JP5302625B2 - 磁気記録媒体の製造方法および磁気記録媒体 - Google Patents

磁気記録媒体の製造方法および磁気記録媒体 Download PDF

Info

Publication number
JP5302625B2
JP5302625B2 JP2008280568A JP2008280568A JP5302625B2 JP 5302625 B2 JP5302625 B2 JP 5302625B2 JP 2008280568 A JP2008280568 A JP 2008280568A JP 2008280568 A JP2008280568 A JP 2008280568A JP 5302625 B2 JP5302625 B2 JP 5302625B2
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
forming
magnetic
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008280568A
Other languages
English (en)
Other versions
JP2010108559A (ja
Inventor
義明 園部
政憲 安仁屋
オヌポン ミトラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WD Media Singapore Pte Ltd
Original Assignee
WD Media Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WD Media Singapore Pte Ltd filed Critical WD Media Singapore Pte Ltd
Priority to JP2008280568A priority Critical patent/JP5302625B2/ja
Publication of JP2010108559A publication Critical patent/JP2010108559A/ja
Application granted granted Critical
Publication of JP5302625B2 publication Critical patent/JP5302625B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、HDD(ハードディスクドライブ)などに搭載される磁気記録媒体の製造方法および磁気記録媒体に関する。
近年の情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に磁気記録技術を用いたHDDの面記録密度は年率100%程度の割合で増加し続けている。最近では、HDD等に用いられる2.5インチ径磁気ディスクにして、1枚あたり160GByteを超える情報記録容量が求められるようになってきており、このような要請にこたえるためには1平方インチあたり250GBitを超える情報記録密度を実現することが求められる。
HDD等に用いられる磁気ディスクにおいて高記録密度を達成するために、近年、垂直磁気記録方式の磁気ディスク(垂直磁気記録ディスク)が提案されている。従来の面内磁気記録方式は磁気記録層の磁化容易軸が基体面の平面方向に配向されていたが、垂直磁気記録方式は磁化容易軸が基体面に対して垂直方向に配向するよう調整されている。垂直磁気記録方式は面内記録方式に比べて、高密度記録時に、より熱揺らぎ現象を抑制することができるので、高記録密度化に対して好適である。
さらに記録密度および熱揺らぎ耐性を向上させた技術として、記録用の磁性トラックの間に非磁性トラックを平行させるようにパターニングして隣接した記録トラックの干渉を防ぐディスクリートトラックメディアや、任意のパターンを人工的に規則正しく並べたビットパターンメディアと呼ばれる磁気記録媒体が提案されている。
上述したディスクリートトラックメディアやビットパターンメディアといったパターンドメディアは、非磁性基体の上に磁性層を形成した後、部分的にイオンを注入することにより、非磁性化もしくは非晶質化することにより磁気的に分離した磁性パターンを形成する技術や、非磁性基体の上に磁性層を形成した後、部分的に当該磁性層をミリングすることにより凹凸を形成し、物理的に磁性層を分離させ、磁性パターンを形成する技術が提案されている。
具体的には、まず、磁性層の上にレジストを成膜し所望する凹凸パターンが形成されたスタンパをインプリントしてレジストに凹凸パターンを転写したり、磁性層の上にフォトレジストを成膜しフォトリソグラフィ技術により所望する凹凸パターンをフォトレジストに形成したりする。そして、形成された凹部を介して、磁性層にイオンを注入したり、凹部の表面に露出した磁性層をエッチングによってミリングしたりすることにより、磁性層を分離する。
一方、磁気記録技術の高密度化に伴い、磁気ヘッドも薄膜ヘッドから、磁気抵抗型ヘッド(MRヘッド)、大型磁気抵抗型ヘッド(GMRヘッド)へと推移してきており、磁気ヘッドの基板からの浮上量が5nm程度にまで狭くなってきている。このような磁気抵抗効果型素子を搭載した磁気ヘッドは、固有の障害としてヘッドクラッシュやサーマルアスペリティ障害を引き起こす場合がある。
サーマルアスペリティ障害とは、磁気ディスク面上の微小な凸形状あるいは凹形状上を磁気ヘッドが浮上飛行しながら通過するときに、空気の断熱圧縮または接触により磁気抵抗効果型素子が加熱されることにより、読み出しエラーを生じる障害である。したがって磁気抵抗型素子を搭載した磁気ヘッドに対しては、磁気ディスク表面は極めて高度な平滑度および平坦度が求められる。
上述したパターンドメディアにおいては、ミリングによって物理的に磁性層に凹凸を形成した場合には、レジストの除去を行い、凹部に非磁性物質を充填した後に、平坦化を行っている。イオン注入によってパターンを形成した場合には、レジストの除去を行う。
ここで、上述したように、パターンドメディアを作成するためには、磁性層の上にレジストを成膜する必要があるが、磁性層のパターン化が完了した後すなわちイオン注入やミリングが完了した後は、不必要となる。そして、不必要なレジストの残渣が磁性層の表面に残存すると、基体の表面に凹凸が生じるため、ヘッドクラッシュやサーマルアスペリティ障害を引き起こす原因となる。
そこで、従来も磁性層のパターン化後に残存するレジストをドライエッチング(例えば特許文献1)、反応性イオンエッチング(例えば、特許文献2)、イオンミリング、プラズマエッチング(例えば、特許文献3)やICP(Inductively Coupled Plasma:誘導結合プラズマ)エッチングを利用することにより、磁気ディスクの表面を平滑にする技術が開示されている。
特開2008−77788号公報 特開2006−79805号公報 特開2008−16084号公報
しかし、上述した磁性層のパターン化後に残存するレジストをエッチング等で除去する技術では、過度なエッチングによりレジストの直下の層を削ってしまったり、逆にレジストの直下の層を削らないようにするために早めにエッチングを終了させてしまいレジストを完全に除去できなかったりと、最適にエッチングを停止するポイントを見極めるのが困難であった。
本発明は、このような問題に鑑み、レジストの直下に剥離しやすい層を新たに設けることで、レジストを簡単かつ確実に除去し、表面に露出する層にダメージを与えずに磁気トラックパターンを形成することが可能な磁気記録媒体の製造方法および磁気記録媒体を提供することを目的とする。
上記課題を解決するために、本発明にかかる磁気記録媒体の製造方法の代表的な構成は、基体上に、磁気記録層を成膜する磁気記録層成膜工程と、磁気記録層の上に保護層を成膜する保護層成膜工程と、保護層の上にSOGによって剥離層を成膜する剥離層成膜工程と、剥離層の上にレジスト層を成膜するレジスト層成膜工程と、レジスト層および剥離層を加工することで当該レジスト層および剥離層の厚さを部分的に変化させ所定のパターンを形成するパターニング工程と、所定のパターンに対応したパターンで磁気記録層を磁気的に分離する磁気分離工程と、剥離層を溶剤で除去することによりレジスト層を除去する除去工程と、を含むことを特徴とする。
レジスト層の直下に溶剤で除去可能なSOGの剥離層を成膜する構成により、パターンに応じて磁気記録層を磁気的に分離した後、不要なレジスト層を簡単かつ最適に除去することができる。したがって、表面に露出する層(保護層)に損傷を与えることがなく、容易かつ迅速にレジスト層を除去することができる。また、従来必要であったレジスト層を除去するためのエッチング(例えば反応性イオンエッチング)を行う必要がなくなるため、電力消費量を大幅に削減することができる。
また、剥離層であるSOGは溶剤に溶解するため、簡単に除去することができる。また、保護層の表面にSOGが残存したとしても、SOGは非磁性物質であるため、磁気記録層の磁気特性に影響を与えることなく、SNR(Signal to Noise Ratio:シグナルノイズ比)を維持することが可能となる。
上記剥離層を除去する溶剤は、有機溶剤であってもよい。有機溶剤は、安価であるため好適に利用することができる。
上記磁気分離工程は、磁気記録層をエッチングすることにより当該磁気記録層を所定のパターンに基づいて凸部と凹部を形成する磁気記録層エッチング工程と、磁気記録層の凹部に非磁性の充填層を成膜する充填層成膜工程と、を含んでもよい。
充填層成膜工程において磁気記録層の凹部に充填層を成膜した後、レジスト層を除去する除去工程の前に、当該凹部にさらに保護層を成膜する保護層再成膜工程をさらに含んでもよい。
磁気記録層エッチング工程において、保護層ごと磁気記録層をエッチング(イオンミリング等のミリング、反応性イオンエッチング等のイオンエッチング、ドライエッチング、ウェットエッチング等)することにより凹部を形成する。つまり、除去工程においてレジスト層を除去した際には、凸部の表面には保護層が、凹部の表面には充填層が存在することとなる。したがって、上記保護層再成膜工程を含むことにより、凹部の表面にも保護層を成膜することができ、磁気記録媒体の表面に連続して保護層を存在させることが可能となる。
また、除去工程において、磁気記録層の凸部の略鉛直方向の側面に溶剤が接触するのを回避できるため、磁気記録層にダメージを与えるおそれを防ぐことが可能となる。
上記磁気記録層は、柱状に成長した結晶粒子の間に非磁性物質からなる粒界部を形成したグラニュラー構造の強磁性層であってもよい。磁気記録層にディスクリートパターンを形成する場合、磁気記録層がグラニュラー構造であると、SNRが向上する。
上記課題を解決するために、本発明にかかる磁気記録媒体の製造方法の他の代表的な構成は、基体上に、磁気記録層を成膜する磁気記録層成膜工程と、磁気記録層の上に保護層を成膜する保護層成膜工程と、保護層の上にSOGによって剥離層を成膜する剥離層成膜工程と、剥離層の上にレジスト層を成膜するレジスト層成膜工程と、レジスト層および剥離層を加工することで当該レジスト層および剥離層の厚さを部分的に変化させ所定のパターンを形成するパターニング工程と、磁気記録層をイオンミリングすることにより当該磁気記録層を所定のパターンに基づいて凸部と凹部を形成する磁気記録層エッチング工程と、磁気記録層の凹部に非磁性の充填層を成膜する充填層成膜工程と、充填層成膜工程において磁気記録層の凹部に充填層を成膜した後、当該凹部にさらに保護層を成膜する保護層再成膜工程と、剥離層を溶剤で除去することによりレジスト層を除去する除去工程と、さらに保護層を成膜する最終保護層成膜工程と、最終保護層成膜工程で成膜された保護層の表面を平坦にする平坦化工程と、を含むことを特徴とする。
平坦化工程を含む構成により、平坦度をさらに向上させることが可能となる。したがって、ヘッドクラッシュやサーマルアスペリティ障害をさらに低減させることができる。
上記課題を解決するために、本発明にかかる磁気記録媒体の代表的な構成は、上記の磁気記録媒体の製造方法を用いて製造されたことを特徴とする。
上述した磁気記録媒体の製造方法の技術的思想に基づく構成要素やその説明は、当該磁気記録媒体にも適用可能である。
上述した磁気記録媒体の製造方法の技術的思想に基づく構成要素やその説明は、当該磁気記録媒体にも適用可能である。
本発明にかかる磁気記録媒体の製造方法は、レジストの直下に剥離しやすい層を新たに設けることで、レジストを迅速かつ確実に除去することができることとなり、表面に露出する層にダメージを与えることがなく磁気トラックパターンを形成することが可能となる。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(実施形態)
本発明にかかる磁気記録媒体の製造方法の実施形態について説明する。図1は本実施形態にかかる磁気記録媒体としてのディスクリート型垂直磁気記録媒体100(以下、単に垂直磁気記録媒体100と称する。)の構成を説明する図である。図1に示す垂直磁気記録媒体100は、基体としてのディスク基体110、付着層112、第1軟磁性層114a、スペーサ層114b、第2軟磁性層114c、前下地層116、第1下地層118a、第2下地層118b、非磁性グラニュラー層120、第1磁気記録層122a、第2磁気記録層122b、連続層124、保護層126、潤滑層128で構成されている。なお第1軟磁性層114a、スペーサ層114b、第2軟磁性層114cは、あわせて軟磁性層114を構成する。第1下地層118aと第2下地層118bはあわせて下地層118を構成する。第1磁気記録層122aと第2磁気記録層122bとはあわせて磁気記録層122を構成する。
以下に説明するように、本実施形態に示す垂直磁気記録媒体100は、磁気記録層122の第1磁気記録層122aおよび第2磁気記録層122bのいずれかまたは両方に複数の種類の酸化物(以下、「複合酸化物」という。)を含有させることにより、非磁性の粒界に複合酸化物を偏析させている。
[基体成型工程]
ディスク基体110は、アモルファスのアルミノシリケートガラスをダイレクトプレスで円板状に成型したガラスディスクを用いることができる。なおガラスディスクの種類、サイズ、厚さ等は特に制限されない。ガラスディスクの材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は、結晶化ガラス等のガラスセラミックなどが挙げられる。このガラスディスクに研削、研磨、化学強化を順次施し、化学強化ガラスディスクからなる平滑な非磁性のディスク基体110を得ることができる。
[成膜工程]
上述した基体成型工程で得られたディスク基体110上に、DCマグネトロンスパッタリング法にて付着層112、軟磁性層114、前下地層116、下地層118、非磁性グラニュラー層120、磁気記録層122(磁気記録層成膜工程)、連続層124を順次成膜し、保護層126(保護層成膜工程)はCVD法により成膜することができる。なお、生産性が高いという点で、インライン型成膜方法を用いることも好ましい。以下、各層の構成および本実施形態の特徴である剥離層成膜工程、レジスト層成膜工程、パターニング工程、磁気記録層エッチング工程、充填層成膜工程、保護層再成膜工程、除去工程、最終保護層成膜工程、平坦化工程を含む磁気トラックパターン形成工程について説明する。
付着層112は非晶質の下地層であって、ディスク基体110に接して形成され、この上に成膜される軟磁性層114とディスク基体110との剥離強度を高める機能を備えている。付着層112は、ディスク基体110がアモルファスガラスからなる場合、そのアモルファスガラス表面に対応させる為にアモルファスの合金膜とすることが好ましい。付着層112としては、例えばCrTi系非晶質層を選択することができる。
軟磁性層114は、垂直磁気記録方式において記録層に垂直方向に磁束を通過させるために、記録時に一時的に磁路を形成する層である。軟磁性層114は第1軟磁性層114aと第2軟磁性層114cの間に非磁性のスペーサ層114bを介在させることによって、AFC(Antiferro-magnetic exchange coupling:反強磁性交換結合)を備えるように構成することができる。これにより軟磁性層114の磁化方向を高い精度で磁路(磁気回路)に沿って整列させることができ、磁化方向の垂直成分が極めて少なくなるため、軟磁性層114から生じるノイズを低減することができる。第1軟磁性層114a、第2軟磁性層114cの組成としては、CoTaZrなどのコバルト系合金、CoCrFeBなどのCo−Fe系合金、[Ni−Fe/Sn]n多層構造のようなNi−Fe系合金などを用いることができる。
前下地層116は非磁性の合金層であり、軟磁性層114を防護する作用と、この上に成膜される下地層118に含まれる六方細密充填構造(hcp構造)の磁化容易軸をディスク垂直方向に配向させる機能を備える。前下地層116は面心立方構造(fcc構造)の(111)面がディスク基体110の主表面と平行となっていることが好ましい。前下地層の材質としては、Ni、Cu、Pt、Pd、Zr、Hf、Nbから選択することができる。さらにこれらの金属を主成分とし、Ti、V、Ta、Cr、Mo、Wのいずれか1つ以上の添加元素を含む合金としてもよい。例えばfcc構造としてはNiW、CuW、CuCrを好適に選択することができる。
下地層118はhcp構造であって、磁気記録層122のCoのhcp構造の結晶をグラニュラー構造として成長させる作用を有している。したがって、下地層118の結晶配向性が高いほど、すなわち下地層118の結晶の(0001)面がディスク基体110の主表面と平行になっているほど、磁気記録層122の配向性を向上させることができる。下地層118の材質としてはRuが代表的であるが、その他に、RuCr、RuCoから選択することができる。Ruはhcp構造をとり、また結晶の格子間隔がCoと近いため、Coを主成分とする磁気記録層122を良好に配向させることができる。
下地層118をRuとした場合において、スパッタ時のガス圧を変更することによりRuからなる2層構造とすることができる。具体的には、上層側の第2下地層118bを形成する際に、下層側の第1下地層118aを形成するときよりもArのガス圧を高くする。ガス圧を高くするとスパッタリングされるRuイオンの自由移動距離が短くなるため、成膜速度が遅くなり、結晶分離性を改善することができる。また高圧にすることにより、結晶格子の大きさが小さくなる。Ruの結晶格子の大きさはCoの結晶格子よりも大きいため、Ruの結晶格子を小さくすればCoのそれに近づき、Coのグラニュラー層の結晶配向性をさらに向上させることができる。
非磁性グラニュラー層120は非磁性のグラニュラー層である。下地層118のhcp結晶構造の上に非磁性のグラニュラー層を形成し、この上に第1磁気記録層122aのグラニュラー層を成長させることにより、磁性のグラニュラー層を初期成長の段階(立ち上がり)から分離させる作用を有している。非磁性グラニュラー層120の組成は、Co系合金からなる非磁性の結晶粒子の間に、非磁性物質を偏析させて粒界を形成することにより、柱状のグラニュラー構造とすることができる。特にCoCr−SiO、CoCrRu−SiOを好適に用いることができ、さらにRuに代えてRh(ロジウム)、Pd(パラジウム)、Ag(銀)、Os(オスミウム)、Ir(イリジウム)、Au(金)も利用することができる。また非磁性物質とは、磁性粒(磁性グレイン)間の交換相互作用が抑制、または、遮断されるように、磁性粒の周囲に粒界部を形成しうる物質であって、コバルト(Co)と固溶しない非磁性物質であればよい。例えば酸化珪素(SiOx)、クロム(Cr)、酸化クロム(CrO)、酸化チタン(TiO)、酸化ジルコン(ZrO)、酸化タンタル(Ta)を例示できる。
磁気記録層122は、Co系合金、Fe系合金、Ni系合金から選択される硬磁性体の磁性粒の周囲に非磁性物質を偏析させて粒界を形成した柱状のグラニュラー構造を有した強磁性層である。この磁性粒は、非磁性グラニュラー層120を設けることにより、そのグラニュラー構造から継続してエピタキシャル成長することができる。本実施形態では組成および膜厚の異なる第1磁気記録層122aと、第2磁気記録層122bとから構成されている。第1磁気記録層122aと第2磁気記録層122bは、いずれも非磁性物質としてはSiO、Cr、TiO、B、Fe等の酸化物や、BN等の窒化物、B等の炭化物を好適に用いることができる。本実施形態にかかる垂直磁気記録媒体100は、ディスクリート型であるため、磁気記録層122がグラニュラー構造をとる構成により、SNRを向上させることが可能となる。
連続層124はグラニュラー構造を有する磁気記録層122の上に、面内方向に磁気的に連続した層(連続層とも呼ばれる)である。連続層124を設けることにより磁気記録層122の高密度記録性と低ノイズ性に加えて、逆磁区核形成磁界Hnの向上、耐熱揺らぎ特性の改善、オーバーライト特性の改善を図ることができる。本実施形態において、垂直磁気記録媒体100は、ディスクリート型であるため連続層124を備える構成をとっているが、ビットパターン型磁気記録媒体である場合には、連続層を備えなくともよい。
保護層126は、真空を保ったままカーボンをCVD法により成膜して形成することができる。保護層126は、磁気ヘッドの衝撃から垂直磁気記録層を防護するための保護層である。一般にCVD法によって成膜されたカーボンはスパッタ法によって成膜したものと比べて膜硬度が向上するので、磁気ヘッドからの衝撃に対してより有効に垂直磁気記録層を防護することができる。
(磁気トラックパターン形成工程)
次に、本実施形態の磁気記録層に磁気的に分離した記録領域としてのトラック部およびサーボ情報を記憶するサーボパターン部を形成する磁気トラックパターン形成工程について詳述する。ここで、磁気トラックパターン形成工程は、上記磁気記録層成膜工程の直後に行ってもよいが、連続層成膜工程および保護層成膜工程の後に行ってもよい。なお、ここでは理解を容易にするために、特に記載がない場合は、トラック部およびサーボパターン部をあわせて磁気トラック部と称する。
本実施形態で磁気トラックパターン形成工程は、保護層成膜工程の後に行う。これにより、磁気トラックパターン形成工程を行った後に保護層を成膜する必要がなくなり、製造工程が簡便になることで、生産性の向上および垂直磁気記録媒体100の製造工程における汚染の低減を図ることができる。
図2は、本実施形態にかかる磁気トラックパターン形成工程について説明するための説明図である。なお、図2において、理解を容易にするために非磁性グラニュラー層120よりディスク基体110側の層の記載を省略する。磁気トラックパターン形成工程は、剥離層成膜工程、レジスト層成膜工程、パターニング工程、磁気記録層エッチング工程、充填層成膜工程、保護層再成膜工程、除去工程、最終保護層成膜工程、平坦化工程を含んで構成される。以下、磁気トラックパターン形成工程における各工程について説明する。
<剥離層成膜工程>
スピンコート法にて保護層126の上に剥離層130としてのSOG(Spin On Glass)を成膜する(図2(a)参照)。SOGは、ケイ素(Si)化合物と添加剤(拡散用不純物、ガラス質形成剤、有機バインダー等)とを有機溶剤(アルコール、エステル、ケトン等)に溶解した液状質であり、例えば、シリカガラス、水素化シルセスキオキサンポリマー(HSQ)、水素化アルキルシロキサンポリマー(HOSP)、アルキルシロキサンポリマー、アルキルシルセスキオキサンポリマー(MSQ)等である。
SOGは溶剤に溶解するため、後述する除去工程で簡単に除去することができる。また、保護層126の表面にSOGが残存したとしても、SOGは非磁性物質であるため、磁気記録層122の磁気特性に影響を与えることなく、SNR(Signal to Noise Ratio:シグナルノイズ比)を維持することが可能となる。本実施形態において、SOGによって剥離層130を成膜するのにスピンコート法を用いているが、これに限定されず、SOGを用いるのであればディップコート法やスプレイ法、インクジェット法によって剥離層130を成膜してもよい。
<レジスト層成膜工程>
図2(b)に示すように、剥離層成膜工程で成膜した剥離層130の上に、スピンコート法を用いてレジスト層132を成膜する。本実施形態では、レジスト層132としてPMMA(ポリメタクリル酸メチル)を成膜しているが、一般的なノボラック系のフォトレジストや、UVインプリントレジストなどを利用することも可能である。
<パターニング工程>
図2(c)に示すように、レジスト層132にスタンパ134を押し当てることによって、磁性トラックパターンを転写する(インプリント法)。スタンパ134には転写しようとする記録領域としてのトラック部と、プリアンブル部、アドレス部、およびバースト部等のサーボ情報を記憶するためのサーボパターン部とのそれぞれのパターンに対応する凹凸パターンを有する。
スタンパ134によってレジスト層132に磁性トラックパターンを転写した後、スタンパ134をレジスト層132から取り除くことにより、レジスト層132aに凹凸パターンが転写される。
さらに本実施形態では、凹凸パターンが転写されたレジスト層132aの凹部底面に残存するレジスト層(図2(c)中クロスハッチングで示す。)を、酸素ガスを用いたRIE(Reactive Ion Etching:反応性イオンエッチング)により除去する(図2(d))。
本実施形態においてRIEのプラズマ源は、低圧で高密度プラズマが生成可能なICPを利用しているが、これに限定されず、ECR(Electron Cyclotron Resonance)プラズマや、一般的な平行平板型RIE装置を利用することもできる。
また、本実施形態において、スタンパ134の表面にはフッ素系剥離剤を塗布している。これにより、レジスト層132から良好にスタンパ134を剥離することが可能となる。
なお本実施形態においてパターニング工程は、スタンパ134を用いたインプリント法を利用しているが、フォトリソグラフィ法も好適に利用することができる。ただし、フォトリソグラフィ法を利用する場合には、上記レジスト層成膜工程においては、フォトレジストをレジスト層として成膜し、成膜したフォトレジストをマスクを用いて露光・現像し、磁気トラック部としての所定のパターンを転写する。
図2(e)に示すように、所定のパターンにパターニングされたレジスト層132aの凹部から、剥離層130をエッチングし、剥離層130を所定のパターンにパターニングする。
本実施形態において、剥離層130は、フッ素系ガスを用いたRIE(Reactive Ion Etching:反応性イオンエッチング)により除去する。本実施形態において、エッチングガスにSFを用いているが、これに限定されず、CF、CHF、Cからなる群から選択されたいずれか1種または複数の混合ガスも好適に利用することができる。
<磁気記録層エッチング工程>
図2(e)に示すように、パターニング工程で所定のパターンにパターニングされた剥離層130の凹部から、保護層126および磁気記録層122をイオンミリングし、磁気記録層122をパターニング工程で転写された所定のパターンに基づいて凸部と凹部を形成する。
保護層126は、酸素を用いたRIEにより除去する(酸素アッシング)。本実施形態においてRIEのプラズマ源は、低圧で高密度プラズマが生成可能なICPを利用しているが、これに限定されず、ECRプラズマや、一般的な平行平板型RIE装置を利用することもできる。
磁気記録層122は、Arを用いたIBE(Ion Beam Etching:イオンビームエッチング)によりイオンミリングを行い除去する。本実施形態において、IBEのプラズマ源は、ECRプラズマを利用しているが、これに限定されず、低圧で高密度プラズマが生成可能なICPや、一般的な平行平板型RIE装置を利用することもできる。ECRイオンガンを用いたイオンミリングでは、静止対向型(イオン入射角90°)でエッチングすることで、磁気記録層122に形成される凹部、凸部にテーパを設けず加工することが可能となる。
本実施形態にかかる磁気記録層エッチング工程において、マイクロ波パワー800W、加速電圧400から500V、イオン入射角度は30°から70°まで変化させて磁気記録層122をエッチングする。
上記イオンミリングを行うことにより、パターニング工程で転写された凹部の下の部分に存在する剥離層130、保護層126および磁気記録層122を除去することができ、凸部の下の部分に存在する磁気記録層122は、残存させることが可能となる。これにより、磁気トラック部としての凸部を凹部を介して物理的に分離させることができる。
また、本実施形態において磁気記録層122は、磁気記録層122の直下の層である非磁性グラニュラー層120の表面が出現するまで、イオンミリングを行う。これにより、磁気記録層122の磁気トラック部としての凸部を確実に分離させることができる。
<充填層成膜工程>
図3は、本実施形態にかかる充填層成膜工程から最終保護層成膜工程までについて説明するための説明図である。なお、図3においても、理解を容易にするために非磁性グラニュラー層120よりディスク基体110側の層の記載を省略する。磁気記録層エッチング工程で形成された凹部136(図3(a)参照)に非磁性の充填層138(図3中黒色で示す)を、保護層126の底面の高さ(連続層124の高さ)と略等しい高さとなるように成膜する(図3(b)参照)。
本実施形態において、SiO、SiOC、TiO、Cを充填層138として利用することができる。充填層138は、バイアスをかけないスパッタ法で成膜する。ここで、基体にバイアスをかけながらスパッタを行うバイアススパッタ法を利用すると、凹部136に容易に充填層138を成膜することができるが、バイアス電圧をかけることによる基体の温度上昇およびこれに伴う基体の溶解が生じたり、スパッタダストが生じることによる基体表面の平坦化への妨げが発生したりするため、バイアスをかけないスパッタ法が好適である。
凹部136に非磁性の充填層138を成膜して、凹部136を埋める構成により、磁気トラック部としての凸部の鉛直方向の側面の酸化を防止することが可能となる。また、凸部と凹部の表面を略平坦にすることが可能となる。
なお、本実施形態はディスクリート型であるため、連続層124が凹部136によって分断されても、トラック方向に連続していることになる。このため連続層124はトラック方向に隣接する磁性粒子に亘って磁気的に連続することとなり、連続層124としての役割を発揮することができる。これに対しビットパターン型である場合には、記録ビット単位で連続層124も分断されてしまう。このため、ビットパターン型である場合には、連続層を設けなくてもよい。さらには、充填層成膜工程において充填層138の高さを磁気記録層122の高さと略等しく成膜し、その後に、隣接する凸部にある連続層124を接続するように、凹部136に連続層124を再成膜してもよい(連続層再成膜工程)。再成膜する連続層124の膜厚は、当然に凸部にある連続層124の膜厚と略等しくすることが好ましい。
<保護層再成膜工程>
充填層成膜工程において磁気記録層122の凹部136に充填層138を成膜した後、凹部136の充填層138の上にさらに保護層140を成膜する(図3(c))。なお、図3(c)中、保護層126をハッチングで示す。保護層再成膜工程における成膜方法は、保護層成膜工程の成膜方法を適用することができる。
ここで、凹部136に成膜される保護層140は、保護層126の表面と略等しくなる膜厚で成膜される。
上記説明したように、磁気記録層エッチング工程において、保護層126ごと磁気記録層122をイオンミリングすることにより凹部136を形成している。したがって、保護層再成膜工程を行わない場合には、後述する除去工程においてレジスト層132を除去する際に、凸部の表面には保護層126が、凹部136の表面には充填層138が存在することとなる。
しかし保護層再成膜工程を含むことにより、凹部136の表面にも保護層140を成膜することができ、垂直磁気記録媒体100の表面に連続して保護層126を存在させることが可能となる。
これにより、除去工程において、磁気記録層122の凸部の略鉛直方向の側面に溶剤が接触するのを回避できるため、磁気記録層122にダメージを与えるおそれを防ぐことが可能となる。
<除去工程>
図3(d)に示すように、溶剤を用いることにより、剥離層130ごとレジスト層132を除去する。本実施形態において、溶剤として有機溶剤を用いるが、これに限定されず、保護層126以下の層およびディスク基体110を溶解せずSOGの剥離層130を溶解できれば、有機溶剤であっても無機溶剤であってもよい。有機溶剤は、SOGの種類によって適宜選定され、特に限定されるものではないが、例えば、アセトン、メチルエチルケトン、乳酸エチル、エステル、プロピレングリコール・モノメチル・エーテル・アセテート等が挙げられる。無機溶剤は、SOGの種類によって適宜選定され、特に限定されるものではないが、例えば、KOH含有液、NaOH含有液、HCl含有液、HSO含有液、Cr混酸(CrOと硝酸、酢酸、リン酸等の混合液)等が挙げられる。なお、有機溶剤または無機溶剤は1種又は2種以上組み合わせて用いることができる。
<最終保護層成膜工程>
除去工程のあと、さらに保護層126を表面に成膜する(図3(e))。これにより、保護層126をより均一に成膜することが可能となる。また、膜硬度をさらに向上させることができる。最終保護層成膜工程における成膜方法は、保護層成膜工程および保護層再成膜工程と同様の成膜方法を適用することが可能である。
また、磁気記録層122と剥離層130の間に保護層126を備え、充填層138の表面にも保護層126を備える構成により、剥離層130を溶剤で除去する際に磁気記録層122が溶剤に接触するのを防ぐことが可能となり、磁気記録層122にダメージを与えるおそれを回避することができる。
<平坦化工程>
最終保護層成膜工程で成膜された保護層126の表面を、酸素を用いたRIEにより平坦化する(酸素アッシング)。RIEによって突出した部分から優先的にエッチングされるため、その表面を全体的に平坦にすることができる。本実施形態においてRIEのプラズマ源は、低圧で高密度プラズマが生成可能なICPを利用しているが、これに限定されず、ECRプラズマや、一般的な平行平板型RIE装置を利用することもできる。
平坦化工程を含む構成により、平坦度をさらに向上させることが可能となる。したがって、ヘッドクラッシュやサーマルアスペリティ障害をさらに低減させることができる。
(潤滑層成膜工程)
潤滑層128は、PFPE(パーフロロポリエーテル)をディップコート法により成膜することができる。PFPEは長い鎖状の分子構造を有し、保護層126表面のN原子と高い親和性をもって結合する。この潤滑層128の作用により、垂直磁気記録媒体100の表面に磁気ヘッドが接触しても、保護層126の損傷や欠損を防止することができる。
上述の磁気記録層エッチング工程に代えて、以下のイオン注入工程を行うことにより、パターニングを行ってもよい。イオン注入によって磁性トラック間のガードバンド領域の保磁力を適度に低下させると共に、比透磁率を適度に調節することで、良好なSNRを維持しつつ、磁性領域への書き込み特性および読み出し特性を向上させることができる。
<イオン注入工程>
図4は、図2(c)の状態から、このイオン注入工程を行った状態を示す。図4(a)に示すように、パターニング工程で所定のパターンにパターニングされたレジスト層132aの凹部から、剥離層130および保護層126を介して、磁気記録層122へ、イオンビーム法を用いてイオンを注入する。これにより、磁気記録層122におけるイオンが注入された部分、すなわちガードバンド領域142の結晶を非晶質化することができ、レジスト層132の凸部の下にある部分を磁気的に分離することが可能となる。
なお、ミリングによってガードバンド領域を物理的に掘削する場合は、ガードバンド領域は非磁性となる。これと比べて、イオン注入によって磁性トラック間のガードバンド領域142を形成する場合には、ガードバンド領域142の保磁力を適度に低下させると共に、比透磁率を調節することができる。比透磁率は、1が硬磁性(ハード)、100以上が軟磁性(ソフト)とされているが、特にガードバンド領域142の比透磁率を2〜100(セミハードと称する)、望ましくは3〜50で構成することで、良好なSNRを維持しつつ、磁性領域への書き込み特性および読み出し特性を向上させることができる。
本実施形態では、注入するイオンとしてAr、N2、O2の1または複数を用いているが、B、P、Si,F、C、In、Bi、Kr、Ar、Xe、W、As、Ge、Mo、Sn、N2、O2からなる群から選択されたいずれか1または複数のイオンを注入してもよい。
また、本実施形態では、凹凸パターンが転写されたレジスト層132aに別途処理を行わずイオン注入を行っているが、これに限定されず、磁気記録層エッチング工程の場合と同様、凹凸パターンが転写されたレジスト層132aの凹部底面に残存するレジスト層(図2(c)中クロスハッチングで示す。)をエッチング等によって除去してからイオン注入を行ってもよい。
<除去工程>
イオン注入工程後、磁気記録層エッチング工程の場合と同様、溶剤を用いることにより、剥離層130ごとレジスト層132を除去する(図4(b))。
上述した如く、本実施形態にかかる垂直磁気記録媒体100の製造方法では、レジスト層132の直下に溶剤で除去可能なSOGの剥離層130を成膜する構成により、パターンに応じて磁気記録層122を磁気的に分離した後、不要なレジスト層132を簡単かつ最適に除去することができる。したがって、表面に露出する層(保護層126)に損傷を与えることがなく、簡単かつ迅速にまたレジスト層132を除去することができる。また、従来は必要であったレジスト層132を除去するためのエッチングを行う必要がなくなるため、電力消費量を大幅に削減することができる。
以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上記実施形態において、剥離層130の直上にレジスト層132を成膜しているが、これに限定されず、剥離層とレジスト層の間に、耐熱性およびイオンマスク性、エッチング耐性を備えたマスク層(SiO等)を成膜してもよい。この際パターニング工程におけるレジスト残渣を除去するためのエッチングのほかに、当該マスク層を除去するためのエッチング工程をさらに含むとよい。
さらに本実施形態において、磁気記録媒体として、垂直磁気記録媒体について説明したが、面内磁気記録媒体においても好適に用いることができる。
本発明は、磁気記録方式のHDDなどに搭載される磁気記録媒体の製造方法および磁気記録媒体として利用可能である。
実施形態にかかる垂直磁気記録媒体の構成を説明する図である。 本実施形態にかかる磁気トラックパターン形成工程について説明するための説明図である。 本実施形態にかかる充填層成膜工程から最終保護層成膜工程までについて説明するための説明図である。 本実施形態にかかる他の磁気トラックパターン形成工程について説明するための説明図である。
符号の説明
100 …垂直磁気記録媒体
110 …ディスク基体
112 …付着層
114 …軟磁性層
114a …第1軟磁性層
114b …スペーサ層
114c …第2軟磁性層
116 …前下地層
118 …下地層
118a …第1下地層
118b …第2下地層
120 …非磁性グラニュラー層
122 …磁気記録層
122a …第1磁気記録層
122b …第2磁気記録層
124 …連続層
126 …保護層
128 …潤滑層
130 …剥離層
132 …レジスト層
134 …スタンパ
136 …凹部
138 …充填層
140 …凹部に成膜される保護層
142 …ガードバンド領域

Claims (8)

  1. 基体上に、磁気記録層を成膜する磁気記録層成膜工程と、
    前記磁気記録層の上に保護層を成膜する保護層成膜工程と、
    前記保護層の上にSOGによって剥離層を成膜する剥離層成膜工程と、
    前記剥離層の上にレジスト層を成膜するレジスト層成膜工程と、
    前記レジスト層および剥離層を加工することで該レジスト層および剥離層の厚さを部分的に変化させ所定のパターンを形成するパターニング工程と、
    前記所定のパターンに対応したパターンで前記磁気記録層を磁気的に分離する磁気分離工程と、
    前記剥離層を溶剤で除去することにより前記レジスト層を除去する除去工程と、
    を含むことを特徴とする磁気記録媒体の製造方法。
  2. 前記剥離層を除去する溶剤は、有機溶剤であることを特徴とする請求項1に記載の磁気記録媒体の製造方法。
  3. 前記磁気分離工程は、
    前記磁気記録層をエッチングすることにより該磁気記録層を前記所定のパターンに基づいて凸部と凹部を形成する磁気記録層エッチング工程と、
    前記磁気記録層の凹部に非磁性の充填層を成膜する充填層成膜工程と、
    を含むことを特徴とする請求項1または2に記載の磁気記録媒体の製造方法。
  4. 前記充填層成膜工程において前記磁気記録層の凹部に充填層を成膜した後、前記レジスト層を除去する除去工程の前に、該凹部にさらに保護層を成膜する保護層再成膜工程をさらに含むことを特徴とする請求項3に記載の磁気記録媒体の製造方法。
  5. 前記磁気記録層は、柱状に成長した結晶粒子の間に非磁性物質からなる粒界部を形成したグラニュラー構造の強磁性層であることを特徴とする請求項1から4のいずれか1項に記載の磁気記録媒体の製造方法。
  6. 基体上に、磁気記録層を成膜する磁気記録層成膜工程と、
    前記磁気記録層の上に保護層を成膜する保護層成膜工程と、
    前記保護層の上にSOGによって剥離層を成膜する剥離層成膜工程と、
    前記剥離層の上にレジスト層を成膜するレジスト層成膜工程と、
    前記レジスト層および剥離層を加工することで該レジスト層および剥離層の厚さを部分的に変化させ所定のパターンを形成するパターニング工程と、
    前記磁気記録層をエッチングすることにより該磁気記録層を前記所定のパターンに基づいて凸部と凹部を形成する磁気記録層エッチング工程と、
    前記磁気記録層の凹部に非磁性の充填層を成膜する充填層成膜工程と、
    前記充填層成膜工程において前記磁気記録層の凹部に充填層を成膜した後、該凹部にさらに保護層を成膜する保護層再成膜工程と、
    前記剥離層を溶剤で除去することにより前記レジスト層を除去する除去工程と、
    さらに保護層を成膜する最終保護層成膜工程と、
    前記最終保護層成膜工程で成膜された保護層の表面を平坦にする平坦化工程と、
    を含むことを特徴とする磁気記録媒体の製造方法。
  7. 請求項1から6に記載の磁気記録媒体の製造方法を用いて製造されたことを特徴とする磁気記録媒体。
  8. 基体上に少なくとも磁気記録層、保護層、潤滑層をこの順に備える磁気記録媒体であって、
    前記保護層と前記潤滑層の間にSOGが介在することを特徴とする磁気記録媒体。
JP2008280568A 2008-10-30 2008-10-30 磁気記録媒体の製造方法および磁気記録媒体 Expired - Fee Related JP5302625B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280568A JP5302625B2 (ja) 2008-10-30 2008-10-30 磁気記録媒体の製造方法および磁気記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280568A JP5302625B2 (ja) 2008-10-30 2008-10-30 磁気記録媒体の製造方法および磁気記録媒体

Publications (2)

Publication Number Publication Date
JP2010108559A JP2010108559A (ja) 2010-05-13
JP5302625B2 true JP5302625B2 (ja) 2013-10-02

Family

ID=42297855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280568A Expired - Fee Related JP5302625B2 (ja) 2008-10-30 2008-10-30 磁気記録媒体の製造方法および磁気記録媒体

Country Status (1)

Country Link
JP (1) JP5302625B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002692B2 (ja) 2010-09-01 2012-08-15 株式会社東芝 磁気記録媒体の製造方法
JP2013135181A (ja) * 2011-12-27 2013-07-08 Panasonic Corp フレキシブルデバイスの製造方法
JP2015011746A (ja) 2013-06-28 2015-01-19 株式会社東芝 パターン形成方法、それを用いた磁気記録媒体の製造方法、磁気記録媒体、及びスタンパーの製造方法
WO2019146115A1 (ja) 2018-01-29 2019-08-01 シャープ株式会社 表示デバイスおよび表示デバイスの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164365A (ja) * 2004-12-06 2006-06-22 Tdk Corp 樹脂マスク層形成方法、情報記録媒体製造方法および樹脂マスク層形成装置
JP4519668B2 (ja) * 2005-01-31 2010-08-04 株式会社東芝 パターンド磁気記録媒体、パターンド磁気記録媒体作製用スタンパー、パターンド磁気記録媒体の製造方法、および磁気記録再生装置
JP2006147148A (ja) * 2006-03-03 2006-06-08 Toshiba Corp 磁気記録媒体
JP4550776B2 (ja) * 2006-06-30 2010-09-22 株式会社東芝 パターンド磁気記録媒体および磁気記録装置
JP2008041114A (ja) * 2006-08-01 2008-02-21 Showa Denko Kk 磁気記録媒体の製造方法、及び磁気記録再生装置

Also Published As

Publication number Publication date
JP2010108559A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
JP4469774B2 (ja) 磁気記録媒体および磁気記録装置
WO2010095725A1 (ja) 磁気記録媒体の製造方法および磁気記録媒体
US7625645B2 (en) Patterned magnetic recording media, stamper for manufacture of patterned magnetic recording media, method of manufacturing patterned magnetic recording media, and magnetic recording/reproduction apparatus
WO2010067830A1 (ja) 磁気記録媒体および磁気記録媒体の製造方法
JP4468469B2 (ja) 磁気記録媒体の製造方法
JP4575499B2 (ja) 磁気記録媒体の製造方法
JP4575498B2 (ja) 磁気記録媒体の製造方法
JP4551957B2 (ja) 磁気記録媒体の製造方法
JP5302625B2 (ja) 磁気記録媒体の製造方法および磁気記録媒体
US8303828B2 (en) Method for manufacturing magnetic recording medium and magnetic recording-reproducing apparatus
JP2010009709A (ja) 磁気記録媒体の製造方法および磁気記録媒体
CN101101758A (zh) 磁记录介质和磁记录装置
US20100326819A1 (en) Method for making a patterned perpendicular magnetic recording disk
JP2010086588A (ja) 磁気記録媒体の製造方法および磁気記録媒体
WO2010027036A1 (ja) 磁気記録媒体の製造方法および磁気記録媒体
JP4421403B2 (ja) 磁気記録媒体、磁気記録装置、および磁気記録媒体の製造方法
JP4413703B2 (ja) 磁気ディスクおよび磁気ディスク装置
JP2006031849A (ja) 磁気記録媒体の製造方法、磁気記録媒体および磁気ディスク装置
JP4331067B2 (ja) 磁気記録装置
JP2010009710A (ja) 磁気記録媒体の製造方法および磁気記録媒体
US9147423B2 (en) Method for improving a patterned perpendicular magnetic recording disk with annealing
JP2010049740A (ja) 磁気記録媒体の製造方法および磁気記録媒体
JP2006048860A (ja) 磁気記録媒体および磁気記録装置
JP2006031850A (ja) 磁気記録媒体および磁気ディスク装置
JP2009199641A (ja) 垂直磁気記録媒体とそれを用いた垂直磁気記録装置、および垂直磁気記録媒体の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees