WO2012176514A1 - 希土類永久磁石及び希土類永久磁石の製造方法 - Google Patents

希土類永久磁石及び希土類永久磁石の製造方法 Download PDF

Info

Publication number
WO2012176514A1
WO2012176514A1 PCT/JP2012/056717 JP2012056717W WO2012176514A1 WO 2012176514 A1 WO2012176514 A1 WO 2012176514A1 JP 2012056717 W JP2012056717 W JP 2012056717W WO 2012176514 A1 WO2012176514 A1 WO 2012176514A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
binder
sintering
permanent magnet
green sheet
Prior art date
Application number
PCT/JP2012/056717
Other languages
English (en)
French (fr)
Inventor
孝志 尾崎
克也 久米
利昭 奥野
出光 尾関
智弘 大牟礼
啓介 太白
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP12803421.2A priority Critical patent/EP2685473A4/en
Priority to KR1020137003389A priority patent/KR101878999B1/ko
Priority to CN201280002743.1A priority patent/CN103081039B/zh
Priority to US13/817,104 priority patent/US20130141197A1/en
Publication of WO2012176514A1 publication Critical patent/WO2012176514A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a rare earth permanent magnet and a method for producing a rare earth permanent magnet.
  • a powder sintering method is generally used conventionally.
  • the powder sintering method first, magnet powder obtained by pulverizing raw materials by a jet mill (dry pulverization) or the like is manufactured. Thereafter, the magnet powder is put into a mold and press-molded into a desired shape while applying a magnetic field from the outside. Then, the solid magnet powder formed into a desired shape is manufactured by sintering at a predetermined temperature (for example, 1100 ° C. for Nd—Fe—B magnets).
  • the permanent magnet is manufactured by the above-described powder sintering method
  • the powder sintering method it is necessary to ensure a certain porosity in the press-molded magnet powder for magnetic field orientation.
  • magnet powder having a certain porosity is sintered, it is difficult to uniformly contract during the sintering, and deformation such as warpage and dent occurs after sintering.
  • the sintered magnet can be dense and dense, and distortion occurs on the magnet surface. Therefore, conventionally, it was necessary to compress the magnet powder in a size larger than the desired shape, assuming that the magnet surface can be distorted in advance. Then, after sintering, a diamond cutting and polishing operation is performed to correct the shape into a desired shape. As a result, the number of manufacturing steps increases, and the quality of the manufactured permanent magnet may decrease.
  • a technique has been proposed in which a green sheet is produced by kneading magnet powder and a binder, and a permanent magnet is produced by sintering the produced green sheet (for example, JP-A-1-150303).
  • a rare earth magnet for example, a neodymium magnet
  • a rare earth element for example, Nd
  • oxygen for example, Nd
  • the rare earth element and oxygen are combined in the sintering process to form a metal oxide. Things will be formed.
  • the rare earth element is combined with oxygen so that the rare earth element is insufficient in comparison with the content based on the stoichiometric composition (for example, Nd 2 Fe 14 B for neodymium magnets), and ⁇ Fe is contained in the main phase of the sintered magnet.
  • the magnetic properties are greatly reduced due to precipitation.
  • the problem becomes large.
  • the present invention has been made to solve the above-mentioned conventional problems, and when adding a binder or an organic solvent to a magnet powder to form a green sheet for sintering, the amount of oxygen contained in the magnet is reduced. As a result, it is an object of the present invention to provide a rare earth permanent magnet and a method for producing the rare earth permanent magnet which can prevent the deterioration of the magnet characteristics.
  • the rare earth permanent magnet according to the present invention is selected from a step of pulverizing a magnet raw material into magnet powder, a binder composed of the pulverized magnet powder and hydrocarbon, and an organic compound composed of hydrocarbon 1 Produced by a step of producing a slurry by kneading an organic solvent of at least seeds, a step of forming the slurry into a sheet shape to produce a green sheet, and a step of sintering the green sheet It is characterized by.
  • the rare earth permanent magnet according to the present invention may be removed by scattering the binder by holding the green sheet at a binder decomposition temperature in a non-oxidizing atmosphere for a predetermined time before sintering the green sheet. It is characterized by.
  • the green sheet in the step of removing the binder by scattering, is held at 200 ° C. to 900 ° C. for a certain time in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. It is characterized by doing.
  • the magnet raw material in the step of pulverizing the magnet raw material into magnet powder, the magnet raw material is wet pulverized in the organic solvent and the slurry is generated in the step of generating the slurry.
  • the slurry is produced by adding the binder to the organic solvent containing.
  • the method for producing a rare earth permanent magnet includes a step of pulverizing a magnet raw material into magnet powder, and one type selected from the pulverized magnet powder, a binder composed of hydrocarbons, and an organic compound composed of hydrocarbons.
  • the method for producing a rare earth permanent magnet according to the present invention is to scatter the binder by holding the green sheet at a binder decomposition temperature for a certain time in a non-oxidizing atmosphere before sintering the green sheet. It is characterized by removing.
  • the green sheet in the step of removing the binder by scattering, is heated at 200 ° C. to 900 ° C. in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. It is characterized by holding for a certain time.
  • the magnet raw material in the step of pulverizing the magnet raw material into magnet powder, the magnet raw material is wet pulverized in the organic solvent and pulverized in the step of generating the slurry.
  • the slurry is produced by adding the binder to the organic solvent containing the magnet powder.
  • the permanent magnet is composed of a magnet obtained by sintering a green sheet obtained by kneading and molding a magnet powder, a binder, and an organic solvent. Therefore, deformation such as warping and dent after sintering does not occur, and pressure unevenness at the time of pressing is eliminated, so there is no need for correction processing after sintering, which simplifies the manufacturing process. can do. Thereby, a permanent magnet can be formed with high dimensional accuracy. Further, even when the permanent magnet is thinned, it is possible to prevent the processing man-hours from increasing without reducing the material yield.
  • the amount of oxygen contained in the magnet during sintering is reduced. be able to. As a result, it can suppress that a metal oxide is formed in a sintering process, and can prevent that a magnet characteristic falls.
  • the rare earth permanent magnet according to the present invention before the green sheet is sintered, the binder is scattered and removed by holding the green sheet at a binder decomposition temperature in a non-oxidizing atmosphere for a certain period of time.
  • the amount of carbon contained in the magnet can be reduced in advance. As a result, it is possible to suppress the precipitation of ⁇ Fe in the main phase of the magnet after sintering, to densely sinter the entire magnet, and to prevent the coercive force from being lowered.
  • the carbon sheet contained in the magnet is obtained by calcining the green sheet kneaded with the binder in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. It can reduce more reliably.
  • the rare earth permanent magnet of the present invention when the magnet is wet pulverized, it is contained in the magnet at the time of sintering by using one or more organic solvents selected from organic compounds comprising hydrocarbons.
  • the amount of oxygen can be reduced. As a result, it can suppress that a metal oxide is formed in a sintering process, and can prevent that a magnet characteristic falls.
  • a permanent magnet is produced by kneading magnet powder, a binder, and an organic solvent, and sintering a formed green sheet. Since deformation due to sintering is uniform, deformation such as warping and dent after sintering does not occur, and pressure unevenness during pressing is eliminated, so it is necessary to perform correction after sintering The manufacturing process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy. Further, even when the permanent magnet is thinned, it is possible to prevent the processing man-hours from increasing without reducing the material yield.
  • the amount of oxygen contained in the magnet during sintering is reduced. be able to. As a result, it can suppress that a metal oxide is formed in a sintering process, and can prevent that a magnet characteristic falls.
  • the green sheet before the green sheet is sintered, the green sheet is held at a binder decomposition temperature in a non-oxidizing atmosphere for a certain period of time to scatter and remove the binder. Therefore, the amount of carbon contained in the magnet can be reduced in advance. As a result, it is possible to suppress the precipitation of ⁇ Fe in the main phase of the magnet after sintering, to densely sinter the entire magnet, and to prevent the coercive force from being lowered.
  • the green sheet in which the binder is kneaded is calcined in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas to be contained in the magnet.
  • the amount of carbon can be reduced more reliably.
  • the method for producing a rare earth permanent magnet according to the present invention when the magnet is wet pulverized, by using one or more organic solvents selected from organic compounds comprising hydrocarbons, The amount of oxygen contained in can be reduced. As a result, it can suppress that a metal oxide is formed in a sintering process, and can prevent that a magnet characteristic falls.
  • FIG. 1 is an overall view showing a permanent magnet according to the present invention.
  • FIG. 2 is a diagram for explaining the effect at the time of sintering based on the improvement of the thickness accuracy of the green sheet according to the present invention.
  • FIG. 3 is a diagram showing problems when the thickness accuracy of the green sheet according to the present invention is low.
  • FIG. 4 is an explanatory view showing a manufacturing process of the permanent magnet according to the present invention.
  • FIG. 5 is an explanatory view showing a green sheet forming process, in particular, of the manufacturing process of the permanent magnet according to the present invention.
  • FIG. 6 is an explanatory diagram showing the pressure-sintering step of the green sheet, among the manufacturing steps of the permanent magnet according to the present invention.
  • FIG. 7 is a diagram showing various measurement results for the magnets of Example 1 and Comparative Examples 1 and 2.
  • FIG. 8 is a diagram showing various measurement results for the magnets of Example 2 and Comparative Examples 3 and 4.
  • FIG. 8 is a diagram showing various measurement results for
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention.
  • the permanent magnet 1 shown in FIG. 1 has a fan shape, but the shape of the permanent magnet 1 varies depending on the punched shape.
  • the permanent magnet 1 according to the present invention is an Nd—Fe—B based magnet.
  • the content of each component is Nd: 27 to 40 wt%, B: 1 to 2 wt%, and Fe (electrolytic iron): 60 to 70 wt%.
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present embodiment.
  • the permanent magnet 1 is a thin-film permanent magnet having a thickness of, for example, 0.05 mm to 10 mm (for example, 1 mm). And it produces by sintering the molded object (green sheet) shape
  • a resin, a long-chain hydrocarbon, a mixture thereof, or the like is used as the binder mixed with the magnet powder.
  • a resin for example, polyisobutylene (PIB), butyl rubber (IIR), polyisoprene (IR), polybutadiene, polystyrene, styrene-isoprene block copolymer (SIS), styrene-butadiene block copolymer Polymer (SBS), 2-methyl-1-pentene polymer resin, 2-methyl-1-butene polymer resin, ⁇ -methyl styrene polymer resin, polybutyl methacrylate, polymethyl methacrylate and the like are used.
  • PIB polyisobutylene
  • IIR butyl rubber
  • IR polyisoprene
  • SIS styrene-isoprene block copolymer
  • SBS styrene-butadiene block copolymer Polymer
  • the resin used for the binder in order to reduce the amount of oxygen contained in the magnet, a polymer (for example, polyisobutylene, etc.) made of hydrocarbons, having depolymerization properties and excellent in thermal decomposability is used. Is desirable. In order to properly dissolve the binder in a general-purpose solvent such as toluene, it is desirable to use a resin other than polyethylene and polypropylene as the resin used for the binder.
  • a long chain hydrocarbon when used for the binder, it is preferable to use a long chain saturated hydrocarbon (long chain alkane) that is solid at room temperature and liquid at room temperature or higher. Specifically, it is preferable to use a long-chain saturated hydrocarbon having 18 or more carbon atoms.
  • the amount of binder added is an amount that appropriately fills the gaps between the magnet particles in order to improve the sheet thickness accuracy when the mixture of the magnet powder and the binder is formed into a sheet shape.
  • the ratio of the binder to the total amount of the magnet powder and the binder in the mixture after addition of the binder is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, and even more preferably 3 wt% to 20 wt%.
  • organic solvents added to the magnetic powder when producing green sheets include alcohols such as isopropyl alcohol, ethanol and methanol, lower hydrocarbons such as pentane and hexane, and aromatics such as benzene, toluene and xylene.
  • Esters such as ethyl acetate, ketones, mixtures thereof and the like can be used, but in the present invention, as described later, the organic compound is selected from hydrocarbons for the purpose of reducing the amount of oxygen contained in the magnet. It is desirable to use one or more organic solvents.
  • the one or more organic solvents selected from organic compounds composed of hydrocarbons include toluene, hexane, pentane, benzene, xylene, and mixtures thereof.
  • toluene or hexane is used.
  • the organic solvent may contain a small amount of an organic compound other than the organic compound made of hydrocarbon.
  • pressure sintering is used as a method for sintering the green sheet.
  • pressure sintering include hot press sintering, hot isostatic pressing (HIP) sintering, ultra-high pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • a sintering method in which sintering is performed in a shorter time and at a lower temperature.
  • a sintering method that can reduce the warpage generated in the magnet after sintering. Therefore, in the present invention, among the above sintering methods, it is desirable to use uniaxial pressure sintering in which pressure is applied in the uniaxial direction and SPS sintering in which sintering is performed by current sintering.
  • SPS sintering is a sintering method in which a graphite sintering mold having a sintering object disposed therein is heated while being pressed in a uniaxial direction. Further, in SPS sintering, in addition to thermal and mechanical energy used for general sintering, electromagnetic energy by pulse energization and self-heating of the work piece are obtained by pulse current heating and mechanical pressure. The discharge plasma energy generated between the particles is used as a driving force for the sintering. Therefore, rapid heating / cooling is possible compared to atmosphere heating in an electric furnace or the like, and sintering can be performed in a lower temperature range.
  • a green body obtained by punching a green sheet into a desired product shape (for example, a fan shape shown in FIG. 1) is placed in a sintering mold of an SPS sintering apparatus.
  • a desired product shape for example, a fan shape shown in FIG. 1
  • a plurality (for example, ten pieces) of the molded bodies 2 are arranged in the sintering mold 3 at the same time.
  • the thickness accuracy of the green sheet is within ⁇ 5%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% of the design value.
  • the sintering temperature there is a variation in the sintering temperature, and it cannot be sintered properly.
  • FIG. 4 is an explanatory view showing a manufacturing process of the permanent magnet 1 according to the present embodiment.
  • an ingot made of a predetermined fraction of Nd—Fe—B (eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 ⁇ m by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing.
  • the coarsely pulverized magnet powder is either (a) in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas having substantially 0% oxygen content, or (b) having an oxygen content of 0.0001.
  • the oxygen concentration of substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but may contain oxygen in such an amount that a very small amount of oxide film is formed on the surface of the fine powder. Means good.
  • wet pulverization may be used as a method for pulverizing the magnet raw material.
  • the coarsely pulverized magnet powder is finely pulverized to an average particle size of a predetermined size or less (for example, 0.1 ⁇ m to 5.0 ⁇ m) using toluene as a solvent.
  • the magnet powder contained in the organic solvent after the wet pulverization is dried by vacuum drying or the like, and the dried magnet powder is taken out.
  • solvent used for wet grinding 1 or more types of organic solvents selected from the organic compound which consists of hydrocarbons are used.
  • organic solvents selected from the organic compound which consists of hydrocarbons.
  • toluene there are hexane, pentane, benzene, xylene, and mixtures thereof.
  • a binder solution to be added to the fine powder finely pulverized by the jet mill 11 or the like is prepared.
  • the binder a resin, a long-chain hydrocarbon, a mixture thereof, or the like that is made of hydrocarbon as described above, has depolymerization properties, and is excellent in thermal decomposability is used.
  • a binder solution is produced by diluting a binder in an organic solvent.
  • the organic solvent used for the dilution one or more organic solvents selected from organic compounds composed of hydrocarbons as described above are used. For example, there are toluene, hexane, pentane, benzene, xylene, a mixture thereof, and the like. In the present invention, particularly toluene or hexane is used.
  • the binder solution is added to the fine powder classified by the jet mill 11 or the like.
  • the slurry 12 in which the fine powder of the magnet raw material, the binder, and the organic solvent are mixed is generated.
  • the amount of the binder solution added is such that the ratio of the binder to the total amount of the magnet powder and the binder in the slurry after the addition is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, still more preferably 3 wt% to The amount is preferably 20 wt%.
  • the slurry 12 is produced by adding 100 g of a 20 wt% binder solution to 100 g of magnet powder.
  • the binder solution is added in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • an inert gas such as nitrogen gas, Ar gas, or He gas.
  • a green sheet 13 is formed from the generated slurry 12.
  • the produced slurry 12 can be applied by an appropriate method on a support substrate 14 such as a separator and dried as necessary.
  • the coating method is preferably a method having excellent layer thickness controllability such as a doctor blade method, a die method, or a comma coating method.
  • it is desirable to use a die method or a comma coating method that is particularly excellent in layer thickness controllability that is, a method capable of high accuracy on the base material.
  • a die method is used.
  • the support base material 14 for example, a silicone-treated polyester film is used.
  • the green sheet 13 is dried by holding at 90 ° C. for 10 minutes and then holding at 130 ° C. for 30 minutes. Furthermore, it is preferable to sufficiently defoam the mixture so that bubbles do not remain in the spreading layer by using an antifoaming agent in combination.
  • FIG. 5 is a schematic view showing a process of forming the green sheet 13 by a die method.
  • the die 15 used in the die system is formed by overlapping the blocks 16 and 17 with each other, and a slit 18 and a cavity (liquid reservoir) 19 are formed by a gap between the blocks 16 and 17.
  • the cavity 19 communicates with a supply port 20 provided in the block 17.
  • the supply port 20 is connected to a slurry supply system constituted by a metering pump (not shown) or the like, and the measured slurry 12 is supplied to the cavity 19 via the supply port 20 by a metering pump or the like. Is done.
  • the slurry 12 supplied to the cavity 19 is fed to the slit 18 and is discharged from the discharge port 21 of the slit 18 with a predetermined application width with a uniform amount in the width direction by a constant amount per unit time.
  • the support base material 14 is conveyed at a preset speed with the rotation of the coating roll 22. As a result, the discharged slurry 12 is applied to the support base material 14 with a predetermined thickness.
  • the thickness accuracy of the green sheet 13 to be formed is within ⁇ 5%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% with respect to the design value (for example, 4 mm).
  • the set thickness of the green sheet 13 is desirably set in the range of 0.05 mm to 10 mm.
  • the productivity must be reduced because multiple layers must be stacked.
  • the thickness is greater than 10 mm, it is necessary to reduce the drying speed in order to suppress foaming during drying, and productivity is significantly reduced.
  • a pulsed magnetic field is applied to the green sheet 13 coated on the support substrate in a direction intersecting the transport direction before drying.
  • the intensity of the applied magnetic field is 5000 [Oe] to 150,000 [Oe], preferably 10,000 [Oe] to 120,000 [Oe].
  • the direction in which the magnetic field is oriented needs to be determined in consideration of the direction of the magnetic field required for the permanent magnet 1 formed from the green sheet 13, but is preferably in the in-plane direction.
  • the green sheet 13 formed from the slurry 12 is punched into a desired product shape (for example, a fan shape shown in FIG. 1), and a formed body 25 is formed.
  • a desired product shape for example, a fan shape shown in FIG. 1
  • the molded body 25 is temporarily maintained in hydrogen by holding it for several hours (for example, 5 hours) at a binder decomposition temperature in a non-oxidizing atmosphere (in particular, a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and inert gas in the present invention).
  • a binder decomposition temperature in particular, a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and inert gas in the present invention.
  • Perform baking In the case of performing in a hydrogen atmosphere, for example, the supply amount of hydrogen during calcination is set to 5 L / min.
  • the binder can be decomposed into monomers by a depolymerization reaction or the like and scattered to be removed. That is, so-called decarbonization for reducing the amount of carbon in the molded body 25 is performed.
  • the calcination treatment in hydrogen is performed under the condition that the carbon content in the molded body 25 is 1000 ppm or less, more preferably 500 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.
  • the binder decomposition temperature is determined based on the analysis results of the binder decomposition product and decomposition residue. Specifically, a temperature range is selected in which decomposition products of the binder are collected, decomposition products other than the monomers are not generated, and products due to side reactions of the remaining binder components are not detected even in the analysis of the residues. Although it varies depending on the type of the binder, it is set to 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. (eg 600 ° C.).
  • the calcining treatment is performed at the thermal decomposition temperature and binder decomposition temperature of the organic compound constituting the organic solvent. Thereby, the remaining organic solvent can be removed.
  • the thermal decomposition temperature of the organic compound is determined depending on the type of the organic solvent to be used, but basically the thermal decomposition of the organic compound can be performed at the binder decomposition temperature.
  • a sintering process is performed to sinter the molded body 25 that has been calcined by the calcining process in hydrogen.
  • sintering is performed by pressure sintering.
  • pressure sintering include hot press sintering, hot isostatic pressing (HIP) sintering, ultra-high pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • FIG. 6 is a schematic view showing a pressure sintering process of the compact 25 by SPS sintering.
  • SPS sintering As shown in FIG. 6, first, the compact 25 is placed on a graphite sintering die 31. Note that the above-described calcination treatment in hydrogen may also be performed in a state where the molded body 25 is installed in the sintering mold 31. Then, the compact 25 placed on the sintering die 31 is held in the vacuum champ 32, and an upper punch 33 and a lower punch 34 made of graphite are set.
  • the slurry was applied to a substrate by a die method to form a green sheet, and further punched into a desired product shape. Thereafter, the green sheet was calcined and then sintered by SPS sintering (pressurization value: 30 MPa, sintering temperature: increased to 940 ° C. at 10 ° C./min and held for 5 minutes). The other steps are the same as those described in the above [Permanent magnet manufacturing method].
  • Example 2 The magnet raw material was pulverized by wet pulverization using a bead mill. Specifically, it was first pulverized with ⁇ 2 mm zirconia beads for 2 hours, and then pulverized with ⁇ 0.5 mm zirconia beads for 2 hours. Toluene was used as an organic solvent at the time of pulverization, wet pulverization, and then a similar slurry was produced by adding polyisobutylene as a binder to an organic solvent containing the pulverized magnet powder. Other conditions are the same as in the first embodiment.
  • Example 1 and Comparative Examples 1 and 2 The oxygen concentration [ppm] and carbon concentration [ppm] remaining in the magnets of Example 1 and Comparative Examples 1 and 2 were measured.
  • FIG. 7 shows a list of measurement results.
  • Example 1 using only toluene, which is an organic compound composed of a hydrocarbon, as an organic solvent when generating a slurry is ethyl acetate, which is an organic compound containing oxygen atoms in addition to hydrocarbons. It can be seen that the amount of oxygen contained in the magnet can be reduced as compared with Comparative Examples 1 and 2 using a mixed solvent of methanol. In particular, in the permanent magnet of Example 1, the amount of oxygen remaining in the magnet after sintering can be 3000 ppm or less, more specifically 2000 ppm or less. As a result, it is possible to prevent the precipitation of ⁇ Fe without bonding Nd and oxygen in the sintering process to form an Nd oxide.
  • the example shows higher values than the comparative example in terms of residual magnetic flux density and coercive force. From the above, when producing a permanent magnet using dry grinding, the amount of oxygen contained in the magnet during sintering is reduced by using one or more organic solvents selected from organic compounds consisting of hydrocarbons. It can be seen that the magnetic properties can be prevented from deteriorating.
  • Example 2 using only toluene, which is an organic compound composed of a hydrocarbon, as an organic solvent in wet pulverization is a mixture of ethyl acetate or methanol, which is an organic compound containing oxygen atoms in addition to hydrocarbons
  • the amount of oxygen contained in the magnet can be reduced as compared with Comparative Examples 3 and 4 using a solvent.
  • the amount of oxygen remaining in the magnet after sintering can be 3000 ppm or less, more specifically 2500 ppm or less. As a result, it is possible to prevent the precipitation of ⁇ Fe without bonding Nd and oxygen in the sintering process to form an Nd oxide.
  • the example shows higher values than the comparative example in terms of residual magnetic flux density and coercive force.
  • the amount of oxygen contained in the magnet during sintering is reduced by using one or more organic solvents selected from organic compounds comprising hydrocarbons. It can be seen that the magnetic properties can be prevented from deteriorating.
  • the amount of carbon in the magnet can be greatly reduced by using polyisobutylene having excellent thermal decomposability as a binder and performing calcination in hydrogen.
  • the amount of carbon remaining in the magnet after sintering is 500 ppm or less, and voids are generated between the main phase and the grain boundary phase of the magnet.
  • the magnet raw material is pulverized into magnet powder, and the pulverized magnet powder, a binder composed of hydrocarbons, and an organic compound composed of hydrocarbons.
  • the slurry 12 is produced
  • the produced green sheet 13 is maintained at a binder decomposition temperature for a certain period of time in a non-oxidizing atmosphere, whereby the binder is decomposed into a monomer by a depolymerization reaction or the like to be scattered and removed, and the green sheet from which the binder has been removed is fired.
  • the permanent magnet 1 is manufactured by raising the temperature and performing sintering. As a result, since the shrinkage due to sintering is uniform, deformation such as warping and dent after sintering does not occur, and pressure unevenness at the time of pressing is eliminated. Therefore, the manufacturing process can be simplified. Thereby, a permanent magnet can be formed with high dimensional accuracy.
  • the processing man-hours from increasing without reducing the material yield.
  • one or more organic solvents selected from organic compounds consisting of hydrocarbons as the organic solvent
  • a binder consisting of hydrocarbons as the binder
  • the amount of oxygen contained in the magnet during sintering is reduced. be able to.
  • the binder is scattered and removed by holding the green sheet 13 at a binder decomposition temperature in a non-oxidizing atmosphere for a certain period of time. Can be reduced.
  • the amount of carbon can be more reliably reduced.
  • the green sheet with the binder kneaded is held at 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. for a certain time in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas. The amount of carbon contained in the magnet can be more reliably reduced.
  • the pulverization conditions, kneading conditions, calcination conditions, sintering conditions, etc. of the magnet powder are not limited to the conditions described in the above examples.
  • the magnet raw material is pulverized by dry pulverization using a jet mill, but may be pulverized by wet pulverization using a bead mill.
  • the magnet powder When magnet powder is pulverized by wet pulverization, it is desirable that the magnet powder be made into a slurry by adding a binder to an organic solvent containing the pulverized magnet powder after wet pulverization. Furthermore, as the organic solvent used for wet pulverization, it is desirable to use one or more organic solvents selected from organic compounds consisting of hydrocarbons. On the other hand, after the wet-pulverized magnet powder is once dried, the magnet powder may be made into a slurry by adding an organic solvent and a binder. However, in that case, it is desirable to use one or more organic solvents selected from organic compounds that are also composed of hydrocarbons as the organic solvent added to the dried magnet powder.
  • the green sheet is formed by the slot die method, but other methods (for example, calendar roll method, comma coating method, extrusion molding, injection molding, mold molding, doctor blade method, etc.) can be used. It may be used to form a green sheet. However, it is desirable to use a method capable of forming the slurry on the substrate with high accuracy.
  • the magnet was sintered by SPS sintering, you may sinter a magnet using other pressure sintering methods (for example, hot press sintering etc.).
  • toluene or hexane is used as the organic solvent to be added to the magnet powder, but any organic solvent selected from organic compounds composed of hydrocarbons may be used.
  • organic solvent selected from organic compounds composed of hydrocarbons
  • pentane, benzene, xylene, or a mixture thereof may be used.
  • the calcination treatment may be omitted. Even in that case, the binder is thermally decomposed during the sintering, and a certain decarburizing effect can be expected. Further, the calcination treatment may be performed in an atmosphere other than hydrogen.
  • resin or long-chain hydrocarbon is used as the binder, but other materials may be used as long as they are made of hydrocarbon.
  • the Nd—Fe—B type magnet is described as an example, but other magnets (for example, a cobalt magnet, an alnico magnet, a ferrite magnet, etc.) may be used. Further, in the present invention, the Nd component is larger than the stoichiometric composition in the present invention, but it may be stoichiometric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 磁石特性の低下を防止することが可能となった希土類永久磁石及び希土類永久磁石の製造方法を提供する。 磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリー12を生成する。そして、生成したスラリー12をシート状に成形し、グリーンシート13を作製する。その後、作製されたグリーンシート13を非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを解重合反応等によりモノマーに分解し飛散させて除去し、バインダーを除去したグリーンシート13を焼成温度に温度を上昇して焼結を行うことによって永久磁石1を製造するように構成する。

Description

希土類永久磁石及び希土類永久磁石の製造方法
 本発明は、希土類永久磁石及び希土類永久磁石の製造方法に関する。
 近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そこで、上記永久磁石モータの小型軽量化、高出力化、高効率化を実現するに当たって、モータに埋設される永久磁石について、薄膜化と更なる磁気特性の向上が求められている。
 ここで、永久磁石モータに用いられる永久磁石の製造方法としては、従来より粉末焼結法が一般的に用いられる。ここで、粉末焼結法は、先ず原材料をジェットミル(乾式粉砕)等により粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd-Fe-B系磁石では1100℃)で焼結することにより製造する。
 しかしながら、上記した粉末焼結法により永久磁石を製造することとすると、以下の問題点があった。即ち、粉末焼結法では磁場配向させる為にプレス成形した磁石粉末に一定の空隙率を確保する必要がある。そして、一定の空隙率を有する磁石粉末を焼結すると、焼結の際に生じる収縮を均一に行わせることが難しく、焼結後に反りや凹みなどの変形が生じる。また、磁石粉末のプレス時に圧力むらが生じることから、焼結後の磁石の疎密ができて磁石表面に歪みが発生する。従って、従来では予め磁石表面に歪みができることを想定し、所望する形状より大きめのサイズで磁石粉末を圧縮成形する必要があった。そして、焼結後にダイヤモンド切削研磨作業を行い、所望の形状へと修正する加工を行っていた。その結果、製造工程が増加するとともに、製造される永久磁石の品質が低下する虞もあった。
 また、特に薄膜磁石を上述したように大きめのサイズのバルク体から切り出すことにより製造することとすると、著しい材料歩留まりの低下が生じていた。また、加工工数が大きく増加する問題も生じていた。
 そこで、上記問題を解決する手段として、磁石粉末とバインダーとを混練することによってグリーンシートを作製し、作製されたグリーンシートを焼結することにより永久磁石を製造する技術が提案されている(例えば、特開平1-150303号公報)。
特開平1-150303号公報(第3頁、第4頁)
 しかしながら、上記特許文献1のように磁石粉末をグリーンシート化して焼結する場合において、磁石粉末をスラリー状とする為に有機溶媒を加えることとすると、焼結時の磁石内に有機溶媒に含まれる酸素原子を含む含有物が残留することとなる。
 ここで、希土類磁石(例えばネオジム磁石)では、希土類元素(例えばNd)と酸素との反応性が非常に高いため、酸素含有物が存在すると、焼結工程において希土類元素と酸素が結合し金属酸化物を形成することとなる。その結果、磁気特性が低下する問題があった。また、希土類元素が酸素と結合することによって化学量論組成(例えばネオジム磁石ではNdFe14B)に基づく含有量よりも希土類元素が不足し、焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させる問題もあった。特に、磁石原料として希土類元素を量論組成に対して多めに含有させない場合には、その問題が大きくなる。
 本発明は前記従来における問題点を解消するためになされたものであり、磁石粉末にバインダーや有機溶媒を添加することによりグリーンシート化して焼結する場合において、磁石中に含まれる酸素量を低減させることができ、その結果、磁石特性の低下を防止することが可能となった希土類永久磁石及び希土類永久磁石の製造方法を提供することを目的とする。
 前記目的を達成するため本発明に係る希土類永久磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリーを生成する工程と、前記スラリーをシート状に成形し、グリーンシートを作製する工程と、前記グリーンシートを焼結する工程と、により製造されることを特徴とする。
 また、本発明に係る希土類永久磁石は、前記グリーンシートを焼結する前に、前記グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする。
 また、本発明に係る希土類永久磁石は、前記磁石原料を磁石粉末に粉砕する工程では、前記磁石原料を前記有機溶媒中で湿式粉砕し、前記スラリーを生成する工程では、粉砕された前記磁石粉末を含む前記有機溶媒に前記バインダーを添加することにより前記スラリーを生成することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリーを生成する工程と、前記スラリーをシート状に成形し、グリーンシートを作製する工程と、前記グリーンシートを焼結する工程と、を有することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記グリーンシートを焼結する前に、前記グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする。
 また、本発明に係る希土類永久磁石の製造方法は、前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする。
 更に、本発明に係る希土類永久磁石の製造方法は、前記磁石原料を磁石粉末に粉砕する工程では、前記磁石原料を前記有機溶媒中で湿式粉砕し、前記スラリーを生成する工程では、粉砕された前記磁石粉末を含む前記有機溶媒に前記バインダーを添加することにより前記スラリーを生成することを特徴とする。
 前記構成を有する本発明に係る希土類永久磁石によれば、磁石粉末とバインダーと有機溶媒とを混練、成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。また、有機溶媒として炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用い、更にバインダーとして炭化水素からなるバインダーを用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
 また、本発明に係る希土類永久磁石によれば、グリーンシートを焼結する前に、グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
 また、本発明に係る希土類永久磁石によれば、バインダーが混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で仮焼することにより、磁石内に含有する炭素量をより確実に低減させることができる。
 また、本発明に係る希土類永久磁石によれば、磁石を湿式粉砕する場合において、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
 また、本発明に係る希土類永久磁石の製造方法によれば、磁石粉末とバインダーと有機溶媒とを混練、成形したグリーンシートを焼結することにより永久磁石を製造するので、製造される永久磁石は、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。また、有機溶媒として炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用い、更にバインダーとして炭化水素からなるバインダーを用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
 また、本発明に係る希土類永久磁石の製造方法によれば、グリーンシートを焼結する前に、グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。
 また、本発明に係る希土類永久磁石の製造方法によれば、バインダーが混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で仮焼することにより、磁石内に含有する炭素量をより確実に低減させることができる。
 更に、本発明に係る希土類永久磁石の製造方法によれば、磁石を湿式粉砕する場合において、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
図1は、本発明に係る永久磁石を示した全体図である。 図2は、本発明に係るグリーンシートの厚み精度の向上に基づく焼結時の効果を説明した図である。 図3は、本発明に係るグリーンシートの厚み精度が低い場合の問題点を示した図である。 図4は、本発明に係る永久磁石の製造工程を示した説明図である。 図5は、本発明に係る永久磁石の製造工程の内、特にグリーンシートの形成工程を示した説明図である。 図6は、本発明に係る永久磁石の製造工程の内、特にグリーンシートの加圧焼結工程を示した説明図である。 図7は、実施例1と比較例1、2の各磁石についての各種測定結果を示した図である。 図8は、実施例2と比較例3、4の各磁石についての各種測定結果を示した図である。
 以下、本発明に係る希土類永久磁石及び希土類永久磁石の製造方法について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。
[永久磁石の構成]
 先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は扇型形状を備えるが、永久磁石1の形状は打ち抜き形状によって変化する。
 本発明に係る永久磁石1はNd-Fe-B系磁石である。尚、各成分の含有量はNd:27~40wt%、B:1~2wt%、Fe(電解鉄):60~70wt%とする。また、磁気特性向上の為、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等の他元素を少量含んでも良い。図1は本実施形態に係る永久磁石1を示した全体図である。
 ここで、永久磁石1は例えば0.05mm~10mm(例えば1mm)の厚さを備えた薄膜状の永久磁石である。そして、後述のように磁石粉末とバインダーと有機溶媒が混合された混合物(スラリー)からシート状に成形された成形体(グリーンシート)を焼結することによって作製される。
 また、本発明では磁石粉末に混合されるバインダーは、樹脂や長鎖炭化水素やそれらの混合物等が用いられる。
 更に、バインダーに樹脂を用いる場合には、例えばポリイソブチレン(PIB)、ブチルゴム(IIR)、ポリイソプレン(IR)、ポリブタジエン、ポリスチレン、スチレン-イソプレンブロック共重合体(SIS)、スチレン-ブタジエンブロック共重合体(SBS)、2-メチル-1-ペンテン重合樹脂、2-メチル-1-ブテン重合樹脂、α-メチルスチレン重合樹脂、ポリブチルメタクリレート、ポリメチルメタクリレート等を用いる。尚、α-メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダーに用いる樹脂としては、磁石内に含有する酸素量を低減させる為に、炭化水素からなり、且つ解重合性があり、熱分解性に優れるポリマー(例えば、ポリイソブチレン等)を用いることが望ましい。
 尚、バインダーをトルエン等の汎用溶媒に対して適切に溶解させる為に、バインダーに用いる樹脂としてはポリエチレン、ポリプロピレン以外の樹脂を用いることが望ましい。
 一方、バインダーに長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。具体的には炭素数が18以上である長鎖飽和炭化水素を用いるのが好ましい。
 また、バインダーの添加量は、磁石粉末とバインダーとの混合物をシート状に成形する際にシートの厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、バインダー添加後の混合物中における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%~40wt%、より好ましくは2wt%~30wt%、更に好ましくは3wt%~20wt%とする。
 また、グリーンシートを作製する際に磁石粉末に添加される有機溶媒としては、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族類、酢酸エチルなどのエステル類、ケトン類、それらの混合物等が使用できるが、本発明では後述のように磁石に含まれる酸素量を低減させる目的で、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることが望ましい。ここで、炭化水素からなる有機化合物から選択される1種以上の有機溶媒としては、トルエン、ヘキサン、ペンタン、ベンゼン、キシレン、それらの混合物等がある。例えば、トルエン又はヘキサンを用いる。尚、有機溶媒には炭化水素からなる有機化合物以外の有機化合物を少量含む構成としても良い。
 また、グリーンシートを焼結する方法としては、例えば加圧焼結が用いられる。加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制する為に、より短時間且つ低温で焼結する焼結方法を用いることが望ましい。また、焼結後の磁石に生じる反りを減少させることが可能な焼結方法を用いることが望ましい。従って、特に本発明では、上記焼結方法の内、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが望ましい。
 ここで、SPS焼結は、焼結対象物を内部に配置したグラファイト製の焼結型を、一軸方向に加圧しながら加熱する焼結方法である。また、SPS焼結では、パルス通電加熱と機械的な加圧により、一般的な焼結に用いられる熱的および機械的エネルギーに加えて、パルス通電による電磁的エネルギーや被加工物の自己発熱および粒子間に発生する放電プラズマエネルギーなどを複合的に焼結の駆動力としている。従って、電気炉等の雰囲気加熱よりも急速昇温・冷却が可能となり、また、低い温度域で焼結することが可能となる。その結果、焼結工程での昇温・保持時間を短縮でき、磁石粒子の粒成長を抑制した緻密な焼結体の作製が可能となる。また、焼結対象物は一軸方向に加圧された状態で焼結されるので、焼結後に生じる反りを減少させることが可能となる。
 また、SPS焼結を行う際には、グリーンシートを所望の製品形状(例えば、図1に示す扇形形状)に打ち抜いた成形体をSPS焼結装置の焼結型内に配置して行う。そして、本発明では、生産性を向上させる為に、図2に示すように複数(例えば10個)の成形体2を同時に焼結型3内に配置して行う。ここで、本発明では、後述のようにグリーンシートの厚み精度を設計値に対して±5%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。その結果、本発明では図2に示すように、複数(例えば10個)の成形体2を同時に焼結型3内に配置して焼結を行った場合であっても、各成形体2の厚みdが均一である為に、各成形体2について加圧値や焼結温度のバラつきが生じず、適切に焼結することが可能となる。一方、グリーンシートの厚み精度が低い(例えば設計値に対して±5%以上)と、図3に示すように、複数(例えば10個)の成形体2を同時に焼結型3内に配置して焼結を行った場合において、各成形体2の厚みdにバラつきがある為に、成形体2毎のパルス電流の通電の不均衡が生じ、また、各成形体2について加圧値や焼結温度のバラつきが生じ、適切に焼結することができない。尚、複数の成形体2を同時に焼結する場合には、複数個の焼結型を備えたSPS焼結装置を用いても良い。そして、SPS焼結装置が備える複数個の焼結型に対して成形体をそれぞれ配置し、同時に焼結するように構成しても良い。
[永久磁石の製造方法]
 次に、本発明に係る永久磁石1の製造方法について図4を用いて説明する。図4は本実施形態に係る永久磁石1の製造工程を示した説明図である。
 先ず、所定分率のNd-Fe-B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。
 次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001~0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル11により微粉砕し、所定サイズ以下(例えば1.0μm~5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。尚、磁石原料の粉砕方法としては湿式粉砕を用いても良い。例えばビーズミルによる湿式粉砕では、粗粉砕した磁石粉末に対してトルエン等を溶媒として用い、所定サイズ以下(例えば0.1μm~5.0μm)の平均粒径まで微粉砕を行う。その後、湿式粉砕後の有機溶媒に含まれる磁石粉末を真空乾燥などで乾燥させ、乾燥した磁石粉末を取り出す。また、有機溶媒から磁石粉末を取り出すことなくバインダーを有機溶媒中に更に添加して混練し、後述のスラリー12を得る構成としても良い。尚、湿式粉砕に用いられる溶媒としては、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いる。例えば、トルエン以外にも、ヘキサン、ペンタン、ベンゼン、キシレン、それらの混合物等がある。
 上記湿式粉砕を用いることによって、乾式粉砕と比べて磁石原料をより微小な粒径まで粉砕することが可能となる。但し、湿式粉砕を行うこととすれば、後に真空乾燥等を行うことによって有機溶媒を揮発させたとしても有機溶媒等の有機化合物が磁石内に残留する問題が有る。しかしながら、後述の仮焼処理を行うことによって、バインダーとともに残留した有機化合物を熱分解し、磁石内から炭素を除去することが可能となる。
 次に、ジェットミル11等で微粉砕された微粉末に添加するバインダー溶液を作製する。ここで、バインダーとしては、上述したように炭化水素からなり、且つ解重合性があり、熱分解性に優れる樹脂や長鎖炭化水素やそれらの混合物等が用いられる。そして、バインダーを有機溶媒に希釈させることによりバインダー溶液を作製する。希釈に用いる有機溶媒としては、上述したように炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いる。例えば、トルエン、ヘキサン、ペンタン、ベンゼン、キシレン、それらの混合物等があるが、本発明では特にトルエン又はヘキサンを用いることとする。
 続いて、ジェットミル11等にて分級された微粉末に対して上記バインダー溶液を添加する。それによって、磁石原料の微粉末とバインダーと有機溶媒とが混合されたスラリー12を生成する。ここで、バインダー溶液の添加量は、添加後のスラリー中における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%~40wt%、より好ましくは2wt%~30wt%、更に好ましくは3wt%~20wt%となる量とするのが好ましい。例えば、100gの磁石粉末に対して20wt%のバインダー溶液を100g添加することによりスラリー12を生成する。尚、バインダー溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。尚、湿式粉砕により磁石粉末を粉砕する場合には、湿式粉砕した後に、粉砕された磁石粉末を含む有機溶媒にバインダーを添加することによって磁石粉末をスラリー状とすることが望ましい。
 続いて、生成したスラリー12からグリーンシート13を形成する。グリーンシート13の形成する方法としては、例えば、生成したスラリー12を適宜な方式で必要に応じセパレータ等の支持基材14上に塗工して乾燥させる方法などにより行うことができる。尚、塗工方式は、ドクターブレード方式やダイ方式やコンマ塗工方式等の層厚制御性に優れる方式が好ましい。また、高い厚み精度を実現する為には、特に層厚制御性に優れた(即ち、基材に高精度することが可能な方式)であるダイ方式やコンマ塗工方式を用いることが望ましい。例えば、以下の実施例では、ダイ方式を用いる。また、支持基材14としては、例えばシリコーン処理ポリエステルフィルムを用いる。また、グリーンシート13の乾燥は、90℃×10分で保持した後、130℃×30分で保持することにより行う。更に、消泡剤を併用するなどして展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。
 以下に、図5を用いてダイ方式によるグリーンシート13の形成工程についてより詳細に説明する。図5はダイ方式によるグリーンシート13の形成工程を示した模式図である。
 図5に示すようにダイ方式に用いられるダイ15は、ブロック16、17を互いに重ね合わせることにより形成されており、ブロック16、17との間の間隙によってスリット18やキャビティ(液溜まり)19を形成する。キャビティ19はブロック17に設けられた供給口20に連通される。そして、供給口20は定量ポンプ(図示せず)等によって構成されるスラリー供給系へと接続されており、キャビティ19には供給口20を介して、計量されたスラリー12が定量ポンプ等により供給される。更に、キャビティ19に供給されたスラリー12はスリット18へ送液されて単位時間一定量で幅方向に均一な圧力でスリット18の吐出口21から予め設定された塗布幅により吐出される。一方で、支持基材14はコーティングロール22の回転に伴って予め設定された速度で搬送される。その結果、吐出したスラリー12が支持基材14に対して所定厚さで塗布される。
 また、ダイ方式によるグリーンシート13の形成工程では、塗工後のグリーンシート13のシート厚みを実測し、実測値に基づいてダイ15と支持基材14間のギャップDをフィードバック制御することが望ましい。また、ダイ15に供給するスラリー量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート13の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート13の厚み精度は、設計値(例えば4mm)に対して±5%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。
 尚、グリーンシート13の設定厚みは、0.05mm~10mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。一方で、厚みを10mmより厚くすると、乾燥時の発泡を抑制する為に乾燥速度を低下する必要があり、生産性が著しく低下する。
 また、支持基材に塗工したグリーンシート13には、乾燥前に搬送方向に対して交差する方向にパルス磁場をかける。印加する磁場の強さは5000[Oe]~150000[Oe]、好ましくは、10000[Oe]~120000[Oe]とする。尚、磁場を配向させる方向は、グリーンシート13から成形される永久磁石1に求められる磁場方向を考慮して決定する必要があるが、面内方向とすることが好ましい。
 次に、スラリー12から形成したグリーンシート13を所望の製品形状(例えば、図1に示す扇形形状)に打ち抜きし、成形体25を成形する。
 その後、成形された成形体25を非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)においてバインダー分解温度で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。水素中仮焼処理を行うことによって、バインダーを解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。即ち、成形体25中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、水素中仮焼処理は、成形体25中の炭素量が1000ppm以下、より好ましくは500ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
 尚、バインダー分解温度は、バインダー分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダーの種類により異なるが200℃~900℃、より好ましくは400℃~600℃(例えば600℃)とする。
 また、特に磁石原料を有機溶媒中で湿式粉砕により粉砕した場合には、有機溶媒を構成する有機化合物の熱分解温度且つバインダー分解温度で仮焼処理を行う。それによって、残留した有機溶媒についても除去することが可能となる。有機化合物の熱分解温度については、用いる有機溶媒の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機化合物の熱分解についても行うことが可能となる。
 続いて、水素中仮焼処理によって仮焼された成形体25を焼結する焼結処理を行う。本発明では、加圧焼結により焼結を行う。加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、本発明では上述したように焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが望ましい。
 以下に、図6を用いてSPS焼結による成形体25の加圧焼結工程についてより詳細に説明する。図6はSPS焼結による成形体25の加圧焼結工程を示した模式図である。
 図6に示すようにSPS焼結を行う場合には、先ず、グラファイト製の焼結型31に成形体25を設置する。尚、上述した水素中仮焼処理についても成形体25を焼結型31に設置した状態で行っても良い。そして、焼結型31に設置された成形体25を真空チャンパー32内に保持し、同じくグラファイト製の上部パンチ33と下部パンチ34をセットする。そして、上部パンチ33に接続された上部パンチ電極35と下部パンチ34に接続された下部パンチ電極36とを用いて、低電圧且つ高電流の直流パルス電圧・電流を印加する。それと同時に、上部パンチ33及び下部パンチ34に対して加圧機構(図示せず)を用いて夫々上下方向から荷重を付加する。その結果、焼結型31内に設置された成形体25は、加圧されつつ焼結が行われる。また、生産性を向上させる為に、複数(例えば10個)の成形体に対して同時にSPS焼結を行うことが好ましい。尚、複数の成形体25に対して同時にSPS焼結を行う場合には、一の焼結型31に複数の成形体25を配置しても良いし、成形体25毎に異なる焼結型31に配置するようにしても良い。尚、成形体25毎に異なる焼結型31に配置する場合には、複数の焼結型31を備えたSPS焼結装置を用いて焼結を行う。そして、成形体25を加圧する上部パンチ33や下部パンチ34は複数の焼結型31の間で一体とする(即ち同時に加圧ができる)ように構成する。
 尚、具体的な焼結条件を以下に示す。
   加圧値:30MPa
   焼結温度:940℃まで10℃/分で上昇させ、5分保持
   雰囲気:数Pa以下の真空雰囲気
 上記SPS焼結を行った後冷却し、再び600℃~1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
 以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例1)
 実施例1はNd-Fe-B系磁石であり、合金組成はwt%でNd/Fe/B=32.7/65.96/1.34とする。また、ジェットミルを用いた乾式粉砕により磁石原料を粉砕した。また、バインダーとしてポリイソブチレンを用いるとともに、有機溶媒としてトルエンを用い、100gの磁石粉末に対して20wt%のバインダー溶液を100g添加することにより、添加後のスラリー中における磁石粉末とバインダーの合計量に対するバインダーの比率が16.7wt%となるスラリーを生成した。その後、スラリーをダイ方式により基材に塗工してグリーンシートを成形し、更に、所望の製品形状に打ち抜きした。その後、グリーンシートに対して仮焼処理を行った後に、SPS焼結(加圧値:30MPa、焼結温度:940℃まで10℃/分で上昇させ、5分保持)により焼結した。尚、他の工程は上述した[永久磁石の製造方法]と同様の工程とする。
(実施例2)
 ビーズミルを用いた湿式粉砕により磁石原料を粉砕した。具体的には、先ずφ2mmジルコニアビーズで2時間粉砕し、その後に、φ0.5mmジルコニアビーズで2時間粉砕した。粉砕時の有機溶媒としてトルエンを用い、湿式粉砕した後に、粉砕された磁石粉末を含む有機溶媒に、バインダーとしてポリイソブチレンを添加することによって同様のスラリーを生成した。他の条件は実施例1と同様である。
(比較例1)
 有機溶媒としてトルエンと酢酸エチルを8:2の割合で混合した溶媒を用いた。他の条件は実施例1と同様である。
(比較例2)
 有機溶媒としてトルエンとメタノールを8:2の割合で混合した溶媒を用いた。他の条件は実施例1と同様である。
(比較例3)
 有機溶媒としてトルエンと酢酸エチルを8:2の割合で混合した溶媒を用いた。他の条件は実施例2と同様である。
(比較例4)
 有機溶媒としてトルエンとメタノールを8:2の割合で混合した溶媒を用いた。他の条件は実施例2と同様である。
(実施例1と比較例1、2との比較)
 上記実施例1及び比較例1、2の各磁石内に残存する酸素濃度[ppm]及び炭素濃度[ppm]を測定した。図7に測定結果の一覧を示す。
 測定結果からは、スラリーを生成する際の有機溶媒として炭化水素からなる有機化合物であるトルエンのみを用いた実施例1は、有機溶媒として炭化水素以外に酸素原子を含む有機化合物である酢酸エチルやメタノールの混合溶媒を用いた比較例1、2と比較して、磁石内に含有する酸素量を低減させることができることが分かる。特に実施例1の永久磁石では、焼結後に磁石に残存する酸素量を3000ppm以下、より具体的には2000ppm以下とすることが可能となる。その結果、焼結工程でNdと酸素が結合しNd酸化物を形成することなく、また、αFeの析出を防止することができる。従って、残留磁束密度や保磁力についても実施例のほうが比較例よりも高い値を示すこととなる。以上より、乾式粉砕を用いて永久磁石を製造する場合において、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることにより、焼結時に磁石内に含有する酸素量を低減させることができ、磁石特性が低下することを防止できることが分かる。
(実施例2と比較例3、4との比較)
 上記実施例2及び比較例3、4の各磁石内に残存する酸素濃度[ppm]及び炭素濃度[ppm]を測定した。図8に測定結果の一覧を示す。
 測定結果からは、湿式粉砕における有機溶媒として炭化水素からなる有機化合物であるトルエンのみを用いた実施例2は、有機溶媒として炭化水素以外に酸素原子を含む有機化合物である酢酸エチルやメタノールの混合溶媒を用いた比較例3、4と比較して、磁石内に含有する酸素量を低減させることができることが分かる。特に実施例1の永久磁石では、焼結後に磁石に残存する酸素量を3000ppm以下、より具体的には2500ppm以下とすることが可能となる。その結果、焼結工程でNdと酸素が結合しNd酸化物を形成することなく、また、αFeの析出を防止することができる。従って、残留磁束密度や保磁力についても実施例のほうが比較例よりも高い値を示すこととなる。以上より、湿式粉砕を用いて永久磁石を製造する場合において、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いることにより、焼結時に磁石内に含有する酸素量を低減させることができ、磁石特性が低下することを防止できることが分かる。
 また、図7、図8に示すように、バインダーとして熱分解性に優れるポリイソブチレンを用い、水素中仮焼処理を行うことによって、磁石内の炭素量を大きく低減させることができることが分かる。特に実施例1、2の永久磁石では、水素中仮焼処理を行った結果、焼結後に磁石に残存する炭素量が500ppm以下となり、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。
 以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリー12を生成する。そして、生成したスラリー12をシート状に成形し、グリーンシート13を作製する。その後、作製されたグリーンシート13を非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを解重合反応等によりモノマーに分解し飛散させて除去し、バインダーを除去したグリーンシートを焼成温度に温度を上昇して焼結を行うことによって永久磁石1を製造する。その結果、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。また、永久磁石を薄膜化した場合であっても、材料歩留まりを低下させることなく、加工工数が増加することも防止できる。
 また、有機溶媒として炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用い、更にバインダーとして炭化水素からなるバインダーを用いることにより、焼結時に磁石内に含有する酸素量を低減させることができる。その結果、焼結工程において金属酸化物が形成されることを抑え、磁石特性が低下することを防止できる。
 また、グリーンシート13を焼結する前に、グリーンシート13を非酸化性雰囲気下でバインダー分解温度に一定時間保持することによりバインダーを飛散させて除去するので、磁石内に含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相内にαFeが析出することを抑え、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。特に、バインダーとして熱分解性に優れるポリマーを用いれば、炭素量をより確実に低減させることが可能となる。
 また、仮焼処理では、バインダーが混練されたグリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下で200℃~900℃、より好ましくは400℃~600℃に一定時間保持するので、磁石内に含有する炭素量をより確実に低減させることができる。
 尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
 例えば、磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例ではジェットミルを用いた乾式粉砕により磁石原料を粉砕しているが、ビーズミルによる湿式粉砕により粉砕することとしても良い。また、湿式粉砕により磁石粉末を粉砕する場合には、湿式粉砕した後に、粉砕された磁石粉末を含む有機溶媒にバインダーを添加することによって磁石粉末をスラリー状とすることが望ましい。更に、湿式粉砕に用いる有機溶媒としては、炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いるのが望ましい。一方、湿式粉砕された磁石粉末を一旦乾燥させた後に、有機溶媒とバインダーとを添加することによって磁石粉末をスラリー状にしても良い。但し、その場合において、乾燥させた磁石粉末に添加する有機溶媒は、同じく炭化水素からなる有機化合物から選択される1種以上の有機溶媒を用いるのが望ましい。
 また、上記実施例では、スロットダイ方式によりグリーンシートを形成しているが、他の方式(例えばカレンダーロール方式、コンマ塗工方式、押出成型、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。但し、スラリーを基材上に高精度に成形することが可能な方式を用いることが望ましい。また、上記実施例では、SPS焼結により磁石を焼結しているが、他の加圧焼結方法(例えばホットプレス焼結等)を用いて磁石を焼結しても良い。
 また、本実施例では磁石粉末に添加する有機溶媒としてトルエン又はヘキサンを用いたが、炭化水素からなる有機化合物から選択される1種以上の有機溶媒であれば良い。例えば、ペンタン、ベンゼン、キシレン、それらの混合物でも良い。
 また、仮焼処理は省略しても良い。その場合であっても焼結中にバインダーが熱分解し、一定の脱炭効果を期待することができる。また、仮焼処理は水素以外の雰囲気で行っても良い。
 また、上記実施例では、バインダーとして樹脂や長鎖炭化水素を用いることとしているが、炭化水素からなる材料であれば他の材料を用いても良い。
 また、本発明ではNd-Fe-B系磁石を例に挙げて説明したが、他の磁石(例えばコバルト磁石、アルニコ磁石、フェライト磁石等)を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。
  1     永久磁石
  11    ジェットミル
  12    スラリー
  13    グリーンシート
  25    成形体

Claims (8)

  1.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリーを生成する工程と、
     前記スラリーをシート状に成形し、グリーンシートを作製する工程と、
     前記グリーンシートを焼結する工程と、により製造されることを特徴とする希土類永久磁石。
  2.  前記グリーンシートを焼結する前に、前記グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする請求項1に記載の希土類永久磁石。
  3.  前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする請求項2に記載の希土類永久磁石。
  4.  前記磁石原料を磁石粉末に粉砕する工程では、前記磁石原料を前記有機溶媒中で湿式粉砕し、
     前記スラリーを生成する工程では、粉砕された前記磁石粉末を含む前記有機溶媒に前記バインダーを添加することにより前記スラリーを生成することを特徴とする請求項1乃至請求項3のいずれかに記載の希土類永久磁石。
  5.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末と炭化水素からなるバインダーと炭化水素からなる有機化合物から選択される1種以上の有機溶媒とを混練することによりスラリーを生成する工程と、
     前記スラリーをシート状に成形し、グリーンシートを作製する工程と、
     前記グリーンシートを焼結する工程と、を有することを特徴とする希土類永久磁石の製造方法。
  6.  前記グリーンシートを焼結する前に、前記グリーンシートを非酸化性雰囲気下でバインダー分解温度に一定時間保持することにより前記バインダーを飛散させて除去することを特徴とする請求項5に記載の希土類永久磁石の製造方法。
  7.  前記バインダーを飛散させて除去する工程では、前記グリーンシートを水素雰囲気下又は水素と不活性ガスの混合ガス雰囲気下において200℃~900℃で一定時間保持することを特徴とする請求項6に記載の希土類永久磁石の製造方法。
  8.  前記磁石原料を磁石粉末に粉砕する工程では、前記磁石原料を前記有機溶媒中で湿式粉砕し、
     前記スラリーを生成する工程では、粉砕された前記磁石粉末を含む前記有機溶媒に前記バインダーを添加することにより前記スラリーを生成することを特徴とする請求項5乃至請求項7のいずれかに記載の希土類永久磁石の製造方法。
PCT/JP2012/056717 2011-06-24 2012-03-15 希土類永久磁石及び希土類永久磁石の製造方法 WO2012176514A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12803421.2A EP2685473A4 (en) 2011-06-24 2012-03-15 RARE EARTH PERMANENT MAGNET AND PROCESS FOR PRODUCING RARE EARTH PERMANENT MAGNET
KR1020137003389A KR101878999B1 (ko) 2011-06-24 2012-03-15 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
CN201280002743.1A CN103081039B (zh) 2011-06-24 2012-03-15 稀土类永久磁铁及稀土类永久磁铁的制造方法
US13/817,104 US20130141197A1 (en) 2011-06-24 2012-03-15 Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011140917 2011-06-24
JP2011-140917 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176514A1 true WO2012176514A1 (ja) 2012-12-27

Family

ID=47422364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056717 WO2012176514A1 (ja) 2011-06-24 2012-03-15 希土類永久磁石及び希土類永久磁石の製造方法

Country Status (7)

Country Link
US (1) US20130141197A1 (ja)
EP (1) EP2685473A4 (ja)
JP (1) JP5307912B2 (ja)
KR (1) KR101878999B1 (ja)
CN (1) CN103081039B (ja)
TW (1) TWI453771B (ja)
WO (1) WO2012176514A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150303A (ja) 1987-12-08 1989-06-13 Mitsubishi Steel Mfg Co Ltd 磁気異方性焼結磁石及びその製造方法
JPH09312229A (ja) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd 希土類系焼結磁石の製造方法
JP2009259955A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282417A (ja) * 1986-04-30 1987-12-08 Tohoku Metal Ind Ltd 希土類磁石の製造方法
US4996022A (en) * 1989-07-14 1991-02-26 Juki Corporation Process for producing a sintered body
JP2821183B2 (ja) * 1989-07-14 1998-11-05 ジューキ株式会社 粒子状材料の焼結体の製造方法
JPH05320708A (ja) * 1992-01-10 1993-12-03 Kawasaki Steel Corp 焼結性粉末射出成形用バインダおよび組成物
JPH05318427A (ja) * 1992-05-21 1993-12-03 Ngk Insulators Ltd ホットプレス用加圧機構及びそれを利用した加圧焼結方法
JPH06116605A (ja) * 1992-10-01 1994-04-26 Kawasaki Steel Corp 希土類系永久磁石用合金粉末の成形助剤及びその添加合金粉末
JPH09283358A (ja) * 1996-04-09 1997-10-31 Hitachi Metals Ltd R−Fe−B系焼結磁石の製造方法
JPH10163055A (ja) * 1996-11-29 1998-06-19 Hitachi Metals Ltd 高電気抵抗希土類永久磁石の製造方法
JP2000306753A (ja) * 1999-04-21 2000-11-02 Sumitomo Special Metals Co Ltd R‐Fe‐B系永久磁石の製造方法とR‐Fe‐B系永久磁石成形用潤滑剤
US6361738B1 (en) * 1998-04-22 2002-03-26 Sumitomo Special Metals Co., Ltd. Method of producing R-Fe-B permanent magnet, and lubricant agent and release agent for use in shaping the same
JP3548509B2 (ja) * 2000-06-07 2004-07-28 諏訪熱工業株式会社 パルス通電接合方法及び接合装置並びに接合体
JP2003313602A (ja) * 2002-04-25 2003-11-06 Mitsubishi Electric Corp 希土類磁石用粉末および前記粉末を用いた希土類磁石
JP2005072539A (ja) * 2003-08-28 2005-03-17 Tdk Corp セラミックグリーンシートの製造方法および当該セラミックグリーンシートを用いた電子部品の製造方法
JP2005191187A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 希土類磁石およびその製造方法
JP2005203555A (ja) * 2004-01-15 2005-07-28 Neomax Co Ltd 焼結磁石の製造方法
JP4635832B2 (ja) * 2005-11-08 2011-02-23 日立金属株式会社 希土類焼結磁石の製造方法
EP1970916B1 (en) * 2006-05-18 2015-04-01 Hitachi Metals, Ltd. R-Fe-B POROUS MAGNET AND METHOD FOR PRODUCING THE SAME
JP2008030097A (ja) * 2006-07-30 2008-02-14 High Energy Accelerator Research Organization 高加圧拡散接合装置
JP4872109B2 (ja) * 2008-03-18 2012-02-08 日東電工株式会社 永久磁石及び永久磁石の製造方法
JP5434869B2 (ja) * 2009-11-25 2014-03-05 Tdk株式会社 希土類焼結磁石の製造方法
JP4890633B2 (ja) * 2010-06-28 2012-03-07 Eco−A株式会社 通電拡散接合装置及び方法
CN102005277B (zh) * 2010-09-30 2012-08-22 广州金南磁性材料有限公司 一种应力场取向各向异性可挠性粘结钕铁硼磁体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150303A (ja) 1987-12-08 1989-06-13 Mitsubishi Steel Mfg Co Ltd 磁気異方性焼結磁石及びその製造方法
JPH09312229A (ja) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd 希土類系焼結磁石の製造方法
JP2009259955A (ja) * 2008-04-15 2009-11-05 Nitto Denko Corp 永久磁石及び永久磁石の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685473A4

Also Published As

Publication number Publication date
CN103081039A (zh) 2013-05-01
EP2685473A1 (en) 2014-01-15
EP2685473A4 (en) 2015-04-15
CN103081039B (zh) 2017-07-11
US20130141197A1 (en) 2013-06-06
TW201301313A (zh) 2013-01-01
KR20140036999A (ko) 2014-03-26
JP5307912B2 (ja) 2013-10-02
JP2013030745A (ja) 2013-02-07
KR101878999B1 (ko) 2018-08-17
TWI453771B (zh) 2014-09-21

Similar Documents

Publication Publication Date Title
JP5103553B1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
KR101878998B1 (ko) 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
JP5908246B2 (ja) 希土類永久磁石の製造方法
WO2013137135A1 (ja) 希土類永久磁石、希土類永久磁石の製造方法及び希土類永久磁石の製造装置
WO2013137134A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013030742A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203520B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2015121915A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2012176511A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203522B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5420700B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2015121914A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5307912B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203521B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5420699B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2012176510A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002743.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20137003389

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13817104

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012803421

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE