JP5307912B2 - 希土類永久磁石及び希土類永久磁石の製造方法 - Google Patents

希土類永久磁石及び希土類永久磁石の製造方法 Download PDF

Info

Publication number
JP5307912B2
JP5307912B2 JP2012058081A JP2012058081A JP5307912B2 JP 5307912 B2 JP5307912 B2 JP 5307912B2 JP 2012058081 A JP2012058081 A JP 2012058081A JP 2012058081 A JP2012058081 A JP 2012058081A JP 5307912 B2 JP5307912 B2 JP 5307912B2
Authority
JP
Japan
Prior art keywords
magnet
sintering
binder
permanent magnet
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012058081A
Other languages
English (en)
Other versions
JP2013030745A (ja
Inventor
孝志 尾崎
克也 久米
利昭 奥野
出光 尾関
智弘 大牟礼
啓介 太白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2012058081A priority Critical patent/JP5307912B2/ja
Publication of JP2013030745A publication Critical patent/JP2013030745A/ja
Application granted granted Critical
Publication of JP5307912B2 publication Critical patent/JP5307912B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、希土類永久磁石及び希土類永久磁石の製造方法に関する。
近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そこで、上記永久磁石モータの小型軽量化、高出力化、高効率化を実現するに当たって、モータに埋設される永久磁石について、薄膜化と更なる磁気特性の向上が求められている。
ここで、永久磁石モータに用いられる永久磁石の製造方法としては、従来より粉末焼結法が一般的に用いられる。ここで、粉末焼結法は、先ず原材料をジェットミル(乾式粉砕)等により粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd−Fe−B系磁石では1100℃)で焼結することにより製造する。
しかしながら、上記した粉末焼結法により永久磁石を製造することとすると、以下の問題点があった。即ち、粉末焼結法では磁場配向させる為にプレス成形した磁石粉末に一定の空隙率を確保する必要がある。そして、一定の空隙率を有する磁石粉末を焼結すると、焼結の際に生じる収縮を均一に行わせることが難しく、焼結後に反りや凹みなどの変形が生じる。また、磁石粉末のプレス時に圧力むらが生じることから、焼結後の磁石の疎密ができて磁石表面に歪みが発生する。従って、従来では予め磁石表面に歪みができることを想定し、所望する形状より大きめのサイズで磁石粉末を圧縮成形する必要があった。そして、焼結後にダイヤモンド切削研磨作業を行い、所望の形状へと修正する加工を行っていた。その結果、製造工程が増加するとともに、製造される永久磁石の品質が低下する虞もあった。
また、特に薄膜磁石を上述したように大きめのサイズのバルク体から切り出すことにより製造することとすると、著しい材料歩留まりの低下が生じていた。また、加工工数が大きく増加する問題も生じていた。
そこで、上記問題を解決する手段として、磁石粉末とバインダーとを混練することによってグリーンシートを作製し、作製されたグリーンシートを焼結することにより永久磁石を製造する技術が提案されている(例えば、特開平1−150303号公報)。
特開平1−150303号公報(第3頁、第4頁)
しかしながら、上記特許文献1のように磁石粉末をグリーンシート化して焼結する場合において、磁石粉末をスラリー状とする為に有機溶媒を加えることとすると、焼結時の磁石内に有機溶媒に含まれる酸素原子を含む含有物が残留することとなる。
ここで、希土類磁石(例えばネオジム磁石)では、希土類元素(例えばNd)と酸素との反応性が非常に高いため、酸素含有物が存在すると、焼結工程において希土類元素と酸素が結合し金属酸化物を形成することとなる。その結果、磁気特性が低下する問題があった。また、希土類元素が酸素と結合することによって化学量論組成(例えばネオジム磁石ではNdFe14B)に基づく含有量よりも希土類元素が不足し、焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させる問題もあった。特に、磁石原料として希土類元素を量論組成に対して多めに含有させない場合には、その問題が大きくなる。
本発明は前記従来における問題点を解消するためになされたものであり、磁石粉末にバインダーや有機溶媒を添加することによりグリーンシート化して焼結する場合において、磁石中に含まれる酸素量を低減させることができ、その結果、磁石特性の低下を防止することが可能となった希土類永久磁石及び希土類永久磁石の製造方法を提供することを目的とする。
前記目的を達成するため本願の請求項1に係る希土類永久磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリーを生成する工程と、前記スラリーを設定値に対して±5%以内の厚み精度を有するシート状に成形し、グリーンシートを作製する工程と、前記グリーンシートから所望の形状の成形体を打ち抜く工程と、前記グリーンシートから打ち抜いた複数の前記成形体を、一の焼結型又は前記成形体を加圧する加圧手段が一体となった複数の焼結型内に配置し、同時に一軸加圧焼結により焼結する工程と、により製造されることを特徴とする。
また、請求項2に係る希土類永久磁石は、請求項1に記載の希土類永久磁石であって、前記成形体を焼結する前に、前記成形体を非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする。
また、請求項に係る希土類永久磁石は、請求項に記載の希土類永久磁石であって、前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃〜900℃で一定時間保持することを特徴とする。
また、請求項に係る希土類永久磁石は、請求項1乃至請求項3のいずれかに記載の希土類永久磁石であって、前記磁石原料を磁石粉末に粉砕する工程では、前記磁石原料を前記有機溶媒中で湿式粉砕し、前記スラリーを生成する工程では、粉砕された前記磁石粉末を含む前記有機溶媒に前記バインダーを添加することにより前記スラリーを生成することを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末と炭化水素からなるバインダーと前記粉砕された磁石粉末と、炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリーを生成する工程と、前記スラリーを設定値に対して±5%以内の厚み精度を有するシート状に成形し、グリーンシートを作製する工程と、前記グリーンシートから所望の形状の成形体を打ち抜く工程と、前記グリーンシートから打ち抜いた複数の前記成形体を、一の焼結型又は前記成形体を加圧する加圧手段が一体となった複数の焼結型内に配置し、同時に一軸加圧焼結により焼結する工程と、を有することを特徴とする。
また、請求項6に係る希土類永久磁石の製造方法は、請求項5に記載の希土類永久磁石の製造方法であって、前記成形体を焼結する前に、前記成形体を非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項に記載の希土類永久磁石の製造方法であって、前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃〜900℃で一定時間保持することを特徴とする。
更に、請求項に係る希土類永久磁石の製造方法は、請求項5乃至請求項7のいずれかに記載の希土類永久磁石の製造方法であって、前記磁石原料を磁石粉末に粉砕する工程では、前記磁石原料を前記有機溶媒中で湿式粉砕し、前記スラリーを生成する工程では、粉砕された前記磁石粉末を含む前記有機溶媒に前記バインダーを添加することにより前記スラリーを生成することを特徴とする。
前記構成を有する請求項1に記載の希土類永久磁石によれば、磁石粉末とバインダーと有機溶媒とを混練、成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。また、有機溶媒として炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用い、更にバインダーとして炭化水素からなるバインダーを用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
また、請求項に記載の希土類永久磁石によれば、グリーンシートを焼結する前に、グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
また、請求項に記載の希土類永久磁石によれば、バインダーが混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で仮焼することにより、磁石内に含有する炭素量をより確実に低減させることができる。
また、請求項に記載の希土類永久磁石によれば、磁石を湿式粉砕する場合において、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
また、請求項に記載の希土類永久磁石の製造方法によれば、磁石粉末とバインダーと有機溶媒とを混練、成形したグリーンシートを焼結することにより永久磁石を製造するので、製造される永久磁石は、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。また、有機溶媒として炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用い、更にバインダーとして炭化水素からなるバインダーを用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
また、請求項に記載の希土類永久磁石の製造方法によれば、グリーンシートを焼結する前に、グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
また、請求項に記載の希土類永久磁石の製造方法によれば、バインダーが混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で仮焼することにより、磁石内に含有する炭素量をより確実に低減させることができる。
更に、請求項に記載の希土類永久磁石の製造方法によれば、磁石を湿式粉砕する場合において、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
本発明に係る永久磁石を示した全体図である。 本発明に係るグリーンシートの厚み精度の向上に基づく焼結時の効果を説明した図である。 本発明に係る永久磁石の製造工程を示した説明図である。 本発明に係る永久磁石の製造工程の内、特にグリーンシートの形成工程を示した説明図である。 本発明に係る永久磁石の製造工程の内、特にグリーンシートの加圧焼結工程を示した説明図である。 実施例1と比較例1、2の各磁石についての各種測定結果を示した図である。 実施例2と比較例3、4の各磁石についての各種測定結果を示した図である。
以下、本発明に係る希土類永久磁石及び希土類永久磁石の製造方法について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。
[永久磁石の構成]
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は扇型形状を備えるが、永久磁石1の形状は打ち抜き形状によって変化する。
本発明に係る永久磁石1はNd−Fe−B系磁石である。尚、各成分の含有量はNd:27〜40wt%、B:1〜2wt%、Fe(電解鉄):60〜70wt%とする。また、磁気特性向上の為、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等の他元素を少量含んでも良い。図1は本実施形態に係る永久磁石1を示した全体図である。
ここで、永久磁石1は例えば0.05mm〜10mm(例えば1mm)の厚さを備えた薄膜状の永久磁石である。そして、後述のように磁石粉末とバインダーと有機溶媒が混合された混合物(スラリー)からシート状に成形された成形体(グリーンシート)を焼結することによって作製される。
また、本発明では磁石粉末に混合されるバインダーは、樹脂や長鎖炭化水素やそれらの混合物等が用いられる。
更に、バインダーに樹脂を用いる場合には、例えばポリイソブチレン(PIB)、ブチルゴム(IIR)、ポリイソプレン(IR)、ポリブタジエン、ポリスチレン、スチレン−イソプレンブロック共重合体(SIS)、スチレン−ブタジエンブロック共重合体(SBS)、2−メチル−1−ペンテン重合樹脂、2−メチル−1−ブテン重合樹脂、α−メチルスチレン重合樹脂、ポリブチルメタクリレート、ポリメチルメタクリレート等を用いる。尚、α−メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダーに用いる樹脂としては、磁石内に含有する酸素量を低減させる為に、炭化水素からなり、且つ解重合性があり、熱分解性に優れるポリマー(例えば、ポリイソブチレン等)を用いることが望ましい。
尚、バインダーをトルエン等の汎用溶媒に対して適切に溶解させる為に、バインダーに用いる樹脂としてはポリエチレン、ポリプロピレン以外の樹脂を用いることが望ましい。
一方、バインダーに長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。具体的には炭素数が18以上である長鎖飽和炭化水素を用いるのが好ましい。
また、バインダーの添加量は、磁石粉末とバインダーとの混合物をシート状に成形する際にシートの厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、バインダー添加後の混合物中における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%とする。
また、グリーンシートを作製する際に磁石粉末に添加される有機溶媒としては、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族類、酢酸エチルなどのエステル類、ケトン類、それらの混合物等が使用できるが、本発明では後述のように磁石に含まれる酸素量を低減させる目的で、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることが望ましい。ここで、炭化水素からなる有機化合物から選択される1種以上の有機溶媒としては、トルエン、ヘキサン、ペンタン、ベンゼン、キシレン、それらの混合物等がある。例えば、トルエン又はヘキサンを用いる。尚、有機溶媒には炭化水素からなる有機化合物以外の有機化合物を少量含む構成としても良い。
また、グリーンシートを焼結する方法としては、例えば加圧焼結が用いられる。加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制する為に、より短時間且つ低温で焼結する焼結方法を用いることが望ましい。また、焼結後の磁石に生じる反りを減少させることが可能な焼結方法を用いることが望ましい。従って、特に本発明では、上記焼結方法の内、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが望ましい。
ここで、SPS焼結は、焼結対象物を内部に配置したグラファイト製の焼結型を、一軸方向に加圧しながら加熱する焼結方法である。また、SPS焼結では、パルス通電加熱と機械的な加圧により、一般的な焼結に用いられる熱的および機械的エネルギーに加えて、パルス通電による電磁的エネルギーや被加工物の自己発熱および粒子間に発生する放電プラズマエネルギーなどを複合的に焼結の駆動力としている。従って、電気炉等の雰囲気加熱よりも急速昇温・冷却が可能となり、また、低い温度域で焼結することが可能となる。その結果、焼結工程での昇温・保持時間を短縮でき、磁石粒子の粒成長を抑制した緻密な焼結体の作製が可能となる。また、焼結対象物は一軸方向に加圧された状態で焼結されるので、焼結後に生じる反りを減少させることが可能となる。
また、SPS焼結を行う際には、グリーンシートを所望の製品形状(例えば、図1に示す扇形形状)に打ち抜いた成形体をSPS焼結装置の焼結型内に配置して行う。そして、本発明では、生産性を向上させる為に、図2に示すように複数(例えば10個)の成形体2を同時に焼結型3内に配置して行う。ここで、本発明では、後述のようにグリーンシートの厚み精度を設計値に対して±5%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。その結果、本発明では図2(A)に示すように、複数(例えば10個)の成形体2を同時に焼結型3内に配置して焼結を行った場合であっても、各成形体2の厚みdが均一である為に、各成形体2について加圧値や焼結温度のバラつきが生じず、適切に焼結することが可能となる。一方、グリーンシートの厚み精度が低い(例えば設計値に対して±5%以上)と、図2(B)に示すように、複数(例えば10個)の成形体2を同時に焼結型3内に配置して焼結を行った場合において、各成形体2の厚みdにバラつきがある為に、成形体2毎のパルス電流の通電の不均衡が生じ、また、各成形体2について加圧値や焼結温度のバラつきが生じ、適切に焼結することができない。尚、複数の成形体2を同時に焼結する場合には、複数個の焼結型を備えたSPS焼結装置を用いても良い。そして、SPS焼結装置が備える複数個の焼結型に対して成形体をそれぞれ配置し、同時に焼結するように構成しても良い。
[永久磁石の製造方法]
次に、本発明に係る永久磁石1の製造方法について図3を用いて説明する。図3は本実施形態に係る永久磁石1の製造工程を示した説明図である。
先ず、所定分率のNd−Fe−B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。
次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル11により微粉砕し、所定サイズ以下(例えば1.0μm〜5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。尚、磁石原料の粉砕方法としては湿式粉砕を用いても良い。例えばビーズミルによる湿式粉砕では、粗粉砕した磁石粉末に対してトルエン等を溶媒として用い、所定サイズ以下(例えば0.1μm〜5.0μm)の平均粒径まで微粉砕を行う。その後、湿式粉砕後の有機溶媒に含まれる磁石粉末を真空乾燥などで乾燥させ、乾燥した磁石粉末を取り出す。また、有機溶媒から磁石粉末を取り出すことなくバインダーを有機溶媒中に更に添加して混練し、後述のスラリー12を得る構成としても良い。尚、湿式粉砕に用いられる溶媒としては、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いる。例えば、トルエン以外にも、ヘキサン、ペンタン、ベンゼン、キシレン、それらの混合物等がある。
上記湿式粉砕を用いることによって、乾式粉砕と比べて磁石原料をより微小な粒径まで粉砕することが可能となる。但し、湿式粉砕を行うこととすれば、後に真空乾燥等を行うことによって有機溶媒を揮発させたとしても有機溶媒等の有機化合物が磁石内に残留する問題がある。しかしながら、後述の仮焼処理を行うことによって、バインダーとともに残留した有機化合物を熱分解し、磁石内から炭素を除去することが可能となる。
次に、ジェットミル11等で微粉砕された微粉末に添加するバインダー溶液を作製する。ここで、バインダーとしては、上述したように炭化水素からなり、且つ解重合性があり、熱分解性に優れる樹脂や長鎖炭化水素やそれらの混合物等が用いられる。そして、バインダーを有機溶媒に希釈させることによりバインダー溶液を作製する。希釈に用いる有機溶媒としては、上述したように炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いる。例えば、トルエン、ヘキサン、ペンタン、ベンゼン、キシレン、それらの混合物等があるが、本発明では特にトルエン又はヘキサンを用いることとする。
続いて、ジェットミル11等にて分級された微粉末に対して上記バインダー溶液を添加する。それによって、磁石原料の微粉末とバインダーと有機溶媒とが混合されたスラリー12を生成する。ここで、バインダー溶液の添加量は、添加後のスラリー中における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%となる量とするのが好ましい。例えば、100gの磁石粉末に対して20wt%のバインダー溶液を100g添加することによりスラリー12を生成する。尚、バインダー溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。尚、湿式粉砕により磁石粉末を粉砕する場合には、湿式粉砕した後に、粉砕された磁石粉末を含む有機溶媒にバインダーを添加することによって磁石粉末をスラリー状とすることが望ましい。
続いて、生成したスラリー12からグリーンシート13を形成する。グリーンシート13の形成する方法としては、例えば、生成したスラリー12を適宜な方式で必要に応じセパレータ等の支持基材14上に塗工して乾燥させる方法などにより行うことができる。尚、塗工方式は、ドクターブレード方式やダイ方式やコンマ塗工方式等の層厚制御性に優れる方式が好ましい。また、高い厚み精度を実現する為には、特に層厚制御性に優れた(即ち、基材に高精度することが可能な方式)であるダイ方式やコンマ塗工方式を用いることが望ましい。例えば、以下の実施例では、ダイ方式を用いる。また、支持基材14としては、例えばシリコーン処理ポリエステルフィルムを用いる。また、グリーンシート13の乾燥は、90℃×10分で保持した後、130℃×30分で保持することにより行う。更に、消泡剤を併用するなどして展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。
以下に、図4を用いてダイ方式によるグリーンシート13の形成工程についてより詳細に説明する。図4はダイ方式によるグリーンシート13の形成工程を示した説明図である。
図4に示すようにダイ方式に用いられるダイ15は、ブロック16、17を互いに重ね合わせることにより形成されており、ブロック16、17との間の間隙によってスリット18やキャビティ(液溜まり)19を形成する。キャビティ19はブロック17に設けられた供給口20に連通される。そして、供給口20は定量ポンプ(図示せず)等によって構成されるスラリー供給系へと接続されており、キャビティ19には供給口20を介して、計量されたスラリー12が定量ポンプ等により供給される。更に、キャビティ19に供給されたスラリー12はスリット18へ送液されて単位時間一定量で幅方向に均一な圧力でスリット18の吐出口21から予め設定された塗布幅により吐出される。一方で、支持基材14はコーティングロール22の回転に伴って予め設定された速度で搬送される。その結果、吐出したスラリー12が支持基材14に対して所定厚さで塗布される。
また、ダイ方式によるグリーンシート13の形成工程では、塗工後のグリーンシート13のシート厚みを実測し、実測値に基づいてダイ15と支持基材14間のギャップDをフィードバック制御することが望ましい。また、ダイ15に供給するスラリー量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート13の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート13の厚み精度は、設計値(例えば4mm)に対して±5%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。
尚、グリーンシート13の設定厚みは、0.05mm〜10mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。一方で、厚みを10mmより厚くすると、乾燥時の発泡を抑制する為に乾燥速度を低下する必要があり、生産性が著しく低下する。
また、支持基材14に塗工したグリーンシート13には、乾燥前に搬送方向に対して交差する方向にパルス磁場をかける。印加する磁場の強さは5000[Oe]〜150000[Oe]、好ましくは、10000[Oe]〜120000[Oe]とする。尚、磁場を配向させる方向は、グリーンシート13から成形される永久磁石1に求められる磁場方向を考慮して決定する必要があるが、面内方向とすることが好ましい。
次に、スラリー12から形成したグリーンシート13を所望の製品形状(例えば、図1に示す扇形形状)に打ち抜きし、成形体25を成形する。
その後、成形された成形体25を非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)においてバインダー分解温度で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。水素中仮焼処理を行うことによって、バインダーを解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。即ち、成形体25中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、水素中仮焼処理は、成形体25中の炭素量が1000ppm以下、より好ましくは500ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
尚、バインダー分解温度は、バインダー分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダーの種類により異なるが200℃〜900℃、より好ましくは400℃〜600℃(例えば600℃)とする。
また、特に磁石原料を有機溶媒中で湿式粉砕により粉砕した場合には、有機溶媒を構成する有機化合物の熱分解温度且つバインダー分解温度で仮焼処理を行う。それによって、残留した有機溶媒についても除去することが可能となる。有機化合物の熱分解温度については、用いる有機溶媒の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機化合物の熱分解についても行うことが可能となる。
続いて、水素中仮焼処理によって仮焼された成形体25を焼結する焼結処理を行う。本発明では、加圧焼結により焼結を行う。加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、本発明では上述したように焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが望ましい。
以下に、図5を用いてSPS焼結による成形体25の加圧焼結工程についてより詳細に説明する。図5はSPS焼結による成形体25の加圧焼結工程を示した説明図である。
図5に示すようにSPS焼結を行う場合には、先ず、グラファイト製の焼結型31に成形体25を設置する。尚、上述した水素中仮焼処理についても成形体25を焼結型31に設置した状態で行っても良い。そして、焼結型31に設置された成形体25を真空チャンパー32内に保持し、同じくグラファイト製の上部パンチ33と下部パンチ34をセットする。そして、上部パンチ33に接続された上部パンチ電極35と下部パンチ34に接続された下部パンチ電極36とを用いて、低電圧且つ高電流の直流パルス電圧・電流を印加する。それと同時に、上部パンチ33及び下部パンチ34に対して加圧機構(図示せず)を用いて夫々上下方向から荷重を付加する。その結果、焼結型31内に設置された成形体25は、加圧されつつ焼結が行われる。また、生産性を向上させる為に、複数(例えば10個)の成形体に対して同時にSPS焼結を行うことが好ましい。尚、複数の成形体25に対して同時にSPS焼結を行う場合には、一の焼結型31に複数の成形体25を配置しても良いし、成形体25毎に異なる焼結型31に配置するようにしても良い。尚、成形体25毎に異なる焼結型31に配置する場合には、複数の焼結型31を備えたSPS焼結装置を用いて焼結を行う。そして、成形体25を加圧する上部パンチ33や下部パンチ34は複数の焼結型31の間で一体とする(即ち同時に加圧ができる)ように構成する。
尚、具体的な焼結条件を以下に示す。
加圧値:30MPa
焼結温度:940℃まで10℃/分で上昇させ、5分保持
雰囲気:数Pa以下の真空雰囲気
上記SPS焼結を行った後冷却し、再び600℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例1)
実施例1はNd−Fe−B系磁石であり、合金組成はwt%でNd/Fe/B=32.7/65.96/1.34とする。また、ジェットミルを用いた乾式粉砕により磁石原料を粉砕した。また、バインダーとしてポリイソブチレンを用いるとともに、有機溶媒としてトルエンを用い、100gの磁石粉末に対して20wt%のバインダー溶液を100g添加することにより、添加後のスラリー中における磁石粉末とバインダーの合計量に対するバインダーの比率が16.7wt%となるスラリーを生成した。その後、スラリーをダイ方式により基材に塗工してグリーンシートを成形し、更に、所望の製品形状に打ち抜きした。その後、グリーンシートに対して仮焼処理を行った後に、SPS焼結(加圧値:30MPa、焼結温度:940℃まで10℃/分で上昇させ、5分保持)により焼結した。尚、他の工程は上述した[永久磁石の製造方法]と同様の工程とする。
(実施例2)
ビーズミルを用いた湿式粉砕により磁石原料を粉砕した。具体的には、先ずφ2mmジルコニアビーズで2時間粉砕し、その後に、φ0.5mmジルコニアビーズで2時間粉砕した。粉砕時の有機溶媒としてトルエンを用い、湿式粉砕した後に、粉砕された磁石粉末を含む有機溶媒に、バインダーとしてポリイソブチレンを添加することによって同様のスラリーを生成した。他の条件は実施例1と同様である。
(比較例1)
有機溶媒としてトルエンと酢酸エチルを8:2の割合で混合した溶媒を用いた。他の条件は実施例1と同様である。
(比較例2)
有機溶媒としてトルエンとメタノールを8:2の割合で混合した溶媒を用いた。他の条件は実施例1と同様である。
(比較例3)
有機溶媒としてトルエンと酢酸エチルを8:2の割合で混合した溶媒を用いた。他の条件は実施例2と同様である。
(比較例4)
有機溶媒としてトルエンとメタノールを8:2の割合で混合した溶媒を用いた。他の条件は実施例2と同様である。
(実施例1と比較例1、2との比較)
上記実施例1及び比較例1、2の各磁石内に残存する酸素濃度[ppm]及び炭素濃度[ppm]を測定した。図6に測定結果の一覧を示す。
測定結果からは、スラリーを生成する際の有機溶媒として炭化水素からなる有機化合物であるトルエンのみを用いた実施例1は、有機溶媒として炭化水素以外に酸素原子を含む有機化合物である酢酸エチルやメタノールの混合溶媒を用いた比較例1、2と比較して、磁石内に含有する酸素量を低減させることができることが分かる。特に実施例1の永久磁石では、焼結後に磁石に残存する酸素量を3000ppm以下、より具体的には2000ppm以下とすることが可能となる。その結果、焼結工程でNdと酸素が結合しNd酸化物を形成することなく、また、αFeの析出を防止することができる。従って、残留磁束密度や保磁力についても実施例のほうが比較例よりも高い値を示すこととなる。以上より、乾式粉砕を用いて永久磁石を製造する場合において、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることにより、焼結時に磁石内に含有する酸素量を低減させることができ、磁石特性が低下することを防止できることが分かる。
(実施例2と比較例3、4との比較)
上記実施例2及び比較例3、4の各磁石内に残存する酸素濃度[ppm]及び炭素濃度[ppm]を測定した。図7に測定結果の一覧を示す。
測定結果からは、湿式粉砕における有機溶媒として炭化水素からなる有機化合物であるトルエンのみを用いた実施例2は、有機溶媒として炭化水素以外に酸素原子を含む有機化合物である酢酸エチルやメタノールの混合溶媒を用いた比較例3、4と比較して、磁石内に含有する酸素量を低減させることができることが分かる。特に実施例1の永久磁石では、焼結後に磁石に残存する酸素量を3000ppm以下、より具体的には2500ppm以下とすることが可能となる。その結果、焼結工程でNdと酸素が結合しNd酸化物を形成することなく、また、αFeの析出を防止することができる。従って、残留磁束密度や保磁力についても実施例のほうが比較例よりも高い値を示すこととなる。以上より、湿式粉砕を用いて永久磁石を製造する場合において、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることにより、焼結時に磁石内に含有する酸素量を低減させることができ、磁石特性が低下することを防止できることが分かる。
また、図6、図7に示すように、バインダーとして熱分解性に優れるポリイソブチレンを用い、水素中仮焼処理を行うことによって、磁石内の炭素量を大きく低減させることができることが分かる。特に実施例1、2の永久磁石では、水素中仮焼処理を行った結果、焼結後に磁石に残存する炭素量が500ppm以下となり、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。
以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリー12を生成する。そして、生成したスラリー12をシート状に成形し、グリーンシート13を作製する。その後、作製されたグリーンシート13を非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを解重合反応等によりモノマーに分解し飛散させて除去し、バインダーを除去したグリーンシートを焼成温度に温度を上昇して焼結を行うことによって永久磁石1を製造する。その結果、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
また、有機溶媒として炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用い、更にバインダーとして炭化水素からなるバインダーを用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
また、グリーンシート13を焼結する前に、グリーンシート13を非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。特に、バインダーとして熱分解性に優れるポリマーを用いれば、炭素量をより確実に低減させることが可能となる。
また、仮焼処理では、バインダーが混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で200℃〜900℃、より好ましくは400℃〜600℃に一定時間保持するので、磁石内に含有する炭素量をより確実に低減させることができる。
尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
例えば、磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例ではジェットミルを用いた乾式粉砕により磁石原料を粉砕しているが、ビーズミルによる湿式粉砕により粉砕することとしても良い。また、湿式粉砕により磁石粉末を粉砕する場合には、湿式粉砕した後に、粉砕された磁石粉末を含む有機溶媒にバインダーを添加することによって磁石粉末をスラリー状とすることが望ましい。更に、湿式粉砕に用いる有機溶媒としては、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いるのが望ましい。一方、湿式粉砕された磁石粉末を一旦乾燥させた後に、有機溶媒とバインダーとを添加することによって磁石粉末をスラリー状にしても良い。但し、その場合において、乾燥させた磁石粉末に添加する有機溶媒は、同じく炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いるのが望ましい。
また、上記実施例では、スロットダイ方式によりグリーンシートを形成しているが、他の方式(例えばカレンダーロール方式、コンマ塗工方式、押出成型、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。但し、スラリーを基材上に高精度に成形することが可能な方式を用いることが望ましい。また、上記実施例では、SPS焼結により磁石を焼結しているが、他の加圧焼結方法(例えばホットプレス焼結等)を用いて磁石を焼結しても良い。
また、本実施例では磁石粉末に添加する有機溶媒としてトルエン又はヘキサンを用いたが、炭化水素からなる有機化合物から選択される1種以上の有機溶媒であれば良い。例えば、ペンタン、ベンゼン、キシレン、それらの混合物でも良い。
また、仮焼処理は省略しても良い。その場合であっても焼結中にバインダーが熱分解し、一定の脱炭効果を期待することができる。また、仮焼処理は水素以外の雰囲気で行っても良い。
また、上記実施例では、バインダーとして樹脂や長鎖炭化水素を用いることとしているが、炭化水素からなる材料であれば他の材料を用いても良い。
また、本発明ではNd−Fe−B系磁石を例に挙げて説明したが、他の磁石(例えばコバルト磁石、アルニコ磁石、フェライト磁石等)を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。
1 永久磁石
11 ジェットミル
12 スラリー
13 グリーンシート
25 成形体

Claims (8)

  1. 磁石原料を磁石粉末に粉砕する工程と、
    前記粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリーを生成する工程と、
    前記スラリーを設定値に対して±5%以内の厚み精度を有するシート状に成形し、グリーンシートを作製する工程と、
    前記グリーンシートから所望の形状の成形体を打ち抜く工程と、
    前記グリーンシートから打ち抜いた複数の前記成形体を、一の焼結型又は前記成形体を加圧する加圧手段が一体となった複数の焼結型内に配置し、同時に一軸加圧焼結により焼結する工程と、により製造されることを特徴とする希土類永久磁石。
  2. 前記成形体を焼結する前に、前記成形体を非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする請求項1に記載の希土類永久磁石。
  3. 前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃〜900℃で一定時間保持することを特徴とする請求項に記載の希土類永久磁石。
  4. 前記磁石原料を磁石粉末に粉砕する工程では、前記磁石原料を前記有機溶媒中で湿式粉砕し、
    前記スラリーを生成する工程では、粉砕された前記磁石粉末を含む前記有機溶媒に前記バインダーを添加することにより前記スラリーを生成することを特徴とする請求項1乃至請求項3のいずれかに記載の希土類永久磁石。
  5. 磁石原料を磁石粉末に粉砕する工程と、
    前記粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリーを生成する工程と、
    前記スラリーを設定値に対して±5%以内の厚み精度を有するシート状に成形し、グリーンシートを作製する工程と、
    前記グリーンシートから所望の形状の成形体を打ち抜く工程と、
    前記グリーンシートから打ち抜いた複数の前記成形体を、一の焼結型又は前記成形体を加圧する加圧手段が一体となった複数の焼結型内に配置し、同時に一軸加圧焼結により焼結する工程と、を有することを特徴とする希土類永久磁石の製造方法。
  6. 前記成形体を焼結する前に、前記成形体を非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする請求項5に記載の希土類永久磁石の製造方法。
  7. 前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃〜900℃で一定時間保持することを特徴とする請求項に記載の希土類永久磁石の製造方法。
  8. 前記磁石原料を磁石粉末に粉砕する工程では、前記磁石原料を前記有機溶媒中で湿式粉砕し、
    前記スラリーを生成する工程では、粉砕された前記磁石粉末を含む前記有機溶媒に前記バインダーを添加することにより前記スラリーを生成することを特徴とする請求項5乃至請求項7のいずれかに記載の希土類永久磁石の製造方法。
JP2012058081A 2011-06-24 2012-03-15 希土類永久磁石及び希土類永久磁石の製造方法 Expired - Fee Related JP5307912B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058081A JP5307912B2 (ja) 2011-06-24 2012-03-15 希土類永久磁石及び希土類永久磁石の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011140917 2011-06-24
JP2011140917 2011-06-24
JP2012058081A JP5307912B2 (ja) 2011-06-24 2012-03-15 希土類永久磁石及び希土類永久磁石の製造方法

