JP5261111B2 - 吸収式冷凍機 - Google Patents

吸収式冷凍機 Download PDF

Info

Publication number
JP5261111B2
JP5261111B2 JP2008250818A JP2008250818A JP5261111B2 JP 5261111 B2 JP5261111 B2 JP 5261111B2 JP 2008250818 A JP2008250818 A JP 2008250818A JP 2008250818 A JP2008250818 A JP 2008250818A JP 5261111 B2 JP5261111 B2 JP 5261111B2
Authority
JP
Japan
Prior art keywords
heat
heat recovery
temperature regenerator
pipe
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008250818A
Other languages
English (en)
Other versions
JP2010078299A (ja
Inventor
秀樹 府内
春樹 西本
俊之 星野
数恭 伊良皆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008250818A priority Critical patent/JP5261111B2/ja
Priority to KR1020090091592A priority patent/KR101060776B1/ko
Priority to CN2009101791610A priority patent/CN101713598B/zh
Publication of JP2010078299A publication Critical patent/JP2010078299A/ja
Application granted granted Critical
Publication of JP5261111B2 publication Critical patent/JP5261111B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、冷凍・空調に用いられる吸収式冷凍機(吸収式冷温水機を含む)に関し、特に、蒸気焚きの二重効用吸収式冷凍機に関するものである。
従来から地球環境問題への関心の高まりとともに、機器の高効率化への要求が高まってきている。特に、運転時間の長い地域冷暖房施設や商業施設などでは、この傾向が顕著であり、機器効率の向上が切望されている。
そして、この要望に対し、吸収式冷凍機内を流過する熱源流体からの熱回収効率を向上させることが提案されている(例えば、特許文献1参照)。
しかし、これは、吸収器から高温再生器へと供給される希液が流通する希液管を、複数回にわたり分岐および合流させているため、分岐されたそれぞれの希液管を流通する希液の調整が難しく、手間がかかるものとなっていた。また、吸収式冷凍機の高効率化を行うためには、各溶液熱交換器の温度効率を向上させる必要があるが、濃液は温度が低下すると結晶の可能性があり、低温熱交換器の温度効率を向上できないという問題があった。また、補機動力を低減するために冷却水の流量を削減すると、前記冷却水の温度が上昇して運転圧力も上昇してしまうという問題もあった。
これに対し、低圧吸収器及び低圧蒸発器と、高圧吸収器及び高圧蒸発器とを設けた構成ではあるが、係る課題を解決するようにしたものがある(例えば、特許文献2参照)。
特開2001−056160号公報 特開2005−300126号公報
しかし、特許文献2のものは、熱源流体が流通する蒸気管、および、該熱源流体からの熱回収を行う熱回収器を高圧設計のものとしなければならず、製作コストも高くなるという問題がある。
本発明は、係る点に鑑みて、構成部品も少なく配管が簡素化された構成でもって、吸収式冷凍機内を流過する熱源流体からの熱回収効率を向上させることができる技術を提供する。特に、高温再生器を流通した熱源流体を2つの熱回収器に分割して熱回収させ、熱回収器の小型化が達成できる構成でもって、この熱源流体の保有熱の熱回収効率を向上させることができる技術を提供するものである。
本発明の吸収式冷凍機は、熱源流体を流通させて希吸収液を加熱し、冷媒蒸気と中間吸収液とを生成する高温再生器と、生成された前記冷媒蒸気で前記中間吸収液を再加熱し冷媒蒸気と濃吸収液とを生成する低温再生器と、前記高温再生器で生成された冷媒蒸気と前記低温再生器で生成された冷媒蒸気とを合流させて凝縮させると共に、該低温再生器を通過して凝縮した冷媒液とを合流させる凝縮器と、前記凝縮器からの冷媒液を冷水管上に散布し再度蒸発させて熱負荷への冷熱供給を可能とする蒸発器と、前記低温再生器からの濃吸収液を流入させ前記蒸発器からの冷媒蒸気を該濃吸収液へ吸収させて希吸収液を生成する吸収器とを備えた吸収式冷凍機において、
前記吸収器で生成された前記希吸収液が前記高温再生器1へ流通する希吸収液管は第1希吸収液管と第2希吸収液管とに分岐してそれぞれ前記高温再生器へ連通して接続され、
前記第1希吸収液管には、前記第1希吸収液管を流通する希吸収液が前記高温再生器を流通した熱源流体との熱交換を行なう熱回収器と、前記第1希吸収液管を流通する希吸収液が前記低温再生器を流通して放熱凝縮した冷媒液と熱交換を行なう冷媒ドレン熱回収器を設け、
前記熱回収器を少なくとも第1熱回収器と第2熱回収器との二つに分割して設けると共に前記第1熱回収器と前記第2熱回収器の間にスチームトラップを設け、
前記第1希吸収液管を流通する前記希吸収液が前記冷媒ドレン熱回収器を通過した後、前記第2熱回収器から前記第1熱回収器を通って前記高温再生器へ流通する配置をなし、前記高温再生器を流通した熱源流体が前記第1熱回収器を流通し、前記スチームトラップを経由して前記第2熱回収器へ流通する配置をなし、
前記第2希吸収液管には、前記第2希吸収液管を流通する希吸収液が前記高温再生器で生成された中間吸収液との熱交換を行なう高温熱交換器、及び前記低温再生器で生成された濃吸収液との熱交換を行なう低温熱交換器を備え、前記第2希吸収液管を流通する希吸収液が前記低温熱交換器から前記高温熱交換器を通って前記高温再生器へ流通する配置であることを特徴とする。
第1発明によれば、第1希吸収液管には、吸収器で生成された希吸収液が、順次冷媒ドレン熱回収器、第2熱回収器、第1熱回収器を通って高温再生器へ流通するよう配置され、
高温再生器を流通した熱源流体は、第1熱回収器を流通し、スチームトラップを経由して第2熱回収器へ流通する配置であり、且つ、第2希吸収液管の希吸収液は、低温再生器で生成された濃吸収液との熱交換を行なう低温熱交換器、及び高温再生器で生成された中間吸収液との熱交換を行なう高温熱交換器にて順次熱交換を行なうことにより、構成部品も少なく配管が簡素化された構成でもって、高温再生器を流過する熱源流体からの熱回収効率を向上させることができる。また、分岐された第1希吸収液管と第2希吸収液管を流通する希液の調整が容易になり、更に、第1希吸収液管を流通する希吸収液は、冷媒ドレン熱回収器によって、低温再生器を流通して放熱凝縮した冷媒液からの熱回収を行なうと共に、第2熱回収器から第1熱回収器を順次流通することにより熱源流体からの熱回収も行なうことができる。特に、第1希吸収液管を流通する希吸収液は、第2熱回収器及び第1熱回収器へ流通する前に冷媒ドレン熱回収器で加熱されるため、第1熱回収器及び第2熱回収器における熱源流体からの熱回収効率を向上させることができ、機器効率を向上させることが可能となる。そして、高温再生器を流通した熱源流体は、第1希吸収液管を流通する間に、第1熱回収器で熱回収され、スチームトラップを経由して第2熱回収器で更に熱回収される。このため、熱回収器の小型化を含めた熱源流体管路の設計の簡素化が達成できる構成でもって、第1熱回収器、第2熱回収器及び冷媒ドレン熱回収器によって、熱源流体から希吸収液への熱回収が効果的となり、吸収冷凍機器の効率を向上させることが可能となる。
本発明の吸収式冷凍機は、熱源流体を流通させて希吸収液を加熱し、冷媒蒸気と中間吸収液とを生成する高温再生器と、生成された前記冷媒蒸気で前記中間吸収液を再加熱し冷媒蒸気と濃吸収液とを生成する低温再生器と、前記高温再生器で生成された冷媒蒸気と前記低温再生器で生成された冷媒蒸気とを合流させて凝縮させると共に、該低温再生器を通過して凝縮した冷媒液とを合流させる凝縮器と、前記凝縮器からの冷媒液を冷水管上に散布し再度蒸発させて熱負荷への冷熱供給を可能とする蒸発器と、前記低温再生器からの濃吸収液を流入させ前記蒸発器からの冷媒蒸気を該濃吸収液へ吸収させて希吸収液を生成する吸収器とを備えた吸収式冷凍機において、
前記吸収器で生成された前記希吸収液が前記高温再生器1へ流通する希吸収液管は第1希吸収液管と第2希吸収液管とに分岐してそれぞれ前記高温再生器へ連通して接続され、
前記第1希吸収液管には、前記第1希吸収液管を流通する希吸収液が前記高温再生器を流通した熱源流体との熱交換を行なう熱回収器と、前記第1希吸収液管を流通する希吸収液が前記低温再生器を流通して放熱凝縮した冷媒液と熱交換を行なう冷媒ドレン熱回収器を設け、
前記熱回収器を少なくとも第1熱回収器と第2熱回収器との二つに分割して設けると共に前記第1熱回収器と前記第2熱回収器の間にスチームトラップを設け、
前記第1希吸収液管を流通する前記希吸収液が前記冷媒ドレン熱回収器を通過した後、前記第2熱回収器から前記第1熱回収器を通って前記高温再生器へ流通する配置をなし、前記高温再生器を流通した熱源流体が前記第1熱回収器を流通し、前記スチームトラップを経由して前記第2熱回収器へ流通する配置をなし、
前記第2希吸収液管には、前記第2希吸収液管を流通する希吸収液が前記高温再生器で生成された中間吸収液との熱交換を行なう高温熱交換器、及び前記低温再生器で生成された濃吸収液との熱交換を行なう低温熱交換器を備え、前記第2希吸収液管を流通する希吸収液が前記低温熱交換器から前記高温熱交換器を通って前記高温再生器へ流通する配置であり、本発明の実施例を以下に記載する。
次に、本発明の吸収式冷凍機100の実施の形態について説明する。図1は本発明に係る吸収式冷凍機100の配管構成図、図2は本発明に係る吸収式冷凍機100の外観構成図である。
本発明に係る吸収式冷凍機100は、例えば、冷媒に水、吸収液に臭化リチウム(LiBr)溶液を用いた二重効用吸収式冷凍機であり、熱源流体(高温・高圧の水蒸気、高温水など)を供給する熱源供給管2が内部を経由して配管され、希吸収液(以下「希液」という。)を加熱することによって冷媒蒸気を発生させて中間吸収液(以下「中間液」という。)に濃縮する高温再生器1と、前記蒸気冷媒により前記中間液を加熱して濃吸収液(以下「濃液」という。)にする低温再生器3と、低温再生器3から供給される冷媒蒸気を冷却水管22を流れる冷却水と熱交換させて冷却し、凝縮させる凝縮器4とを内蔵した上胴5と、蒸発器6および吸収器7を内蔵した下胴8とを備えている。冷却水管22は、下胴8の吸収器7内を経由して凝縮器4内に配設されている。
下胴8の蒸発器6内上部に設けられた散布器6Aは、中間に冷媒ポンプ11が介在し始端が蒸発器6の下部に接続された冷媒管21の終端側に接続されて、蒸発器6の下部に溜まった冷媒液を冷媒ポンプ11の運転により、冷媒管21を通して散布器6Aにより、内部を水などのブラインが流通するブライン管23の上に散布可能に構成されている。
そして、下胴8の吸収器7下部側から吸収液ポンプ12が介在して延びる希液管15は、第1希液管15A(第1希吸収液管15A)と第2希液管15B(第2希吸収液管15B)とに分岐されて、これら第1希液管15Aおよび第2希液管15Bのそれぞれが高温再生器1へと連通して接続されている。
第1希液管15Aには、この第1希液管15A内を流通する希液の流量を制御する制御弁27と、高温再生器1で再生され、凝縮器4へと流通する吸収液管19に介装されて冷媒蒸気との熱交換を行う冷媒ドレン熱回収器24と、高温再生器1を流通した後の熱源流体管2に介装されて熱源流体管2内の熱源流体との熱交換を行う第1熱回収器25及び第2熱回収器26とが介装されており、冷媒ドレン熱回収器24の下流側、つまり、高温再生器1寄りに向けて、第1希液管15A上に、第2熱回収器26と第1熱交換器25が順次配設されている。これによって、後述のように、高温再生器を流通した熱源流体との熱交換が、順次第1熱回収器25、第2熱回収器26によって行われ、前記熱源流体から熱回収が行われる。
また、第2希液管15Bには、入口側に制御弁28を備え、低温再生器3の下部側から下胴8の吸収器7内側上部に設けられた散布器7Aへと接続される吸収液管17に介装された低温熱交換器9と、高温再生器1で生成された中間液が低温再生器3へと流通する吸収液管16に介装された高温熱交換器10とが順次介装されている。制御弁27、28は、希液管15が第1希液管15Aと第2希液管15Bとに分岐された直後に設けられている。
そして、吸収器7下部側に溜まった希液を吸収液ポンプ12の運転および制御弁27、28の開度により第1希液管15Aおよび第2希液管15Bの流通量を制御して高温再生器1に搬送可能に構成されている。
また、高温再生器1と低温再生器3とは、高温熱交換器10が介在する吸収液管16により接続されて、高温再生器1で冷媒を蒸気分離して吸収液濃度が高まった中間液は、吸収液管16により低温再生器3に送られる。
更に、高温再生器1と凝縮器4とは、低温再生器3の内部を経由し、冷媒ドレン熱回収器24を介装された冷媒管19により接続されて、高温再生器1で熱源流体により加熱されて吸収液から蒸発分離して供給される蒸気冷媒が、低温再生器3を経由して凝縮器4に流入可能に構成されている。
また、低温再生器3の下部側と、下胴8の吸収器7内側上部に設けられた散布器7Aとは、低温熱交換器9が介在する吸収液管17により接続されて、低温再生器3で冷媒の吸収が可能に再生された濃液が、低温熱交換器9で第2希液管15B内を流通する希液に放熱して吸収器7に流入可能に構成されている。
上記構成になる本発明の吸収式冷凍機100においては、熱源供給管2を開閉する蒸気遮断弁18が開いて、熱源流体が熱源流体管2へと流通すると、高温再生器1内の希液は前記熱源流体により加熱され、沸騰して希液から蒸発分離した冷媒蒸気と、冷媒を蒸気分離して吸収液の濃度が高くなった中間液とが得られる。
このようにして高温再生器1で生成された高温の冷媒蒸気は、冷媒管19を通って低温再生器3に入り、吸収液管16を通って低温再生器3内に流入する中間液を更に加熱するとともに、冷媒ドレン熱回収器24にて第1希液管15Aを流通する希液を加熱して、放熱凝縮して凝縮器4へと流入する。一方、高温再生器1で生成された吸収液(中間液)は、吸収液管16により高温熱交換器10を経由して第2希液管15Bを流通する希液を加熱して低温再生器3に入る。
また、低温再生器3で冷媒管19内を流通する冷媒蒸気で加熱されて中間液から蒸発分離した冷媒蒸気は、エリミネータ13を介して隣接する凝縮器4へと入り、冷却水管22内を流通する冷却水と熱交換して凝縮液化し、冷媒管19から凝縮して供給される冷媒と一緒になって冷媒管20を流通し、下胴8の蒸発器6へと流入する。
蒸発器6に入って下部に溜まった冷媒液は、冷媒ポンプ11により蒸発器6の散布器6Aからブライン管23の上に散布され、ブライン管23を介して供給される水などのブラインから熱を奪って蒸発し、ブライン管23の内部を流通するブラインを冷却する。
蒸発器6で蒸発した冷媒は、エリミネータ14を介して隣接する吸収器7に入り、低温再生器3において冷媒を蒸発分離して濃縮再生された吸収液(濃液)、すなわち吸収液管17により低温熱交換器9を経由して供給され、冷却水管22の上に散布器7Aから散布されている吸収液(濃液)に吸収される。
そして、吸収器7で冷媒を吸収して濃度の薄くなった吸収液、すなわち希液は、吸収液ポンプ12の運転により希液管15へと流出し、制御弁27、28の開度により制御されて第1希液管15Aおよび第2希液管15Bへと分流され、これら第1希液管15Aおよび第2希液管15Bを流通して、それぞれ高温再生器1へと流入する。
一方の希液管15から制御弁27を介して第1希液管15Aへと流入した希液は、冷媒ドレン熱回収器24で、高温再生器1で吸収液から蒸発分離された冷媒蒸気により加熱され、更に、第2熱回収器26及び第1熱回収器25によって、熱源流体管2内を流通して高温再生器1内に貯留された吸収液を加熱した熱源流体により加熱されて、高温再生器1へと流入する。
他方の希液管15から制御弁28を介して第2希液管15Bへと流入した希液は、低温熱交換器9で、低温再生器3の下部側から低圧吸収器7Aへと供給される濃液により加熱され、更に、高温熱交換器10で、吸収液管16を通って高温再生器1から低温再生器3へと供給される中間液により加熱されて高温再生器1へと流入する。
本発明では、第1希液管15A上に設けられた熱回収器を、第1熱回収器25と第2熱回収器26との二つに分割して設け、高温再生器1を流通した熱源流体は、第1熱回収器25を流通し、スチームトラップ21を経由して第2熱回収器26へと流通する構成となっている。これは、スチームトラップ21の前後で、蒸気かドレン(凝縮水となった蒸気)で熱回収器を分けている。即ち、第1熱回収器25では熱源流体(蒸気、ドレン)の潜熱・顕熱を回収し、第2熱回収器26では顕熱を回収する。
もし、このように第1希液管15A上に設けられる熱回収器を分割しない場合は、熱源流体が流通する部分全体が高圧用の設計となり、熱回収器も高圧容器となり、大型となりコストアップをきたす。しかし、本発明では、上記のように、熱回収器を分割することで、スチームトラップ21以降の構成を高圧設計としなくて済み、熱源流体管路の設計の簡素化ができ、且つ、圧力容器となる第1熱回収器25を小型化することができるものとなる。
このように、熱回収器の小型化を達成し、構成部品も少なく配管が簡素化された構成でもって、熱源流体管2内を流通する高温高圧蒸気の熱源流体から希液への熱回収が効果的に行なわれるものとなり、熱源流体からの熱回収効率が向上し、機器効率を向上させることが可能となる。また、分岐された第1希液管15Aと第2希液管15Bを流通する希液の調整は、それぞれ単独で行えるため調整が容易になり、熱源流体からの熱回収効率を向上させることができ、機器効率を向上させることが可能となる。
また、第1希液管15A内を流通して高温再生器1へと流れる希吸収液と、低温再生器3を流通して放熱凝縮した冷媒液とが、熱交換を行なう冷媒ドレン熱回収器24を設けたことにより、低温再生器3を流通して放熱凝縮した冷媒液からの熱回収を行なうと共に、熱源流体管2内を流通する熱源流体からの熱回収も行なうことができ、第1熱回収器25、第2熱回収器26及び冷媒ドレン熱回収器24によって、熱源流体から希吸収液への熱回収が効果的となり、吸収冷凍機器の効率を向上させることが可能となる。
冷媒と吸収液とが上記のように循環することにより、蒸発器6の内部を経由して設けられたブライン管23内で冷媒の気化熱により冷却された水などのブラインが、ブライン管23を介して図示しない空調負荷などに循環供給できるので、冷房などの冷却運転が行なえる。
そして、高温再生器1で吸収液を加熱する前記熱源流体の熱源を、高温再生器1へと供給される希液を第1希液管15Aと第2希液管15Bへと分流して、それぞれの希液の加熱に利用させることで、前記熱源流体の低温度域まで利用可能となって、消費蒸気量が削減できて低温熱交換器9の結晶余裕度が増す(結晶し難い範囲を拡大できる)。また、吸収器7から高温再生器1へと連通する希液管15を、上記のように、第1希液管15Aと第2希液管15Bとに分岐し、これら希液管をそのまま前記高温再生器1へと連通させているため、分岐されたそれぞれの希液管を流通する希液の分流配分を容易に調整することができる。
さらに、本発明の吸収式冷凍機100においては、図2に示すように、低温再生器3、凝縮器4を内蔵した上胴5および高温再生器1を上部に配置し、下方に、蒸発器6および吸収器7を内蔵した下胴8を配設してあるので、高さ方向の寸法を抑えた小型化に適した吸収式冷凍機となっている。
また、その下胴8は従来と同様に蒸発器と吸収器とを並設したものであるので、内部構造が複雑化することもなく、保守点検や修理の際にも従来と同様に行うことができる。
本発明は上記実施形態に限定されるものでなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であり、熱源からの熱回収により機器の効率を向上させる吸収式冷凍機に好適である。
本発明に係る吸収式冷凍機の配管構成図である。 本発明に係る吸収式冷凍機の外観構成図である。
符号の説明
1・・・ ・高温再生器
2・・・・熱源流体管
3・・・・低温再生器
4・・・・凝縮器
5・・・・上胴
6・・・・蒸発器
7・・・・吸収器
8・・・・下胴
9・・・・低温熱交換器
10・・・高温熱交換器
11・・・冷媒ポンプ
12・・・吸収液ポンプ
13、14・・・エリミネータ
15・・・希液管
15A・・第1希液管
15B・・第2希液管
16、17・・・吸収液管
18・・・蒸気遮断弁
19、20、21・・・ 冷媒管
22・・・冷却水管
23・・・ブライン管
24・・・冷媒ドレン熱回収器
25・・・第1熱回収器
26・・・第2熱回収器
27、28・・・制御弁
100・・吸収式冷凍機

Claims (1)

  1. 熱源流体を流通させて希吸収液を加熱し、冷媒蒸気と中間吸収液とを生成する高温再生器と、生成された前記冷媒蒸気で前記中間吸収液を再加熱し冷媒蒸気と濃吸収液とを生成する低温再生器と、前記高温再生器で生成された冷媒蒸気と前記低温再生器で生成された冷媒蒸気とを合流させて凝縮させると共に、該低温再生器を通過して凝縮した冷媒液とを合流させる凝縮器と、前記凝縮器からの冷媒液を冷水管上に散布し再度蒸発させて熱負荷への冷熱供給を可能とする蒸発器と、前記低温再生器からの濃吸収液を流入させ前記蒸発器からの冷媒蒸気を該濃吸収液へ吸収させて希吸収液を生成する吸収器とを備えた吸収式冷凍機において、
    前記吸収器で生成された前記希吸収液が前記高温再生器1へ流通する希吸収液管は第1希吸収液管と第2希吸収液管とに分岐してそれぞれ前記高温再生器へ連通して接続され、
    前記第1希吸収液管には、前記第1希吸収液管を流通する希吸収液が前記高温再生器を流通した熱源流体との熱交換を行なう熱回収器と、前記第1希吸収液管を流通する希吸収液が前記低温再生器を流通して放熱凝縮した冷媒液と熱交換を行なう冷媒ドレン熱回収器を設け、
    前記熱回収器を少なくとも第1熱回収器と第2熱回収器との二つに分割して設けると共に前記第1熱回収器と前記第2熱回収器の間にスチームトラップを設け、
    前記第1希吸収液管を流通する前記希吸収液が前記冷媒ドレン熱回収器を通過した後、前記第2熱回収器から前記第1熱回収器を通って前記高温再生器へ流通する配置をなし、前記高温再生器を流通した熱源流体が前記第1熱回収器を流通し、前記スチームトラップを経由して前記第2熱回収器へ流通する配置をなし、
    前記第2希吸収液管には、前記第2希吸収液管を流通する希吸収液が前記高温再生器で生成された中間吸収液との熱交換を行なう高温熱交換器、及び前記低温再生器で生成された濃吸収液との熱交換を行なう低温熱交換器を備え、前記第2希吸収液管を流通する希吸収液が前記低温熱交換器から前記高温熱交換器を通って前記高温再生器へ流通する配置であることを特徴とする吸収式冷凍機。
JP2008250818A 2008-09-29 2008-09-29 吸収式冷凍機 Expired - Fee Related JP5261111B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008250818A JP5261111B2 (ja) 2008-09-29 2008-09-29 吸収式冷凍機
KR1020090091592A KR101060776B1 (ko) 2008-09-29 2009-09-28 흡수식 냉동기
CN2009101791610A CN101713598B (zh) 2008-09-29 2009-09-29 吸收式冷冻机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008250818A JP5261111B2 (ja) 2008-09-29 2008-09-29 吸収式冷凍機

Publications (2)

Publication Number Publication Date
JP2010078299A JP2010078299A (ja) 2010-04-08
JP5261111B2 true JP5261111B2 (ja) 2013-08-14

Family

ID=42208951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008250818A Expired - Fee Related JP5261111B2 (ja) 2008-09-29 2008-09-29 吸収式冷凍機

Country Status (3)

Country Link
JP (1) JP5261111B2 (ja)
KR (1) KR101060776B1 (ja)
CN (1) CN101713598B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256750A (zh) * 2013-05-28 2013-08-21 烟台荏原空调设备有限公司 吸收式热泵机组
CN106802031B (zh) * 2015-11-26 2018-12-25 四川捷元科技有限公司 吸收式制冷单元斜面导流冷凝器
KR101773864B1 (ko) * 2016-12-16 2017-09-01 주식회사 성지테크 보조 사이클을 갖는 연료 전지 일체형 흡수식 냉온수기
KR102238779B1 (ko) * 2020-09-16 2021-04-09 (주)월드에너지 에너지 절약이 가능한 흡수 냉온수기

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315627B1 (ko) * 1998-01-12 2002-01-12 구자홍 급탕기능이부가된흡수식냉난방시스템
US6442964B1 (en) 1998-10-15 2002-09-03 Ebara Corporation Absorption refrigerating machine
JP4278315B2 (ja) * 2001-04-24 2009-06-10 三洋電機株式会社 吸収式冷凍機
JP3883838B2 (ja) * 2001-10-25 2007-02-21 三洋電機株式会社 吸収式冷凍機
JP3889655B2 (ja) * 2002-04-12 2007-03-07 三洋電機株式会社 吸収式冷凍機
JP2004324977A (ja) * 2003-04-24 2004-11-18 Sanyo Electric Co Ltd 吸収式冷凍機
JP2005098596A (ja) * 2003-09-25 2005-04-14 Mitsubishi Heavy Ind Ltd 吸収冷凍機
JP2005300126A (ja) * 2004-03-15 2005-10-27 Sanyo Electric Co Ltd 吸収式冷凍機

Also Published As

Publication number Publication date
KR101060776B1 (ko) 2011-08-30
CN101713598A (zh) 2010-05-26
KR20100036198A (ko) 2010-04-07
JP2010078299A (ja) 2010-04-08
CN101713598B (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
JP2011075180A (ja) 吸収式冷凍機
JP2011089722A (ja) 冷凍・空調方法及び装置
JP5261111B2 (ja) 吸収式冷凍機
KR100827570B1 (ko) 흡착식 냉동기의 폐열 재활용을 위한 히트펌프 장치
JP2012202589A (ja) 吸収式ヒートポンプ装置
JP5338270B2 (ja) 吸収式冷凍装置
JP2010085006A (ja) 吸収式冷温水機
KR100981672B1 (ko) 2단 재생 저온수 흡수식 냉동기
JP2010255862A (ja) 冷凍装置
KR20150007131A (ko) 흡수식 칠러
JP5785800B2 (ja) 蒸気吸収式冷凍機
JP5583435B2 (ja) 冷凍・空調方法及び装置
JP2007333342A (ja) 多重効用吸収冷凍機
JP2005300126A (ja) 吸収式冷凍機
KR102206209B1 (ko) 흡수식 냉동기
KR20080094985A (ko) 온수 이용 흡수식 냉동장치
JP2008020094A (ja) 吸収式ヒートポンプ装置
KR100827569B1 (ko) 히트펌프를 구비한 흡수식 냉동장치
JP2012068019A (ja) 吸収式冷凍機
JP5338272B2 (ja) 吸収式冷凍装置
JP2005300047A (ja) 熱交換装置およびそれを用いた吸収冷凍機
JP5402187B2 (ja) 冷凍装置
JP5260895B2 (ja) 吸収式冷凍機
JP6698297B2 (ja) 吸収式冷凍機
JP5168102B2 (ja) 吸収式冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5261111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees