JP5289912B2 - 走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム - Google Patents

走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム Download PDF

Info

Publication number
JP5289912B2
JP5289912B2 JP2008306300A JP2008306300A JP5289912B2 JP 5289912 B2 JP5289912 B2 JP 5289912B2 JP 2008306300 A JP2008306300 A JP 2008306300A JP 2008306300 A JP2008306300 A JP 2008306300A JP 5289912 B2 JP5289912 B2 JP 5289912B2
Authority
JP
Japan
Prior art keywords
electron
emission
electrons
incident
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008306300A
Other languages
English (en)
Other versions
JP2010129516A (ja
Inventor
岳志 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2008306300A priority Critical patent/JP5289912B2/ja
Publication of JP2010129516A publication Critical patent/JP2010129516A/ja
Application granted granted Critical
Publication of JP5289912B2 publication Critical patent/JP5289912B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は走査電子顕微鏡、放出電子検出値推定方法、SEM像シミュレーション方法、及びそのプログラムに関する。
電子ビームによる試料からの放出電子を求める方法としてモンテカルロ法を用いた計算方法が一般的に知られている。この方法では、試料に入射した電子によって発生する反射電子、二次電子の発生過程と乱数を用いて再現し、繰り返し計算を行うことで、上記両電子の放出数、エネルギー、放出角が算出される。反射電子とは試料からの放出電子のうち、エネルギーが例えば、50eV以上のものを言い、二次電子とはエネルギーが50eV未満の電子を言う。実際に走査電子顕微鏡(所謂SEM)が顕微像(所謂SEM像)を得る際には、上記二次電子を検出するのが一般的である。
特許文献1には、測長SEMの高精度化を図るため、上記モンテカルロ法によって得られる放出電子の信号量から電子線の最適フォーカス値を算出する電子線シミュレーション技術が開示されている。同文献によれば、強度分布を仮定した入射電子線の衝突による放出電子のモンテカルロシミュレーションを行い、入射位置及び入射角毎に得られる二次電子の総和をSEM像の信号量としている。該文献はシミュレーションの精度を向上するための方法、手段について述べたものであって、オペレータが所望するSEM像を得るように電子光学系等を条件設定するものではない。
なお、磁界レンズ、電界レンズ等の電子光学系によって生じる電場分布、磁場分布の算出には差分法や有限要素法等による計算方法がよく知られている(特許文献1の[0054])のでここでは詳細には触れない。
特開2007−218711号公報
試料から放出された電子は、電子光学系が生じる磁場又は電場によって偏向を受け、その後、検出器が生じる電場によって集められて検出される。このような電子がSEM像の形成に寄与する。しかしながら、放出された電子の放出角又はエネルギーによっては、対物レンズ等の電子光学系によって遮断されたり、検出器の検出部以外の箇所に衝突したりすることで、SEM像の形成に寄与しない場合もある。即ち、SEM像の形成に寄与する電子は全ての放出電子のうちの一部である。
また、検出器は基本的に上述した低エネルギーの電子(二次電子)を検出するが、放出電子の放出角及びエネルギーによっては高エネルギーの電子(反射電子)も検出する。更には、反射電子によって電子光学系等の構造部材から二次電子が放出され、この二次電子を検出してしまう場合も有りうる。
実際に得られるSEM像はこれらの電子を含んでいるため、試料からの放出電子のみを用いて形成したSEM像と異なる場合が多い。また、電子光学系等の構成の変化によっても得られるSEM像が変化する場合もある。
そこで本発明は、実観察で得られる放出電子の検出値を高精度に推定する放出電子検出値推定方法、および実観察で得られるSEM像を高精度にシミュレーションするSEM像シミュレーション方法の提供、並びにそのプログラムの提供を目的とする。更に本発明は、上記方法による放出電子検出値推定機能又はSEM像シミュレーション機能を有し、所望のシミュレーション結果が実観察でも得られるように電子光学系等の一部又は全部を設定できるような走査電子顕微鏡の提供を目的とする。
請求項1記載の発明は放出電子検出値推定方法であって、走査電子顕微鏡内の電子光学系及び検出器が生じる電磁場分布を予め計算する第1のステップと、前記電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力する第2のステップと、入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第3のステップと、前記電磁場分布内における前記第1放出電子の軌道を、前記第3のステップによって得られた第1放出電子のパラメータに基づいて計算する第4のステップと、前記第4のステップによる計算結果に基づいて、前記検出器に到達する前記第1放出電子を計数する第5のステップと、前記第3乃至第5までの各ステップを所定の回数繰り返して、前記第5のステップで得られる計数値の平均値を推定検出値として計算する第6のステップと、を備えることを特徴とする。
請求項2記載の発明は、前記第4のステップにおいて、前記第1放出電子が前記電子光学系等に衝突した場合は、前記第4ステップに替えてその衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、前記第5のステップにおいて、前記第5ステップに替えて前記電磁場分布内の前記第2放出電子の軌道を、前記第4のステップによって得られた前記第2放出電子のパラメータに基づいて計算し、検出器に到達する第2放出電子を計数することを特徴とする。
請求項3記載の発明はSEM像シミュレーション方法であって、請求項1又は2の何れかに記載の検出値推定方法を有し、更に、前記第6のステップを前記入射ビームの入射位置毎に行って前記入射位置毎の推定検出値を計算するステップと、前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成するステップとを有することを特徴とする。
請求項4の発明は放出電子検出値推定方法であって、走査電子顕微鏡内の電子光学系及び検出器が生じる電磁場分布を予め計算する第1のステップと、前記電磁場分布内の試料位置から出射する出射電子のエネルギー及び出射角の互いに異なる組み合わせを複数設定する第2のステップと、前記複数の組み合わせに基づいて、前記電磁場分布内の前記出射電子の軌道を計算する第3のステップと、前記第3のステップによる計算結果に基づいて、前記検出器に到達する前記出射電子を計数してその計数値を参照値とし、前記各組み合わせと前記参照値を対応付けた検出値参照テーブルを作成する第4のステップと、前記試料位置に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力する第5のステップと、入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第6のステップと、前記第6のステップで算出された全ての前記第1放出電子に対して、そのエネルギー及び放出角と最も差の小さい前記検出値参照テーブルの前記出射電子を選択し、選択された出射電子の前記参照値の合計値を算出する第7のステップと、前記第6及び第7のステップを所定の回数繰り返して得られた各合計値の平均値を算出し、該平均値を前記入射位置からの放出電子の推定検出値とする第8のステップと、を備えること特徴とする。
請求項5の発明は、前記第3のステップにおいて、前記出射電子が前記電子光学系等に衝突した場合は、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第9のステップと、前記電磁場分布内における前記第2放出電子の軌道を、前記第9のステップによって得られた前記第2放出電子のパラメータに基づいて計算する第10のステップと、前記検出器に到達した前記第2放出電子を計数する第11のステップと、を更に備え、前記第9乃至第11のステップは複数回実行され、得られた前記第2放出電子の計数値は平均化されて前記参照値に加算されることを特徴とする。
請求項6の発明はSEM像シミュレーション方法であって、請求項4又は5の何れかに記載の検出値推定方法を有し、更に、前記第8のステップを前記入射ビームの入射位置毎に行って、その推定検出値を計算するステップと、前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成するステップとを有することを特徴とする。
請求項7の発明は放出電子検出値推定プログラムであって、コンピュータを、走査電子顕微鏡内の電子光学系及び検出器が生じる電磁場分布を予め計算する第1の手段と、前記電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力する第2の手段と、入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第3の手段と、前記電磁場分布内における前記第1放出電子の軌道を、前記第3の手段によって得られた第1放出電子のパラメータに基づいて計算する第4の手段と、前記第4の手段による計算結果に基づいて、前記検出器に到達する前記第1放出電子を計数する第5の手段と、前記第3乃至第5までの各手段を所定の回数繰り返して、前記第5の手段で得られる計数値の平均値を推定検出値として計算する第6の手段として機能させることを特徴とする。
請求項8の発明は、前記第4の手段が、前記第1放出電子が前記電子光学系等に衝突した場合、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、前記第5の手段が、電磁場分布内における前記第2放出電子の軌道を、前記第4の手段によって得られた前記第2放出電子のパラメータに基づいて計算することを特徴とする。
請求項9の発明はSEM像シミュレーションプログラムであって、前記コンピュータを、請求項7又は8の何れかに記載の各手段と、前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成する手段として機能させ、前記第6の手段は前記入射ビームの入射位置毎に行って前記入射位置毎の推定検出値を計算することを特徴とする。
請求項10の発明は、放出電子検出値推定プログラムであって、コンピュータを、走査電子顕微鏡内の電子光学系及び検出器が生じる電磁場分布を予め計算する第1の手段と、前記電磁場分布内の試料位置から出射する出射電子のエネルギー及び出射角の互いに異なる組み合わせを複数設定する第2の手段と、前記複数の組み合わせに基づいて、前記電磁場分布内の前記出射電子の軌道を計算する第3の手段と、前記第3の手段による計算結果に基づいて、前記検出器に到達する前記出射電子を計数してその計数値を参照値とし、前記各組み合わせと前記参照値を対応付けた検出値参照テーブルを作成する第4の手段と、前記試料位置に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力する第5の手段と、入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第6の手段と、前記第6の手段によって算出された全ての前記第1放出電子に対して、そのエネルギー及び放出角と最も差の小さい前記検出値参照テーブルの前記出射電子を選択し、選択された出射電子の前記参照値の合計値を算出する第7の手段と、前記第6及び第7の手段を所定の回数繰り返して得られた各合計値の平均値を算出し、該平均値を前記入射位置からの放出電子の推定検出値として算出する第8の手段として機能させることを特徴とする。
請求項11の発明は、前記コンピュータを更に、前記第3の手段による軌道計算において前記出射電子が前記電子光学系等に衝突した場合は、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第9の手段と、前記電磁場分布内における前記第2放出電子の軌道を、前記第9の手段によって得られた前記第2放出電子のパラメータに基づいて計算する第10の手段と、前記検出器に到達した前記第2放出電子を計数する第11の手段として機能させ、前記第9乃至第11の手段は複数回実行され、得られた前記第2放出電子の計数値は平均化されて前記参照値に加算されることを特徴とする。
請求項12の発明はSEM像シミュレーションプログラムであって、前記コンピュータを、請求項10又は11の何れかに記載の各手段と、前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成する手段として機能させ、前記第8の手段は前記入射ビームの入射位置毎に行って、その推定検出値を計算することを特徴とする。
請求項13の発明は、電子光学系と検出器とを少なくとも備える走査電子顕微鏡において、前記電子光学系及び検出器が生じる電磁場分布を予め計算する電磁場分布計算部と、前記電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力するデータ入力部と、入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する放出電子算出部と、前記電磁場分布内における前記第1放出電子の軌道を、前記放出電子算出部によって得られた第1放出電子のパラメータに基づいて計算する電子軌道計算部と、前記電子軌道計算部による計算結果に基づいて、前記検出器に到達する前記第1放出電子を計数する電子計数部と、前記入射ビームの入射位置毎に前記放出電子算出部、前記電子軌道計算部、前記電子計数部の各処理を所定の回数実行させて、前記電子計数部で得られる計数値の平均値を推定検出値として計算する推定検出値計算部と、前記推定検出値に応じた強度を前記入射位置毎に対応付けて配列させた模擬SEM像データを生成する模擬SEM像データ生成部と、前記模擬SEM像データに基づく模擬SEM像を表示する模擬SEM像表示部と、を備えることを特徴とする。
請求項14の発明は、前記電子軌道計算部による軌道計算において、前記第1放出電子が前記電子光学系等に衝突した場合、前記放出電子算出部は、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、前記電子軌道計算部は、前記電磁場分布内における前記第2放出電子の軌道を、前記放出電子算出部によって得られた前記第2放出電子のパラメータに基づいて計算し、前記電子計数部は更に、前記検出器に到達する前記第2放出電子を計数することを特徴とする。
請求項15の発明は、電子光学系と検出器とを少なくとも備える走査電子顕微鏡において、前記電子光学系及び検出器が生じる電磁場分布を予め計算する電磁場分布計算部と、前記電磁場分布内の試料位置から出射する出射電子のエネルギー及び出射角の互いに異なる組み合わせを複数設定するパラメータ設定部と、前記複数の組み合わせに基づいて、前記電磁場分布内の前記出射電子の軌道を計算する電子軌道計算部と、前記電子軌道計算部による計算結果に基づいて、前記検出器に到達する前記出射電子を計数する電子計数部と、前記電子計数部で得られる計数値を参照値とし、前記各組み合わせと前記参照値を対応付けた検出値参照テーブルを作成する検出値参照テーブル作成部と、前記試料位置に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力するデータ入力部と、入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する放出電子算出部と、前記放出電子算出部によって算出された全ての前記第1放出電子に対して、そのエネルギー及び放出角と最も差の小さい前記検出値参照テーブルの前記出射電子を選択し、選択された出射電子の前記参照値の合計値を前記入射位置からの放出電子の推定検出値として算出する推定検出値算出部と、前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成する模擬SEM像データ生成部と、前記模擬SEM像データに基づくSEM像を表示するSEM像表示部と、を備え、前記第1放出電子のモンテカルロ法による算出は複数回行われることによって、前記参照値は平均化されることを特徴とする。
請求項16の発明は、前記電子軌道計算部による軌道計算において前記出射電子が前記電子光学系等に衝突した場合、前記放出電子算出部はその衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、前記電子軌道計算部は、電磁場分布内における前記第2放出電子の軌道を、前記放出電子算出部によって得られた前記第2放出電子のパラメータに基づいて計算し、前記電子計数部は更に、前記検出器に到達する前記第2放出電子を計数し、前記第2放出電子のモンテカルロ法による算出は複数回行われることによって、前記参照値は平均化されて前記参照値に加算されることを特徴とする。
請求項17の発明は、少なくとも1つの電極を含む電子光学系と検出器とを少なくとも備える走査電子顕微鏡において、前記電子光学系及び検出器が生じる電磁場分布を前記電極に印加される所定の複数の電圧値に対して予め計算する電磁場分布計算部と、前記各電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの複数の入射位置を入力するデータ入力部と、入力された前記試料データ及び前記入射位置と前記電子ビームの複数の入射エネルギー値とに基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する放出電子算出部と、前記電磁場分布内における前記第1放出電子の軌道を、前記放出電子算出部によって得られた第1放出電子のパラメータに基づいて計算する電子軌道計算部と、前記電子軌道計算部によって計算された軌道のうち、前記検出器に到達する前記第1放出電子を計数する電子計数部と、前記入射位置毎に前記放出電子算出部、電子軌道計算部、電子計数部の各処理を所定の回数繰り返して実行させて、前記電子計数部で得られる計数値の平均値を各入射位置の推定検出値として計算する推定検出値計算部と、前記複数の入射エネルギー値における前記複数の入射位置の前記推定検出値の組み合わせから最もコントラストが高くなる組み合わせの前記入射エネルギー及び前記電圧値を選択する最適コントラスト選択部と、選択された前記入射エネルギー及び前記電圧値を前記電子光学系に設定する印加電圧設定部と、を備えることを特徴とする。
請求項18の発明は、前記電子軌道計算部による軌道計算において前記第1放出電子が前記電子光学系等に衝突した場合、前記放出電子算出部は更に、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、前記電子軌道計算部は、前記電磁場分布内における前記第2放出電子の軌道を、前記放出電子算出部によって得られた前記第2放出電子のパラメータに基づいて計算し、前記電子計数部は更に、前記電子軌道計算部による計算結果に基づいて、前記検出器に到達する前記第2放出電子を計数することを特徴とする。
請求項19の発明は、少なくとも1つの電極を含む電子光学系と検出器とを少なくとも備える走査電子顕微鏡において、前記電子光学系及び検出器が生じる電磁場分布を前記電極に印加される所定の複数の電圧値に対して予め計算する電磁場分布計算部と、前記各電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの複数の入射位置を入力するデータ入力部と、入力された前記試料データ及び前記入射位置と前記電子ビームの複数の入射エネルギー値とに基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する放出電子算出部と、前記電磁場分布内における前記第1放出電子の軌道を、前記放出電子算出部によって得られた第1放出電子のパラメータに基づいて計算する電子軌道計算部と、前記電子軌道計算部によって計算された軌道のうち、前記検出器に到達する前記第1放出電子を計数する電子計数部と、前記入射位置毎に前記放出電子算出部、電子軌道計算部、電子計数部の各処理を所定の回数繰り返して実行させて、前記電子計数部で得られる計数値の平均値を各入射位置の推定検出値として計算する推定検出値計算部と、模擬SEM像データ生成部で生成された全模擬SEM像を一覧表示するための模擬SEM像一覧表示データ生成部と、一覧表示された模擬SEM像の中からオペレータが選択する像選択部と、選択された模擬SEM像に相当する前記入射エネルギー及び前記電圧値を前記電子光学系に設定する印加電圧設定部と、を備えることを特徴とする。
本発明によれば、実際の走査電子顕微鏡の電子光学系及び検出器の諸条件(即ち、形状、印加電圧、アンペアターン等)に基づいた電磁場が再現されるため、推定検出値を高精度に算出できる。また、放出電子に対して、実際の電磁場による偏向又は電子光学系等の物理的構成要素による遮断が考慮されるので、推定検出値は実際の走査電子顕微鏡において得られる検出値に近くなる。
また、推定検出値の算出において検出対象となる電子は、試料から直接放出された電子のみならず、上記放出電子が電子光学系等に衝突したことによって放出された電子も含めることが出来る。従って、上記推定検出値の精度を更に高めることが出来る。
また、試料の各位置からの検出値が推定できるので、これら推定検出値を各位置毎に配列させて画像データとすれば模擬SEM像が得られる。電子光学系の設定条件及び入射電子の入射条件を変えた各種の模擬SEM像が実観察以前に得られるので、実際の試料を用いた観察の試行錯誤を繰り返す必要がなくなる。従って、電子ビームによる試料の汚染等の劣化が低減される。
更に、走査電子顕微鏡の電子光学系及び検出器によって生じる電磁場分布が予め計算され、この電磁場分布における試料位置からの出射電子及びこの出射電子に起因する二次電子の検出数が出射電子の出射条件毎に参照値として求められ、これらが検出値参照テーブルとして保存される。そして、試料から放出される電子のエネルギー、放出角等をこの検出値参照テーブルの出射電子の出射条件に当てはめることで、当該電子を放出した事象の検出値が検出値参照テーブルの参照値から求められる。即ち、あらゆる出射条件の電子に対して、検出器が検出する電子の数が検出値参照テーブルとして保存されているので、試料からの放出された電子の軌道計算を個別に行う必要が無く、検出値の推定が容易になる。
(第1実施形態)
本発明の第1実施形態について説明する。
図1は本発明の第1実施形態に係る走査電子顕微鏡の模式図である。図2は本発明の第1実施形態に係る制御処理部のブロック図である。
第1実施形態に係る走査電子顕微鏡は、顕微鏡本体1と、電源部8と、制御装置10とを備える。顕微鏡本体1内には、電子線2を発生する電子銃3と、電子線2の集束、偏向等を行う電子光学系4と、試料5が設けられる試料ステージ6と、顕微鏡本体1内の電子を検出する検出器7が設置される。電源部8は制御装置10によって制御され、電子銃3及び電子光学系4に電圧又は電流を印加する。なお、電子銃3及び電子光学系4は電子線2の光軸(図示せず)に沿って配置され、試料ステージ6は光軸上に位置する。
電子光学系4は電子線2の集束、収差補正、偏向等を行う電極又は磁極、及び検出器7に電子を到達させる電極又は磁極によって構成される。例えば、図1に示すように、電子光学系4は電子線2を集束する集束レンズ4a、電子線2を試料5上でスキャンするための偏向器4b、集束レンズ4aで集束された電子線2を更に微小な電子線に集束する対物レンズ4cから構成される。さらに例えば、図3に示すように、対物レンズ4cの前後に電極41、42等が設けられる。電極41、42は検出器7による電子の検出効率を向上させるための電場を発生する。なお、図3に示す例では対物レンズ4cが磁界レンズである場合を想定しており、励磁のためのコイル43が設けられている。
制御装置10は、図1に示すようにCPU11と、内部記憶手段12と、電源制御部13と、信号処理部14と、制御処理部15と、入力部(データ入力部)16と、表示部(SEM像表示部)17と、外部記憶手段18を備える。これらはバスによって相互に接続されている。内部記憶手段12は例えばRAM、ROM等である。また、外部記憶手段18は例えば、ハードディスクドライブ、フロッピー(登録商標)ディスクドライブ等のリームバブルメディアである。CPU11は内部記憶手段12に記憶されたプログラムを実行し、電源制御部13、信号処理部14、制御処理部15などを制御する。本発明に係る放出電子検出値の推定やSEM像のシミュレーションは制御処理部15で処理される。また、CPU11は、電源制御部13、電源部8を介して電子光学系4が生じる電場及び磁場を設定することで電子線2を試料上でスキャンする。検出器7は電子線2によって試料5から放出された二次電子を検出して検出信号を出力する。CPU11はこの検出信号を受信した信号処理部を制御して、表示部17に実SEM像を表示させる。
制御処理部15は、電磁場分布計算部20と、放出電子算出部21と、電子軌道計算部22と、電子計数部23と、推定検出値計算部24と、模擬SEM像データ生成部25とを備える。プログラムが実行している間、制御処理部15は内部記憶手段12のプログラム記憶部30、データベース31、データ記憶部32に格納されたプログラム、データ等を参照する。制御処理部15には入力部(データ入力部)16からのデータが入力される。例えば、試料5の形状や組成、電子光学系4の設定値等が入力部16から入力される。制御処理部15は表示部(SEM像表示部)17とも接続されており、例えば、後述する模擬SEM像データ生成部25によって生成された画像データを模擬SEM像として表示部17に表示させる。
なお、制御処理部15はコンピュータ(図示せず)に搭載されても良い。この場合、コンピュータは、図1の制御装置10から電源制御部13、信号処理部14を省いた構成となり、本発明の放出電子検出値の推定、或いは、SEM像シミュレーションはコンピュータ単体で実行される。
本発明の第1実施形態に係る放出電子検出値推定方法およびSEM像シミュレーション方法の処理について説明する。
図4、5は本実施形態の走査電子顕微鏡において実行される放出電子検出値推定方法およびSEM像シミュレーション方法の各処理を示すフローチャートであり、図4は基礎電磁場分布データの作成手順を示すフローチャート、図5は基礎電磁場分布データを用いた推定検出値テーブルの作成手順及び模擬SEM像の表示手順を示すフローチャートである。
本実施形態では、まず試料5と電子光学系4と検出器7を含む空間内の電磁場分布を計算する。
図4に示すように、最初のステップA1において、電子光学系4及び検出器7等の電場又は磁場を生じる各構成部材の形状及び位置、並びに印加電圧、印加アンペアターン等の情報を含む要素データを入力する。要素データは入力部(データ入力部)16から入力される。要素データは機密情報であり、設計者や開発者等のオペレータ(ユーザ)ではない者によって入力される。また、要素データを入力部16から入力する代わりに外部記憶装置18から要素データを読み込ませても良い。或いはまた、プログラム記憶部30に記憶されるプログラムに当該要素データを含ませて、そのデータを読み込んでも良い。
上記要素データを用いて、電磁場分布計算部20は各要素によって生じる各電場分布、各磁場分布を基礎電磁場分布として計算する(ステップA2)。各基礎電磁場分布は、各要素が上記空間内に生じる電磁場分布であり、後述する電子の軌道計算に用いられる電磁場分布は各基礎電磁場分布を重ね合わせることによって得られる。計算された各基礎電磁場分布は基礎電磁場分布データとしてデータベース31に記憶保存される。
次に各基礎電磁場分布データを用いた放出電子の推定検出値の算出及び模擬SEM像表示までの各処理について説明する。
図5に示すように、ステップB1において、オペレータは各要素に印加する電圧、アンペアターン等の電磁場解析用データ及び電子線2の加速電圧、入射位置、入射角等の入射条件を入力する。ここで入力する印加電圧及びアンペアターンは各々複数個入力するので電磁場分布は複数個作成される。更に次に、オペレータは試料5の形状及び組成等の試料データを1種類入力する。例えば、図6に示すような試料5の場合、オペレータは試料5aの成分A及び形状、試料5bの成分及び形状を入力し、それぞれに電子線2が入射する位置C、Dを入力する。
電磁場分布計算部20は、データベース31に記憶保存された各基礎電磁場分布データを読み込み(ステップB2)、オペレータによって入力された電磁場解析用データを用いて、上記空間内の電場分布E及び磁場分布M(以下便宜上、これらの分布を総称して電磁場分布EMと称する)を計算する(ステップB3)。電磁場分布EMは、基礎電磁場分布のそれぞれに対して、電磁場解析用データの電圧或いはアンペアターンを、要素データの印加電圧或いはアンペアターンで除した値を乗じて、更に、重ね合わせることで得られる。例えば、電極41についての基礎電場分布及びその要素データとして入力した印加電圧をそれぞれE(x,y,z)、Vstとし、検出器7についての基礎電場分布及びその要素データとして入力した印加電圧をそれぞれE(x,y,z)、Vsdとし、更にオペレータによって入力された電極41、検出器7の各印加電圧がそれぞれVut、Vudとすると、これら電極41、検出器7によって生じる電場分布E(x,y,z)は、
Figure 0005289912
と表される。同様に、例えば、対物レンズ4cについての基礎磁場分布及びその要素データとして入力したコイル43に印加されたアンペアターンをそれぞれM(x,y,z)、NIとし、更にオペレータによって入力されたアンペアターンをNIとすると、対物レンズ4cによって生じる磁場分布M(x,y,z)は、
Figure 0005289912
と表される。
次に、放出電子算出部21は、試料5の試料データおよび電子線2の入射条件に基づいて、電子線2によって試料5から放出される電子(第1放出電子)50(51)の数、放出角θz、θx、及びエネルギー等(図6参照)をモンテカルロ法により計算する(ステップB4)。
電子軌道計算部22は、ステップB3によって求められた電磁場分布EM(即ち電場分布E及び磁場分布M)とステップB4によって求められた第1放出電子の各パラメータとを用いて、第1放出電子の軌道を計算する(ステップB5)。
放出角又はエネルギーによっては、第1放出電子が電子光学系4に衝突する場合がある(図3に示す第1放出電子51)。CPU11はこの衝突が起こったか否かを判断し(ステップB6)、衝突があった場合(ステップB6でYES)には、放出電子算出部21が再びその衝突によって電子光学系4から放出される電子(第2放出電子)52の数、放出角、及びエネルギー等をモンテカルロ法により計算する(ステップB7)。そして、電子軌道計算部22は、ステップB3の処理によって求められた電磁場分布EMとステップB7によって求められた第2放出電子の各パラメータと用いて、第2放出電子の軌道を計算する(ステップB8)。なお、第1放出電子が電子光学系4に衝突しない場合や衝突する電子光学系4の材質によっては二次電子放出率が著しく低い場合(ステップB6でNO)も有り得る。そのような材質の使用は設計者等にとっては既知であるので、ステップB6〜B8までの処理を予め省略してもよい。この場合、ステップB5の処理から直ちにステップB9に進む。
ここまでの処理によって、電磁場分布EM内における全ての放出電子の軌道が求められている。ステップB9において電子計数部23は、これら全ての軌道のうち検出器7に到達する軌道の数、即ち、検出器7によって検出される第1放出電子と第2放出電子を計数する。この計数値はデータ記憶部32において積算計数値として積算される。
モンテカルロ法は乱数を利用した計算方法であるため、ステップB4の第1放出電子に対する計算精度及びステップB7の第2放出電子に対する計算精度を上げるには繰り返し計算を行う必要がある。そこで、これらを計算する所定の回数を予め設定しておき、推定検出値計算部24はステップB4及びB7の計算が上記所定の回数行なわれたか否かを判断し(ステップB10)、所定の回数に達していない場合には(ステップB10でNO)ステップB4に戻り、再び第1放出電子の算出からの各処理を行う。所定の回数に達した場合には(ステップB10でYES)、積算計数値を所定の回数で除した値を推定検出値として算出する(ステップB11)。推定検出値はデータ記憶部32に記憶される。例えば、図7に示すように、1回目の第1及び第2放出電子の数が3個であり、その結果、検出器7が検出する検出電子数が2であったとする。このような計算を100回繰り返した結果、第1及び第2放出電子の総数が297個であり、検出電子数の合計が187個であったとする。計算は100回行ったので、推定検出値は1.87(=187/100)となる。
ステップB4からB11までの処理では、ステップB1において入力された入射条件のうち1つの入射位置について放出電子が計算される。ステップB1において電子線2の入射位置を複数設定した場合、CPU11はこれらの全ての入射位置に対して推定検出値が算出されたか否かを判断し(ステップB12)、全ての入射位置に対して推定検出値が算出されていない場合には(ステップB12でNO)、電子線2の入射位置を変えて再びステップB4からの処理を行う。全ての入射位置に対して推定検出値が算出された場合には(ステップB12でYES)、ステップB3で計算された全ての電磁場分布に対して、推定検出値が算出されたか否かを判断する(ステップB13)。推定検出値が全ての電磁場分布に対して算出されていない場合には(ステップB13でNO)、残りの電磁場分布に対して推定検出値を算出するためステップB4に戻る。推定検出値が全ての電磁場分布に対して算出された場合には(ステップB13でYES)、次のステップに進む。
この時点で全ての電磁場分布EM及び入射条件に対して推定検出値が算出されている。CPU11はこれら推定検出値を推定検出値テーブルとして作成し(ステップB14)、データベース31に記憶する。
模擬SEM像データ生成部25は、データベース31に記憶された推定検出値テーブルの推定検出値から、それに応じた強度を入射位置毎に配列させて模擬SEM像データを生成する(ステップB15)。この模擬SEM像データを用いて模擬SEM像を表示部17で表示させると(ステップB16)、全処理が終了する。なお、制御処理部15は、模擬SEM像データ生成部25の他、すべての模擬SEM像を一覧表示するための模擬SEM像一覧表示データ生成部34を有してもよく、望むなら模擬SEM像の一覧表示を観察することが出来る。
本実施形態によれば、走査電子顕微鏡の電子光学系及び検出器によって生じる電磁場分布が計算され、一方、モンテカルロ法を用いて試料から放出される電子が算出される。そして、上記電磁場内を通過する電子の軌道を計算し、検出器に到達した電子のみが推定検出値として得られる。
また、実際の走査電子顕微鏡の電子光学系及び検出器の諸条件(即ち、形状、印加電圧、アンペアターン等)に基づいて電磁場を再現するので、推定検出値を高精度に算出できる。また、放出電子に対して、実際の電磁場による偏向又は電子光学系等の物理的構成要素による遮断が考慮されるので、推定検出値は実際の走査電子顕微鏡において得られる検出値に近くなる。
また、推定検出値の算出において検出対象となる電子は、試料から直接放出された電子のみならず、上記放出電子が電子光学系に衝突したことによって放出された電子も含めることが出来る。従って、上記推定検出値の精度を更に高めることが出来る。
また、試料の各位置からの検出値が推定できるので、これら推定検出値を各位置毎に配列させて画像データとすれば模擬SEM像が得られる。電子光学系の設定条件及び入射電子の入射条件を変えた各種の模擬SEM像が個別表示あるいは一覧表示として実観察以前に得られるので、実際の試料を用いた観察の試行錯誤を繰り返す必要がなくなる。従って、電子ビームによる試料の汚染等の劣化が低減される。
(第2実施形態)
本発明の第2実施形態について説明する。第2実施形態に係る走査電子顕微鏡は、第1実施形態で述べた推定検出値テーブルを用いて最適な(又は所望の)コントラスト、あるいは一覧表示で指定した模擬SEM像の実SEM像が得られるように構成した走査電子顕微鏡である。
図9に示すように、第2実施形態に係る走査電子顕微鏡は、第1実施形態の構成に加えて、制御処理部15に最適コントラスト選択部28と印加電圧設定部29とを備える。また、後述するように、模擬SEM像一覧表示データ生成部34と像選択部35とを更に備えても良い。本実施形態に係る走査電子顕微鏡では、図4に示す各処理と図5に示すステップB1からステップB14までの処理が行なわれ、次に、ステップB15及びステップB16に代えて図10に示すステップC1からステップC7までの処理が行なわれる。即ち、第2実施形態に係る走査電子顕微鏡では、算出した推定検出値に基づいて最適なコントラストとなる電子光学系の印加電圧及びアンペアターンが選択され、この選択値を用いた実観察が行われる。
本実施形態におけるSEM像表示までの各処理について説明する。
上述したように、図4に示す各処理と図5に示すステップB1からステップB14までの処理については説明を割愛する。ただし、ステップB1において、オペレータは試料5上の観察位置(例えば図6に示すC点とD点)を入力しているものとする。この観察位置は電子線2の入射条件の1つである入射位置と同等である。そして、ステップB14の処理が終了した時点では、オペレータが想定する全ての電磁場分布及び入射条件に対する推定検出値が推定検出値テーブルとして保存されている。図8はこの推定検出値テーブルの一例である。図6に示す試料5上のC点及びD点に電子線2が入射した時のそれぞれの推定検出値が、加速電圧、電極41、42の設定電圧毎に算出されている。
図10に示すように、最適コントラスト選択部28(図9参照)は検出値推定値テーブル(図8参照)を参照し(ステップC1)、各印加電圧の組み合わせにおいて得られた試料5の観察位置C点、D点の各推定検出値の差を算出する(ステップC2)。
次に、最も大きい差となる印加電圧の組み合わせを選択する(ステップC3)。即ち、SEM像における観察位置C点、D点間のコントラストが最適となる組み合わせを選択する。図8に示す例では、条件番号8における各推定検出値の差が最も大きいことがわかる。従って、この場合、条件番号8の各印加電圧が最適な組み合わせとして選択される。
最適な組み合わせの別の算出方法としては、(各推定検出値の差)/(各推定検出値の総和)の値が最大となる印加電圧の組み合わせを選択しても良い。この方法によれば、条件番号7の組み合わせが最適な組み合わせとして選択される。
印加電圧設定部29は最適コントラスト選択部28によって選択された各印加電圧を電子光学系4(図1参照)に設定するよう、電源制御部13を制御する(ステップC4)。
電源制御部13は観察位置C点及びD点を含む観察領域をスキャンするように電子線2を制御する(ステップC5)。その後、検出器7から得られる検出信号を信号処理部14が処理し(ステップC6)、表示部17にSEM像が表示される(ステップC7)。
このように、オペレータは推定検出値テーブルに基づいて試料上の複数の位置の推定検出値を比較し、最適なコントラストとなる加速電圧、印加電圧等の組み合わせ(条件番号)を選択し指定する。指定された組み合わせが実際の電子光学系に設定されるので、最適なコントラストのSEM像が得られる。なお、上記組み合わせには、対物レンズ等の磁界レンズに印加されるアンペアターンを含めても良い。更にこの他、第2実施形態に係る制御処理部15は、模擬SEM像一覧表示データ生成部34と像選択部35とを備えても良い。この場合、模擬SEM像一覧表示データ生成部34は、模擬SEM像データ生成部25で生成される全ての模擬SEM像を一覧表示するための画像データを生成する。この一覧からオペレータが選択、指定した模擬SEM像を像選択部35が検出し、電子光学系及び検出器等の各構成部材が条件指定されるので、選択された模擬SEM像取得時の加速電圧、印加電圧等に基づくコントラストのSEM像が得られる。
本発明の第2実施形態によれば、推定検出値が実際の走査電子顕微鏡の電子光学系及び検出器の諸条件を考慮して算出される。従って、選択された上記組み合わせは、実際の観察における電子光学系の設定値に近くなる。
さらに、所望の位置間のコントラストが最適となる加速電圧、印加電圧等の組み合わせや模擬SEM像が実観察前に得られるため、実際の試料を用いて試行錯誤を繰り返す必要が無くなる。従って、試料の電子線による劣化を最小限に留めた状態で指定した条件の実観察を行うことが可能となる。
(第3実施形態)
本発明の第3実施形態について説明する。
本発明の第3実施形態に係る走査電子顕微鏡は、第1実施形態の制御処理部15に検出器参照テーブル作成部を更に備える。その他の構成については第1実施形態と同様である。本実施形態の走査電子顕微鏡は、後述する検出値参照テーブルを用いることによって、第1及び第2実施形態で述べた推定検出値の算出及び模擬SEM像データの生成が高速になるように構成された走査電子顕微鏡である。
図11は本実施形態に係る制御処理部15のブロック図である。同図に示すように、制御処理部15は第1実施形態の構成に加え、検出値参照テーブル作成部33を備える。検出値参照テーブル部33は、電子光学系4の各設定値及び試料5の取付位置から出射する電子(出射電子)の出射角、エネルギー等の異なる組み合わせに対して、検出器7が検出する電子の数(後述する参照値)を表した検出値参照テーブルを作成する。
図12および図13は本発明の第3実施形態に係る放出電子検出値推定方法及びSEM像シミュレーション方法のフローチャートであり、図12は検出値参照テーブルの作成手順を示すフローチャート、図13は検出値参照テーブルを用いた模擬SEM像の表示或いは推定検出値テーブルの作成を示すフローチャートである。
次に各基礎電磁場分布データを用いた放出電子の推定検出値の算出及び模擬SEM像表示までの各処理について説明する。
本実施形態でも第1実施形態で述べた基礎電磁場分布が電子の軌道計算に必要であるため、最初に図4に示すステップA1からステップA3までの処理を行う。これらの処理については第1実施形態で述べたので説明を割愛する。
次に、電磁場分布計算部20はデータベース31から基礎電磁場分布データを読み込み(ステップD1)、更に電磁場解析用データを読み込む(ステップD2)。第1実施形態で述べたように、電磁場解析用データは電子光学系4や検出器7の各要素に印加する電圧、アンペアターン等の設定値データであり、各要素に対して予め所定の値が設定されている。或いは、図5に示すステップB2のようにオペレータから入力しても良い。
電磁場分布計算部20は、これら各基礎電磁場分布データ及び電磁場解析用データを用いて、電磁場分布EM(即ち、電場分布E及び磁場分布M)を計算する(ステップD3)。その計算手法は第1実施形態におけるステップB3の処理と同一である。
次に電子軌道計算部22は出射条件データを読み込む(ステップD4)。出射条件データは、試料5の取付位置を出発点として対物レンズ4c側に出射する出射電子についての出射位置、出射角、エネルギー等の複数の組み合わせを有する。例えばエネルギーについては0.1eVのような0eVに近い値から電子線2の加速電圧に等しいエネルギーまで等間隔、或いは対数間隔に設定される。また、出射角については試料5を想定したときのその表面から対物レンズ4c側の全方向(図6に示す全てのθz及びθx)に対して等間隔に設定される。なお、上記表面が傾斜している場合もあるので、出射角θzの値は90度を越える場合もある。また、出射位置は試料5を想定したときのその表面と電子光学系4の中心軸(即ち光軸)との交点に設定されるのが好ましいが、当該表面上であれば任意であり、複数の位置を指定してもよい。また出射条件データはオペレータが入力部16から入力しても良いし、予めプログラムの一部としてプログラム記憶部30に記憶させても良い。或いは、上記のような設定条件に基づき、CPU11が作成しても良い。
このような出射条件データを用いて、電子軌道計算部22は電磁場分布EMにおける出射電子の軌道を計算する(ステップD5)。その後、CPU11は出射電子が電子光学系4と衝突したか否かを判断し(ステップD6)、衝突があった場合(ステップD6でYES)には、放出電子算出部21がその衝突によって電子光学系4から放出される電子(第2放出電子)の数、放出角、及びエネルギー等をモンテカルロ法により計算する(ステップD7)。そして、電子軌道計算部22は、ステップD3の処理によって求められた電磁場分布EMにおける第2放出電子の軌道を計算する(ステップD8)。
ステップD9において電子計数部23は、検出器7に到達する第2放出電子の軌道の数、即ち、検出器7によって検出される第2放出電子を計数する。この検出値(第2放出電子検出値)はモンテカルロ法による第2放出電子のパラメータに依存しているため、精度良く求めるにはこのパラメータを多数回算出するのが好ましい。従って、次のステップであるステップD10において、第2放出電子が所定の回数算出されたか否かを判断し、その回数に達していない場合(ステップD10でNO)はステップD7に戻り、第2放出電子を再計算する。
第2放出電子がモンテカルロ法によって所定の回数算出された場合(ステップD10でYES)、電子計数部23はステップD9で得られた第2放出電子検出値の平均化を行い(ステップD11)、更に、ステップD5で得られた出射電子の軌道から検出器7への到達する出射電子の数(出射電子検出値)を計数し、第2放出電子検出値の平均値と出射電子検出値とを合算して、参照値を算出する(ステップD12)。即ち参照値とは、ある出射電子の出射条件下での、検出値7が検出する電子の数である。
CPU11は全ての電磁場分布EM及び出射条件における参照値が算出されたか否かを判断し(ステップD13)、算出されていない場合には(ステップD13でNO)、ステップD2に戻って、電磁場解析用データの読み込み処理を行う。
全ての参照値が算出された場合には(ステップD13でYES)、電子光学系4の設定値、出射電子の出射条件に応じた参照値のテーブル(検出値参照テーブル)を作成し、データベース31に保存して処理を終了する(ステップD14)。図14は検出値参照テーブルの一例であり、電子光学系4のある設定値において算出された、出射電子のエネルギー及び出射角θzに対する参照値を表す。
なお、出射電子が電子光学系4に衝突しない場合や衝突する電子光学系4の材質によっては二次電子放出率が著しく低い場合(ステップD6でNO)も有り得る。そのような材質の使用は設計者等にとっては既知であるので、ステップD7〜D11までの処理を予め省略してもよい。この場合、ステップD6から直ちにステップD12に進む。
次に、検出値参照テーブルを用いた推定検出値の算出手順及び模擬SEM像データの生成手順について説明する。
上記の処理によって検出値参照テーブルが作成された後、図13に示すように、オペレータは入力部16から観察に用いる試料5の形状、組成等の情報を含む試料データ及び、電子線2の加速電圧、入射位置、入射角等の入射条件等を入力する(ステップE1)。
放出電子算出部21は入力された試料5の試料データおよび電子線2の入射条件に基づいて、電子線2によって試料5から放出される電子(第1放出電子)の数、放出角、及びエネルギーをモンテカルロ法により計算する(ステップE2)。
推定検出値計算部24は検出値参照テーブルの中から、各第1放出電子の放出角及びエネルギーに近い条件の出射電子を選択する(ステップE3)。例えば、第1放出電子のエネルギーが1.3eV、放出角θzが38度であったとする。この場合、図14に示す検出値参照テーブルの中でこれに最も近い出射電子はエネルギーが1eV、放出角が45度の出射電子であり、その参照値は1である。そこでCPU11は、この第1放出電子を放出する事象によって検出器7が検出する電子の数(推定検出値)を1に設定する(ステップE4)。或いはまた、第1放出電子のエネルギーが999.8eV、放出角が41度であったとする。この場合、検出値参照テーブルの中で最も近い出射電子はエネルギーが1000eV、放出角が45度であり、その参照値は1.87である。そこでCPU11は、この事象による推定検出値を1.87に設定する。このように、ステップE4では、第1放出電子に対してエネルギー及び放出角の差が最も小さくなる出射電子の参照値が選択され、この参照値が第1放出電子を放出する事象の推定検出値に設定される。
第1放出電子はモンテカルロ法によって算出されるため、精度を上げるには繰り返し計算を行う必要ある。そこで、CPU11はステップE5において、第1放出電子が所定の回数算出されたか否かを判断し、所定の回数に達していない場合には(ステップE5でNO)、ステップE2に戻って第1放出電子をモンテカルロ法によって再計算する。所定の回数に達した場合(ステップE5でYES)、CPU11は得られた複数の推定検出値を平均化し(ステップE6)する。
次に、CPU11は全ての入射条件に対して推定検出値を算出したか否かを判断し(ステップE7)、算出していない場合には(ステップE7でNO)、入射条件を変更して、ステップE2に戻る。全ての入射条件に対して推定検出値が算出された場合(ステップE7でYES)、CPU11は更に、平均化された推定検出値を推定検出値テーブルとして作成し(ステップE7)、データベース31に記憶する。
この時点で全ての入射条件に対して推定検出値が算出されている。CPU11はこれら推定検出値を推定検出値テーブルとして作成し(ステップE8)、データベース31に記憶する。
模擬SEM像データ生成部25は、データベース31に記憶された推定検出値テーブルの推定検出値から、それに応じた強度を入射位置毎に配列させて模擬SEM像データを生成する(ステップE9)。この模擬SEM像データを用いて模擬SEM像を表示部17で表示させると(ステップE10)、全処理が終了する。
本実施形態によれば、第1実施形態と同様の効果が得られ、更に、推定検出値の算出及び模擬SEM像データの生成が高速になる。
これに加え、本実施形態では、走査電子顕微鏡の電子光学系及び検出器によって生じる電磁場分布が予め計算される。更に、この電磁場分布における試料位置からの出射電子及びこの出射電子に起因する二次電子の検出数が、出射電子の出射条件毎に参照値として求められ、これらが検出値参照テーブルとして保存される。そして、試料から放出される電子のエネルギー、放出角等を検出値参照テーブルの出射電子の出射条件に当てはめることで、当該電子を放出した事象の検出値が検出値参照テーブルの参照値から求められる。即ち、あらゆる出射条件の電子に対して、検出器が検出する電子の数が検出値参照テーブルとして保存されているので、試料からの放出された電子の軌道計算を個別に行う必要が無く、検出値の推定が高速且つ容易になる。
また第1実施形態と同様に、制御処理部15はすべての模擬SEM像を一覧表示するための模擬SEM像一覧表示データ生成部34を有してもよく(図11参照)、望むなら模擬SEM像の一覧表示を観察することが出来る。
(第4実施形態)
本発明の第4実施形態について説明する。
第4実施形態に係る走査電子顕微鏡は、第2及び第3実施形態の構成を備えたものである。即ち、推定検出値テーブルを用いて最適なコントラストのSEM像が得られるように構成した走査電子顕微鏡である。
第4実施形態に係る走査電子顕微鏡は、第3実施形態の構成に加えて、図9に示す制御処理部15に最適コントラスト選択部28と印加電圧設定部29とを備える(図示せず)。本実施形態に係る走査電子顕微鏡では、図4、図12に示す各処理と図13に示すステップE1からステップE8までの処理が行なわれ、次に、ステップE9及びステップE10に代えて図10に示すステップC1からステップC7までの処理が行なわれる。即ち、第4実施形態に係る走査電子顕微鏡でも、第2実施形態と同様に、算出した推定検出値に基づいて最適なコントラストとなる電子光学系の印加電圧及びアンペアターンが選択され、この選択値を用いた実観察が行われる。
本実施形態でも第3実施形態と同様の効果が得られる。
また、所望の位置間のコントラストが最適となる加速電圧、印加電圧等の組み合わせが実観察前に得られるため、実際の試料を用いて試行錯誤を繰り返す必要が無くなる。しかも検出値参照テーブルを用いるため、上記組み合わせが容易に求まる。従って、試料の電子線による劣化を最小限に留めた状態で実観察を行うことが可能となる。
本実施形態に係る制御処理部15は、第2実施形態で述べた模擬SEM像一覧表示データ生成部34と像選択部35と備えても良い。この場合、模擬SEM像データ生成部25で生成される全ての模擬SEM像が一覧表示され、この一覧からオペレータが選択、指定すると、電子光学系及び検出器等の各構成部材がシミュレーション時の条件に設定されるので、模擬SEM像取得時の加速電圧、印加電圧等に基づくコントラストのSEM像が得られる。
本発明に係る走査電子顕微鏡の模式図である。 本発明の第1実施形態に係る制御処理部のブロック図である。 本発明に係る対物レンズ周辺の模式図である。 本発明に係る基礎電磁場分布データの作成手順を示すフローチャートである。 本発明の第1実施形態に係る基礎電磁場分布データを用いた推定検出値テーブルの作成手順及び模擬SEM像の表示手順を示すフローチャートである。 本発明に用いられる試料の一例及び出射電子又は第1放出電子の一例を示す模式図である。 推定検出値の算出を説明するための数表である。 本発明の推定検出値テーブルの一例である。 本発明の第2実施形態に係る制御処理部のブロック図である。 本発明の第2実施形態に係るSEM像の表示手順を示すフローチャートである。 本発明の第3実施形態に係る制御処理部のブロック図である。 本発明に係る検出値参照テーブルの作成手順を示すフローチャートである。 本発明の第3実施形態に係る模擬SEM像の表示手順を示すフローチャートである。 本発明の第3実施形態に係る検出値参照テーブルの一例である。
符号の説明
1:顕微鏡本体
2:電子線
3:電子銃
4:電子光学系
4c:対物レンズ
7:検出器
8:電源部
10:制御装置
11:CPU
15:制御処理部
20:電磁場分布計算部
21:放出電子算出部
22:電子軌道計算部
23:電子計数部
24:推定検出値計算部
25:模擬SEM像データ生成部
28:最適コントラスト選択部
29:印加電圧設定部
33:検出値参照テーブル作成部

Claims (19)

  1. 走査電子顕微鏡内の電子光学系及び検出器が生じる電磁場分布を予め計算する第1のステップと、
    前記電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力する第2のステップと、
    入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第3のステップと、
    前記電磁場分布内における前記第1放出電子の軌道を、前記第3のステップによって得られた第1放出電子のパラメータに基づいて計算する第4のステップと、
    前記第4のステップによる計算結果に基づいて、前記検出器に到達する前記第1放出電子を計数する第5のステップと、
    前記第3乃至第5までの各ステップを所定の回数繰り返して、前記第5のステップで得られる計数値の平均値を推定検出値として計算する第6のステップと、
    を備えることを特徴とする放出電子検出値推定方法。
  2. 前記第4のステップにおいて、前記第1放出電子が前記電子光学系等に衝突した場合は、前記第4ステップに替えてその衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、
    前記第5のステップにおいて、前記第5ステップに替えて前記電磁場分布内の前記第2放出電子の軌道を、前記第4のステップによって得られた前記第2放出電子のパラメータに基づいて計算し、検出器に到達する第2放出電子を計数する
    ことを特徴とする請求項1に記載の放出電子検出値推定方法。
  3. 請求項1又は2の何れかに記載の検出値推定方法を有し、更に、
    前記第6のステップを前記入射ビームの入射位置毎に行って前記入射位置毎の推定検出値を計算するステップと、
    前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成するステップと
    を有することを特徴とするSEM像シミュレーション方法。
  4. 走査電子顕微鏡内の電子光学系及び検出器が生じる電磁場分布を予め計算する第1のステップと、
    前記電磁場分布内の試料位置から出射する出射電子のエネルギー及び出射角の互いに異なる組み合わせを複数設定する第2のステップと、
    前記複数の組み合わせに基づいて、前記電磁場分布内の前記出射電子の軌道を計算する第3のステップと、
    前記第3のステップによる計算結果に基づいて、前記検出器に到達する前記出射電子を計数してその計数値を参照値とし、前記各組み合わせと前記参照値を対応付けた検出値参照テーブルを作成する第4のステップと、
    前記試料位置に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力する第5のステップと、
    入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第6のステップと、
    前記第6のステップで算出された全ての前記第1放出電子に対して、そのエネルギー及び放出角と最も差の小さい前記検出値参照テーブルの前記出射電子を選択し、選択された出射電子の前記参照値の合計値を算出する第7のステップと、
    前記第6及び第7のステップを所定の回数繰り返して得られた各合計値の平均値を算出し、該平均値を前記入射位置からの放出電子の推定検出値とする第8のステップと、
    を備えること特徴とする放出電子検出値推定方法。
  5. 前記第3のステップにおいて、前記出射電子が前記電子光学系等に衝突した場合は、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第9のステップと、
    前記電磁場分布内における前記第2放出電子の軌道を、前記第9のステップによって得られた前記第2放出電子のパラメータに基づいて計算する第10のステップと、
    前記検出器に到達した前記第2放出電子を計数する第11のステップと、
    を更に備え、
    前記第9乃至第11のステップは複数回実行され、得られた前記第2放出電子の計数値は平均化されて前記参照値に加算される
    ことを特徴とする請求項4に記載の放出電子検出値推定方法。
  6. 請求項4又は5の何れかに記載の検出値推定方法を有し、更に、
    前記第8のステップを前記入射ビームの入射位置毎に行って、その推定検出値を計算するステップと、
    前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成するステップと
    を有することを特徴とするSEM像シミュレーション方法。
  7. コンピュータを、
    走査電子顕微鏡内の電子光学系及び検出器が生じる電磁場分布を予め計算する第1の手段と、
    前記電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力する第2の手段と、
    入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第3の手段と、
    前記電磁場分布内における前記第1放出電子の軌道を、前記第3の手段によって得られた第1放出電子のパラメータに基づいて計算する第4の手段と、
    前記第4の手段による計算結果に基づいて、前記検出器に到達する前記第1放出電子を計数する第5の手段と、
    前記第3乃至第5までの各手段を所定の回数繰り返して、前記第5の手段で得られる計数値の平均値を推定検出値として計算する第6の手段
    として機能させることを特徴とする放出電子検出値推定プログラム。
  8. 前記第4の手段は、前記第1放出電子が前記電子光学系等に衝突した場合、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、
    前記第5の手段は、電磁場分布内における前記第2放出電子の軌道を、前記第4の手段によって得られた前記第2放出電子のパラメータに基づいて計算する
    ことを特徴とする請求項7に記載の放出電子検出値推定プログラム。
  9. 前記コンピュータを、
    請求項7又は8の何れかに記載の各手段と、
    前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成する手段として機能させ、
    前記第6の手段は前記入射ビームの入射位置毎に行って前記入射位置毎の推定検出値を計算することを特徴とするSEM像シミュレーションプログラム。
  10. コンピュータを、
    走査電子顕微鏡内の電子光学系及び検出器が生じる電磁場分布を予め計算する第1の手段と、
    前記電磁場分布内の試料位置から出射する出射電子のエネルギー及び出射角の互いに異なる組み合わせを複数設定する第2の手段と、
    前記複数の組み合わせに基づいて、前記電磁場分布内の前記出射電子の軌道を計算する第3の手段と、
    前記第3の手段による計算結果に基づいて、前記検出器に到達する前記出射電子を計数してその計数値を参照値とし、前記各組み合わせと前記参照値を対応付けた検出値参照テーブルを作成する第4の手段と、
    前記試料位置に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力する第5の手段と、
    入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第6の手段と、
    前記第6の手段によって算出された全ての前記第1放出電子に対して、そのエネルギー及び放出角と最も差の小さい前記検出値参照テーブルの前記出射電子を選択し、選択された出射電子の前記参照値の合計値を算出する第7の手段と、
    前記第6及び第7の手段を所定の回数繰り返して得られた各合計値の平均値を算出し、該平均値を前記入射位置からの放出電子の推定検出値として算出する第8の手段
    として機能させることを特徴とする放出電子検出値推定プログラム。
  11. 前記コンピュータを、更に、
    前記第3の手段による軌道計算において前記出射電子が前記電子光学系等に衝突した場合は、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する第9の手段と、
    前記電磁場分布内における前記第2放出電子の軌道を、前記第9の手段によって得られた前記第2放出電子のパラメータに基づいて計算する第10の手段と、
    前記検出器に到達した前記第2放出電子を計数する第11の手段
    として機能させ、
    前記第9乃至第11の手段は複数回実行され、得られた前記第2放出電子の計数値は平均化されて前記参照値に加算される
    ことを特徴とする請求項10に記載の放出電子検出値推定プログラム。
  12. 前記コンピュータを、
    請求項10又は11の何れかに記載の各手段と、
    前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成する手段
    として機能させ、
    前記第8の手段は前記入射ビームの入射位置毎に行って、その推定検出値を計算することを特徴とするSEM像シミュレーションプログラム。
  13. 電子光学系と検出器とを少なくとも備える走査電子顕微鏡において、
    前記電子光学系及び検出器が生じる電磁場分布を予め計算する電磁場分布計算部と、
    前記電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力するデータ入力部と、
    入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する放出電子算出部と、
    前記電磁場分布内における前記第1放出電子の軌道を、前記放出電子算出部によって得られた第1放出電子のパラメータに基づいて計算する電子軌道計算部と、
    前記電子軌道計算部による計算結果に基づいて、前記検出器に到達する前記第1放出電子を計数する電子計数部と、
    前記入射ビームの入射位置毎に前記放出電子算出部、前記電子軌道計算部、前記電子計数部の各処理を所定の回数実行させて、前記電子計数部で得られる計数値の平均値を推定検出値として計算する推定検出値計算部と、
    前記推定検出値に応じた強度を前記入射位置毎に対応付けて配列させた模擬SEM像データを生成する模擬SEM像データ生成部と、
    前記模擬SEM像データに基づく模擬SEM像を表示する模擬SEM像表示部と、
    を備えることを特徴とする走査電子顕微鏡。
  14. 前記電子軌道計算部による軌道計算において、前記第1放出電子が前記電子光学系等に衝突した場合、前記放出電子算出部は、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、
    前記電子軌道計算部は、前記電磁場分布内における前記第2放出電子の軌道を、前記放出電子算出部によって得られた前記第2放出電子のパラメータに基づいて計算し、
    前記電子計数部は更に、前記検出器に到達する前記第2放出電子を計数する
    ことを特徴とする請求項13に記載の走査電子顕微鏡。
  15. 電子光学系と検出器とを少なくとも備える走査電子顕微鏡において、
    前記電子光学系及び検出器が生じる電磁場分布を予め計算する電磁場分布計算部と、
    前記電磁場分布内の試料位置から出射する出射電子のエネルギー及び出射角の互いに異なる組み合わせを複数設定するパラメータ設定部と、
    前記複数の組み合わせに基づいて、前記電磁場分布内の前記出射電子の軌道を計算する電子軌道計算部と、
    前記電子軌道計算部による計算結果に基づいて、前記検出器に到達する前記出射電子を計数する電子計数部と、
    前記電子計数部で得られる計数値を参照値とし、前記各組み合わせと前記参照値を対応付けた検出値参照テーブルを作成する検出値参照テーブル作成部と、
    前記試料位置に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの入射条件を入力するデータ入力部と、
    入力された前記試料データ及び前記入射条件に基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する放出電子算出部と、
    前記放出電子算出部によって算出された全ての前記第1放出電子に対して、そのエネルギー及び放出角と最も差の小さい前記検出値参照テーブルの前記出射電子を選択し、選択された出射電子の前記参照値の合計値を前記入射位置からの放出電子の推定検出値として算出する推定検出値算出部と、
    前記推定検出値に応じた強度を前記入射位置に対応付けて配列させた模擬SEM像データを生成する模擬SEM像データ生成部と、
    前記模擬SEM像データに基づくSEM像を表示するSEM像表示部と、
    を備え、
    前記第1放出電子のモンテカルロ法による算出は複数回行われることによって、前記参照値は平均化される
    ことを特徴とする走査電子顕微鏡。
  16. 前記電子軌道計算部による軌道計算において前記出射電子が前記電子光学系等に衝突した場合、前記放出電子算出部はその衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、
    前記電子軌道計算部は、電磁場分布内における前記第2放出電子の軌道を、前記放出電子算出部によって得られた前記第2放出電子のパラメータに基づいて計算し、
    前記電子計数部は更に、前記検出器に到達する前記第2放出電子を計数し、
    前記第2放出電子のモンテカルロ法による算出は複数回行われることによって、前記参照値は平均化されて前記参照値に加算される
    ことを特徴とする請求項15に記載の走査電子顕微鏡。
  17. 少なくとも1つの電極を含む電子光学系と検出器とを少なくとも備える走査電子顕微鏡において、
    前記電子光学系及び検出器が生じる電磁場分布を前記電極に印加される所定の複数の電圧値に対して予め計算する電磁場分布計算部と、
    前記各電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの複数の入射位置を入力するデータ入力部と、
    入力された前記試料データ及び前記入射位置と前記電子ビームの複数の入射エネルギー値とに基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する放出電子算出部と、
    前記電磁場分布内における前記第1放出電子の軌道を、前記放出電子算出部によって得られた第1放出電子のパラメータに基づいて計算する電子軌道計算部と、
    前記電子軌道計算部によって計算された軌道のうち、前記検出器に到達する前記第1放出電子を計数する電子計数部と、
    前記入射位置毎に前記放出電子算出部、電子軌道計算部、電子計数部の各処理を所定の回数繰り返して実行させて、前記電子計数部で得られる計数値の平均値を各入射位置の推定検出値として計算する推定検出値計算部と、
    前記複数の入射エネルギー値における前記複数の入射位置の前記推定検出値の組み合わせから最もコントラストが高くなる組み合わせの前記入射エネルギー及び前記電圧値を選択する最適コントラスト選択部と、
    選択された前記入射エネルギー及び前記電圧値を前記電子光学系に設定する印加電圧設定部と、
    を備えることを特徴とする走査電子顕微鏡。
  18. 前記電子軌道計算部による軌道計算において前記第1放出電子が前記電子光学系等に衝突した場合、前記放出電子算出部は更に、その衝突によって前記電子光学系等から放出される第2放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出し、
    前記電子軌道計算部は、前記電磁場分布内における前記第2放出電子の軌道を、前記放出電子算出部によって得られた前記第2放出電子のパラメータに基づいて計算し、
    前記電子計数部は更に、前記電子軌道計算部による計算結果に基づいて、前記検出器に到達する前記第2放出電子を計数する
    ことを特徴とする請求項17に記載の走査電子顕微鏡。
  19. 少なくとも1つの電極を含む電子光学系と検出器とを少なくとも備える走査電子顕微鏡において、
    前記電子光学系及び検出器が生じる電磁場分布を前記電極に印加される所定の複数の電圧値に対して予め計算する電磁場分布計算部と、
    前記各電磁場分布内に設置される試料の少なくとも形状及び組成に関する試料データ及び前記試料に入射する電子ビームの複数の入射位置を入力するデータ入力部と、
    入力された前記試料データ及び前記入射位置と前記電子ビームの複数の入射エネルギー値とに基づいて、前記電子ビームによる前記試料からの第1放出電子の数、放出角、及びエネルギーをモンテカルロ法によって算出する放出電子算出部と、
    前記電磁場分布内における前記第1放出電子の軌道を、前記放出電子算出部によって得られた第1放出電子のパラメータに基づいて計算する電子軌道計算部と、
    前記電子軌道計算部によって計算された軌道のうち、前記検出器に到達する前記第1放出電子を計数する電子計数部と、
    前記入射位置毎に前記放出電子算出部、電子軌道計算部、電子計数部の各処理を所定の回数繰り返して実行させて、前記電子計数部で得られる計数値の平均値を各入射位置の推定検出値として計算する推定検出値計算部と、
    模擬SEM像データ生成部で生成された全模擬SEM像を一覧表示するための模擬SEM像一覧表示データ生成部と、
    一覧表示された模擬SEM像の中からオペレータが選択する像選択部と、
    選択された模擬SEM像に相当する前記入射エネルギー及び前記電圧値を前記電子光学系に設定する印加電圧設定部と、
    を備えることを特徴とする走査電子顕微鏡。
JP2008306300A 2008-12-01 2008-12-01 走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム Active JP5289912B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008306300A JP5289912B2 (ja) 2008-12-01 2008-12-01 走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008306300A JP5289912B2 (ja) 2008-12-01 2008-12-01 走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム

Publications (2)

Publication Number Publication Date
JP2010129516A JP2010129516A (ja) 2010-06-10
JP5289912B2 true JP5289912B2 (ja) 2013-09-11

Family

ID=42329756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306300A Active JP5289912B2 (ja) 2008-12-01 2008-12-01 走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム

Country Status (1)

Country Link
JP (1) JP5289912B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121704B2 (ja) * 2012-12-10 2017-04-26 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP6272487B2 (ja) * 2014-07-28 2018-01-31 株式会社日立製作所 荷電粒子線装置、シミュレーション方法およびシミュレーション装置
JP7159128B2 (ja) 2019-08-08 2022-10-24 株式会社日立ハイテク 荷電粒子線装置
JP7173937B2 (ja) 2019-08-08 2022-11-16 株式会社日立ハイテク 荷電粒子線装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167139A (ja) * 1997-08-25 1999-03-09 Hitachi Ltd 走査電子顕微鏡
JP4068481B2 (ja) * 2003-02-28 2008-03-26 株式会社東芝 シミュレーション方法、シミュレーションプログラム、シミュレーション装置および表面反応装置
JP4292068B2 (ja) * 2003-12-11 2009-07-08 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP4230968B2 (ja) * 2004-07-20 2009-02-25 株式会社日立ハイテクノロジーズ 荷電粒子線装置
JP2006210232A (ja) * 2005-01-31 2006-08-10 Jeol Ltd 電子光学機器
JP2007218711A (ja) * 2006-02-16 2007-08-30 Hitachi High-Technologies Corp 電子顕微鏡装置を用いた計測対象パターンの計測方法
US7705301B2 (en) * 2006-07-07 2010-04-27 Hermes Microvision, Inc. Electron beam apparatus to collect side-view and/or plane-view image with in-lens sectional detector
JP2008198380A (ja) * 2007-02-08 2008-08-28 Toshiba Corp 電荷軌道計算方法及び電荷軌道計算システム

Also Published As

Publication number Publication date
JP2010129516A (ja) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5289912B2 (ja) 走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム
Lencová et al. A new program for the design of electron microscopes
Kruit et al. Space charge and statistical Coulomb effects
CN106653537B (zh) 具有增强的能量范围的柱后过滤器
JP2016213078A (ja) X線発生装置、及びその調整方法
JP2016213078A5 (ja)
US7521678B2 (en) Charged particle beam apparatus, charged particle beam focusing method, microstructure measuring method, microstructure inspecting method, semiconductor device manufacturing method, and program
JP5948083B2 (ja) 走査電子顕微鏡
JP6068624B2 (ja) 試料観察装置
JP5188846B2 (ja) 走査型透過電子顕微鏡の収差補正装置及び収差補正方法
JP2006058210A (ja) 荷電粒子線顕微方法、荷電粒子線顕微装置、測長方法及び測長装置
JP4812318B2 (ja) 走査型電子顕微鏡を用いたパターン寸法の計測方法
JP2017016755A (ja) 荷電粒子線装置
JP5188529B2 (ja) 電子ビーム照射方法、及び走査電子顕微鏡
CN105261544B (zh) 校准扫描透射带电粒子显微镜的方法
US10062542B2 (en) Particle beam microscope and method for operating a particle beam microscope
JP4230968B2 (ja) 荷電粒子線装置
JP7126639B1 (ja) 加工条件生成装置、放電加工システム、加工条件生成方法および放電加工方法
US20130270437A1 (en) Method for producing a representation of an object by means of a particle beam, as well as a particle beam device for carrying out the method
JP2019046642A (ja) 走査電子顕微鏡
TWI590287B (zh) 用以投射電子束於晶圓或遮罩上的方法,包括程式碼指令之電腦程式,電子微影系統,用以模擬至少一個電子微影步驟之系統,及電子顯微鏡系統
JP2006275756A (ja) 電子励起によるx線分析装置
JP6075306B2 (ja) 荷電粒子ビーム照射装置及び荷電粒子ビーム軸調整方法
JP6727311B2 (ja) 荷電粒子線装置及び荷電粒子線装置の収差補正方法
JP6954848B2 (ja) 走査電子顕微鏡および測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5289912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150