Publications (2)

Publication Number Publication Date
JP2013030745A JP2013030745A (ja) 2013-02-07
JP5307912B2 true JP5307912B2 (ja) 2013-10-02

Family

ID=47422364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058081A Expired - Fee Related JP5307912B2 (ja) 2011-06-24 2012-03-15 希土類永久磁石及び希土類永久磁石の製造方法

Country Status (7)

Country Link
US (1) US20130141197A1 (ja)
EP (1) EP2685473A4 (ja)
JP (1) JP5307912B2 (ja)
KR (1) KR101878999B1 (ja)
CN (1) CN103081039B (ja)
TW (1) TWI453771B (ja)
WO (1) WO2012176514A1 (ja)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282417A (ja) * 1986-04-30 1987-12-08 Tohoku Metal Ind Ltd 希土類磁石の製造方法
JPH01150303A (ja) 1987-12-08 1989-06-13 Mitsubishi Steel Mfg Co Ltd 磁気異方性焼結磁石及びその製造方法
US4996022A (en) * 1989-07-14 1991-02-26 Juki Corporation Process for producing a sintered body
JP2821183B2 (ja) * 1989-07-14 1998-11-05 ジューキ株式会社 粒子状材料の焼結体の製造方法
JPH05320708A (ja) * 1992-01-10 1993-12-03 Kawasaki Steel Corp 焼結性粉末射出成形用バインダおよび組成物
JPH05318427A (ja) * 1992-05-21 1993-12-03 Ngk Insulators Ltd ホットプレス用加圧機構及びそれを利用した加圧焼結方法
JPH06116605A (ja) * 1992-10-01 1994-04-26 Kawasaki Steel Corp 希土類系永久磁石用合金粉末の成形助剤及びその添加合金粉末
JPH09283358A (ja) * 1996-04-09 1997-10-31 Hitachi Metals Ltd R−Fe−B系焼結磁石の製造方法
JPH09312229A (ja) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd 希土類系焼結磁石の製造方法
JPH10163055A (ja) * 1996-11-29 1998-06-19 Hitachi Metals Ltd 高電気抵抗希土類永久磁石の製造方法
WO1999054892A1 (fr) * 1998-04-22 1999-10-28 Sumitomo Special Metals Co., Ltd. PROCEDE DE PRODUCTION D'UN AIMANT PERMANENT R-Fe-B, AGENT LUBRIFIANT ET AGENT DE LIBERATION UTILISES DANS SON FAÇONNAGE
JP2000306753A (ja) * 1999-04-21 2000-11-02 Sumitomo Special Metals Co Ltd R‐Fe‐B系永久磁石の製造方法とR‐Fe‐B系永久磁石成形用潤滑剤
JP3548509B2 (ja) * 2000-06-07 2004-07-28 諏訪熱工業株式会社 パルス通電接合方法及び接合装置並びに接合体
JP2003313602A (ja) * 2002-04-25 2003-11-06 Mitsubishi Electric Corp 希土類磁石用粉末および前記粉末を用いた希土類磁石
JP2005072539A (ja) * 2003-08-28 2005-03-17 Tdk Corp セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP2005191187A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 希土類磁石およびその製造方法
JP2005203555A (ja) * 2004-01-15 2005-07-28 Neomax Co Ltd 焼結磁石の製造方法
JP4635832B2 (ja) * 2005-11-08 2011-02-23 日立金属株式会社 希土類焼結磁石の製造方法
CN101346780B (zh) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B系多孔质磁铁及其制造方法
JP2008030097A (ja) * 2006-07-30 2008-02-14 High Energy Accelerator Research Organization 高加圧拡散接合装置
JP4872109B2 (ja) * 2008-03-18 2012-02-08 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5266522B2 (ja) * 2008-04-15 2013-08-21 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5434869B2 (ja) * 2009-11-25 2014-03-05 Tdk株式会社 希土類焼結磁石の製造方法
JP4890633B2 (ja) * 2010-06-28 2012-03-07 Eco−A株式会社 通電拡散接合装置及び方法
CN102005277B (zh) * 2010-09-30 2012-08-22 广州金南磁性材料有限公司 一种应力场取向各向异性可挠性粘结钕铁硼磁体及其制备方法

Also Published As

Publication number Publication date
TW201301313A (zh) 2013-01-01
US20130141197A1 (en) 2013-06-06
KR20140036999A (ko) 2014-03-26
CN103081039B (zh) 2017-07-11
WO2012176514A1 (ja) 2012-12-27
KR101878999B1 (ko) 2018-08-17
CN103081039A (zh) 2013-05-01
EP2685473A1 (en) 2014-01-15
EP2685473A4 (en) 2015-04-15
JP2013030745A (ja) 2013-02-07
TWI453771B (zh) 2014-09-21

Similar Documents

Publication Publication Date Title
JP5103553B1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
KR101878998B1 (ko) 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
JP5908246B2 (ja) 希土類永久磁石の製造方法
WO2013137135A1 (ja) 希土類永久磁石、希土類永久磁石の製造方法及び希土類永久磁石の製造装置
JP5203520B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013030742A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203522B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2012176511A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5307912B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5420700B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203521B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5420699B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JPWO2015121914A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2012176510A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130627

R150 Certificate of patent or registration of utility model

Ref document number: 5307912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees