御電圧Voutを第1、第2のコンパレータ27a,27bに設定された基準電圧Vref1,Vref2と比較することによって状態指示信号CS1,CS2が決定される。したがって、これらの状態指示信号CS1,CS2をD型フリップフロップ回路28a,28bで保持することにより、その後の通常動作状態におけるスイッチング周波数が設定され、スイッチング電源装置の動作状態を初期化期間経過後において継続して保持できる。
初期化期間中に電源制御IC100のOUT端子に現れる制御電圧Voutは、定電流Ioutに対して抵抗R1を所定の大きさの抵抗値に設定することにより、下記の式(1)のとおりに決定される。
Vout=Iout*R1 …(1)
ここでは、制御電圧Voutをスイッチング素子Q1であるパワーMOSFETがターンオンしない電圧値にしなければならない。そのため、スイッチング素子Q1のゲート端子におけるスレッシュ電圧Vthの最小値Vth_minが2Vであれば、制御電圧Voutの最大値Vout_maxをそれより小さい1Vのように設定することが必要になる。このとき抵抗R1の最大抵抗値R1_maxは下記の式(2)のように決まる。たとえば、定電流Ioutが50μAであれば、抵抗R1の最大値は20kΩとなる。
R1_max=Vout_max/Iout …(2)
図3は、図2に示す状態設定回路の各入出力信号状態の一例を示すタイムチャートである。同図(a)は、制御回路1から状態設定回路6に時刻t1で入力するスタート信号STARTである。同図(b)、(c)には、それぞれ第1の遅延回路22の出力信号Ta_outおよび第2の遅延回路24の出力信号Tb_outを示している。また、同図(d)に示すエンド信号ENDは、スタート信号STARTが入力された時刻t1から(Ta+Tb+Tc)時間だけ遅れた時刻t5において、状態設定回路6から制御回路1に出力される。
図3(e)に示す入出力端子62の電圧Vout(この場合、ドライブ回路4から出力されるスイッチング素子Q1の制御電圧ではなく、(1)式に従う電圧である。)は、定電流源23からの定電流Ioutの抵抗R1への注入が開始する時刻t2で立ち上がり、時刻t3で基準電圧Vref1の電位に到達し、その後も時刻t5でRSフリップフロップ回路21がリセットされるまで上昇を続けて(1)式の値に漸近する(もしスイッチング素子Q1のゲート容量を含む寄生容量がなければ、直ちに(1)式の値に達する。)。したがって、第2の遅延回路24の出力信号Tb_outがD型フリップフロップ回路28a,28bにクロック信号として供給される時刻t4では、同図(f)に示す2値レベル信号Co1はLレベル、同図(g)に示す2値レベル信号Co2はHレベルとなっている。時刻t5で定電流源23からの定電流Ioutの供給が停止されると電圧Voutは減少を開始し、時刻t6で基準電圧Vref1の電位に到達すると2値レベル信号Co1はHレベルに変化するが、これはD型フリップフロップ回路28aには読み込まれないので、状態指示信号CS1,CS2は変化しない。
このように制御回路1からスタート信号STARTが状態設定回路6に入力することで状態設定機能がスタートし、その状態設定動作が終わった時点で、状態設定回路6から制御回路1にエンド信号ENDが出されることで、電源制御IC100での初期化期間が終了してスイッチング電源装置を通常動作状態とすることができる。このとき、電源入力電圧Viが印加された場合に、スイッチング素子Q1のゲート電圧の持ち上がりが生ずる場合があることから、第1の遅延回路22での遅延時間Taを、スイッチング素子Q1であるパワーMOSFETのゲート容量と抵抗R1による時定数を考慮したうえでゲート放電時間を意識した遅延時間、たとえば5msとすることができる。また、第2の遅延回路24での遅延時間Tbは、同様にスイッチング素子Q1であるパワーMOSFETのゲート容量と抵抗R1の時定数および定電流Ioutの電流値を考慮して、電圧Voutが安定するまでの充電時間を意識した遅延時間、たとえば1msとすることができる。さらに、第3の遅延回路25での遅延時間Tcは、状態指示信号CS1,CS2を発振回路3に読み込むための時間として設定され、たとえば1μsである。なお、これらの遅延時間Tb,Tcについては、遅延時間Taと同様に、それぞれ入力が立ち上がるタイミングに対しては遅延するが、立ち下がるタイミングに対して遅延しない。
図4は、図2に示す状態設定回路における設定動作を示すフローチャートである。
状態設定回路6では、制御回路1からのスタート信号STARTがRSフリップフロップ回路21をセット状態に切り替えたとき、ここから状態信号Qが第1の遅延回路22に供給されて、その状態設定動作が開始される。ステップSt1では、第1の遅延回路22の出力信号Ta_outが遅延時間Taをもって出力される。この出力信号Ta_outを受けたスイッチS1は、ステップSt2でオンされるから、定電流源23から入出力端子62を経由して電源制御IC100のOUT端子から定電流Ioutが流れ始める。それと同時に、第2の遅延回路24にも出力信号Ta_outが供給されるため、ステップSt3に進んで遅延時間Tbが経過したとき、第2の遅延回路24から出力信号Tb_outが出力される。遅延時間Tbが経過した時点でステップSt4に進んで、入出力端子62を経由して電源制御IC100に外付けされた抵抗R1の電圧値Voutと第1のコンパレータ27aの基準電圧Vref1とが比較される。
図4のステップSt4では、抵抗R1の電圧値Voutが第1のコンパレータ27aの基準電圧Vref1より小さい(Vout<Vref1)と判断されれば、ステップSt5に進んで、その時点で決定されるD型フリップフロップ回路28a,28bの状態信号である状態指示信号CS1,CS2に示される第1の状態設定が、発振回路3に対して実行される。また、ステップSt4での判断がVout>Vref1であれば、ステップSt6に進んで、抵抗R1の電圧値Voutを第2のコンパレータ27bの基準電圧Vref2と比較する。その結果、Vout<Vref2であればステップSt7に進んで、ステップSt5と同様に第2の状態設定が発振回路3に対して実行され、そうでなければ(Vout>Vref2と判断されれば)、ステップSt8に進んで、ステップSt5と同様に第3の状態設定が発振回路3に対して実行される。
最後のステップSt9では、出力信号Tb_outが入力された第3の遅延回路25での遅延時間Tcの経過を待つ。この遅延時間Tcは、2つのD型フリップフロップ回路28a,28bから出力される状態指示信号CS1,CS2の読み込み時間として設定されるもので、その出力信号Tc_outによってワンショット回路26からEND端子63を経由してエンド信号ENDが制御回路1に出力される。
なお、ここでは2つの基準電圧Vref1,Vref2を抵抗R1の電圧値Voutと比較することにより、3種類の動作状態が設定される場合を説明したが、本発明で設定可能な動作状態は3種類に限らない。一般に、スイッチング電源装置にN個の動作状態を確定するためには、N−1個の基準電圧とコンパレータのペア、もしくはA/Dコンバータが必要となる。
図5は、スイッチング素子のスイッチング周波数を設定する発振回路の一例を示す回路構成図である。
この発振回路3は、3つの定電流源51,52,53によって充電可能なコンデンサC31、充電電流を変更するためのスイッチS31,S32、コンデンサC31の放電用トランジスタQ31、互いに異なる基準電圧Vref31,Vref32でコンデンサC31の充電電圧を比較する第3、第4のコンパレータ54,55およびRSフリップフロップ回路56から構成されている。定電流源51,52,53は、それぞれI1,I2,I3の大きさの定電流を出力するものであり、入力端子31,32は、上述した状態設定回路6の状態設定端子64,65に接続され、状態指示信号CS1,CS2のレベルに応じた発振周波数で発振回路3を動作させることで、出力端子33からは制御回路1に発振信号OSCが出力される。なお、スイッチS31,S32は、それぞれ状態指示信号CS1,CS2のレベルがHのときオン(導通)し、Lのときオフ(遮断)する。
つぎに、発振回路3の発振動作について説明する。
図6は、図5に示す発振回路において、状態指示信号と充電電流とによって決まる発振周波数を示す図である。入力端子31から入力された状態指示信号CS1がLレベルで、入力端子32から入力された状態指示信号CS2がHレベルであれば、スイッチS31がオフし、スイッチS32がオンして、I2+I3の大きさでコンデンサC31への充電電流が流れる。
ここで、たとえば定電流I1,I2,I3を1.0μA,1.0μA,5.0μAとし、コンデンサC31の容量値を28.5pFとし、基準電圧Vref31,Vref32をそれぞれ0.5V,4.0Vに設定すると、発振回路3ではf1=50kHz、f2=60kHz、f3=70kHzのいずれかの発振周波数を選択することができる。
図7は、図5に示す発振回路で選択可能な発振周波数の一例を示す図である。ここでは、設定される状態1〜3について、使用する抵抗R1の抵抗値と発振周波数との関係を示している。
以上、実施の形態1として説明した本発明によれば、スイッチング電源の初期化期間中に、OUT端子とグランドの間に繋がっている抵抗R1の抵抗値の調整によって、発振回路3における発振周波数を選択して、その動作状態の設定が可能なスイッチング電源装置を提供できる。
なお、本発明の動作状態設定方法は発振回路3の発振周波数の設定だけに限定されるものではなく、初期化期間中にOUT端子の抵抗R1を利用して、状態指示信号CS1,CS2(,CS3,・・・)のレベルを設定することによって、過電圧保護(OVP)レベルを設定し、あるいは過電流保護(OCP)レベルを設定するなど、他の動作状態の設定にも利用することができる。さらに、過負荷時にラッチモードあるいはリスタートモードで対応するかを選択したり、固定周波モードあるいは可変周波数モードを選んだりすることも可能である。
[実施の形態2]
図8は、本発明の実施の形態2に係るスイッチング電源装置を示す回路図である。
実施の形態2において、上述した実施の形態1のスイッチング電源装置と異なる点は、電源制御IC100のOUT端子と、そこに接続されるスイッチング素子Q1のゲート端子との間にたとえば抵抗値22Ωの抵抗R2を介在させたことである。この抵抗R2によってスイッチング素子Q1に対する駆動電流を調整できる。この場合の初期化期間における電圧Voutは、定電流Ioutに対して抵抗R1,R2をそれぞれ所定の大きさの抵抗値に設定することにより、下記の式(3)のとおりに決定される。
Vout=Iout*(R1+R2) …(3)
[実施の形態3]
図9は、本発明の実施の形態3に係るスイッチング電源装置を示す回路図である。
実施の形態3において、上述した実施の形態1,2のスイッチング電源装置と異なる点は、スイッチング素子Q2とQ3から構成されたバッファ回路を電源制御IC100のOUT端子とスイッチング素子Q1のゲート端子との間に挿入したことである。これにより、スイッチング素子Q1に対する駆動能力を強化して、電源制御IC100の駆動能力の不足を補充できる。この場合の電圧Voutは、定電流Ioutに対して抵抗R3を所定の大きさの抵抗値に設定することにより、下記の式(4)のとおりに決定される。
Vout=Iout*R3 …(4)
[実施の形態4]
図10は、本発明の実施の形態4に係るスイッチング電源装置を示す回路図である。このスイッチング電源装置では、入力端子11と出力端子12の間がフライバックトランスT1によって結合されており、その一次巻線Pcの一端は、Nチャネル型のパワーMOSFETなどのスイッチング素子Q1のドレイン端子と接続され、スイッチング素子Q1のソース端子は電流検出用のシャント抵抗R10を介して接地されている。フライバックトランスT1の二次巻線Scの一端はダイオードD1を介して出力端子12と接続され、この二次巻線Scの他端は接地されている。また、ダイオードD1と出力端子12の接続点は、コンデンサC2を介して接地され、これらのダイオードD1とコンデンサC2によって整流平滑用回路が構成されている。
スイッチング電源装置は、電源制御IC200によって制御されて負荷に一定の出力電圧Voを印加するように構成されたものであって、入力電源電圧Viが入力端子11に供給されたとき、入力電源電圧Viと負荷の間に配置されたスイッチング素子Q1が制御電圧Voutによってオンオフ制御される。電源制御IC200は、その内部に制御回路1の他、VCC検出回路2、ドライブ回路4、状態設定回路7、起動回路8などを備えている。また、この電源制御IC200は、制御出力用のOUT端子、電源入力用のVCC端子、起動時における電源制御IC200への電源供給(および入力電源電圧Viの電圧検出)のためのVH端子、帰還回路201を含む電圧フィードバック系からのフィードバック信号が入力されるFB端子、グランド接続用のGND端子電流、およびフライバックトランスT1の一次巻線Pcに流れる電流を検出したセンス電流信号が入力されるIS端子を備えている。なお、本実施の形態をたとえば図15に示すような非絶縁型スイッチング電源装置にも適用することができるが、その場合、IS端子はリアクトルL1に流れる電流を検出したセンス電流信号が入力される端子となる。
こうしたスイッチング電源装置において、OUT端子は、抵抗R1を介して接地されるとともに、スイッチング素子Q1のゲート端子に接続され、そこから出力される制御電圧によりスイッチング素子Q1のオンオフを制御している。VCC端子には、電源端子13から電源電圧が供給されている。VH端子は、入力端子11と抵抗R4を介して接続されている。FB端子は、コンデンサC5を介して接地されるとともに、出力端子12と接地との間に直列接続された抵抗R13,R14の接続点に帰還回路201を介して接続されている。IS端子は、コンデンサC6を介して接地されるとともに、スイッチング素子Q1のソース端子とシャント抵抗R10との接続点に抵抗R15を介して接続されている。なお、実施の形態1を示す図1のものと対応する部分には同一の符号を付けて、それらの説明を省略する。
図10のスイッチング電源装置の電源制御IC200において、図15の従来装置の電源制御IC10と異なる点は、状態設定回路7が設けられていることである。そして、この状態設定回路7は電流検出用のIS端子に接続され、シャント抵抗R10の両端電圧を抵抗R15とコンデンサC6からなるRCフィルタで平滑化した電圧Voutを検出している。また、状態設定回路7が制御回路1との間でスタート信号、エンド信号をやり取りすることによって、電源制御IC200への電源供給開始直後からスイッチング素子Q1のオンオフ制御が開始されるまでの初期化期間内に、スイッチング電源装置を選択可能な複数の動作状態のいずれかに設定するように機能する。
図11は、実施の形態1〜4および後述の実施の形態5に用いる状態設定回路の、図2とは別の例を示す回路構成図である。以下、実施の形態4に用いた場合について説明する。
状態設定回路7は、制御回路1からのワンショットのスタート信号STARTが入力されるSTART端子71、電流検出用のIS端子と接続されてそこに生じる電圧Voutが入力されるとともに、初期化期間中に定電流を出力するための入出力端子72、エンド信号ENDを出力するEND端子73、および3つの状態指示信号CS1,CS2およびCS_maxを出力する状態設定端子74,75,76を備えている。START端子71は、RSフリップフロップ回路21のセット端子Sと接続され、RSフリップフロップ回路21の出力端子Qは第1の遅延回路22と接続されている。この第1の遅延回路22では、RSフリップフロップ回路21の出力端子Qからの状態信号Q(簡便化のために、端子と信号に同じ符号を付す。)のL(Low)からH(High)への立ち上がりが入力されるとき、時間Taだけ遅延した出力信号Ta_outが生成される。
なお、状態信号QのHからLへの立ち下がりは遅延されず、状態信号QがLになると出力信号Ta_outも直ちにLとなる。内部電源端子VDDには、2つの定電流源23a,23bが並列に接続され、定電流源23aはスイッチS1を介して入出力端子72に接続され、そこに定電流Iout_1を出力することができる。また、定電流源23bはスイッチS2およびS1を直列に介して入出力端子72に接続され、接続されると、定電流Iout_1に定電流Iout_2を加算した電流が、入出力端子72を介してIS端子に出力される。
第1の遅延回路22の出力信号Ta_outは、そのレベルがHのときスイッチS1をオンさせるとともに、第2の遅延回路24の入力信号にもなっている。そして、第2の遅延回路24では、第1の遅延回路22の出力信号Ta_outが入力されてから、時間Tbだけ遅延した出力信号Tb_outが生成される。また、第2の遅延回路24の出力信号Tb_outは、さらに時間Tcだけ遅延した出力信号を生成する第3の遅延回路25の入力信号とされ、その出力信号Tc_outがそれぞれワンショット回路26とRSフリップフロップ回路21のリセット端子に供給されている。
入出力端子72には、第1、第2および第3のコンパレータ27a,27b,27cが接続され、コンパレータ27a,27bおよび27cの出力はそれぞれD型フリップフロップ回路28a,28bおよびRSフリップフロップ回路28cの入力端子に入力されている。また、インバータ回路29にはRSフリップフロップ回路28cの状態信号Q(状態指示信号CS_max)が供給され、スイッチS2は、このインバータ回路29で反転された状態指示信号CS_maxによってオン/オフが制御されるように構成されている。
ここでは、第1、第2のコンパレータ27a,27bの反転入力端子および第3のコンパレータ27cの非反転入力端子に、入出力端子72が接続される。また、第1、第2のコンパレータ27a,27bの非反転入力端子および第3のコンパレータ27cの反転入力端子には、それぞれ基準電圧Vref1,Vref2およびVref_max(ただし、Vref1<Vref2<Vref_max)が接続される。これにより、第1、第2、第3のコンパレータ27a,27b,27cでは、電圧Voutが互いに異なる3つの基準電圧Vref1,Vref2,Vref_maxと比較され、その比較結果を2値レベル(HあるいはL)信号Co1,Co2,Co_maxとして対応するフリップフロップ回路28a,28b,28cの入力端子に供給するように構成されている。
D型フリップフロップ回路28a,28bでは、先行してD入力端子に入力された2値レベル信号Co1,Co2が、クロック端子Cに後から到達したクロック信号、すなわち第2の遅延回路24の出力信号Tb_outに同期して読み込まれ、出力端子Qからそれぞれ状態指示信号CS1,CS2として出力される。また、D型フリップフロップ回路28a,28bおよびRSフリップフロップ回路28cのリセット端子RはSTART端子71と接続されていて、電源制御IC200の初期化期間の開始にあたって制御回路1からのスタート信号を受けるとD型フリップフロップ回路28a,28bおよびRSフリップフロップ回路28cがリセットされることにより、状態設定回路7により設定されている電源制御IC200の内部状態をリセットするようにしている。
その後、以下に説明する動作により状態設定回路7の状態設定端子74,75,76から出力される状態指示信号CS1,CS2,CS_maxの値が決定され、これにより電源制御IC200に関する発振回路3の発振周波数などの動作状態が設定される。
まず、初期化期間中に電源制御IC200のIS端子に現れる制御電圧Voutの最終値は、定電流Ioutに対して抵抗R10とR15を所定の大きさの抵抗値に設定することにより、下記の式(5)のとおりに決定される。但し、外付けコンデンサC6の存在により、定電流Ioutを抵抗R10とR15に印加しても瞬間的にはこの値にはならず、CRの時定数回路と同様の過渡応答を示す。
Vout=Iout*(R10+R15) …(5)
この状態設定回路7は、初期化期間中にスイッチS1,S2を操作することにより、入出力端子72への注入電流Ioutを(Iout1+Iout2)、あるいはIout1の異なる大きさに制御できる。そして、この定電流IoutがIS端子を介して電源制御IC200に外付けされた直列抵抗(R10+R15)に注入される。すなわち、電源制御IC200のIS端子に対する注入電流の大きさを初期化期間内に切り替え可能に構成することにより、IS端子での出力電圧VoutとIS端子への注入電流の大きさとを2つのパラメータとして状態指示信号を決定できるため、設定できる状態数を多くすることができる。したがって、図1に示す実施の形態1における抵抗R1のように、外付け抵抗の抵抗値の最大値に制限がある場合でも、このような注入電流Ioutの切り替えによって、より多くの状態を設定することができる。
なお、IS端子のフィルタコンデンサを構成するコンデンサC6に放電回路を付加して、状態設定後のIS端子に電圧が残らないようにすることが好ましい。
図12は、図11に示す状態設定回路の各信号状態の一例を示すタイムチャートである。同図(a)は、制御回路1から状態設定回路7に時刻t1で入力するスタート信号STARTである。同図(b)、(c)には、それぞれ第1の遅延回路22の出力信号Ta_outおよび第2の遅延回路24の出力信号Tb_outを示している。また、同図(d)に示すエンド信号ENDは、スタート信号STARTが入力された時刻t1から(Ta+Tb+Tc)時間だけ遅れた時刻t8において、状態設定回路7から制御回路1に出力される。
同図(e)に入出力端子72の電圧Vout、同図(f)に出力電流Ioutを示す。電圧Voutは(5)式の電圧に向かう過渡応答を示し、定電流源23a,23bからの定電流Iout1+Iout2の抵抗R10とR15への注入が開始する時刻t2で立ち上がり、時刻t3で基準電圧Vref1の電位に、時刻t4で基準電圧Vref2の電位に到達する。その後、時刻t5まで入出力端子72の電圧Voutは上昇を続けて、基準電圧Vref_maxになるとRSフリップフロップ回路28cがセットされて、2値レベル信号Co_maxがHレベルになる。これにより、インバータ回路29の出力がLになり、スイッチS2がオフして、電流IoutはIout1+Iout2からIout1に減少する。そのため、電圧Voutも減少し、時刻t7までには基準電圧Vref1と基準電圧Vref2の間の電位に落ち着く。
したがって、第2の遅延回路24の出力信号Tb_outがD型フリップフロップ回路28a,28bにクロック信号として供給される時刻t7では、同図(g)に示す2値レベル信号Co1はLレベル、同図(h)に示す2値レベル信号Co2はHレベルとなっている。時刻t8で定電流源23a,23bからの定電流Ioutの供給が停止されると電圧Voutは減少を開始し、時刻t9で基準電圧Vref1の電位に到達すると2値レベル信号Co1はHレベルに変化するが、これはD型フリップフロップ回路28aには読み込まれないので、状態指示信号CS1,CS2,CS_maxは変化しない。なお、設定された抵抗R10とR15の抵抗値が小さい場合は、電圧Voutが基準電圧Vref_maxに達せず、電流IoutはIout1+Iout2のままで、2値レベル信号Co_maxはLレベルとなる。
このように制御回路1からスタート信号STARTが状態設定回路7に入力することで状態設定機能がスタートし、その状態設定動作が終わった時点で、状態設定回路7から制御回路1にエンド信号ENDが出されることで、電源制御IC200での初期化期間が終了してスイッチング電源装置を通常動作状態とすることができる。
図13は、図11に示す状態設定回路で設定可能な状態指示信号による動作状態の数を示す図である。ここでは、3つの状態指示信号CS1,CS2,CS_maxによって6通りの動作状態を設定することができる。
[実施の形態5]
図14は、本発明の実施の形態5に係るスイッチング電源装置を示す回路図である。
実施の形態5において、上述した実施の形態4のスイッチング電源装置と異なる点は、電源制御IC200のIS端子が、入力端子11と接地との間に直列接続されたコンデンサC1とシャント抵抗R16との接続点と、抵抗R15を介して接続されていることである。そのため、IS端子にマイナス電流が流れる場合でも動作状態の設定が可能である。
なお、本発明は、絶縁型のスイッチング電源装置および非絶縁型のスイッチング電源装置のいずれにも適用できるものである。上述の実施の形態において、一方の型のスイッチング電源装置について例示した場合でも、他方の型に同様に適用することができることは明らかである。
本発明では、状態設定機能を有するスイッチング電源装置およびその動作状態設定方法に適用して、電源制御ICに専用の状態設定端子を追加することなく、機能パラメータおよび/または動作モードを簡単に設定できる。
上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
1 制御回路
2 VCC検出回路
3 発振回路
4 ドライブ回路
5 出力電圧検出回路
6,7 状態設定回路
10,100,200 電源制御IC
11 入力端子
12 出力端子
13 電源端子
21,28c RSフリップフロップ回路
22 第1の遅延回路
23,23a,23b 定電流源
24 第2の遅延回路
25 第3の遅延回路
26 ワンショット回路
27a,27b,27c 第1、第2、第3のコンパレータ
28a,28b D型フリップフロップ回路
29 インバータ回路
51〜53 定電流源
54 第3のコンパレータ
55 第4のコンパレータ
56 RSフリップフロップ回路
64,65 状態設定端子
C1〜C4,C31 コンデンサ
D1 ダイオード
L1 リアクトル
Q31 放電用トランジスタ
Q1 スイッチング素子
R1〜R5,R13〜R15 抵抗
R10,R16 シャント抵抗
S1,S2,S31,S32 スイッチ

Claims (9)

  1. 入力電源と負荷の間にトランスまたはリアクトルと、スイッチング素子とを配置し、該スイッチング素子のオンオフを制御することによって前記負荷に一定の出力電圧を印加するための電源制御用の集積回路を有するスイッチング電源装置において、
    前記集積回路は、
    前記スイッチング素子をオンオフするドライブ回路と、
    前記スイッチング電源装置の動作状態を指示するための状態指示信号を出力する状態設定回路と、
    前記状態設定回路に対して前記スイッチング電源装置の動作状態を決定するよう指示する制御回路と、を備え、
    所定の大きさに調整された抵抗値を有する第1の抵抗を前記集積回路の前記スイッチング素子へのドライブ信号が出力される制御出力用の外部端子または前記トランスもしくはリアクトルに流れる電流を検出したセンス電流信号が入力される電流信号入力用の外部端子に接続するとともに、前記集積回路への電源供給開始直後から前記スイッチング素子のオンオフ制御が開始されるまでの初期化期間内に前記スイッチング電源装置の動作状態を設定し、
    前記状態設定回路は、前記外部端子から前記第1の抵抗に所定の大きさで電流を注入して前記外部端子に生じる電圧を検出するとともに、検出された前記外部端子の電圧に応じて前記状態指示信号を決定することにより、特定の前記スイッチング電源装置の動作状態を設定するようにしたことを特徴とするスイッチング電源装置。
  2. 前記スイッチング素子のスイッチング周波数を規定する発振回路を有し、前記発振回路では、前記状態設定回路の状態指示信号により前記スイッチング周波数を増減するようにしたことを特徴とする請求項1記載のスイッチング電源装置。
  3. 前記ドライブ回路から第2の抵抗を含む抵抗回路を介して前記スイッチング素子のゲート端子にオンオフ制御信号を印加するようにしたことを特徴とする請求項1記載のスイッチング電源装置。
  4. 前記ドライブ回路からバッファ回路を介して前記スイッチング素子のゲート端子にオンオフ制御信号を印加するようにしたことを特徴とする請求項1記載のスイッチング電源装置。
  5. 前記状態設定回路は、前記外部端子に対する注入電流の大きさを前記初期化期間内に切り替え可能に構成することにより、前記外部端子の電圧と前記注入電流の大きさに応じて前記状態指示信号を決定するようにしたことを特徴とする請求項1記載のスイッチング電源装置。
  6. 前記スイッチング電源装置は、前記状態設定回路の状態指示信号により、過電流保護レベルの選択、過電圧保護レベルの選択、過負荷時のラッチモードの選択、リスタートモードの選択、および前記スイッチング素子のスイッチング周波数を規定する発振回路が固定周波数モードであるか可変周波数モードであるかの選択、のいずれかを行うことを特徴とする請求項1記載のスイッチング電源装置。
  7. 入力電源と負荷の間にトランスまたはリアクトルと、スイッチング素子とを配置し、該スイッチング素子のオンオフを制御することによって前記負荷に一定の出力電圧を印加するためのスイッチング電源装置の制御を行う集積回路であって、
    前記スイッチング素子をオンオフするドライブ回路と、
    前記スイッチング電源装置の動作状態を指示するための状態指示信号を出力する状態設定回路と、
    前記状態設定回路に対して前記スイッチング電源装置の動作状態を決定するよう指示する制御回路と、
    を備え、
    前記スイッチング素子へのドライブ信号が出力される制御出力用の外部端子または前記トランスもしくはリアクトルに流れる電流を検出したセンス電流信号が入力される電流信号入力用の外部端子に接続されるとともに、所定の大きさに調整された抵抗値を有する第1の抵抗に対し、前記集積回路への電源供給開始直後から前記スイッチング素子のオンオフ制御が開始されるまでの初期化期間内に所定の電流を印加して前記第1の抵抗が接続された前記外部端子の電圧を検出することにより前記スイッチング電源装置の動作状態を決定するようにしたことを特徴とする集積回路。
  8. スイッチング素子のオンオフを制御する電源制御用集積回路を有し、入力電源と負荷の間に前記スイッチング素子を配置し、前記スイッチング素子のオンオフを制御することによって前記負荷に一定の出力電圧を印加するようにしたスイッチング電源装置における、該スイッチング電源装置に対する電源供給開始直後から前記スイッチング素子のオンオフ制御が開始されるまでの初期化期間内に動作状態を設定する前記スイッチング電源装置の動作状態設定方法であって、
    前記スイッチング素子のゲートに接続される前記電源制御用集積回路の外部端子またはトランスもしくはリアクトルに流れる電流を検出したセンス電流信号が入力される電流信号入力用の外部端子から所定の電流を出力する第1工程と、
    前記外部端子の電圧を検出し、その検出結果に基づき状態指示信号を形成し、該状態指示信号により前記スイッチング電源装置の動作状態を設定する第2工程と、
    前記状態指示信号に基づいて設定された前記スイッチング電源装置の動作状態を初期化期間経過後において継続して保持する第3工程と、
    を含むことを特徴とするスイッチング電源装置の動作状態設定方法。
  9. 前記第2工程および第3工程では、前記スイッチング電源装置における過電流保護レベルもしくは過電圧保護レベルを設定し、または過負荷時のラッチモード、リスタートモード、固定周波数モードもしくは可変周波数モードを選択することによって、所定の動作状態として保持することを特徴とする請求項8記載のスイッチング電源装置の動作状態設定方法。
JP2011503876A 2009-03-13 2010-03-12 スイッチング電源装置、集積回路およびスイッチング電源装置の動作状態設定方法 Active JP5365686B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011503876A JP5365686B2 (ja) 2009-03-13 2010-03-12 スイッチング電源装置、集積回路およびスイッチング電源装置の動作状態設定方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009061606 2009-03-13
JP2009061606 2009-03-13
PCT/JP2010/054218 WO2010104172A1 (ja) 2009-03-13 2010-03-12 スイッチング電源装置、集積回路およびスイッチング電源装置の動作状態設定方法
JP2011503876A JP5365686B2 (ja) 2009-03-13 2010-03-12 スイッチング電源装置、集積回路およびスイッチング電源装置の動作状態設定方法

Publications (2)

Publication Number Publication Date
JPWO2010104172A1 JPWO2010104172A1 (ja) 2012-09-13
JP5365686B2 true JP5365686B2 (ja) 2013-12-11

Family

ID=42728457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011503876A Active JP5365686B2 (ja) 2009-03-13 2010-03-12 スイッチング電源装置、集積回路およびスイッチング電源装置の動作状態設定方法

Country Status (4)

Country Link
US (1) US8531163B2 (ja)
JP (1) JP5365686B2 (ja)
CN (1) CN102369654B (ja)
WO (1) WO2010104172A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5660131B2 (ja) * 2010-04-16 2015-01-28 株式会社村田製作所 スイッチング制御回路及びスイッチング電源装置
JP5660133B2 (ja) * 2010-06-10 2015-01-28 株式会社村田製作所 スイッチング制御回路及びスイッチング電源装置
CN102971953B (zh) * 2010-07-26 2015-07-01 株式会社村田制作所 开关控制电路及开关电源装置
JP5316902B2 (ja) 2010-11-05 2013-10-16 ブラザー工業株式会社 電源システム及び画像形成装置
CN102480229B (zh) * 2010-11-25 2014-04-09 深圳市英威腾电气股份有限公司 一种等比降压开关电源
US9578692B2 (en) * 2012-04-19 2017-02-21 Infineon Technologies Americas Corp. Power converter with tank circuit and over-voltage protection
CN103427649A (zh) * 2012-05-25 2013-12-04 台达电子工业股份有限公司 电源转换器及其控制方法
CN102739212B (zh) * 2012-06-29 2014-12-10 台达电子企业管理(上海)有限公司 电子设备的过电流保护点设置方法、系统及控制装置
TWI493844B (zh) * 2012-11-29 2015-07-21 Power Forest Technology 電源轉換器控制電路
JP6040768B2 (ja) * 2012-12-28 2016-12-07 ブラザー工業株式会社 スイッチング電源、電源供給システム及び画像形成装置
CN103066872B (zh) * 2013-01-17 2015-06-17 矽力杰半导体技术(杭州)有限公司 一种集成开关电源控制器以及应用其的开关电源
US9673696B2 (en) * 2013-03-13 2017-06-06 Analog Devices Technology Ultra low-voltage circuit and method for nanopower boost regulator
DE102013207704A1 (de) * 2013-04-26 2014-10-30 Tridonic Gmbh & Co Kg Modul mit passiver Messsignalrückführung über Ladungsspeicher
CN103326577B (zh) * 2013-07-11 2015-09-02 台达电子电源(东莞)有限公司 开关电源输出电压的调节设备、调整方法及集成芯片
KR20150055937A (ko) * 2013-11-14 2015-05-22 삼성전자주식회사 Led 구동 장치, 조명 장치 및 led 구동 장치의 제어 회로
JP6364894B2 (ja) 2014-04-01 2018-08-01 ブラザー工業株式会社 電源システムおよび画像形成装置
EP3101793B1 (fr) * 2015-06-05 2018-08-01 EM Microelectronic-Marin SA Convertisseur dc-dc à démarrage à basse puissance et à basse tension
CN105576947B (zh) * 2016-02-04 2018-06-29 矽力杰半导体技术(杭州)有限公司 开关电源控制器以及应用其的开关电源
US10728960B2 (en) 2017-03-16 2020-07-28 Infineon Technologies Ag Transistor with integrated active protection
JP6979588B2 (ja) * 2018-02-23 2021-12-15 パナソニックIpマネジメント株式会社 照明光通信装置
WO2019176328A1 (ja) * 2018-03-13 2019-09-19 富士電機株式会社 電源装置、電源制御装置、および電源制御方法
JP6770602B2 (ja) * 2018-04-04 2020-10-14 イーエム・ミクロエレクトロニク−マリン・エス アー 電力管理集積回路
US11632054B2 (en) 2019-04-24 2023-04-18 Power Integrations, Inc. Mode operation detection for control of a power converter with an active clamp switch
CN113767558A (zh) * 2019-04-24 2021-12-07 电力集成公司 包括有源非耗散箝位电路以及相应控制器的功率转换器
CN113176749B (zh) * 2021-04-23 2024-06-04 广东天波信息技术股份有限公司 一种避免处理器上电过程中i/o口闩锁的电路
JP2023091598A (ja) * 2021-12-20 2023-06-30 富士電機株式会社 集積回路及び電源回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211715A (ja) * 1992-01-29 1993-08-20 Fuji Elelctrochem Co Ltd スイッチング電源の過電流保護回路
JPH05316772A (ja) * 1992-05-12 1993-11-26 Yoshiji Kondo 多段階エネルギー発生方法
JP2007073954A (ja) * 2005-08-26 2007-03-22 Power Integrations Inc 時間計測に基づきパラメータ/モードを選択する方法及び装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706152B2 (ja) 2001-09-04 2011-06-22 富士電機システムズ株式会社 同期整流型スイッチング電源装置
JP4052998B2 (ja) * 2003-11-25 2008-02-27 シャープ株式会社 電源回路及びそれを用いた電子機器
JP4127399B2 (ja) * 2004-03-31 2008-07-30 松下電器産業株式会社 スイッチング電源制御用半導体装置
JP4429868B2 (ja) * 2004-10-14 2010-03-10 シャープ株式会社 スイッチング電源回路及びそれを用いた電子機器
US7339359B2 (en) 2005-03-18 2008-03-04 Fairchild Semiconductor Corporation Terminal for multiple functions in a power supply
JP4751108B2 (ja) * 2005-06-06 2011-08-17 ローム株式会社 他励式dc/dcコンバータの制御回路およびそれを用いた電源装置、発光装置、電子機器
JP4562596B2 (ja) 2005-06-29 2010-10-13 シャープ株式会社 スイッチング電源回路及びそれを用いた電子機器
JP4967395B2 (ja) 2006-03-22 2012-07-04 富士電機株式会社 半導体集積回路
JP5147554B2 (ja) * 2008-06-10 2013-02-20 パナソニック株式会社 スイッチング電源装置及びそれに用いる半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211715A (ja) * 1992-01-29 1993-08-20 Fuji Elelctrochem Co Ltd スイッチング電源の過電流保護回路
JPH05316772A (ja) * 1992-05-12 1993-11-26 Yoshiji Kondo 多段階エネルギー発生方法
JP2007073954A (ja) * 2005-08-26 2007-03-22 Power Integrations Inc 時間計測に基づきパラメータ/モードを選択する方法及び装置

Also Published As

Publication number Publication date
CN102369654A (zh) 2012-03-07
CN102369654B (zh) 2014-04-02
WO2010104172A1 (ja) 2010-09-16
US8531163B2 (en) 2013-09-10
JPWO2010104172A1 (ja) 2012-09-13
US20120049823A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5365686B2 (ja) スイッチング電源装置、集積回路およびスイッチング電源装置の動作状態設定方法
US7492615B2 (en) Switching power supply
US7265999B2 (en) Power supply regulator circuit and semiconductor device
US9083246B2 (en) Control circuit for primary side control of switching power supply
CN107612336B (zh) 用于谐振转换器的可变消隐频率
JP3973652B2 (ja) スイッチング電源装置
US8625309B2 (en) Semiconductor integrated circuit and switching power supply system
US8559200B2 (en) Method and apparatus of low current startup circuit for switching mode power supplies
US8063622B2 (en) Method and apparatus for implementing slew rate control using bypass capacitor
US9490714B1 (en) Switching power supply
JP2011147315A (ja) スイッチング制御回路及びスイッチング電源装置
JP2007073954A (ja) 時間計測に基づきパラメータ/モードを選択する方法及び装置
JP2009153364A (ja) スイッチング電源装置
JP2010063304A (ja) Dc−dcコンバータ
JP5857702B2 (ja) スイッチング電源装置
JP2007043767A (ja) スイッチング電源装置、および半導体装置
US20180054131A1 (en) Control circuit for power converter with isolated or non-isolated feedback
JP2006314189A (ja) 電源レギュレーション回路、および半導体装置
JP2021090234A (ja) スイッチング制御回路、電源回路
JP2020137257A (ja) スイッチング電源装置、電源制御回路、及び、スイッチング電源装置の制御方法
JP2012139101A (ja) スイッチング制御回路及びスイッチング電源装置
CN113839455B (zh) 支援电力输送的充电装置
US20230336093A1 (en) Integrated circuit and power supply circuit
JP5633535B2 (ja) スイッチング制御回路及びスイッチング電源装置
JP4918066B2 (ja) スイッチング電源装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5365686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250