JP5232365B2 - フッ素化光重合開始剤を含む光学フィルム、反射防止フィルム、偏光板、およびそれを用いた画像表示装置 - Google Patents

フッ素化光重合開始剤を含む光学フィルム、反射防止フィルム、偏光板、およびそれを用いた画像表示装置 Download PDF

Info

Publication number
JP5232365B2
JP5232365B2 JP2006149809A JP2006149809A JP5232365B2 JP 5232365 B2 JP5232365 B2 JP 5232365B2 JP 2006149809 A JP2006149809 A JP 2006149809A JP 2006149809 A JP2006149809 A JP 2006149809A JP 5232365 B2 JP5232365 B2 JP 5232365B2
Authority
JP
Japan
Prior art keywords
group
refractive index
layer
coating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006149809A
Other languages
English (en)
Other versions
JP2007011309A (ja
Inventor
裕一 福重
博之 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006149809A priority Critical patent/JP5232365B2/ja
Publication of JP2007011309A publication Critical patent/JP2007011309A/ja
Application granted granted Critical
Publication of JP5232365B2 publication Critical patent/JP5232365B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、低反射率でありながら耐擦傷性をより向上した光学フィルム、および反射防止フィルムに関し、特に液晶表示装置などの画像表示装置に用いられる光学フィルム、および反射防止フィルムに関する。
陰極管表示装置(CRT)、プラズマディスプレイ(PDP)エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のようなディスプレイ装置において、背景の映り込みを防止し、視認性を向上するために反射防止フィルムが用いられている。
反射防止フィルムは、反射によるコントラスト低下や像の映り込みを防止するために、光学干渉の原理を用いて反射率を低減する様にディスプレイの最表面に配置される。
そのため、傷がつく確率が高く、優れた耐擦性を付与することが重要な課題であった。
このような反射防止フィルムは、最表面に適切な膜厚の低屈折率層、場合により支持体(基材)との間に適宜高屈折率層、中屈折率層、ハードコート層などを形成することにより作製できる。低い反射率を実現するために低屈折率層にはできるだけ屈折率の低い材料が望まれる。また反射防止フィルムはディスプレイの最表面に用いられるため高い耐擦傷性が要求される。厚さ100nm前後の薄膜において高い耐擦傷性を実現するためには、皮膜自体の強度、および下層への密着性が必要である。
材料の屈折率を下げるには、エチレン性不飽和基を有するモノマーバインダーポリマー中にフッ素原子を導入する、密度を下げる(空隙を導入する)という手段があるが、いずれも皮膜強度および密着性が損なわれ耐擦傷性が低下する方向であり、低い屈折率と高い耐傷性の両立は困難な課題であった。
特許文献1には、含フッ素ポリマー中にポリシロキサン構造を導入することにより皮膜表面の摩擦係数を下げ、耐傷性を改良する手段が記載されている。該手段は耐傷性改良に対してある程度有効であるが、本質的な皮膜強度および界面密着性が不足している皮膜に対して該手法のみでは十分な耐傷性が得られなかった。
一方、特許文献2には低酸素濃度で光硬化樹脂を硬化させることで硬度があがることが記載されている。しかしながら反射防止フィルムをウェッブで効率よく製造するためには、例えば窒素置換により低酸素濃度とするには限界があり、満足する硬度を得ることができなかった。
また特許文献3には熱ロール表面に巻きつけて電離放射線を照射する方法が記載されているが、これも低屈折率層のような特殊な薄膜を十分に硬化するまでに硬化するには不十分であった。
特開平11−189621号公報 特開2002−156508号公報 特公平7−51641号公報
本発明の目的は、十分な反射防止性能を有しながら耐擦傷性をより向上した光学フィルムまたは反射防止フィルムを提供することである。また、本発明では安価な製造条件、すなわち比較的高酸素濃度条件下で製造可能な、上記光学フィルムまたは反射防止フィルムを提供することを目的とする。本発明の更なる目的は、そのような光学フィルムまたは反射防止フィルムを具備した偏光板及び画像表示装置を提供することにある。
本発明者は、鋭意検討の結果、以下の成分より構成された光学フィルム、反射防止フィルム、及びその製造方法より本発明の上記目的が達成されることを見出した。
〔1〕
支持体上に塗布された層が、少なくとも1種の下記一般式(1)または(5)で表されるフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物の硬化物を含むことを特徴とする光学フィルム。
Figure 0005232365
一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3または−L−CY 3 を表し、Lはアリール基を表す。
Rは、R a −Y 1 −(CH 2 s −O−、R a −Y 1 −(CH 2 s −S−及びR a −Y 1 −(CH 2 s −NR 1 −からなる群より選択される置換基、またはこれらの置換基を有するアリール基、置換アリール基、または置換アルケニル基を表す。R 1 は水素原子、メチル基、エチル基またはR a −Y 1 −(CH 2 s −を表し、sは2〜10の整数を表す。1は、互いに独立して、単結合、−O−、−S−からなる群より選択される二価の置換基を表す。R a は、直鎖状又は分岐鎖状の末端鎖でありZ 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し、qは、7〜20の整数を表す)を表す。
Figure 0005232365
一般式(5)において、Zは無置換もしくは置換されたフェニル基を表し、フェニル基の置換基は、Ra−O−(CH 2 )r−O−基、ハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、またはRa−O−(CH 2 )r−O−基を表し、rは1〜10の整数を表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つはRa−O−(CH 2 )r−O−基を含み、R a は、直鎖状又は分岐鎖状の末端鎖であり、Z 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し;qは、7〜20の整数を表す)を表わす。
〔2〕
前記一般式(1)の化合物のRが下記の2価の基から選ばれる基を含むことを特徴とする〔1〕に記載の光学フィルム。
Figure 0005232365

〔3〕
前記一般式(1)または(5)の化合物が、下記の化合物の少なくとも1つであることを特徴とする〔1〕に記載の光学フィルム。
Figure 0005232365

〔4〕
支持体上に塗布された層が、前記少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物と、少なくとも1種の非フッ素化光重合開始剤とを含有する組成物の硬化物を含むことを特徴とする〔1〕〜〔3〕のいずれか1項に記載の光学フィルム。
〔5〕
前記電離放射線硬化性化合物が二個以上のエチレン性不飽和基を有する化合物であることを特徴とする〔1〕〜〔4〕のいずれか1項に記載の光学フィルム。
〔6〕
支持体上に少なくとも反射防止層を有する反射防止フィルムであって、前記支持体上に積層された層の少なくとも一層が、少なくとも1種の下記一般式(1)または(5)のいずれか一つで表されるフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物を電離放射線照射によって硬化させてなる層であることを特徴とする反射防止フィルム。
Figure 0005232365
一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3 または−L−CY 3 を表し、Lはアリール基を表す。
Rは、R a −Y 1 −(CH 2 s −O−、R a −Y 1 −(CH 2 s −S−及びR a −Y 1 −(CH 2 s −NR 1 −からなる群より選択される置換基、またはこれらの置換基を有するアリール基、置換アリール基、または置換アルケニル基を表す。R 1 は水素原子、メチル基、エチル基またはR a −Y 1 −(CH 2 s −を表し、sは2〜10の整数を表す。1は、互いに独立して、単結合、−O−、−S−からなる群より選択される二価の置換基を表す。R a は、直鎖状又は分岐鎖状の末端鎖でありZ 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し、qは、7〜20の整数を表す)を表す。
Figure 0005232365
一般式(5)において、Zは無置換もしくは置換されたフェニル基を表し、フェニル基の置換基は、Ra−O−(CH 2 )r−O−基、ハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、またはRa−O−(CH 2 )r−O−基を表し、rは1〜10の整数を表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つはRa−O−(CH 2 )r−O−基を含み、R a は、直鎖状又は分岐鎖状の末端鎖であり、Z 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し;qは、7〜20の整数を表す)を表わす。
〔7〕
前記一般式(1)の化合物のRが下記の2価の基から選ばれる基を含むことを特徴とする〔6〕に記載の反射防止フィルム。
Figure 0005232365


〔8〕
前記一般式(1)または(5)の化合物が、下記の化合物の少なくとも1つであることを特徴とする〔6〕に記載の反射防止フィルム。
Figure 0005232365


〔9〕
前記少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物が、更に少なくとも1種の非フッ素化光重合開始剤を含有することを特徴とする〔6〕〜〔8〕のいずれか1項に記載の反射防止フィルム。
〔10〕
前記電離放射線硬化性化合物が二個以上のエチレン性不飽和基を有する化合物であることを特徴とする〔6〕〜〔9〕のいずれか1項に記載の反射防止フィルム。
〔11〕
前記反射防止層が低屈折率層を有し、該低屈折率層が含フッ素ポリマーを含有する塗布液によって形成されたことを特徴とする〔6〕〜〔10〕のいずれか1項に記載の反射防止フィルム。
〔12〕
前記含フッ素ポリマーが、下記一般式1で表わされる含フッ素ポリマーであることを特徴とする〔11〕に記載の反射防止フィルム。
Figure 0005232365
〔一般式1中、Lは炭素数1〜10の連結基を表し、mは0または1を表す。Xは水素原子またはメチル基を表す。Aは任意のビニルモノマーの重合単位を表し、単一成分であっても複数の成分で構成されていてもよい。また、シリコーン部位を含んでいても良い。x、y、zはそれぞれの構成成分のモル%を表し、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。〕
〔13〕
前記含フッ素ポリマーが、下記一般式2で表わされる含フッ素ポリマーであることを特徴とする〔11〕に記載の反射防止フィルム。
Figure 0005232365
一般式2においてRは炭素数1〜10のアルキル基、又はエチレン性不飽和基(−C(=O)C(−X)=CH2)を表す。
mは1≦m≦10の整数を表す。
nは2≦n≦10の整数を表す。
Bは任意のビニルモノマーから導かれる繰返し単位を表わし、単一組成であっても複数の組成によって構成されていても良い。また、シリコーン部位を含んでいても良い。
x、y、z1およびz2はそれぞれの繰返し単位のmol%を表す。ただし、x+y+z1+z2=100である。
〔14〕
前記低屈折率層が中空シリカ微粒子を含有していることを特徴とする〔11〕〜〔13〕のいずれか1項に記載の反射防止フィルム。
〔15〕
透明基材上に、少なくとも一層からなる反射防止層を有する反射防止フィルムの製造方法であって、
前記透明基材上に積層される層の少なくとも一層を、少なくとも1種の下記一般式(1)または(5)のいずれか一つで表されるフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物を電離放射線照射によって硬化させてなり、
前記透明基材上に積層される層の少なくとも一層を、下記(i)〜(iii)の工程を含み、さらに下記(ii)の搬送工程と(iii)の硬化工程とが連続して行なわれる層形成方法によって形成することを特徴とする反射防止フィルムの製造方法。(i)透明基材上に塗布層を塗設する工程、(ii)該塗布層を有するフィルムを、膜面温度が25℃以上になるように加熱しながら、大気中の酸素濃度より低い酸素濃度雰囲気下で搬送する工程、(iii)該フィルムに酸素濃度15体積%以下の雰囲気下で膜面温度が25℃以上になるように加熱しながら電離放射線を照射し、塗布層を硬化する工程。
Figure 0005232365
一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3 または−L−CY 3 を表し、Lはアリール基を表す。
Rは、R a −Y 1 −(CH 2 s −O−、R a −Y 1 −(CH 2 s −S−及びR a −Y 1 −(CH 2 s −NR 1 −からなる群より選択される置換基、またはこれらの置換基を有するアリール基、置換アリール基、または置換アルケニル基を表す。R 1 は水素原子、メチル基、エチル基またはR a −Y 1 −(CH 2 s −を表し、sは2〜10の整数を表す。1は、互いに独立して、単結合、−O−、−S−からなる群より選択される二価の置換基を表す。R a は、直鎖状又は分岐鎖状の末端鎖でありZ 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し、qは、7〜20の整数を表す)を表す。
Figure 0005232365
一般式(5)において、Zは無置換もしくは置換されたフェニル基を表し、フェニル基の置換基は、Ra−O−(CH 2 )r−O−基、ハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、またはRa−O−(CH 2 )r−O−基を表し、rは1〜10の整数を表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つはRa−O−(CH 2 )r−O−基を含み、R a は、直鎖状又は分岐鎖状の末端鎖であり、Z 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し;qは、7〜20の整数を表す)を表わす。
〔16〕
前記一般式(1)の化合物のRが下記の2価の基から選ばれる基を含むことを特徴とする〔15〕に記載の反射防止フィルムの製造方法。
Figure 0005232365

〔17〕
前記一般式(1)または(5)の化合物が、下記の化合物の少なくとも1つであることを特徴とする〔15〕に記載の反射防止フィルムの製造方法。
Figure 0005232365

〔18〕
前記反射防止フィルムの製造方法が、バックアップロールによって支持されて連続走行するウェブの表面に、スロットダイの先端リップのランドを近接させて、前記先端リップのスロットから塗布液を塗布する工程を有し、該塗布液が、前記スロットダイのウェブ進行方向側の先端リップのウェブ走行方向におけるランド長さが30μm以上100μm以下であり、且つ前記スロットダイを塗布位置にセットしたときに、前記ウェブの進行方向とは逆側の先端リップとウェブの隙間を、前記ウェブ進行方向側の先端リップとウェブとの隙間よりも30μm以上120μm以下大きくなるように設置した塗布装置を用いて塗布されることを特徴とする〔15〕〜〔17〕のいずれか1項に記載の反射防止フィルムの製造方法。
〔19〕
前記塗布液の塗布時における粘度が2.0[mPa・sec]以下、且つ、ウェブ表面に塗り付けられる塗布液の量が2.0〜5.0[ml/m2]であることを特徴とする〔18〕に記載の反射防止フィルムの製造方法。
〔20〕
前記塗布液を、連続走行するウェブ表面に、25[m/min]以上の速度で塗布することを特徴とする〔18〕または〔19〕に記載の反射防止フィルムの製造方法。
〔21〕
〔6〕〜〔14〕のいずれか1項に記載の反射防止フィルムが、偏光板における2枚の保護フィルムのうち一方に用いられていることを特徴とする偏光板。
〔22〕
〔1〕〜〔5〕のいずれか1項に記載の光学フィルム、〔6〕〜〔14〕のいずれか1項に記載の反射防止フィルム、または〔21〕に記載の偏光板が用いられていることを特徴とする画像表示装置。
本発明は上記〔1〕〔22〕に関するものであるが、参考のためその他の事項(例えば下記(1)〜(19)に記載の事項など)についても記載した。
(1)
支持体上に塗布された層が、少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物の硬化物を含むことを特徴とする光学フィルム。
(2)
支持体上に塗布された層が、少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物と、少なくとも1種の非フッ素化光重合開始剤とを含有する組成物の硬化物を含むことを特徴とする(1)記載の光学フィルム。
(3)
支持体上に少なくとも反射防止層を有する反射防止フィルムであって、前記支持体上に積層された層の少なくとも一層が、少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物を電離放射線照射によって硬化させてなる層であることを特徴とする反射防止フィルム。
(4)
前記少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物が、更に少なくとも1種の非フッ素化光重合開始剤を含有することを特徴とする(3)記載の反射防止フィルム。
(5)
前記フッ素化光重合開始剤が下記一般式(1)〜(5)のいずれか一つで表わされることを特徴とする(1)または(2)に記載の光学フィルム。
Figure 0005232365
一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3、−NH2、−NHR′、−NR′2、−OR′を表す。R′はアルキル基、フルオロアルキル基、またはアリール基を表す。またRは、Ra−Y1−、Ra−Y1−(CH2r−、Ra−(CH2r−Y1−、Ra−Y1−(CH2s−O−、Ra−Y1−(CH2s−S−及びRa−Y1−(CH2s−NR1−からなる群より選択される置換基、−CY3、アルキル基、置換アルキル基、フルオロアルキル基、置換フルオロアルキル基、アリール基、置換アリール基、または置換アルケニル基を表す。R1は水素原子、メチル基またはエチル基を表し、rは1〜10の整数、sは2〜10の整数を表す。Y1は、互いに独立して、−O−、−S−、−O−C(=O)−及び−O−Si(R22−(CH2r−からなる群より選択される二価の置換基を表す。R2は炭素数1〜12のアルキル又はフェニル基を表す。Raは、直鎖状又は分岐鎖状の末端鎖:Z1CF2(−O−C24p−(CF2q−(ここで、Z1はH又はFを表し;p及びqのうちの一方は、0〜20の整数を表し、他方は1〜20の整数を表す)を表す。
Figure 0005232365
一般式(2)において、A1はフェニル基、ナフチル基、置換フェニル基、置換ナフチル基、または一般式(1)のRと同じものを表し、ここで置換基とはハロゲン原子、アルキル基、フルオロアルキル基、アルコキシ基、ニトロ基、シアノ基もしくはメチレンジオキシ基である。Yはハロゲン原子を表し、nは1〜3の整数を示す。
Figure 0005232365
一般式(3)において、Wは無置換もしくは置換されたフェニル基、無置換のナフチル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。置換基の数は、置換基としてハロゲン原子を含むときは1つ又は2つであり、その他の場合は1つである。X1は水素原子、フェニル基又は炭素数1〜3のアルキル基を表す。Yはハロゲン原子を表し、nは1〜3の整数を示す。
Figure 0005232365
一般式(4)において、W1は無置換もしくは置換されたフェニル基、無置換のナフチル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。置換基の数は、置換基としてハロゲン原子を含むときは1つ又は2つであり、その他の場合は1つである。X2は水素原子、ハロゲン原子、シアノ基、アルキル基、またはアリル基を表す。Yはハロゲン原子を表し、nは1〜3の整数を示す。
Figure 0005232365
一般式(5)において、Zは無置換もしくは置換されたフェニル基、無置換のナフチル基、フルオロアルキル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、または一般式(1)のRと同じものを表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つは一般式(1)のRと同じものを表す。
(6)
前記フッ素化光重合開始剤が下記一般式(1)〜(5)のいずれか一つで表わされることを特徴とする(3)または(4)に記載の反射防止フィルム。
Figure 0005232365

一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3、−NH2、−NHR′、−NR′2、−OR′を表す。R′はアルキル基、フルオロアルキル基、またはアリール基を表す。またRは、Ra−Y1−、Ra−Y1−(CH2r−、Ra−(CH2r−Y1−、Ra−Y1−(CH2s−O−、Ra−Y1−(CH2s−S−及びRa−Y1−(CH2s−NR1−からなる群より選択される置換基、−CY3、アルキル基、置換アルキル基、フルオロアルキル基、置換フルオロアルキル基、アリール基、置換アリール基、または置換アルケニル基を表す。R1は水素原子、メチル基またはエチル基を表し、rは1〜10の整数、sは2〜10の整数を表す。Y1は、互いに独立して、−O−、−S−、−O−C(=O)−及び−O−Si(R22−(CH2r−からなる群より選択される二価の置換基を表す。R2は炭素数1〜12のアルキル又はフェニル基を表す。Raは、直鎖状又は分岐鎖状の末端鎖:Z1CF2(−O−C24p−(CF2q−(ここで、Z1はH又はFを表し;p及びqのうちの一方は、0〜20の整数を表し、他方は1〜20の整数を表す)を表す。
Figure 0005232365
一般式(2)において、A1はフェニル基、ナフチル基、置換フェニル基、置換ナフチル基、または一般式(1)のRと同じものを表し、ここで置換基とはハロゲン原子、アルキル基、フルオロアルキル基、アルコキシ基、ニトロ基、シアノ基もしくはメチレンジオキシ基である。Yはハロゲン原子を表し、nは1〜3の整数を示す。
Figure 0005232365
一般式(3)において、Wは無置換もしくは置換されたフェニル基、無置換のナフチル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。置換基の数は、置換基としてハロゲン原子を含むときは1つ又は2つであり、その他の場合は1つである。X1は水素原子、フェニル基又は炭素数1〜3のアルキル基を表す。Yはハロゲン原子を表し、nは1〜3の整数を示す。
Figure 0005232365
一般式(4)において、W1は無置換もしくは置換されたフェニル基、無置換のナフチル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。置換基の数は、置換基としてハロゲン原子を含むときは1つ又は2つであり、その他の場合は1つである。X2は水素原子、ハロゲン原子、シアノ基、アルキル基、またはアリル基を表す。Yはハロゲン原子を表し、nは1〜3の整数を示す。
Figure 0005232365
一般式(5)において、Zは無置換もしくは置換されたフェニル基、無置換のナフチル基、フルオロアルキル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、または一般式(1)のRと同じものを表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つは一般式(1)のRと同じものを表す。
(7)
前記電離放射線硬化性化合物が二個以上のエチレン性不飽和基を有する化合物であることを特徴とする(1)、(2)、または(5)のいずれかに記載の光学フィルム。
(8)
前記電離放射線硬化性化合物が二個以上のエチレン性不飽和基を有する化合物であることを特徴とする(3)、(4)、または(6)のいずれかに記載の反射防止フィルム。
(9)
前記反射防止層が低屈折率層を有し、該低屈折率層が含フッ素ポリマーを含有する塗布液によって形成されたことを特徴とする(3)、(4)、(6)、または(8)のいずれかに記載の反射防止フィルム。
(10)
前記含フッ素ポリマーが、下記一般式1で表わされる含フッ素ポリマーであることを特徴とする(9)に記載の反射防止フィルム。
Figure 0005232365
〔一般式1中、Lは炭素数1〜10の連結基を表し、mは0または1を表す。Xは水素原子またはメチル基を表す。Aは任意のビニルモノマーの重合単位を表し、単一成分であっても複数の成分で構成されていてもよい。また、シリコーン部位を含んでいても良い。x、y、zはそれぞれの構成成分のモル%を表し、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。〕
(11)
前記含フッ素ポリマーが、下記一般式2で表わされる含フッ素ポリマーであることを特徴とする(9)に記載の反射防止フィルム。
一般式2
Figure 0005232365
一般式2においてRは炭素数1〜10のアルキル基、又はエチレン性不飽和基(−C(=O)C(−X)=CH2)を表す。
mは1≦m≦10の整数を表す。
nは2≦n≦10の整数を表す。
Bは任意のビニルモノマーから導かれる繰返し単位を表わし、単一組成であっても複数の組成によって構成されていても良い。また、シリコーン部位を含んでいても良い。
x、y、z1およびz2はそれぞれの繰返し単位のmol%を表す。ただし、x+y+z1+z2=100である。
(12)
前記低屈折率層が中空シリカ微粒子を含有していることを特徴とする(9)〜(11)に記載の反射防止フィルム。
(13)
透明基材上に、少なくとも一層からなる反射防止層を有する反射防止フィルムの製造方法であって、透明基材上に積層される層の少なくとも一層を、下記(i)〜(iii)の工程を含み、さらに下記(ii)の搬送工程と(iii)の硬化工程とが連続して行なわれる層形成方法によって形成することを特徴とする反射防止フィルムの製造方法。
(i)透明基材上に塗布層を塗設する工程、
(ii)該塗布層を有するフィルムを、膜面温度が25℃以上になるように加熱しながら、大気中の酸素濃度より低い酸素濃度雰囲気下で搬送する工程、
(iii)該フィルムに酸素濃度15体積%以下の雰囲気下で膜面温度が25℃以上になるように加熱しながら電離放射線を照射し、塗布層を硬化する工程。
(14)
前記反射防止フィルムの製造方法が、バックアップロールによって支持されて連続走行するウェブの表面に、スロットダイの先端リップのランドを近接させて、前記先端リップのスロットから塗布液を塗布する工程を有し、該塗布液が、前記スロットダイのウェブ進行方向側の先端リップのウェブ走行方向におけるランド長さが30μm以上100μm以下であり、且つ前記スロットダイを塗布位置にセットしたときに、前記ウェブの進行方向とは逆側の先端リップとウェブの隙間を、前記ウェブ進行方向側の先端リップとウェブとの隙間よりも30μm以上120μm以下大きくなるように設置した塗布装置を用いて塗布されることを特徴とする(3)、(4)、または(6)〜(13)のいずれかに記載の反射防止フィルムの製造方法。
(15)
前記塗布液の塗布時における粘度が2.0[mPa・sec]以下、且つ、ウェブ表面に塗り付けられる塗布液の量が2.0〜5.0[ml/m2]であることを特徴とする(14)に記載の反射防止フィルムの製造方法。
(16)
前記塗布液を、連続走行するウェブ表面に、25[m/min]以上の速度で塗布することを特徴とする(14)または(15)に記載の反射防止フィルムの製造方法。
(17)
(3)、(4)、または(6)〜(13)のいずれかに記載の反射防止フィルムが(13)〜(16)のいずれかに記載の方法で作製された反射防止フィルム。
(18)
(3)、(4)、または(6)〜(13)のいずれかに記載の反射防止フィルムが、偏光板における2枚の保護フィルムのうち一方に用いられていることを特徴とする偏光板。
(19)
(1)、(2)もしくは(5)のいずれかに記載の光学フィルム、(3)、(4)、もしくは(6)〜(13)のいずれかに記載の反射防止フィルム、または(18)に記載の偏光板が用いられていることを特徴とする画像表示装置。
本発明の光学フィルム、反射防止フィルムあるいは偏光板を備えた画像表示装置は、外光の映り込みや背景の映りこみが少なく、極めて視認性が高いだけでなく、従来のものに比較してより耐擦傷性に優れている。
また、本発明の製造方法によれば、上記の反射防止フィルムを安価に製造できる。
以下、本発明を詳細に説明する。なお、本明細書において、数値が物性値、特性値等を表す場合に、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。
[反射防止フィルムの層構成]
本発明の反射防止フィルムは、支持体(以後、基材あるいは基材フィルムと称することもある)上に、必要に応じて後述のハードコート層を有し、その上に光学干渉によって反射率が減少するように屈折率、膜厚、層の数及び層順等を考慮して積層された反射防止層を有する。一般的な反射防止層の最も単純な構成は、基材上に低屈折率層のみを塗設したものである。更に反射率を低下させるには、反射防止層を、基材よりも屈折率の高い高屈折率層と、基材よりも屈折率の低い低屈折率層を組み合わせて構成することが好ましい。構成例としては、基材側から高屈折率層/低屈折率層の2層のものや、屈折率の異なる3層を、中屈折率層(基材またはハードコート層よりも屈折率が高く、高屈折率層よりも屈折率の低い層)/高屈折率層/低屈折率層の順に積層されているもの等があり、更に多くの反射防止層を積層するものも提案されている。中でも、耐久性、光学特性、コストや生産性等から、ハードコート層を有する基材上に、中屈折率層/高屈折率層/低屈折率層の順に積層されているものが好ましい。また、本発明の反射防止フィルムは、上述のハードコート層に加え、防眩性層や帯電防止層等の機能性層を有していてもよい。
本発明の反射防止フィルムの好ましい構成の例を下記に示す。
基材フィルム/低屈折率層、
基材フィルム/防眩層/低屈折率層、
基材フィルム/ハードコート層/防眩層/低屈折率層、
基材フィルム/ハードコート層/高屈折率層/低屈折率層、
基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層、
基材フィルム/防眩層/高屈折率層/低屈折率層、
基材フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層、
基材フィルム/帯電防止層/ハードコート層/中屈折率層/高屈折率層/低屈折率層、
帯電防止層/基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層、
基材フィルム/帯電防止層/防眩層/中屈折率層/高屈折率層/低屈折率層、
帯電防止層/基材フィルム/防眩層/中屈折率層/高屈折率層/低屈折率層、
帯電防止層/基材フィルム/防眩層/高屈折率層/低屈折率層/高屈折率層/低屈折率層。
本発明の反射防止フィルムは、光学干渉により反射率を低減できるものであれば、特にこれらの層構成のみに限定されるものではない。高屈折率層は防眩性のない光拡散性層であってもよい。また、帯電防止層は導電性ポリマー粒子または金属酸化物微粒子(例えば、SnO2、ITO)を含む層であることが好ましく、塗布または大気圧プラズマ処理等によって設けることができる。
[光拡散層]
光拡散層は、透光性粒子と透光性樹脂を含む。透光性粒子と透光性樹脂により散乱光プロファイル及びヘイズ値を調整する。本発明では、1種類の粒子を用いるほかに、2種類以上の粒径およびまたは材質の透光性微粒子を用いることが好ましい。
透光性微粒子の屈折率と、光拡散層全体を構成する透光性樹脂の屈折率(後述する、層の屈折率調整のために無機微粒子、等を透光性樹脂に添加した場合は、その光学的な平均屈折率)との差が0.03乃至0.30であることが好ましい。両者の屈折率の差が充分あり、光拡散効果が得られやすい点から0.03以上であることが好ましく、光拡散性が大きすぎず、フィルム全体が白化しにくい点から0.30以下であることが好ましい。
屈折率差は、0.06乃至0.25がより好ましく、0.09乃至0.20が最も好ましい。
本発明における、表示品位を上げる(視角特性改善)ための透光性微粒子(第1の透光性微粒子)の粒子径は、0.5から3.5μmが好ましく、0.5μm乃至2.0μmであることがより好ましい。粒子径の調整により、光散乱の角度分布を得ることができる。
本発明に好適な光拡散層は、前記透光性粒子と光拡散層全体を構成する透光性樹脂との屈折率差と透光性微粒子の粒径との適切な組み合わせにして調整することが、視角特性と白化(ボケ)を両立させる点で特に好ましい。
拡散効果が大きければ大きい程、視角特性は向上する。しかし、表示品位という点で正面の明るさを維持するためには、出来る限り透過率を高めることも必要である。前記粒子径を0.5μm未満した場合、散乱の効果が大きく、視角特性は向上するが、後方散乱が大きくなり明るさの減少が大きい。一方、2.0μmより大きくした場合は、散乱効果が小さくなり、視角特性の向上は小さくなっていく。従って、前記粒子径は、0.6μm乃至1.8μmが好ましく、0.7μm乃至1.6μmが最も好ましい。
また、拡散効果付与を主目的としない透光性微粒子(第2の透光性微粒子)をさらに添加することも好ましい。拡散フィルムの表面に凹凸を設け、映り込み防止機能を設ける等に用いられる。第2の透光性微粒子の粒子径は第1の透光性粒子の粒子径より大きいことが好ましく、2.5μm乃至10.0μmであることが更に好ましい。これにより、好適な表面散乱を付与することができる。良好な表示品位を達成するには、外光の写り込みを防止する事も必要である。表面のヘイズ値が低いほど外光による白ちゃけ感が小さくなり、明瞭なディスプレイ表示を得ることができるが、表面ヘイズ値が低すぎると、映り込みが大きくなるため、最外層に光拡散層の屈折率よりも低い屈折率の低屈折率層を設け、低反射率化する等が必要になる。表面ヘイズ値を制御するには、第2の透光性微粒子により樹脂層表面に適度な凹凸を設けることが好ましいが、この限りではない。粒子径を2.5μm以上にした場合、所望の表面凹凸を設ける場合に、層の厚みを薄くする必要がなく、膜硬度の点で好ましく、一方、10μm以下にした場合、粒子1個1個の重量が大きくならないため、塗布液中の粒子沈降安定性の点で好ましい。従って、第2の透光性微粒子の粒子径は、2.7μm乃至9μmが好ましく、3μm乃至8μmが最も好ましい。
第2の透光性粒子の屈折率は光拡散層全体を構成する透光性樹脂の屈折率との差が第1の透光性粒子より小さいことが好ましい。
表面凸凹は、表面粗さRaが0.5μm以下であることが好ましく、0.3μm以下であることが更に好ましく、最も好ましくは、0.2μm以下である。表面粗さRa(中心線平均粗さ)の測定は、JIS−B0601に準じて行える。
光拡散層のヘイズ値、特に透過光の拡散に寄与が大きい内部散乱へイズ(内部ヘイズ)は、視角特性改良効果と強い相関関係がある。バックライトから出射された光が視認側の偏光板表面に設置された光拡散層で拡散されることにより、視角特性が改善される。しかし、拡散されすぎると正面輝度が減少するため、光拡散層の内部ヘイズは、45%以上80%以下が好ましく、45%以上70%以下がより好ましく、45%以上60%以下が特に好ましい。内部散乱へイズを上昇させる方法として、拡散性付与を目的とする透光性微粒子の粒子濃度を上げる、もしくは、塗布膜厚を上げる、さらには、粒子と樹脂の屈折率差を大きくするなどの方法がある。
本発明における、表示品位を上げる(視角特性改善)ためには、ゴニオフォトメータの散乱光プロファイルの出射角0°の光強度に対する30°の散乱光強度を特定の範囲内にするのが特に好ましい。ゴニオフォトメータの散乱光プロファイルの出射角0°の光強度に対する30°の散乱光強度は、視覚特性の点から0.05%以上が好ましく、正面輝度をあまり下げない点からは0.3%以下が好ましい。従って、本発明の光拡散層は0.05〜0.3%であることが好ましく、0.05〜0.2%であることがより好ましく、0.05〜0.15%であることが特に好ましい。上記の内部ヘイズの好ましい範囲と同時に満たすことが更に好ましい。
本発明の偏光板の表面散乱起因のヘイズ(表面ヘイズ)は、映り込み低減と白茶け感低減の両立の観点から、0.1〜30%が好ましく、10%以下がより好ましく、5%以下が特に好ましい。外光による白茶け感低減を重視するのであれば、4%以下が好ましく、2%以下が更に好ましい。表面ヘイズを低減すると映り込みが大きくなるため、低屈折率層を設け、5度入射における積分反射率の450nmから650nmまでの波長領域での平均値を3.0%以下にすることが好ましく、2.0%以下がより好ましく、最も好ましくは1.0%以下である。本発明における、表示品位を上げる(視角特性改善)ことに関しては、前述の内部散乱性の調整が必要であるが、同時に表面ヘイズおよび/または反射率を好適な範囲にすることで、明室下でのコントラストが改善され、最も好ましい効果を発現できる。
前記透光性微粒子、単分散の有機微粒子であっても、無機微粒子であってもよい。粒径にばらつきがないほど、散乱特性にばらつきが少なくなり、曇価の設計が容易となる。前記透光性微粒子としては、プラスチックビーズが好適であり、特に透明度が高く、透光性樹脂との屈折率差が前述のような数値になるものが好ましい。有機微粒子としては、ポリメチルメタクリレートビーズ(屈折率1.49)、アクリル−スチレン共重合体ビーズ(屈折率1.54)、メラミンビーズ(屈折率1.57)、ポリカーボネートビーズ(屈折率1.57)、スチレンビーズ(屈折率1.60)、架橋ポリスチレンビーズ(屈折率1.61)、ポリ塩化ビニルビーズ(屈折率1.60)、ベンゾグアナミン−メラミンホルムアルデヒドビーズ(屈折率1.68)等が用いられる。無機微粒子としては、シリカビーズ(屈折率1.44〜1.46)、アルミナビーズ(屈折率1.63)等が用いられる。透光性微粒子は、透光性樹脂100質量部に対して5〜30質量部含有させるとよい。
上記のような透光性微粒子の場合には、樹脂組成物(透光性樹脂)中で透光性微粒子が沈降し易いので、沈降防止のためにシリカ等の無機フィラーを添加してもよい。なお、無機フィラーは添加量が増す程、透光性微粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与えることもある。従って、好ましくは、粒径0.5μm以下の無機フィラーを、透光性樹脂に対して塗膜の透明性を損なわない程度に、0.1質量%未満程度含有させるとよい。
透光性樹脂としては、主として紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤を混合したもの、熱硬化型樹脂の3種類が使用される。ハードコート性を付与するためには、電離放射線硬化型樹脂が主成分であることが好ましい。光拡散層の厚さは通常1.5μm〜30μm、好ましくは3μm〜20μmとすると良い。光拡散層がハードコート層としての機能を兼ねる場合が一般的であるが、光拡散層の厚さが1.5μm以上であると、ハードコート性が十分であり、一方、30μm以下であると、カールや脆性の点で好ましい。透光性樹脂の屈折率は、低屈折率層を設ける場合は、好ましくは1.46〜2.00であり、より好ましくは1.48〜1.90であり、更に好ましくは1.50〜1.80である。なお、透光性樹脂の屈折率は、透光性微粒子を含まずに測定した光拡散層平均の値である。光拡散層の屈折率が小さすぎると反射防止性が低下する。大きすぎると、反射光の色味が強くなり、好ましくない方向である。この点から上記範囲が好ましい。光拡散層の屈折率の設定は、反射防止性と反射光色味の点から所望の値に設定する。
該透光性樹脂に用いるバインダーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることがさらに好ましい。また、バインダーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーを得るためには、二個以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。
二個以上のエチレン性不飽和基を有するモノマーの例には、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,3,5−シクロヘキサントリオールトリメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンの誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが含まれる。これらのなかでも、少なくとも3つの官能基を有するアクリレートもしくはメタアクリレートモノマー、さらには少なくとも5つの官能基を有するアクリレートモノマーが、膜硬度、即ち耐傷性の観点で好ましい。ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物が市販されており、特に好ましく用いられる。
これらのエチレン性不飽和基を有するモノマーは、各種の重合開始剤その他添加剤と共に溶剤に溶解、塗布、乾燥後、電離放射線または熱による重合反応により硬化することができる。
二個以上のエチレン性不飽和基を有するモノマーの代わり、またはそれに加えて、架橋性基の反応により、架橋構造をバインダーに導入してもよい。架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。これら架橋性官能基を有するバインダーは塗布後、加熱することによって架橋構造を形成することができる。
透光性樹脂は、上記バインダポリマーに加えて、これに高屈折率を有するモノマーおよび/または高屈折率を有する金属酸化物超微粒子等から形成されることが好ましい。高屈折率モノマーの例には、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4‘−メトキシフェニルチオエーテル等が含まれる。高屈折率を有する金属酸化物超微粒子の例には、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも一つの酸化物を含む粒径100nm以下、より好ましくは50nm以下の微粒子を含有することが好ましい。高屈折率を有する金属酸化物超微粒子としてはAl、Zr、Zn、Ti、InおよびSnから選ばれる少なくとも1種の金属の酸化物超微粒子が好ましく、具体例としては、ZrO2、TiO2、Al23、In23、ZnO、SnO2、Sb23、ITO等が挙げられる。これらの中でも、特にZrO2が好ましく用いられる。高屈折率のモノマーや金属酸化物超微粒子の添加量は、透光性樹脂の全質量の10〜90質量%であることが好ましく、20〜80質量%であると更に好ましい。
光拡散層は、セルロースアセテートフィルムの上に塗布することにより、形成することが好ましい。光拡散層を形成するための塗布液の溶剤は、透明基材フィルムへの拡散層成分の過剰な染み込み防止と、拡散層と透明基材フィルムとの密着性確保の両立を図るために、透明基材フイルム(例えばトリアセチルセルロース支持体)を溶解する少なくとも一種類以上の溶剤と、透明基材フイルムを溶解しない少なくとも一種類以上の溶剤から構成する。より好ましくは、透明基材フイルムを溶解する溶剤のうちの少なくとも一種類が、透明基材フイルムを溶解しない溶剤のうちの少なくとも一種類よりも高沸点であることが好ましい。さらに好ましくは、透明基材フイルムを溶解する溶剤のうち最も沸点の高い溶剤と、透明基材フイルムを溶解しない溶剤のうち、最も沸点の高い溶剤との沸点温度差が30℃以上であることであり、最も好ましくは40℃以上であることである。
透明基材フイルム(好ましくはトリアセチルセルロース)を溶解する溶剤として、炭素子数が3〜12のエーテル類:具体的には、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4−ジオキサン、1,3−ジオキソラン、1,3,5−トリオキサン、テトラヒドロフラン、アニソールおよびフェネトール等、炭素数が3〜12のケトン類:具体的には、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、およびメチルシクロヘキサノン等、炭素数が3〜12のエステル類:具体的には、蟻酸エチル、蟻酸プロピル、蟻酸n−ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン醸エチル、酢酸n−ペンチル、およびγ−プチロラクトン等、2種類以上の官能基を有する有機溶媒:具体的には、2−メトキシ酢酸メチル、2−エトキシ酢酸メチル、2−エトキシ酢酸エチル、2−エトキシプロピオン酸エチル、2−メトキシエタノール、2−プロポキシエタノール、2−ブトキシエタノール、1,2−ジアセトキシアセトン、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、およびアセト酢酸エチル等が挙げられる。これらは1種単独であるいは2種以上を組み合わせて用いることができる。透明基材を溶解する溶剤としてはケトン系溶剤が好ましい。
透明基材フイルム(好ましくはトリアセチルセルロース)を溶解しない溶剤として、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、tert−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール、酢酸イソブチル、メチルイソブチルケトン、2−オクタノン、2−ペンタノン、2−ヘキサノン、2−ヘプタノン、3−ペンタノン、3−ヘプタノン、4−ヘプタノン、トルエンが挙げられる。これらは1種単独であるいは2種以上を組み合わせて用いることができる。
透明基材フイルムを溶解する溶剤の総量(A)と透明基材フイルムを溶解しない溶剤の総量(B)の質量割合(A/B)は、5/95〜50/50が好ましく、より好ましくは10/90〜40/60であり、さらに好ましく15/85〜30/70である。
上記のような電離放射線硬化型樹脂組成物の硬化方法としては、前記電離放射線硬化型樹脂組成物の通常の硬化方法、即ち、電子線又は紫外線の照射によって硬化することができる。
例えば、電子線硬化の場合には、コックロフワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50〜1000keV、好ましくは100〜300keVのエネルギーを有する電子線等が使用され、紫外線硬化の場合には超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等が利用できる。
[フッ素化光重合開始剤]
本発明の光学フィルムおよび反射防止フィルムは、支持体上に、少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物を含有する組成物を電離放射線照射によって硬化してなる層を有する。この層は、例えば、反射防止フィルムの好ましい構成として先に列挙したうちのいずれか1層以上の層であってもよい。
フッ素化光重合開始剤は一般的に、塗布乾燥後に表面層付近の濃度が増加しやすく、電離放射線照射によって生じるラジカルが表層付近の酸素をクエンチすることにより、表層からの酸素の影響を軽減し、膜全体の効果的な重合を進行させ得る。
本発明においては下記一般式(1)〜(5)で表わされる化合物から選ばれる化合物を少なくとも一種用いることが特に好ましい。
以下、一般式(1)〜(5)で表わされる化合物について説明する。
Figure 0005232365
一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3、−NH2、−NHR′、−NR′2、−OR′を表す。R′はアルキル基、フルオロアルキル基、またはアリール基を表す。またRは、Ra−Y1−、Ra−Y1−(CH2r−、Ra−(CH2r−Y1−、Ra−Y1−(CH2s−O−、Ra−Y1−(CH2s−S−及びRa−Y1−(CH2s−NR1−からなる群より選択される置換基、−CY3、アルキル基、置換アルキル基、フルオロアルキル基、置換フルオロアルキル基、アリール基、置換アリール基、または置換アルケニル基を表す。Y1は、互いに独立して、−O−、−S−、−O−C(=O)−及び−O−Si(R22−(CH2r−からなる群より選択される二価の置換基を表す。R2は炭素数1〜12のアルキル又はフェニル基を表す。
aは、直鎖状又は分岐鎖状の末端鎖:Z1CF2(−O−C24p−(CF2q−(ここで、Z1はH又はFを表し;p及びqのうちの一方は、0〜20の整数を表し、他方は1〜20の整数を表す)を表す。
一般式(1)のうちY1が−CY3である化合物を用いた場合が特に好ましい。Yとして好ましくは、Cl,Br,F原子である。
一般式(1)で表される化合物の具体例は以下の通りである。
Figure 0005232365
Figure 0005232365
Figure 0005232365
Figure 0005232365
1はフェニル基、ナフチル基、置換フェニル基、置換ナフチル基(該置換フェニル基、該置換ナフチル基における置換基とはハロゲン原子、アルキル基、フルオロアルキル基、アルコキシ基、ニトロ基、シアノ基もしくはメチレンジオキシ基である)、または一般式(1)のRと同じものを表し、Yはハロゲン原子を表し、nは1〜3の整数を示す。
一般式(2)で表される化合物の具体例は以下の通りである。
Figure 0005232365
Figure 0005232365
Wは無置換もしくは置換されたフェニル基、無置換のナフチル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。フェニル基の置換基の数は、置換基としてハロゲン原子を含むときは1つ又は2つであり、その他の場合は1つである。X1は水素原子、フェニル基又は炭素数1〜3のアルキル基を表す。Yはハロゲン原子を表し、nは1〜3の整数を示す。
一般式(3)で表される化合物の具体例は以下の通りである。
Figure 0005232365
Figure 0005232365
1は無置換もしくは置換されたフェニル基、無置換のナフチル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、フルオロアルキル基、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。フェニル基の置換基の数は、置換基としてハロゲン原子を含むときは1つ又は2つであり、その他の場合は1つである。X2は水素原子、ハロゲン原子、シアノ基、アルキル基、フルオロアルキル基、またはアリル基を表す。Yはハロゲン原子を表し、nは1〜3の整数を示す。
一般式(4)で表される化合物の具体例は以下の通りである。
Figure 0005232365
Figure 0005232365
一般式(5)において、Zは無置換もしくは置換されたフェニル基、無置換のナフチル基、フルオロアルキル基、または一般式(1)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、または一般式(1)のRと同じものを表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つは一般式(1)のRと同じものを表す。
一般式(5)で表される化合物の具体例は以下の通りである。
Figure 0005232365
一般式(1)〜(5)に示される化合物は、例えば、M. P. Hutt、E. F. ElslagerおよびL.M.Werbel著 Journal of Heterocyclic Chemistry 第7巻(No.3)、第511頁以降(1970年)に記載されている合成方法に準じて、当業者が容易に合成することができる。またS-トリアジン化合物は、下記の方法により合成される。すなわち、R.Adamsら編「Organic Syntheses」(J.Wiley & Sons) Collective Volume 2、623頁に記載の方法、あるいは、V.Covielloら著、Helvetica Chimica Acta、59、819〜834(1976)に記載の方法に従い合成される」芳香族ニトリル化合物とハロアセトニトリルを用い、K. Wakabayashiら著、Bulletin of the Chemical Society of Japan、42、2924〜2930(1969)に記載の方法に従い環化させることにより合成することができる。
フッ素化光重合開始剤の使用量に特に制限はないが、電離放射線硬化性化合物100質量部に対して、0.1〜30質量部の範囲で使用することが好ましく、より好ましくは1〜20質量部である。またフッ素化光重合開始剤は複数種を使用しても良いし、他の重合開始剤(非フッ素化重合開始剤)、例えばラジカル重合開始剤や光増感剤などと併用して使用しても良い。
[他の重合開始剤]
他のラジカル重合開始剤や光増感剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001−139663号公報等)、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。
アセトフェノン類の例には、2,2−ジメトキシアセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシ-ジメチルフェニルケトン、1−ヒドロキシ-ジメチル-p-イソプロピルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、が含まれる。
ベンゾイン類の例には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。
ベンゾフェノン類の例には、ベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4'-メチルジフェニルサルファイド、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノン、4,4'-ジメチルアミノベンゾフェノン(ミヒラーケトン)、3,3'、4、4'-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどが含まれる。
ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
活性エステル類の例には1、2−オクタンジオン、1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、スルホン酸エステル類、環状活性エステル化合物などが含まれる。
具体的には特開2000−80068記載の実施例記載化合物1〜21が特に好ましい。
オニウム塩類の例には、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩が挙げられる。
ボレート塩としては、例えば、特許第2764769号、特開2002−116539号等の各公報、および、Kunz,Martin“Rad Tech’98.Proce
eding April 19〜22頁,1998年,Chicago”等に記載される有機ホウ酸塩記載される化合物があげられる。例えば、前記特開2002−116539号明細書の段落番号[0022]〜[0027]記載の化合物が挙げられる。またその他の有機ホウ素化合物としては、特開平6−348011号公報、特開平7−128785号公報、特開平7−140589号公報、特開平7−306527号公報、特開平7−292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられ、具体例にはカチオン性色素とのイオンコンプレックス類が挙げられる。
活性ハロゲン類としては、具体的には、若林 等の“Bull Chem.Soc Japan"42巻、2924頁(1969年)、米国特許第3,905,815号明細書、特開平5−27830号、M.P.Hutt“Jurnal of Heterocyclic Chemistry”1巻(3号),(1970年)等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物:s−トリアジン化合物が挙げられる。より好適には、少なくとも一つのモノ、ジまたはトリハロゲン置換メチル基がs−トリアジン環に結合したs−トリアジン誘導体が挙げられる。具体的な例にはS-トリアジンやオキサチアゾール化合物が知られており、2-(p-メトキシフェニル)-4,6-ビス(トリクロルメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロルメチル)-s-トリアジン、2-(p-スチリルフェニル)-4,6-ビス(トリクロルメチル)-s-トリアジン、2-(3-Br-4-ジ(エチル酢酸エステル)アミノ)フェニル)-4,6-ビス(トリクロルメチル)-s-トリアジン、2-トリハロメチル-5-(p-メトキシフェニル)-1,3,4-オキサジアゾールが含まれる。具体的には特開昭58−15503のp14〜p30、特開昭55−77742のp6〜p10、特公昭60−27673のp287記載のNo.1〜No.8、特開昭60−239736のp443〜p444のNo.1〜No.17、US−4701399のNo.1〜19などの化合物が特に好ましい。
無機錯体の例にはビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6−ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムが挙げられる。
クマリン類の例には3−ケトクマリンが挙げられる。
これらの開始剤は単独でも混合して用いても良い。「最新UV硬化技術」,(株)技術情報協会,1991年,p.159、及び、「紫外線硬化システム」 加藤清視著、平成元年、総合技術センター発行、p.65〜148にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(651,184,819、907、1870(CGI-403/Irg184=7/3混合開始剤、500,369,1173,2959,4265,4263など)、OXE01)等、日本化薬(株)製のKAYACURE(DETX-S,BP-100,BDMK,CTX,BMS,2-EAQ,ABQ,CPTX,EPD,ITX,QTX,BTC,MCAなど)、サートマー社製のEsacure(KIP100F,KB1,EB3,BP,X33,KT046,KT37,KIP150,TZT)等及びそれらの組み合わせが好ましい例として挙げられる。
上記の、他の光重合開始剤(非フッ素化光重合開始剤)を使用する場合は、電離放射線硬化性化合物100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
フッ素化光重合開始剤は表面層の酸素の影響を緩和させて表層の硬化促進の為に有効に機能すると予測され、一方非フッ素化光重合開始剤は層内部の硬化促進を確実に進行させるので併用が好ましいと考えられる。
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーケトンおよびチオキサントン、などを挙げることができる。
更にアジド化合物、チオ尿素化合物、メルカプト化合物などの助剤を1種以上組み合わせて用いてもよい。
市販の光増感剤としては、日本化薬(株)製のKAYACURE(DMBI,EPA)などが挙げられる。
熱ラジカル開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2,2'−アゾビス(イソブチロニトリル)、2,2'−アゾビス(プロピオニトリル)、1,1'−アゾビス(シクロヘキサンカルボニトリル)等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等が挙げられる。
[皮膜の硬化方法]
本発明の反射防止フィルムの製造方法は、下記(1)及び(2)の工程によって支持体上に積層される層の少なくとも一層を形成する工程を有することが好ましい。
(1)連続して走行する、支持体を含むウェッブ上に、少なくとも1種のフッ素化光重合開始剤および電離放射線硬化性化合物を含む塗布液を塗布及び乾燥し、塗布層を形成する工程、
(2)前記ウェッブ上の塗布層に、酸素濃度15体積%以下の雰囲気下で電離放射線を0.5秒以上照射することにより、塗布層を硬化する工程(以後、(2)の塗布層を硬化する工程を「硬化工程」と称することもある)。
電離放射線の照射は、酸素濃度は15体積%以下の雰囲気下で行なうことが好ましい。より好ましくは10体積%以下であり、更に好ましくは5.0体積%以下である。必要以上に酸素濃度を低減するためには、不活性ガスの多量の使用量が必要であり、製造コストの観点から好ましくない。酸素濃度を低下させる手段としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の不活性気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。
本発明では、ウェッブ上の塗布層に、酸素濃度5体積%以下の雰囲気下で電離放射線を0.5秒以上の間照射することによって塗布層の硬化を行なうことが好ましい。照射時間は照射開始から0.7秒以上60秒以下が好ましく、0.7秒以上10秒以下がより好ましい。0.5秒未満では、硬化反応が完了することができず、十分な硬化を行うことができない。
尚、本明細書中、「ウェッブ」とは、支持体自体であっても、支持体上に層を形成したものであってもよい。
本発明では、前記の硬化工程を、所望の酸素濃度に制御された電離放射線反応室(以後、単に「反応室」ということもある)で行なうことが好ましい。不活性ガスを電離放射線反応室に供給する際、反応室のウェッブ入り口側(ウェッブを搬入する入り口である)にやや吹き出す条件にすることで、ウェッブ搬送にともなう導搬エアーを排除して反応室の酸素濃度を有効に下げられるとともに、酸素による硬化阻害の大きい極表面の実質の酸素濃度を効率よく低減することができる。反応室のウェッブ入り口側での不活性ガスの流れの方向は、反応室の給気、排気のバランスを調整することなどで制御できる。なお、ウェッブ上の塗布層に電離放射線を照射する直前に、不活性ガスをウェッブ上の塗布層表面に直接吹き付けることも、導搬エアーを除去する方法として好ましい。
特に最外層であり、且つ、膜厚が薄い低屈折率層がこの方法で硬化されることが好ましい。
また反応室の前に前室を設けることも好ましい。前室は、不活性ガスで置換され、低酸素濃度であることが好ましく、好ましくは酸素濃度5体積%以下且つ酸素濃度0.01体積%以上であることが好ましい。前室内を電離放射線照射前のウェッブを通過(搬送)させるのみであってもよく、前記した導搬エアーを除去する方法である不活性ガスのウェッブ上の塗布層表面への直接吹き付けを行なってもよい。
前室を設けて、事前にウェッブの塗布層表面の酸素を排除することで、反応室の低酸素濃度を維持することが可能となり、より硬化を効率よく進めることができる。
また電離放射線反応室または前室のウェッブ入り口側を構成する側面の少なくとも一方は、不活性ガスを効率的に使用するために、ウェッブ上の塗布層表面とのギャップが0.2〜15mmであることが好ましく、より好ましくは、0.2〜10mmとするのがよく、0.2〜5mmとすることが最も好ましい。ここで、ギャップとは、ウェッブ上の塗布層表面とウェッブ入り口側を構成する側面におけるウェッブ入り口上端との間の長さを指す。
しかし、ウェッブを連続製造するには、ウェッブを接合して繋げていく必要があり、接合には接合テープなどで貼る方法が広く用いられている。このため、電離放射線反応室または前室の入り口とウェッブ上の塗布層表面とのギャップをあまり狭くすると、接合テープなどの接合部材が引っかかる問題が生じる。このためギャップを狭くするためには、電離放射線反応室または前室の入り口面の少なくとも一部を可動とし、接合部が入るときは接合厚み分だけギャップを広げるのが好ましい。この実現のためには、(A)電離放射線反応室または前室の入り口面を進行方向前後に可動にしておき、接合部が通過する際に前後に動いてギャップを広げる方法や、(B)電離放射線反応室または前室の入り口面をウェッブ面に対し、垂直方向に可動にし、接合部が通過する際に上下に動いてギャップを広げる方法を取ることが出来る。
以下、前室のウェッブ入り口面の動作を例にとり、本発明で適用可能な反応室または前室のウェッブ入り口面の動作事例を、図1〜4を基に説明する(尚、以下の図面説明では、塗布層(図示せず)を有したウェッブを単に「ウェッブ」と称する)。
図1は、本発明の電離放射線反応室及び前室を具備した製造装置の模式図である。
図2は、本発明の電離放射線反応室及び前室を具備した製造装置のウェッブ入り口面の装置動作の一例を示した側面図であり、上記(A)の態様を示す。図2の構成を有する装置は、ウェッブ搬送時に、ウェッブを接合して繋げる接合部材が前室入り口に進入する前に、センサで接合部材を検知し、制御部(図示せず)を通して該センサと連動して作動する前室のウェッブ入り口面の少なくとも一部に取り付けれらたエアシリンダによって、入り口面をウェッブの進行方向前後に動かせるようにしたものであり、これにより接合部材の厚み分を逃げることができるものである。
図3及び図4は、上記(B)の態様を示した図であり、図3は前室のウェッブ入り口面を模式的に示した図であり、図4は前室のウェッブ入り口面の動作を模式的に示した図である。前室ウェッブ入り口面の一部を可動にし、ウェッブの幅両端をベアリングタッチロールで接触することでウェッブと入り口面とのギャップが決まる。接合部材が通過するときは、ベアリングタッチロールが接合部材を乗り越え、ウェッブ入り口面のギャップが一定に保たれる。入り口の可動手段は、接合部を逃げられるようになっていれば良く、限定されるものではない。
本発明では、ウェッブ上の塗布層を硬化させる際、前記硬化工程における5体積%以下の雰囲気下で行なわれる電離放射線照射を複数回に分けて行うことも好ましい。
この場合、少なくとも2回の電離放射線照射が、連続した酸素濃度5体積%以下の反応室で行われることが好ましい。複数回の電離放射線照射を同一の低酸素濃度の反応室で行なうことにより、硬化に必要な反応時間を有効に確保することができる。特に高生産性のため製造速度を上げた場合には、硬化反応に必要な電離放射線のエネルギーを確保するために複数回の電離放射線照射が必要となり、硬化反応に必要な反応時間の確保とあわせ、上記の態様が有効である。
「連続した反応室」とは、酸素濃度5体積%以下の反応室内で少なくとも2回の電離放射線照射を行なう態様や、酸素濃度5体積%以下の反応室を少なくとも2室以上設け、反応室の間を酸素濃度5体積%以下の低酸素ゾーンとする態様等がある。後者の場合には各々の反応室は、酸素濃度5体積%以下であれば、酸素濃度が異なっていてもよい。
本発明では、塗布層表面温度が25℃以上になるようにウェッブを加熱しながら、前記硬化工程を行なうことも好ましい。また電離放射線照射と同時および/または連続して酸素濃度5体積%以下の雰囲気で加熱することも好ましい。加熱しながら前記硬化工程を行なうことで、硬化反応が熱で加速され、物理強度、耐薬品性に優れた皮膜を形成することができる。
加熱は塗布層表面温度が25℃以上170℃以下で加熱されることが好ましい。加熱の硬化が十分な点で25℃以上が好ましく、一方、基材の変形などの問題が生じにくい点で170℃以下が好ましい。更に好ましい温度は25℃〜100℃である。また塗布層表面温度が前記温度に保持される時間は、電離放射線照射開始から0.1秒以上、300秒以下が好ましく、更に10秒以下が好ましい。塗布層表面温度の温度を上記の温度範囲に保つ時間が短すぎると、皮膜を形成する硬化性組成物の反応を促進できず、逆に長すぎてもフィルムの光学性能が低下し、また設備が大きくなるなどの製造上の問題も生じる。
加熱する方法に特に限定はないが、ロールを加熱してウェッブに接触させる方法、加熱した窒素を吹き付ける方法、遠赤外線あるいは赤外線の照射などが好ましい。特許2523574号に記載の回転金属ロールに温水や蒸気・オイルなどの媒体を流して加熱する方法も利用できる。加熱の手段としては誘電加熱ロールなどを使用しても良い。
本発明における電離放射線種は特に制限されるものではなく、皮膜を形成する硬化性組成物の種類に応じて、紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができる。本発明では紫外線による照射が好ましい。重合速度が早く設備をコンパクトにできる、選択できる化合物種が豊富でかつ低価格であることから紫外線硬化が好ましい。
紫外線の場合は、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等が利用できる。また電子線照射の場合は、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型などの各種電子線加速器から放出される50〜1000keVのエネルギーを有する電子線が用いられる。
[皮膜形成バインダー]
本発明では、皮膜を形成する硬化性組成物中の皮膜形成バインダー成分として電離放射線硬化性化合物、好ましくはエチレン性不飽和基を有する化合物を含有していることが、皮膜強度、塗布液の安定性、塗膜の生産性、などの点で好ましい。電離放射線硬化性化合物の含有量は、無機粒子を除く皮膜形成成分のうち10質量%以上100質量%以下が好ましく、より好ましくは、20質量%以上100質量%以下、更に好ましくは30質量%以上95%以下である。
また、本明細書において、「電離放射線硬化性化合物」とは、電離放射線照射によって硬化する化合物であればよい。
皮膜形成バインダー、及び電離放射線硬化性化合物としては、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがより好ましい。更に、これらポリマーは架橋構造を有していることが好ましい。
飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
さらに、高屈折率な皮膜にする場合には、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むことが好ましい。
二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4-シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンおよびその誘導体(例、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。
上記モノマーは2種以上併用してもよい。尚、本明細書においては、「(メタ)アクリレート」、「(メタ)アクリロイル」、「(メタ)アクリル酸」は、それぞれ「アクリレート又はメタクリレート」、「アクリロイル又はメタクリロイル」、「アクリル酸又はメタクリル酸」を表す。
更に、高屈折率モノマーの具体例としては、ビス(4-メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4-メタクリロキシフェニル-4'-メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
これらのエチレン性不飽和基を有するモノマーの重合は、先に述べたフッ素化光重合開始剤及び場合により他の重合開始剤、例えば光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
本発明においてはポリエーテルを主鎖として有するポリマーを使用することもできる。多官能エポキシ化合物の開環重合体が好ましい。多官能エポキシ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。光酸発生剤および熱酸発生剤としては、公知ものが使用できる。
二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
[低屈折率層用材料]
本発明の反射防止フィルムの反射防止層は、含フッ素ポリマーを含有する塗布液によって形成された低屈折率層を有していてもよい。
本発明の低屈折率層は、含フッ素化合物を主成分としてなる硬化性組成物、又は分子内に複数個の結合性基を有するモノマーと低屈折率の粒子を含有する硬化組成物を塗布硬化して、屈折率が1.20〜1.50の範囲に調節したものであることが好ましい。1.25〜1.45がより好ましく。1.30〜1.40が更に好ましい。
好ましい硬化物組成の態様としては、(1)架橋性若しくは重合性の官能基を有する含フッ素ポリマーを含有する組成物、(2)含フッ素のオルガノシラン材料の加水分解縮合物を主成分とする組成物、(3)2個以上のエチレン性不飽和基を有するモノマーと中空構造を有する無機微粒子を含有する組成物、これにより、フッ化マグネシウムやフッ化カルシウムを用いた低屈折率層に比べ、最外層として用いても耐擦傷性に優れた光学フィルムおよび反射防止フィルムが得られる。硬化した低屈折率層表面の動摩擦係数は、好ましくは0.03〜0.15、水に対する接触角は好ましくは90〜120度である。
(1)架橋性若しくは重合性の官能基を有する含フッ素化合物
架橋性若しくは重合性の官能基を有する含フッ素化合物としては、含フッ素モノマーと架橋性または重合性の官能基を有するモノマーの共重合体を挙げることができる。含フッ素モノマーとしては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等である。
架橋性基付与のためのモノマーとしては、1つの態様としては、グリシジルメタクリレートのように分子内にあらかじめ架橋性官能基を有する(メタ)アクリレートモノマーを挙げることができる。又別の態様としては、水酸基等の官能基を有するモノマーを用い含フッ素共重合体を合成後、さらにそれら置換基を修飾して架橋性若しくは重合性の官能基を導入するモノマーを使用する方法である。これらモノマーとしては、カルボキシル基、ヒドロキシル基、アミノ基、スルホン酸基等を有する(メタ)アクリレートモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート等)が挙げられる。後者の態様は特開平10−25388号公報および特開平10−147739号公報により開示されている。
上記含フッ素共重合体には、溶解性、分散性、塗布性、防汚性、帯電防止性などの観点から、適宜共重合可能な成分を含むことができる。特に防汚性・滑り性付与のためには、シリコーンを導入することが好ましく、主鎖にも側鎖にも導入することができる。
主鎖へのポリシロキサン部分構造導入方法は、例えば特開平6−93100号公報に記載のアゾ基含有ポリシロキサンアミド(市販のものではVPS-0501、1001(商品名;ワコー純薬工業(株)社製))等のポリマー型開始剤を用いる方法が挙げられる。また、側鎖に導入する方法は、例えばJ.Appl.Polym.Sci.2000,78,1955、特開昭56−28219号公報等に記載のごとく、反応性基を片末端に有するポリシロキサン(例えばサイラプレーンシリーズ(チッソ株式会社製)など)を高分子反応によって導入する方法、ポリシロキサン含有シリコンマクロマーを重合させる方法によって合成することができ、どちらの方法も好ましく用いることができる。
上記のポリマーに対しては特開2000−17028号公報に記載のごとく適宜重合性不飽和基を有する硬化剤を併用してもよい。また、特開2002−145952号に記載のごとく含フッ素の多官能の重合性不飽和基を有する化合物との併用も好ましい。多官能の重合性不飽和基を有する化合物の例としては、上記の2個以上のエチレン性不飽和基を有するモノマーを挙げることができる。また、特開2004−170901号公報に記載のオルガノランの加水分解縮合物も好ましく、特に(メタ)アクリロイル基を含有するオルガノシランの加水分解縮合物が好ましい。
これら化合物は、特にポリマー本体に重合性不飽和基を有する化合物を用いた場合に耐擦傷性改良に対する併用効果が大きく好ましい。
ポリマー自身が単独で十分な硬化性を有しない場合には、架橋性化合物を配合することにより、必要な硬化性を付与することができる。例えばポリマー本体に水酸基含有する場合には、各種アミノ化合物を硬化剤として用いることが好ましい。架橋性化合物として用いられるアミノ化合物は、例えば、ヒドロキシアルキルアミノ基及びアルコキシアルキルアミノ基のいずれか一方又は両方を合計で2個以上含有する化合物であり、具体的には、例えば、メラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物、グリコールウリル系化合物等を挙げることができる。これら化合物の硬化には、有機酸又はその塩を用いるのが好ましい。
これら含フッ素ポリマーの具体例は、特開2003−222702号公報、特開2003−183322号公報等に記載されている。
(2)含フッ素のオルガノシラン材料の加水分解縮合物
含フッ素のオルガノシラン化合物の加水分解縮合物を主成分とする組成物も屈折率が低く、塗膜表面の硬度が高く好ましい。フッ素化アルキル基に対して片末端又は両末端に加水分解性のシラノールを含有する化合物とテトラアルコキシシランの縮合物が好ましい。具体的組成物は、特開2002−265866号公報、317152号公報に記載されている。
(3)2個以上のエチレン性不飽和基を有するモノマーと中空構造を有する無機微粒子を含有する組成物
更に別の好ましい態様として、低屈折率の粒子とバインダーからなる低屈折率層が挙げられる。低屈折率粒子としては、有機でも無機でも良いが、内部に空孔を有する粒子が好ましい。中空粒子の具体例は、特開2002−79616号公報に記載のシリカ系粒子に記載されている。粒子屈折率は1.15〜1.40が好ましく、1.20〜1.30が更に好ましい。バインダーとしては、上記光拡散層の頁で述べた二個以上のエチレン性不飽和基を有するモノマーを挙げることができる。
本発明の低屈折率層には、上記の光拡散層の頁で述べた重合開始剤を添加することが好ましい。ラジカル重合性化合物を含有する場合には、該化合物に対して1〜10質量部、好ましくは1〜5質量部の重合開始剤を使用できる。
本発明の低屈折率層には、無機粒子を併用することができる。耐擦傷性を付与するために、低屈折率層の厚みの15%〜150%、好ましくは30%〜100%、更に好ましくは45%〜60%の粒径を有する微粒子を使用することができる。
本発明の低屈折率層には、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のポリシロキサン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することができる。
以下に本発明の低屈性率層に好ましく用いられる共重合体について説明する。
含フッ素ビニルモノマーとしてはフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(商品名、大阪有機化学工業(株)製)やR−2020(商品名、ダイキン工業(株)製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。これらの含フッ素ビニルモノマーの組成比を上げれば屈折率を下げることができるが、皮膜強度は低下する。本発明では共重合体のフッ素含率が20〜60質量%となるように含フッ素ビニルモノマーを導入することが好ましく、より好ましくは25〜55質量%の場合であり、特に好ましくは30〜50質量%の場合である。
前記共重合体は側鎖に(メタ)アクリロイル基を有する繰返し単位を必須の構成成分として有するのが好ましい。これらの(メタ)アクリロイル基含有繰返し単位の組成比を高めれば皮膜強度は向上するが屈折率も高くなる。含フッ素ビニルモノマーから導かれる繰返し単位の種類によっても異なるが、一般に(メタ)アクリロイル基含有繰返し単位は5〜90質量%を占めることが好ましく、30〜70質量%を占めることがより好ましく、40〜60質量%を占めることが特に好ましい。
本発明に有用な共重合体では上記含フッ素ビニルモノマーから導かれる繰返し単位および側鎖に(メタ)アクリロイル基を有する繰返し単位以外に、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜他のビニルモノマーを共重合することもできる。これらのビニルモノマーは目的に応じて複数を組み合わせてもよく、合計で共重合体中の0〜65モル%の範囲で導入されていることが好ましく、0〜40モル%の範囲であることがより好ましく、0〜30モル%の範囲であることが特に好ましい。
併用可能なビニルモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸−2−エチルヘキシル、アクリル酸−2−ヒドロキシエチル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸−2−ヒドロキシエチル等)、スチレン誘導体(スチレン、p−ヒドロキシメチルスチレン、p−メトキシスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、不飽和カルボン酸類(アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸等)、アクリルアミド類(N、N−ジメチルアクリルアミド、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類(N、N−ジメチルメタクリルアミド)、アクリロニトリル等を挙げることができる。
本発明において下記一般式1で記載される含フッ素ポリマーが好ましく用いられる。
Figure 0005232365
一般式1中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N、Sから選ばれるヘテロ原子を有していても良い。
好ましい例としては、*−(CH22−O−**,*−(CH22−NH−**,*−(CH24−O−**,*−(CH26−O−**,−(CH22−O−(CH22−O−**,*−CONH−(CH23−O−**,*−CH2CH(OH)CH2−O−**,*−CH2CH2OCONH(CH23−O−**(*はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表わす。
一般式1中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。
一般式1中、Aは任意のビニルモノマーから導かれる繰返し単位を表わし、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていても良い。
好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。
x、y、zはそれぞれの構成成分のモル%を表わし、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。好ましくは、35≦x≦55、30≦y≦60、0≦z≦20の場合であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10の場合である。
本発明に用いられる共重合体の特に好ましい形態として一般式2が挙げられる。
一般式2
Figure 0005232365
一般式2においてRは炭素数1〜10のアルキル基、又はエチレン性不飽和基(−C(=O)C(−X)=CH2)でもよい。
mは1≦n≦10の整数を表わし、1≦n≦6であることが好ましく、1≦n≦4であることが特に好ましい。
nは2≦n≦10の整数を表わし、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を表わし、単一組成であっても複数の組成によって構成されていても良い。また、シリコーン部位を含んでいても良い。
x、y、z1およびz2はそれぞれの繰返し単位のmol%を表わし、x及びyは、それぞれ30≦x≦60、0≦y≦70を満たすのが好ましく、更に好ましくは、35≦x≦55、0≦y≦60の場合であり、特に好ましくは40≦x≦55、0≦y≦55の場合である。z1及びz2については、1≦z1≦65、1≦z2≦65を満たすのが好ましく、更に好ましくは1≦z1≦40、1≦z2≦10であることが好ましく、1≦z1≦30、1≦z2≦5であることが特に好ましい。ただし、x+y+z1+z2=100である。
一般式1又は2で表される共重合体は、例えば、ヘキサフルオロプロピレン成分とヒドロキシアルキルビニルエーテル成分とを含んでなる共重合体に(メタ)アクリロイル基を導入することにより合成できる。
本発明で有用な共重合体は特開平2004-45462号公報の段落番号[0043]〜[0047]に示すものが好ましい。
本発明に用いられる共重合体は特開2004−45462号公報に記載の方法により合成することができる。また、本発明に用いられる共重合体の合成は、上記以外の種々の重合方法、例えば溶液重合、沈澱重合、懸濁重合、沈殿重合、塊状重合、乳化重合によって水酸基含有重合体等の前駆体を合成した後、前記高分子反応によって(メタ)アクリロイル基を導入することによって行なうこともできる。重合反応は回分式、半連続式、連続式等の公知の操作で行なうことができる。
重合の開始方法はラジカル開始剤を用いる方法、電離放射線を照射する方法等がある。これらの重合方法、重合の開始方法は、例えば鶴田禎二,「高分子合成方法」改定版,日刊工業新聞社,1971年や大津隆行、木下雅悦共著,「高分子合成の実験法」,化学同人,昭和47年,124〜154頁に記載されている。
上記重合方法のうち、特にラジカル開始剤を用いた溶液重合法が好ましい。溶液重合法で用いられる溶剤は、例えば酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン、アセトニトリル、塩化メチレン、クロロホルム、ジクロロエタン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールのような種々の有機溶剤の単独あるいは2種以上の混合物でも良いし、水との混合溶媒としても良い。
重合温度は生成するポリマーの分子量、開始剤の種類などと関連して設定する必要があり0℃以下から100℃以上まで可能であるが、50〜100℃の範囲で重合を行なうことが好ましい。
反応圧力は、適宜選定可能であるが、通常は、1〜100kPa、特に、1〜30kPa程度が望ましい。反応時間は、5〜30時間程度である。
得られたポリマーの再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。
本発明の反射防止フィルムにおいて、低屈折率層に好ましく用いることのできる無機微粒子について説明する。
無機微粒子の塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。
該無機微粒子は、低屈折率層に含有させることから、低屈折率であることが望ましく、例えば、シリカまたは中空シリカの微粒子が挙げられる。シリカ微粒子の平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、シリカ微粒子の粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
シリカ微粒子の粒径が小さすぎると、耐擦傷性の改良効果が少なくなり、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子でも、所定の粒径を満たすならば凝集粒子でも構わない。形状は、球径が最も好ましいが、不定形であっても問題無い。ここで、無機微粒子の平均粒径はコールターカウンターにより測定される。
低屈折率層の屈折率を低下させるために、中空のシリカ微粒子を用いることが好ましい。該中空のシリカ微粒子は屈折率が1.15〜1.40が好ましく、更に好ましくは1.17〜1.35、最も好ましくは1.17〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、中空シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(VIII)で表される空隙率xは
(数式VIII)
x=(4πa3/3)/(4πb3/3)×100
好ましくは10〜60%、更に好ましくは20〜60%、最も好ましくは30〜60%で
ある。外殻の厚みが十分厚く、粒子の強度として強くなるため、耐擦傷性の観点から1.15以上の屈折率の粒子が好ましい。
中空シリカの製造方法は、例えば特開2001−233611や特開2002−79616に記載されている。特にシェルの内部に空洞を有している粒子で、そのシェルの細孔が閉塞されている粒子が特に好ましい。なお、これら中空シリカ粒子の屈折率は特開2002−79616に記載の方法で算出することができる。
中空シリカの塗設量は、1mg/m2〜100mg/m2が好ましく、より好ましくは5mg/m2〜80mg/m2、更に好ましくは10mg/m2〜60mg/m2である。少なすぎると、低屈折率化の効果や耐擦傷性の改良効果が減り、多すぎると、低屈折率層表面に微細な凹凸ができ、黒の締まりなどの外観や積分反射率が悪化する。
中空シリカの平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、中空シリカの粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上100nm以下、更に好ましくは、40nm以上65nm以下である。
シリカ微粒子の粒径が小さすぎると、空腔部の割合が減り屈折率の低下が見込めず、大きすぎると低屈折率層表面に微細な凹凸ができ、黒の締まりといった外観、積分反射率が悪化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子が好ましい。形状は、球径が最も好ましいが、不定形であっても問題無い。
また、中空シリカは粒子平均粒子サイズの異なるものを2種以上併用して用いることができる。ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。
本発明において中空シリカの比表面積は、20〜300m2/gが好ましく、更に好ましくは30〜120m2/g、最も好ましくは40〜90m2/gである。表面積は窒素を用いBET法で求めることが出来る。
本発明においては、中空シリカと併用して空腔のないシリカ粒子を用いることができる。空腔のないシリカの好ましい粒子サイズは、30nm以上150nm以下、更に好ましくは35nm以上100nm以下、最も好ましくは40nm以上80nm以下である。
また、平均粒径が低屈折率層の厚みの25%未満であるシリカ微粒子(「小サイズ粒径のシリカ微粒子」と称す)の少なくとも1種を上記の粒径のシリカ微粒子(「大サイズ粒径のシリカ微粒子」と称す)と併用することもできる。
小サイズ粒径のシリカ微粒子は、大サイズ粒径のシリカ微粒子同士の隙間に存在することができるため、大サイズ粒径のシリカ微粒子の保持剤として寄与することができる。
小サイズ粒径のシリカ微粒子の平均粒径は、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このようなシリカ微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
シリカ微粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、アクリロイル基またはメタクリロイル基を有するシランカップリング剤による処理が特に有効である。
上記カップリング剤は、低屈折率層の無機フィラーの表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
シリカ微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。本発明に好ましく用いることのできる表面処理剤および触媒の具体的化合物は、例えば、WO 2004/017105号に記載のオルガノシラン化合物および触媒を挙げることができる。
本発明においては、膜強度の向上の点から、オルガノシランの加水分解物および/またはその部分縮合物(ゾル)を添加することが好ましい。ゾルの好ましい添加量は、無機微粒子の2〜200質量%が好ましく、5〜100質量%が更に好ましく、最も好ましくは、10〜50質量%である。
本発明においては、防汚性向上の観点から、反射防止膜表面の表面自由エネルギーを下げることが好ましい。具体的には、含フッ素化合物やポリシロキサン構造を有するシリコーン系化合物を低屈折率層に使用することが好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、FM−4421、FM−5521、FM6621、FM−1121やGelest製DMS−U22、RMS−033、RMS−083、UMS−182、DMS−H21、DMS−H31、HMS−301、FMS121、FMS123、FMS131、FMS141、FMS221(以上商品名)などが挙げられるがこれらに限定されるものではない。また、特開2003−112383の表2、表3に記載のシリコーン系化合物も好ましく使用できる。これらのポリシロキサンは低屈折率層全固形分の0.1〜10質量%の範囲で添加されることが好ましく、特に好ましくは1〜5質量%の場合である。
前記含フッ素ポリマーの重合は、前述の重合開始剤、例えば光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、上記含フッ素ポリマー、重合開始剤、例えば光ラジカル開始剤あるいは熱ラジカル開始剤、無機微粒子を含有する塗液を調製し、該塗液を支持体上に塗布後、電離放射線または熱による重合反応により硬化して、低屈折率層を形成することができる。
[ハードコート層]
ハードコート層は、フィルムの耐擦傷性を向上するためのハードコート性を有する。また、表面散乱および内部散乱の少なくともいずれかの散乱による光拡散性をフィルムに寄与する目的でも好ましく使用される。従って、ハードコート性を付与するための透光性樹脂、及び光拡散性を付与するための透光性粒子を含有することが好ましく、更に必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含有する。
ハードコート層の膜厚は、ハードコート性を付与する目的で、1〜10μmが好ましく、1.2〜6μmがより好ましい。膜厚が上記範囲であれば、ハードコート性が十分付与され、しかもカールや脆性が悪化して加工適性が低下することもない。
前記透光性樹脂は、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するバインダーポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するバインダーポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
バインダーポリマーをより高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含む高屈折率モノマーを選択することもできる。
二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル〔例えば、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート〕、前記のエステルのエチレンオキサイド変性体、ビニルベンゼンおよびその誘導体〔例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン〕、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。これらモノマーは2種以上併用してもよい。
高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4'−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
これらのエチレン性不飽和基を有するモノマーの重合は、前述の低屈折率層に含まれる重合開始剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、前記ハードコート層は、上述のエチレン性不飽和モノマー等の透光性樹脂形成用のモノマー、電離放射線または熱によりラジカルを発生する開始剤、透光性粒子および必要に応じて無機フィラーを含有する塗液を調製し、該塗液を支持体上に塗布後電離放射線または熱による重合反応により硬化させることにより形成することができる。
電離放射線または熱によりラジカルを発生する重合開始剤に加えて、前述の低屈折率層に含有してもよい光増感剤を用いてもよい。
ポリエーテルを主鎖として有するポリマーは、多官能エポキシ化合物の開環重合体が好ましい。多官能エポキシ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、多官能エポキシ化合物、光酸発生剤あるいは熱酸発生剤、透光性粒子および無機フィラーを含有する塗液を調製し、該塗液を支持体上に塗布後電離放射線または熱による重合反応により硬化してハードコート層を形成することができる。
二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
ハードコート層に用いられる透光性粒子は、防眩性又は光拡散性付与の目的で用いられるものであり、その平均粒径が好ましくは0.5〜5μm、より好ましくは1.0〜4.0μmである。光の散乱角度分布が広角にまで広がらず、ディスプレイの文字解像度の低下を引き起こしにくく、また、表面凹凸が形成しやすくなるため防眩性が十分である点で平均粒径0.5μm以上が好ましい。一方、ハードコート層の膜厚を厚くする必要がなく、カールが大きくならず、素材コストが上昇しない等の点で、5μm以下が好ましい。
前記透光性粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の
粒子;アクリル粒子、架橋アクリル粒子、メタクリル粒子、架橋メタクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子、架橋アクリルスチレン粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。
透光性粒子の形状は、球状あるいは不定形のいずれも使用できる。
また、粒子径の異なる2種以上の透光性粒子を併用して用いてもよい。より大きな粒子径の透光性粒子で防眩性を付与し、より小さな粒子径の透光性粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに反射防止フィルムを貼り付けた場合に、ギラツキと呼ばれる光学性能上の不具合のないことが要求される。ギラツキは、フィルム表面に存在する凹凸(防眩性に寄与)により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与する透光性粒子より小さな粒子径で、バインダーの屈折率と異なる透光性粒子を併用することにより大きく改善することができる。
さらに、前記透光性粒子の粒子径分布としては単分散であることが最も好ましく、各粒子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つ透光性粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布とすることができる。
前記透光性粒子は、形成されたハードコート層中に、光散乱効果、像の解像度、表面の白濁及びギラツキ等を考慮して、ハードコート層全固形分中に好ましくは3〜30質量%含有されるように配合される。より好ましくは5〜20質量%である。
また、透光性粒子の密度は、好ましくは10〜1000mg/m2、より好ましくは100〜700mg/m2である。
透光性粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
ハードコート層には、層の屈折率を高めるために、前記の透光性粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、及びアンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また逆に、透光性粒子との屈折率差を大きくするために、高屈折率透光性粒子を用いたハードコート層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は上記の無機フィラーと同じである。
ハードコート層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al23、In23、ZnO、SnO2、Sb23、ITOとSiO2等が挙げられる。TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーを用いる場合、その添加量は、ハードコート層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このような無機フィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
また、ハードコート層にもオルガノシラン化合物、オルガノシランの加水分解物および/またはその部分縮合物(ゾル)の少なくともいずれかを用いることができる。
低屈折率層以外の層、例えばハードコート層へのゾル成分の添加量は、含有層(添加層)の全固形分の0.001〜50質量%が好ましく、0.01〜20質量%がより好ましく、0.05〜10質量%が更に好ましく、0.1〜5質量%が特に好ましい。ハードコート層の場合には、前記オルガノシラン化合物またはそのゾル成分の添加量に対する制約が低屈折率層よりも厳しくないため、前記オルガノシラン化合物が好ましく用いられる。
透光性樹脂と透光性粒子との混合物のバルクの屈折率は、1.48〜2.00であることが好ましく、より好ましくは1.50〜1.80である。屈折率を前記範囲とするには、透光性樹脂及び透光性粒子の種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
また透光性樹脂と透光性粒子との屈折率の差(透光性粒子の屈折率−透光性樹脂の屈折率)は0.02〜0.2が好ましく、より好ましくは0.05〜0.15である。この差が上記範囲であると、内部散乱の効果が十分であり、ギラツキが発生せず、しかもフィルム表面が白濁することもない。
また、前記透光性樹脂の屈折率は、1.45〜2.00であるのが好ましく、1.48〜1.70であるのが更に好ましい。
ここで、透光性樹脂の屈折率は、アッベ屈折計で直接測定するか、分光反射スペクトルや分光エリプソメトリーを測定するなどして定量評価できる。
ハードコート層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者をハードコート層形成用の塗布組成物中に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明の反射防止フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。
面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である
[高(中)屈折率層]
本発明の反射防止フィルムには、より良い反射防止能を付与するために、高屈折率層及び/又は中屈折率層を設けることが好ましい。本発明の反射防止フィルムにおける高屈折率層の屈折率は、1.60乃至2.40であることが好ましく、1.70乃至2.20であることがさらに好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.55乃至1.80であることが好ましい。高屈折率層および中屈折率層のヘイズは、3%以下であることが好ましい。屈折率は、添加する無機微粒子やバインダーの使用量などを調節することにより適宜調節できる。
高(中)屈折率層には、層の屈折率を高めるため、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また、高(中)屈折率層に含有されるマット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた高(中)屈折率層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。マット粒子は、屈折率が1.80〜2.80、一次粒子の平均粒径が3〜150nmであるものが好ましい。屈折率が1.80未満の粒子では、皮膜の屈折率を高める効果が小さく、屈折率が2.80を超える粒子は着色しているため好ましくない。また、一次粒子の平均粒径が150nmを超える粒子では皮膜を形成したときのヘイズ値が高くなり、皮膜の透明性を損なうので好ましくなく、3nm未満では高い屈折率の保持が難しい。好ましい粒径は前述のハードコート層における無機フィラーと同じである。
高(中)屈折率層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al23、In23、ZnO、SnO2、Sb23、ITOとSiO2等が挙げられる。TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、必要な屈折率に合わせて調節するが、高屈折率層の場合、全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜70%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
本発明に用いる高(中)屈折率層は、前記のようにして分散媒体中に無機微粒子を分散した分散液に、好ましくは、さらにマトリックス形成に必要なバインダー前駆体(前述のハードコート層で説明した二個以上のエチレン性不飽和基を有するモノマー等)、光重合開始剤等を加えて高屈折率層形成用の塗布組成物とし、支持体上に高屈折率層形成用の塗布組成物を塗布して、電離放射線硬化性化合物(例えば、多官能モノマーや多官能オリゴマーなど)の架橋反応又は重合反応により硬化させて形成することが好ましい。
光重合性多官能モノマーの重合反応には、光重合開始剤を用いることが好ましい。光重合開始剤としては、光ラジカル重合開始剤と光カチオン重合開始剤が好ましく、特に好ましいのは光ラジカル重合開始剤である。光ラジカル重合開始剤としては、前述の低屈折率層と同様のものが用いられる。
高(中)屈折率層には、前記の成分(無機微粒子、重合開始剤、光増感剤など)以外に、樹脂、界面活性剤、帯電防止剤、カップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、防眩性付与粒子、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、赤外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、導電性の金属微粒子、などを添加することもできる。
高(中)屈折率層の膜厚は用途により適切に設計することができる。高(中)屈折率層を光学干渉層として用いる場合、30〜200nmが好ましく、より好ましくは50〜170nm、特に好ましくは60〜150nmである。
[支持体]
本発明の光学フィルムおよび反射防止フィルムの支持体としては、透明であることが好ましく、プラスチックフィルムを用いることが好ましい。プラスチックフィルムを形成するポリマーとしては、セルロースアシレート(例、セルローストリアセテート、セルロースジアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、代表的には富士写真フイルム(株)製TAC−TD80U,TD80UFなど)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、が好ましく、特にトリアセチルセルロースが好ましい。また、ジクロロメタン等のハロゲン化炭化水素を実質的に含まないセルロースアシレートフィルムおよびその製造法については発明協会公開技報公技番号2001−1745号(2001年3月15日発行)に記載されており、ここに記載されたセルロースアシレートも本発明に好ましく用いることができる。
[鹸化処理]
本発明の光学フィルムおよび反射防止フィルムを液晶表示装置に用いる場合、片面に粘着層を設ける等してディスプレイの最表面に配置することが好ましい。また、本発明の反射防止フィルムと偏光板と組み合わせて用いてもよい。透明基材がトリアセチルセルロースの場合は偏光板の偏光層を保護する保護フィルムとしてトリアセチルセルロースが用いられるため、本発明の反射防止フィルムをそのまま保護フィルムに用いることがコストの上では好ましい。
本発明の光学フィルムおよび反射防止フィルムは、片面に粘着層を設ける等してディスプレイの最表面に配置したり、そのまま偏光板用保護フィルムとして使用される場合には、十分に接着させるためには透明基材に含フッ素ポリマーを主体とする最外層を形成した後、鹸化処理を実施することが好ましい。鹸化処理は、公知の手法、例えば、アルカリ液の中に該フィルムを適切な時間浸漬して実施される。アルカリ液に浸漬した後は、該フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
鹸化処理することにより、最外層を有する側とは反対側の透明基材の表面が親水化される。
親水化された表面は、ポリビニルアルコールを主成分とする偏光膜との接着性を改良するのに特に有効である。また、親水化された表面は、空気中の塵埃が付着しにくくなるため、偏光膜と接着させる際に偏光膜と反射防止フィルムの間に塵埃が入りにくく、塵埃による点欠陥を防止するのに有効である。
鹸化処理は、最外層を有する側とは反対側の透明基材表面の水に対する接触角が40゜以下になるように実施することが好ましい。更に好ましくは30゜以下、特に好ましくは20゜以下である。
アルカリ鹸化処理の具体的手段としては、例えば以下の(1)及び(2)の2つの手段から選択することができる。汎用のトリアセチルセルロースフィルムと同一の工程で処理できる点で(1)が優れているが、反射防止層面まで鹸化処理されるため、表面がアルカリ加水分解されて反射防止層が劣化する点、鹸化処理液が残ると汚れになる点が問題になり得る。その場合には、特別な工程となるが、(2)が優れる。
(1)透明基材上に反射防止層を形成後に、アルカリ液中に少なくとも1回浸漬することで、該フィルムの裏面を鹸化処理する。
(2)透明基材上に反射防止層を形成する前または後に、アルカリ液を該反射防止フィルムの反射防止フィルムを形成する面とは反対側の面に塗布し、加熱、水洗および/または中和することで、該フィルムの裏面だけを鹸化処理する。
[塗膜形成方法]
本発明の反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。
[反射防止膜の形成]
多層構成の反射防止膜の各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ダイコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許第2681294号明細書記載)により、塗布により形成することができるが、ダイコート法で塗布することが好ましく、更には後述する新規ダイコーターを用いて塗布を行うことがより好ましい。二層以上を同時に塗布してもよい。同時塗布の方法については、米国特許第2761791号、同2941898号、同3508947号、同3526528号の各明細書および原崎勇次著「コーティング工学」朝倉書店(1973)253頁に記載がある。
本発明の反射防止フィルムを連続的に製造するためには、例えば、ロール状の基材フィルムを連続的に送り出す工程、塗布液を塗布・乾燥する工程、塗膜を硬化する工程、硬化した層を有する基材フィルムを巻き取る工程が行われる。
具体的には次のように行うことができる。
ロール状の基材フィルムから基材フィルムがクリーン室に連続的に送り出され、クリーン室内で、基材フィルムに帯電している静電気を静電除電装置により除電し、引き続き基材フィルム上に付着している異物を、除塵装置により除去する。引き続きクリーン室内に設置されている塗布部で塗布液が基材フィルム上に塗布され、塗布された基材フィルムは乾燥室に送られて乾燥される。
乾燥した塗布層を有する基材フィルムは乾燥室から放射線硬化室へ送り出され、放射線が照射されて塗布層に含有されるモノマーが重合して硬化する。さらに、放射線により硬化した層を有する基材フィルムは熱硬化部へ送られ、加熱されて硬化を完結させ、硬化が完結した層を有する基材フィルムは巻き取られてロール状となる。
上記工程は、各層の形成毎に行ってもよいし、塗布部−乾燥室−放射線硬化部−熱硬化室を複数設けて、各層の形成を連続的に行うことも可能であるが、生産性の観点から各層の形成を連続的に行う事が好ましい。各層の塗布を連続的に行う装置の構成例を図5に示す。該装置はロール状の基材フィルムを連続的に送り出す工程1と、ロール状の基材フィルムを巻き取る工程2の間に製膜ユニット100,200,300,400を適宜必要な数だけ設置したものである。図5で示される装置は4層を巻き取ることなく連続的に塗布する際の構成の一例だが、層構成に合わせて製膜ユニット数を変化させることはもちろん可能である。製膜ユニット100は塗布液を塗布する工程101、塗膜を乾燥する工程102、塗膜を硬化する工程103から構成されている。
製膜ユニットが3つ設置された装置を用いて、前記ハードコート層を塗設したロール状の基材フィルムを連続的に送り出し、中屈折率層、高屈折率層、低屈折率層を各製膜ユニットで順次塗設した後に巻き取る事が生産性の観点からより好ましく、製膜ユニットが4つ設置された、図5に示す装置を用いて、ロール状の基材フィルムを連続的に送り出し、ハードコート層、中屈折率層、高屈折率層、低屈折率層を各製膜ユニットで順次塗設した後に巻き取る事が、塗布コストを大幅に低減する点で、更に好ましい。必要に応じて、塗布ステーションの数を2つに減らした装置構成として中屈折率層と高屈折率層の2層だけを一工程で形成し、面状、膜厚等をチェックした結果をフィードバックして得率を向上させたりすることも、別の好ましい形態として挙げられる。
本発明では、より高い生産速度の観点から、塗布方法として、ダイコート法が好ましく用いられる。ダイコート法は、生産性と塗布ムラのない面状を高次元で両立できるため、好ましく用いられる。
本発明の反射防止フィルムの製造方法としては、このようなダイコート法を用いた以下の塗布方法が好ましい。
すなわち、バックアップロールによって支持されて連続走行するウェッブの表面に、スロットダイの先端リップのランドを近接させて、先端リップのスロットから塗布液を塗布する塗布工程を有する製造方法であり、本発明では、スロットダイのウェッブ進行方向側の先端リップのウェッブ走行方向におけるランド長さが30μm以上100μm以下であるスロットダイを有し、スロットダイを塗布位置にセットしたときに、ウェッブの進行方向とは逆側の先端リップとウェッブとを、両者の隙間が、ウェッブ進行方向側の先端リップとウェッブとの隙間よりも30μm以上120μm以下(以下、この数値限定については「オーバーバイト長さ」と称する)大きくなるように設置した塗布装置を用いて塗布することが好ましい。
特に、本発明の製造方法において好ましく用いることができるダイコーターについて、以下に図面を参照して説明する。該ダイコーターは、ウエット塗布量が少ない場合(20ml/m2以下)に用いることが可能であり、好ましい。
<ダイコーターの構成>
図6は本発明を好適に実施できるスロットダイを用いたコーター(塗布装置)の1例の断面図である。
コーター10は、バックアップロール11とスロットダイ13とからなり、バックアップロール11に支持されて連続走行するウェッブWに対して、スロットダイ13から塗布液14がビード形状14aで吐出されて塗布されることにより、ウェッブW上に塗膜14bを形成する。
スロットダイ13の内部には、ポケット15、スロット16が形成されている。ポケット15は、その断面が曲線及び直線で構成されており、略円形でもよいし、あるいは半円形でもよい。ポケット15は、スロットダイ13の幅方向(ここで、スロットダイ13の幅方向とは、図6の記載された図面に向かって手前方向又は奥側の方向を指す。)にその断面形状をもって延長された塗布液の液溜め空間で、その有効延長の長さは、塗布幅と同等か若干長めにするのが一般的である。ポケット15への塗布液14の供給は、スロットダイ13の側面から、あるいはスロット開口部16aとは反対側の面中央から行う。また、ポケット15には塗布液14が漏れ出ることを防止する栓が設けられている(図示せず)。
スロット16は、ポケット15からウェッブWへの塗布液14の流路であり、ポケット15と同様にスロットダイ13の幅方向にその断面形状をもち、ウェッブ側に位置する開口部16aは、一般に、図示しない幅規制板のようなものを用いて、概ね塗布幅と同じ長さになるように調整する。このスロット16のスロット先端における、バックアップロール11のウェッブW走行方向の接線とのなす角度は、30°以上90°以下が好ましい。
スロット16の開口部16aが位置するスロットダイ13の先端リップ17は先細り状に形成されており、その先端はランドと呼ばれる平坦部18とされている。このランド18であって、スロット16に対してウェッブWの進行方向の上流側(進行方向すなわち図中の矢印方向とは逆側)を上流側リップランド18a、下流側(進行方向側)を下流側リップランド18bと称する。
先端リップ17の形状は上流側に比べて下流側が伸びており(オーバーバイト形状)、その分上流側リップランド18aとウェッブWとの隙間は、下流側リップランド18bとウェッブWとの隙間よりも上述の範囲で大きい。また、下流側リップランドランド18bの長さは、上述の範囲である。
図7(A)を参照して上述した数値限定に関する部位について説明すると、ウェッブの進行方向側(下流側)のランド長さは、図7(A)のILOで示される部分であり、上記オーバーバイトの長さは、図7(A)のLOで示される部分である。
上流側リップランド18aのランド長さIUPは特に限定はされないが、500μm〜1mmの範囲で好ましく用いられる。下流側リップランド18bのランド長さILOは、30μm以上100μm以下が好ましく、さらに好ましくは30μm以上80μm以下、最も好ましくは30μm以上60μm以下である。下流側リップのランド長さILOが30μm以上であれば、先端リップのエッジあるいはランドが欠けにくく、塗膜へのスジの発生を抑えることができ好ましい。また、下流側の濡れ線位置の設定がしやすい。さらには、塗布液の下流側における広がりを抑えることができ、好ましい。下流側における塗布液の濡れによる広がりは、濡れ線の不均一化を意味し、塗布面上にスジなどの不良形状を招くという問題につながる。一方、下流側リップのランド長さILOが100μm以下であれば、ビード14aを形成することができる。塗布液がビード14aを形成することにより、薄層塗布を行うことができる。
さらに、下流側リップランド18bは、上流側リップランド18aよりもウェッブWに近接したオーバーバイト形状であり、このため減圧度を下げることができて薄膜塗布に適したビード形成14aが可能となる。下流側リップランド18bと上流側リップランド18aのウェッブWとの距離の差(以下、オーバーバイト長さLOと称する)は30μm以上120μm以下が好ましく、さらに好ましくは30μm以上100μm以下、もっとも好ましくは30μm以上80μm以下である。スロットダイ13がオーバーバイト形状のとき、先端リップ17とウェッブWの隙間GLとは、下流側リップランド18bとウェッ
ブWの隙間を示す。
次に、図8を参照して上記塗布工程全般について説明する。
図8は、本発明を好適に実施できる塗布工程のスロットダイ13及びその周辺を示す斜視図の一例である。スロットダイ13に対しウェッブWの進行方向側とは反対側(すなわちビード14aより上流側)に、ビード14aに対して十分な減圧調整を行えるよう、接触しない位置に減圧チャンバー40を設置する。減圧チャンバー40は、その作動効率を保持するためのバックプレート40aとサイドプレート40bを備えており、バックプレート40aとウェッブWの間には隙間GB、サイドプレート40bとウェッブWの間には
隙間GSが存在する。
減圧チャンバー40とウェッブWとの関係について図9及び図10を参照して説明する。図9及び図10は、近接している減圧チャンバー40とウェッブWを示す断面図である。
サイドプレート40bとバックプレート40aは図9のようにチャンバー40本体と一体のものであってもよいし、例えば、図10のように適宜隙間GBを変えられるようにバックプレート40aをチャンバー40にネジ40cなどで留められている構造でもよい。いかなる構造でも、バックプレート40aとウェッブWの間、サイドプレート40bとウェッブWの間に実際にあいている部分を、それぞれ隙間GB、GSと定義する。減圧チャンバー40のバックプレート40aとウェッブWとの隙間GBとは、減圧チャンバー40を図8のようにウェッブW及びスロットダイ13の下方に設置した場合、バックプレート40aの最上端からウェッブWまでの隙間を示す。
バックプレート40aとウェッブWとの隙間GBをスロットダイ13の先端リップ17とウェッブWとの隙間GL(図7(A)参照)よりも大きくして設置するのが好ましく、これによりバックアップロール11の偏心に起因するビード近傍の減圧度変化を抑制することができる。例えば、スロットダイ13の先端リップ17とウェッブWとの隙間GLが30μm以上100μm以下のとき、バックプレート40aとウェッブWの間の隙間GBは100μm以上500μm以下が好ましい。
<材質、精度>
前記ウェッブの進行方向側の先端リップのウェッブ走行方向における長さ(図7(A)に示す下流側リップランド長さILO)は、前述の範囲内とすることが好ましく、また、ILOのスロットダイ幅方向における変動幅を20μm以内とすることが好ましい。この範囲内であれば、かすかな外乱によってもビードが不安定になることがなく、好ましい。
スロットダイの先端リップの材質については、ステンレス鋼などのような材質を用いるとダイ加工の段階でだれてしまうため、好ましくない。ステンレス鋼などの場合、下流側リップランド長さILOを前記の30〜100μmの範囲にしても、先端リップの精度を満足することが困難である。高い加工精度を維持するには、特許第2817053号明細書に記載されているような超硬材質のものを用いることが好ましい。具体的には、スロットダイの少なくとも先端リップを、平均粒径5μm以下の炭化物結晶を結合してなる超硬合金にすることが好ましい。超硬合金としては、タングステンカーバイド(以下、WCと称す)などの炭化物結晶粒子をコバルトなどの結合金属によって結合したものなどがあり、結合金属としては他にチタン、タンタル、ニオブ及びこれらの混合金属を用いることも出来る。WC結晶の平均粒径としては、粒径3μm以下がさらに好ましい。
高精度な塗布の実現には、前記下流側リップランド長さILOが重要であり、さらに隙間GLのスロットダイ幅方向における変動幅を制御することが望ましい。前記バックアップロール11と前記先端リップ17とは、隙間GLのスロットダイ幅方向における変動幅を制御できる範囲内の真直度を達成することが望ましい。好ましくは、隙間GLのスロットダイ幅方向における変動幅が5μm以下になるように先端リップ17とバックアップロール11の真直度とすることである。
反射防止フィルムを積層構造とした場合、ゴミ、ほこり等の異物が存在したとき、輝点欠陥が目立ちやすい。本発明における輝点欠陥とは、前記したように目視により、塗膜上の反射で見える欠陥のことで、塗布後の反射防止フィルムの裏面を黒塗りする等の操作により目視で検出できる。目視により見える輝点欠陥は、一般的に50μm以上である。輝点欠陥が多いと製造時の得率が低下し、大面積の反射防止フィルムを製造することができない。
本発明の反射防止フィルムは、輝点欠陥の数が1平方メートル当たり20個以下、好ましくは10個以下、さらに好ましくは5個以下、特に好ましくは1個以下とする。
輝点欠陥の少ない反射防止フィルムを作成するためには、高屈折率層用塗布物中の高屈折率超微粒子分散度を精密に制御すること、および塗布液の精密濾過操作が挙げられる。と同時に、反射防止層を形成する各層は上記の塗布部における塗布工程および乾燥室で行われる乾燥工程が高い清浄度の空気雰囲気下で行われ、かつ塗布が行われる前に、フィルム上のゴミ、ほこりが充分に除かれていることが好ましい。塗布工程および乾燥工程の空気清浄度は、米国連邦規格209Eにおける空気清浄度の規格に基づき、クラス10(0.5μm以上の粒子が353個/(立方メートル)以下)以上であることが望ましく、更に好ましくはクラス1(0.5μm以上の粒子が35.5個/(立方メートル)以下)以上であることが望ましい。また、空気清浄度は、塗布−乾燥工程以外の送り出し、巻き取り部等においても高いことがより好ましい。
塗布が行われる前工程としての除塵工程に用いられる除塵方法として、特開昭59−150571号公報に記載のフィルム表面に不織布や、ブレード等を押しつける方法、特開平10−309553号公報に記載の清浄度の高い空気を高速で吹き付けて付着物をフィルム表面から剥離させ、近接した吸い込み口で吸引する方法、特開平7−333613号公報に記載される超音波振動する圧縮空気を吹き付けて付着物を剥離させ、吸引する方法(伸興社製、ニューウルトラクリーナー等)等の乾式除塵法が挙げられる。
また、洗浄槽中にフィルムを導入し、超音波振動子により付着物を剥離させる方法、特公昭49−13020号公報に記載されているフィルムに洗浄液を供給したあと、高速空気の吹き付け、吸い込みを行なう方法、特開2001−38306号公報に記載のように、ウェッブを液体でぬらしたロールで連続的に擦った後、擦った面に液体を噴射して洗浄する方法等の湿式除塵法を用いることができる。このような除塵方法の内、超音波除塵による方法もしくは湿式除塵による方法が、除塵効果の点で特に好ましい。
また、このような除塵工程を行う前に、基材フィルム上の静電気を除電しておくことは、除塵効率を上げ、ゴミの付着を抑える点で特に好ましい。このような除電方法としては、コロナ放電式のイオナイザ、UV、軟X線等の光照射式のイオナイザ等を用いることができる。除塵、塗布前後の基材フィルムの帯電圧は、1000V以下が望ましく、好ましくは300V以下、特に好ましくは、100V以下である。
<塗布用分散媒>
塗布用分散媒としては、特に限定されない。単独でも2種以上を混合して使用してもよい。好ましい分散媒体は、トルエン、キシレン、スチレン等の芳香族炭化水素類、クロルベンゼン、オルトージクロルベンゼン等の塩化芳香族炭化水素類、モノクロルメタン等のメタン誘導体、モノクロルエタン等のエタン誘導体等を含む塩化脂肪族炭化水素類、メタノール、イソプロピルアルコール、イソブチルアルコール等のアルコール類、酢酸メチル、酢酸エチル等のエステル類、エチルエーテル、1,4−ジオキサン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、エチレングリコールモノメチルエーテル等のグリコールエーテル類、シクロヘキサン等の脂環式炭化水素類、ノルマルヘキサン等の脂肪族炭化水素類、脂肪族または芳香族炭化水素の混合物等が該当する。これら溶媒の中でもケトン類の単独あるいは2種以上の混合により作成される塗布用分散媒が特に好ましい。
<濾過>
塗布に用いる塗布液は、塗布前に濾過することが好ましい。濾過のフィルターは、塗布液中の成分が除去されない範囲でできるだけ孔径の小さいものを使うことが好ましい。濾過には絶対濾過精度が0.1〜10μmのフィルターが好適に用いられ、さらには絶対濾過精度が0.1〜5μmであるフィルターを用いることが好ましく用いられる。フィルターの厚さは、0.1〜10mmが好ましく、更には0.2〜2mmが好ましい。その場合、ろ過圧力は1.5MPa以下、より好ましくは1.0MPa以下、更には0.2MPa以下で濾過することが好ましい。
ろ過フィルター部材は、塗布液に影響を及ぼさなければ特に限定されない。具体的には、前記した無機化合物の湿式分散物のろ過部材と同様のものが挙げられる。
また、濾過した塗布液を、塗布直前に超音波分散して、脱泡、分散物の分散保持を補助することも好ましい。
<塗布液物性>
本発明に好適な上記の塗布方式は液物性により塗布可能な上限の速度が大きく影響を受けるため、塗布する瞬間の液物性、特に粘度及び表面張力を制御する必要がある。
粘度については2.0[mPa・sec]以下であることが好ましく、更に好ましくは1.5[mPa・sec]以下、最も好ましくは1.0[mPa・sec]以下である。塗布液によってはせん断速度により粘度が変化するものもあるため、上記の値は塗布される瞬間のせん断速度における粘度を示している。塗布液にチキソトロピー剤を添加して、高せん断のかかる塗布時は粘度が低く、塗布液にせん断が殆どかからない乾燥時は粘度が高くなると乾燥時のムラが発生しにくくなり、好ましい。
また、液物性ではないが、ウェッブに塗り付けられる塗布液の量も塗布可能な上限の速度に影響を与える。ウェッブに塗り付けられる塗布液の量は2.0〜5.0[ml/m2]であることが好ましい。ウェッブに塗り付けられる塗布液の量を増やすと塗布可能な上限の速度が上がるため好ましいが、ウェッブに塗り付けられる塗布液の量を増やしすぎると乾燥にかかる負荷が大きくなるため、液処方・工程条件によって最適なウェッブに塗り付けられる塗布液の量を決めることが好ましい。
表面張力については、15〜36[mN/m]の範囲にあることが好ましい。レベリング剤を添加するなどして表面張力を低下させることは乾燥時のムラが抑止されるため好ましい。一方、表面張力が下がりすぎると塗布可能な上限の速度が低下してしまうため、17[mN/m]〜32[mN/m]の範囲がより好まく、19[mN/m]〜26[mN/m]の範囲が更に好ましい。
<塗布速度>
上記の様なダイコート法を用いた製造方法により、前述の塗布方式は高速塗布時における膜厚の安定性が高い。さらに、前述の塗布方式は前計量方式であるために高速塗布時でも安定した膜厚の確保が容易である。前述したようにウエット塗布量が少ない場合(20ml/m2以下)、低塗布量の塗布液に対して、前述の塗布方式は高速で膜厚安定性良く塗布が可能である。本発明の反射防止フィルムの製造方法としては、このようなダイコート法を用いた前述の製造方法が好ましい。液受け槽中の塗布液振動の問題がなく、段状のムラが発生しにくいこと、また、塗布に関連するロールの偏芯やたわみにがないことにより、段状のムラが発生しにくいこと、さらに、膜厚の安定性が高い前計量方式であるため、前述の製造方法を用いることが好ましい。前述の製造方法を用いることで25m/分以上で塗布することが生産性の面から好ましい。
[偏光板]
偏光板は、偏光膜を両面から挟む2枚の保護フィルムで主に構成される。本発明の反射防止フィルムは、偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いることが好ましい。本発明の反射防止フィルムが保護フィルムを兼ねることで、偏光板の製造コストを低減できる。また、本発明の反射防止フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐傷性、防汚性等も優れた偏光板とすることができる。
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成される。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落[0020]〜[0030]に詳しい記載がある。
[画像表示装置]
本発明の反射防止フィルムは、偏光膜の表面保護フィルムの片側として用いた場合、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置等の画像表示装置に好ましく用いることができる。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
VAモードの液晶セル用には、2軸延伸したトリアセチルセルロースフィルムを本発明の反射防止フィルムと組み合わせて作成した偏光板が好ましく用いられる。2軸延伸したトリアセチルセルロースフィルムの作製方法については、例えば特開2001−249223号公報、特開2003−170492号公報などに記載の方法を用いることが好ましい。
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置であり、米国特許第4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向しており、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。例えば「EL、PDP、LCDディスプレイ」東レリサーチセンター発行(2001)などに記載されている。
特にTNモードやIPSモードの液晶表示装置に対しては、特開2001−100043号公報等に記載されているように、視野角拡大効果を有する光学補償フィルムを偏光膜の裏表2枚の保護フィルムの内の本発明の反射防止フィルムとは反対側の面に用いることにより、1枚の偏光板の厚みで反射防止効果と視野角拡大効果を有する偏光板を得ることができ、特に好ましい。
[実施例1]
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれによっていささかも限定して解釈されるものではない。
(ハードコート層用塗布液の調製)
下記組成物をミキシングタンクに投入し、攪拌してハードコート層塗布液とした。
トリメチロールプロパントリアクリレート(ビスコート#295(大阪有機化学(株)製)750.0重量部に、質量平均分子量15000のポリグリシジルメタクリレート270.0質量部、メチルエチルケトン730.0質量部、シクロヘキサノン500.0質量部及び光重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)50.0質量部を添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層用の塗布液を調製した。ポリグリシジルメタクリレートはメチルエチルケトン(MEK)中にグリシジルメタクリレート(東京化成工業(株))を溶解させ、熱重合開始剤V−65(和光純薬工業(株)製)を滴下しながら80℃で2時間反応させ、得られた反応溶液をヘキサンに滴下し、沈殿物を減圧乾燥して得た。
(二酸化チタン微粒子分散液の調製)
二酸化チタン微粒子としては、コバルトを含有し、かつ水酸化アルミニウムと水酸化ジルコニウムを用いて表面処理を施した二酸化チタン微粒子(MPT−129C、石原産業(株)製、TiO2:Co34:Al23:ZrO2=90.5:3.0:4.0:0.5重量比)を使用した。
この粒子257.1質量部に、下記分散剤41.1質量部、およびシクロヘキサノン701.8質量部を添加してダイノミルにより分散し、重量平均径70nmの二酸化チタン分散液を調製した。
Figure 0005232365
(中屈折率層用塗布液の調製)
上記の二酸化チタン分散液99.1質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)68.0質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)3.6質量部、光増感剤(カヤキュアーDETX、日本化薬(株)製)1.2質量部、メチルエチルケトン279.6質量部およびシクロヘキサノン1049.0質量部を添加して攪拌した。十分に攪拌ののち、孔径0.4μmのポリプロピレン製フィルターで濾過して中屈折率層用塗布液を調製した。
(高屈折率層用塗布液の調製)
上記の二酸化チタン分散液469.8質量部に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)40.0質量部、光重合開始剤(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)3.3質量部、光増感剤(カヤキュアーDETX、日本化薬(株)製)1.1質量部、メチルエチルケトン526.2質量部、およびシクロヘキサノン459.6質量部を添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過して高屈折率層用の塗布液を調製した。
(低屈折率層用塗布液の調製)
本発明に係る特開平2004−45462号公報に記載の含フッ素共重合体P−3(重量平均分子量約50000)をメチルイソブチルケトンに7質量%の濃度になるように溶解し、末端メタクリレート基含有シリコーン樹脂X−22−164C(信越化学工業(株)製)を固形分に対して3%、前記光ラジカル発生剤イルガキュア907(商品名)を固形分に対して5質量%(試料No.107〜110は例示化合物1以外にイルガキュア9
07か2-(p-メトキシフェニル)-4,6-ビス(トリクロルメチル)-s-トリアジン化合物の何れかを5質量%併用)添加し、低屈折率層用塗布液を調製した。
(反射防止フィルム101の作製)
膜厚80μmのトリアセチルセルロースフィルム(TD80UF、富士写真フイルム(株)製)上に、ハードコート層用塗布液をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量300mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ8μmのハードコート層を形成した。
ハードコート層の上に、中屈折率層用塗布液、高屈折率層用塗布液、低屈折率層用塗布液を3つの塗布ステーションを有するグラビアコーターを用いて5〜100m/分の速度で連続して塗布した。
中屈折率層の乾燥条件は90℃、30秒とし、紫外線硬化条件は酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら180W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度200mW/cm2、照射量200mJ/cm2の照射量とした。
硬化後の中屈折率層は屈折率1.630、膜厚67nmであった。
高屈折率層の乾燥条件は90℃、30秒とし、紫外線硬化条件は酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度600mW/cm2、照射量400mJ/cm2の照射量とした。
硬化後の高屈折率層は屈折率1.905、膜厚107nmであった。
低屈折率層の乾燥条件は90℃、30秒とし、紫外線硬化条件は酸素濃度が0.1体積%以下の雰囲気になるように窒素パージ(0.2m3の反応室に1.40m3/分の窒素ガスを使用)しながら240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度200mW/cm2、照射量200mJ/cm2の照射量とした。
硬化後の低屈折率層は屈折率1.440、膜厚85nmであった。このようにして、反射防止フィルム101を作製した。
低屈折率層の開始剤の種類および硬化条件を表1の条件に変え、試料102〜115を作製した。開始剤の量は当質量で置き換えた。また、試料116は前記ハードコート層の開始剤として更に例示化合物1を50.0質量部併用し、試料117は前記ハードコート層の開始剤として更に例示化合物1と2-(p-メトキシフェニル)-4,6-ビス(トリクロルメチル)-s-トリアジン化合物を50.0質量部ずつを併用し、試料116の上には例示化合物1を試料117の上には例示化合物1と2-(p-メトキシフェニル)-4,6-ビス(トリクロルメチル)-s-トリアジン化合物をそれぞれ5質量%併用して調整した低屈折率層を塗布した以外は表1の条件で作製した。窒素ガスの吹きつけは、UV照射室(反応室)直前に連続する前室を設け、膜面に直接不活性ガスがあたるようにノズルの位置を設置した。また前室のウェッブ入り口からは不活性ガスが吹き出るように照射室および前室の排気を調節した。ウェッブ入り口のウェッブの塗布層表面とのギャップは4mmとした。
なお塗布速度を変えた場合の紫外線照射量は、照度を変えることで照射量が一定になるように設定した。
Figure 0005232365
表1中、「UV照射開始からの低酸素維持時間」とは所定酸素濃度で保持された環境で実際にUV照射している時間を意味する。
なお、上記例示化合物1等は、本明細書中に既に記載してあるものである。特に例示化合物1について、再度下に記す。
Figure 0005232365
得られたフィルムに対して、以下の項目の評価を行った。その結果を表2に示す。
[鏡面反射率]
分光硬度計V−550(日本分光(株)製)にアダプターARV−474を装着して380〜780nmの波長領域において入射角5度における出射角−5度の鏡面反射率を測定し、450nm〜650nmの平均反射率を算出し、反射防止性を評価した。
[鉛筆硬度]
JIS K 5400に記載の鉛筆硬度評価を行った。反射防止フィルムを温度25℃、湿度60%RHで2時間調湿した後、JIS S 6006に規定するH〜5Hの試験用鉛筆を用いて、500gの荷重にて以下のとおりの判定で評価し、OKとなる最も高い硬度を評価値とした。
n=5の評価において傷なし〜傷1つ :OK
n=5の評価において傷が3つ以上 :NG
[スチールウール擦り耐性]
#0000のスチールウールに1.96N/cm2の荷重をかけ30往復したときの傷の状態を観察して、以下の5段階で評価した。
◎:傷が全くつかなかったもの
○:ほとんど見えない傷が少しついたもの
△:明確に見える傷がついたもの
×:明確に見える傷が顕著についたもの
××:膜の剥離が生じたもの
Figure 0005232365
フッ素化光重合開始剤化合物を使用し、本発明に係る硬化条件で硬化することにより、反射防止フィルムは十分な反射防止性能を有しながら耐擦傷性にも優れ、また反応室中の酸素濃度が高くても耐擦傷性に優れていることがわかる。
また、フッ素化光重合開始剤化合物と更に他の開始剤を併用して用いることでも耐擦傷性が高いことがわかる。
[実施例2]
実施例1の試料101、103、109、116の作製方法において、紫外線照射時のウェッブ温度を上げたことのみ異なる試料118〜129を作製し、同様の評価を行った。
ウェッブの塗布表面の温度は、ウェッブ裏面に接触している金属版の温度を変えることで調整した。
Figure 0005232365
本発明では、UV照射時の温度を40℃以上にあげることで、さらに優れた耐擦傷性が得られた。又、例示化合物1に加え、更に併用化合物Aを加えた試料109、ハードコート層と低屈折率層にそれぞれ併用化合物Aを加えた116についても、UV照射時の加熱温度が40℃の低温でも優れた鉛筆硬度、耐擦傷性が得られた。
[実施例3]
実施例1で作製した試料103において、紫外線照射の分割回数および紫外線照射間の窒素置換の程度を変えることにより、表4の試料130〜133を作製した。これらの試料に対し実施例1と同様の評価を行った。
なお紫外線照射の分割は、総照射量が一定になるように照度を調節した。結果を表5に示す。
紫外線照射を分割し、1回の照度を落とした場合でも紫外線照射間中、高酸素濃度においても前記比較例101及び102(酸素濃度0.1%以下)以上の性能であった。また、高速生産適性があることが判った。
Figure 0005232365
Figure 0005232365
[実施例4]
実施例1〜3において低屈折率層で用いた含フッ素ポリマーを特開平2004−45462号公報に記載の含フッ素共重合体P−1、P−2にそれぞれ変え(等質量置き換え)同様の評価を行った結果、実施例1〜3と同様の効果が得られた。
[実施例5]
実施例1〜4の低屈折率層を以下の低屈折率層A及びBにそれぞれ変更して、評価を行い、同様な本発明の効果を確認できた。
中空シリカ粒子を用いることで更に耐擦傷性が優れた低反射率の反射防止フィルムを作製することができた。
(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート(ケロープEP−12、ホープ製薬(株)製)3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。固形分濃度が29%になるようにメチルエチルケトンで調製しゾル液aとした。
(中空シリカ微粒子分散液(分散液A−1)の調製)
中空シリカ微粒子ゾル(粒子サイズ約40〜50nm、シエル厚6〜8nm、屈折率1.31、固形分濃度20%、主溶媒イソプロピルアルコール、特開2002−79616の調製例4に準じて粒子サイズを変更して作製)500部に、アクリロイルオキシプロピルトリメトキシシラン(信越化学(株)製、KBM−5103)30部、およびジイソプロポキシアルミニウムエチルアセトアセテート(ケロープEP−12、ホープ製薬(株)製)1.5部加え混合した後に、イオン交換水を9部を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8部を添加し、中空シリカ分散液を得た。得られた中空シリカ分散液の固形分濃度は18質量%、溶剤乾燥後の屈折率は1.31であった。
(低屈折率層用塗布液Aの調製)
メチルエチルケトン100質量部に対して、特開平2004−45462号公報に記載の含フッ素共重合体P−3(重量平均分子量約50000)44.0質量部、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)6.0質量部、末端メタクリレート基含有シリコーンRMS−033(Gelest社製)3.0質量部、例示化合物1を3.0質量部加えて溶解した。その後に分散液(A−1)を195質量部(シリカ+表面処理剤固形分として39.0質量部)、ゾル液a17.2質量部(固形分として5.0質量部)を添加した。塗布液全体の固形分濃度が6質量%になり、シクロヘキサンとメチルエチルケトンの比率が10対90になるようにシクロヘキサン、メチルエチルケトンで希釈して塗布液(塗布液A)を調製した。
(低屈折率層用塗布液Bの調製)
メチルエチルケトン200質量部に対して、特開平2004−45462号公報に記載の含フッ素共重合体P−3(重量平均分子量約50000)93.0質量部、末端メタクリレート基含有シリコーンRMS−033(Gelest社製)3.0質量部、例示化合物1を4.0質量部を加えて溶解した。塗布液全体の固形分濃度が6質量%になり、シク
ロヘキサンとメチルエチルケトンの比率が10対90になるようにシクロヘキサン、メチルエチルケトンで希釈して塗布液(塗布液B)を調製した。
[実施例6]
実施例1〜5の低屈折率層を以下の低屈折率層Cにそれぞれ変更して、評価を行い、同様な本発明の効果を確認できた。またオプスターJN7228Aをこれに対して架橋度を高めたJTA113(JSR(株)製)に等重量で置き換えた低屈折率層でも同様の効果が得られた。
(ゾル液a’の調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM5103(商品名);信越化学工業社製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート(ケロープEP−12、ホープ製薬(株)製)3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1800であり、
オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
(低屈折率層用塗布液Cの調製)
下記組成物をミキシングタンクに投入し、攪拌して、その後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液Cを調製した。 オプスターJN7228A(熱架橋性含フッ素含シリコーンポリマー組成液(固形分6%):JSR(株)製)783.3質量部(固形分として47.0質量部)に対して、分散液A−1を195質量部(シリカ+表面処理剤固形分として39.0質量部)、コロイ
ダルシリカ分散物(シリカ、MEK−STの粒子径違い品、平均粒径45nm、固形分濃度30%、日産化学(株)製)30.0質量部(固形分として9.0質量部)、ゾル液a’17.2質量部(固形分として5.0質量部)を添加した。塗布液全体の固形分濃度が6質量%になり、シクロヘキサンとメチルエチルケトンの比率が10対90になるようにシクロヘキサン、メチルエチルケトンで希釈して塗布液(塗布液C)を調製した。
それぞれ使用した化合物を以下に示す。
KBM−5103:シランカップリング剤(信越化学工業(株)製)。
DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(日本化薬(株)製)
RMS−033:反応性シリコーン(Gelest(株)製)
上記低屈折率層用塗布液Cを線数200本/インチ、深度30μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度10m/分の条件で塗布し、120℃で150秒乾燥の後、更に140℃で12分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度200mW/cm2、照射量450mJ/cm2の紫外線を照射し、低屈折率層を形成し、巻き取った。硬化後、低屈折率層の厚さが100nmとなるようにグラビアロール回転数を調整した。
[実施例7]
(偏光板用保護フィルムの作製)
1.5 mol/Lの水酸化ナトリウム水溶液を50℃に保温した鹸化液を調整した。
さらに、0.005mol/Lの希硫酸水溶液を調製した。
実施例1〜6で作製した本発明に係る反射防止フィルムにおいて、それぞれ本発明の低屈折率層を有する側とは反対側の透明基材の表面を、上記鹸化液を用いて鹸化処理した。
鹸化処理した透明基材表面の水酸化ナトリウム水溶液を、水で十分に洗浄した後、上記の希硫酸水溶液で洗浄し、さらに希硫酸水溶液を水で十分に洗浄し、100℃で十分に乾燥させた。
反射防止フィルムの低屈折率層を有する側とは反対側の、鹸化処理した透明基材の表面の水に対する接触角を評価したところ、40度以下であった。このようにして、偏光板用保護フィルムを作製した。
(偏光板の作製)
膜厚75μmのポリビニルアルコールフィルム((株)クラレ製)を水1000質量部、ヨウ素7質量部、ヨウ化カリウム105質量部からなる水溶液に5分間浸漬し、ヨウ素を吸着させた。
次いで、このフィルムを4質量%ホウ酸水溶液中で、4.4倍に縦方向に1軸延伸をした後、緊張状態のまま乾燥して偏光膜を作製した。
接着剤としてポリビニルアルコール系接着剤を用いて、偏光膜の一方の面に本発明の反射防止フィルム(偏光板用保護フィルム)の鹸化処理したトリアセチルセルロース面を貼り合わせた。さらに、偏光膜のもう片方の面には上記と同様にして鹸化処理したトリアセチルセルロースフィルムを同じポリビニルアルコール系接着剤を用いて貼り合わせた。
(画像表示装置の評価)
このようにして作製した本発明の偏光板を反射防止フィルムがディスプレイの最表面になるように装着したTN,STN,IPS,VA,OCBのモードの透過型、反射型、又は、半透過型の液晶表示装置は、反射防止性能に優れ、極めて視認性が優れていた。特にVAモードにおいてその効果は顕著であった。
[実施例8]
(偏光板の作製)
光学補償層を有する光学補償フィルム(ワイドビューフィルムSA 12B、富士写真フイルム(株)製)において、光学補償層を有する側とは反対側の表面を実施例7と同様の条件で鹸化処理した。
実施例7で作製した偏光膜に、接着剤としてポリビニルアルコール系接着剤を用いて、偏光膜の一方の面に、実施例1〜7で作製した本発明に係る反射防止フィルム(偏光板用保護フィルム)の鹸化処理したトリアセチルセルロース面をそれぞれ貼り合わせた。さらに、偏光膜のもう片方の面には鹸化処理した光学補償フィルムのトリアセチルセルロース面を同じポリビニルアルコール系接着剤を用いて貼り合わせた。
(画像表示装置の評価)
このようにして作製した本発明の偏光板を反射防止フィルムがディスプレイの最表面になるように装着したTN,STN,IPS,VA,OCBのモードの透過型、反射型、又は、半透過型の液晶表示装置は、光学補償フィルムを用いていない偏光板を装着した液晶表示装置よりも明室でのコントラストに優れ、上下左右の視野角が非常に広く、さらに、反射防止性能に優れ、極めて視認性と表示品位が優れていた。
特にVAモードにおいてその効果は顕著であった。
[実施例9]
実施例1の反射防止フィルムの作製方法において、低屈折率層の塗布液処方を下記DY−91に変え、下記ダイコーターを用いて25m/minの塗布速度で塗布した。その後90℃で30秒間乾燥した後、酸素濃度が0.1体積%以下の雰囲気になるように窒素パージしながら、240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度600mW/cm2、照射量400mJ/cm2の紫外線を照射し、低屈折率層(屈折率1.45、膜厚83nm)を形成した。このようにして、反射防止フィルム(9―1)を作製した。
さらに低屈折率層塗布液を下記DY−92〜93に変えることで反射防止フィルム(9−2)〜(9−3)を作製した。
(ダイコーターの構成)
スロットダイ13は、上流側リップランド長IUPが0.5mm、下流側リップランド長ILOが50μmで,スロット16の開口部のウェッブ走行方向における長さが150μm、スロット16の長さが50mmのものを使用した。上流側リップランド18aとウェッブ12の隙間を、下流側リップランド18bとウェッブ12の隙間よりも50μm長くし(以下、オーバーバイト長さ50μmと称する)、下流側リップランド18bとウェッブ12との隙間GLを50μmに設定した。また、減圧チャンバー40のサイドプレート40bとウェッブ12との隙間GS、及びバックプレート40aとウェッブ12との隙間GBはともに200μmとした。
(低屈折率層用塗布液(DY−91)の調製)
下記の含フッ素共重合体をメチルエチルケトンに23.7質量%の濃度になるように溶解した溶液152.4質量部、末端メタクリレート基含有シリコーン樹脂X−22−164C(信越化学(株)製)1.1質量部、フッ素化光重合開始剤(例示化合物1)1.8質量部、メチルエチルケトン815.9質量部、およびシクロヘキサノン28.8質量部を添加して攪拌した。孔径0.45μmのPTFE製フィルターで濾過して低屈折率層用塗布液(DY−91)を調製した。該塗布液の粘度は0.48[mPa・sec]、表面張力は24[mN/m]であり、透明支持体に塗り付けられる塗布液の量は2.8[ml/m2]とした。
Figure 0005232365
(低屈折率層用塗布液(DY−92)の調製)
上記の含フッ素共重合体をメチルエチルケトンに23.7質量%の濃度になるように溶解した溶液426.6質量部、末端メタクリレート基含有シリコーン樹脂X−22−164C(信越化学(株)製)3.0質量部、フッ素化光重合開始剤(例示化合物1)5.1質量部、メチルエチルケトン538.6質量部、およびシクロヘキサノン26.7質量部を添加して攪拌した。孔径0.45μmのPTFE製フィルターで濾過して低屈折率層用塗布液(DY−92)を調製した。該塗布液の粘度は0.79[mPa・sec]、表面張力は24[mN/m]であり、透明支持体に塗り付けられる塗布液の量は2.2[ml/m2]とした。
(低屈折率層用塗布液(DY−93)の調製)
上記の含フッ素共重合体をメチルエチルケトンに23.7質量%の濃度になるように溶解した溶液213.3質量部、末端メタクリレート基含有シリコーン樹脂X−22−164C(信越化学(株)製)1.5質量部、フッ素化光重合開始剤(例示化合物1)2.5質量部と前記表-1中の併用化合物Bを2.5質量部、メチルエチルケトン754.3質量部、およびシクロヘキサノン28.4質量部を添加して攪拌した。孔径0.45μmのPTFE製フィルターで濾過して低屈折率層用塗布液(DY−93)を調製した。該塗布液の粘度は0.82[mPa・sec]、表面張力は24[mN/m]であり、透明支持体に塗り付けられる塗布液の量は2.0[ml/m2]とした。
低屈折率層用塗布液をDY−91〜DY−93に変えた際の面状を評価した。結果を表6に示す。いずれも良好な性能を示した。
[反射防止フィルムの評価]
得られた反射防止フィルムについて面状を評価した。また実施例1と同様にして平均反射率を測定した。
(面状)
全層塗布した後のフィルム1m2の裏面をマジックインキで黒塗りした後、塗布面の濃度の均一性を目視で評価した。
○:濃淡差が目立たない
×:濃淡差が目立つ
得られた反射防止フィルム(9−1)、(9−2)、(9−3)を実施例7、8と同様の手順で表示装置を作成したところ、グラビアコーターで作製した実施例7、8の表示装置よりも色ムラも少なく、高品位であった。
Figure 0005232365
[実施例10]
〔各層形成用塗布液の調製〕
[ゾル液(a−1)の調製]
温度計、窒素導入管、滴下ロートを備えた1000mLの反応容器に、3−アクリロキシオキシプロピルトリメトキシシラン187g(0.80モル)、メチルトリメトキシシラン27.2g(0.20モル)、メタノール320g(10モル)とフッ化カリウム(KF)0.06g(0.001モル)を仕込み、攪拌下室温で水15.1g(0.86モル)をゆっくり滴下した。滴下終了後室温で3時間攪拌した後、メタノール還溜下2時間加熱攪拌した。この後、低沸点成分を減圧留去し、更に濾過することによりゾル液(a−1)を120g得た。
このようにして得た物質をGPCで測定した結果、質量平均分子量は1500であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は30質量%であった。また1H−NMRの測定結果から、得られた物質の構造は、以下の一般式で表される構造であった。
Figure 0005232365
更に、29Si−NMR測定による縮合率αは0.56であった。この分析結果から、本シランカップリング剤ゾルは直鎖状構造部分が大部分であることが分かった。また、ガスクロマトグラフィー分析から、原料のアクリロキシプロピルトリメトキシシランは5質量%以下の残存率であった。
[ゾル液(b−1)の調製]
攪拌機、還流冷却器を備えた反応器内において、メチルエチルケトン119質量部、3−アクリロイルオキシプロピルトリメトキシシラン“KBM−5103”{信越化学工業(株)製}101質量部、ジイソプロポキシアルミニウムエチルアセトアセテート3質量部を加え混合したのち、イオン交換水30質量部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液(b−1)を得た。
ゾル液(b−1)の質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100質量%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
[ハードコート層塗布液の調整]
Figure 0005232365
ハードコート層塗布液のHC-1〜HC-7については、上記の表に従って調整した。表中の数字は質量gの表記になっている。
尚、PETA:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物、日本化薬(株)製。
DPHA:ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートの混合物[日本化薬(株)製]、
「デソライトZ7526」:市販のシリカ含有UV硬化型ハードコート液、固形分濃度72質量%、シリカ含率38%質量、平均粒径20nm、JSR(株)製。
“MEK−ST”:シリカゾル、平均粒径15nm、固形分濃度30質量%、日産化学(株)製。
“SX−350”:平均粒径3.5μm架橋ポリスチレン粒子(屈折率1.60)、30質量%トルエン分散液、綜研化学(株)製。ポリトロン分散機にて10000rpmで20分分散後使用。
架橋アクリル−スチレン粒子:平均粒径3.5μm(屈折率1.55)、30質量%トルエン分散液、綜研化学(株)製。
イルガキュア184:重合開始剤、[チバ・スペシャルティ・ケミカルズ(株)製]、
イルガキュア907:重合開始剤、[チバ・スペシャルティ・ケミカルズ(株)製]である。
“FP−132”:下記構造式のフッ素系表面改質剤。
Figure 0005232365
フッ素系レベリング剤R−30 大日本インキ化学工業性(市販品)
“KBM−5103”:シランカップリング剤、3−アクリロイルオキシプロピルトリメトキシシラン、信越化学工業(株)製。
上記を十分に混合した各液を、孔径30μmのポリプロピレン製フィルターでろ過して、ハードコート層塗布液HC−1〜HC−7を完成させた。
(ハードコート層の塗設)
特開2003−211052号の図1に記載されたスロットダイコーターを用いて、80μmの厚さのトリアセチルセルロースフィルム(TAC−TD80U、富士写真フイルム(株)製)をロール形態で巻き出して、ハードコート層塗布液HC−1〜HC−10を、各々16cm3/m2の塗布量になるように塗布し、30℃で15秒間、90℃で20秒間乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量50mJ/cm2の紫外線を照射して塗布層を硬化させ、各々厚さ2.5から6.0μmのハードコート層を有した光学フィルムを作製し、巻き取った。
[低屈折率層塗布液の調製]
低屈折率層塗布液LN-1〜LN-8については、下記の表に従って調整した。表中の数字は質量部の表記になっている。
Figure 0005232365
上記の各々の塗布液を、孔径1μmのポリプロピレン製フィルターで濾過して低屈折率層塗布液(LN−1〜8)を完成させた。
上記の各々の塗布液の作製に使用した化合物を以下に示す。
“P−3”:特開平2004−45462号公報に記載の含フッ素共重合体(P−3)、質量平均分子量約50000、固形分濃度23.8質量%、溶剤メチルエチルケトン、
“JTA−113”:熱架橋性の、シリコーン部位含有の含フッ素ポリマー溶液、屈折率1.44、固形分濃度6質量%、溶剤メチルエチルケトン、固形分のうち、熱架橋性シリコーン部位含有の含フッ素ポリマー78質量%、メラミン系架橋剤20質量%、パラトルエンスルフォン酸塩2質量%、JSR(株)製、
含フッ素化合物“F3035”(商品名;日本油脂株式会社製、固形分濃度30%)
“MEK−ST”のシリカ粒子分散液、平均粒径15nm、固形分濃度30質量%、分散溶剤メチルエチルケトン、日産化学(株)製、
“MEK−ST−L”:シリカ粒子分散液、平均粒径45nm、固形分濃度30質量%、分散溶剤メチルエチルケトン、日産化学(株)製、
“例示化合物1溶液”:固形分濃度2質量%、溶剤メチルエチルケトン、
“MP−トリアジン”:光重合開始剤、(株)三和ケミカル製、
“RMS−033”:反応性シリコーン樹脂、Gelest社製、
(低屈折率層の塗設−1)
本発明の各種ハードコート層を塗設した後、さらに、上記低屈折率層用塗布液LN-1〜LN-5については、ダイコーターにて、低屈折率層の乾燥膜厚が95nmになるようにウエット塗布し、続いて、120℃で70秒間乾燥の後、さらに窒素パージにより、酸素濃度100ppmの雰囲気下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量400mJ/cm2の紫外線を照射し、低屈折率層を形成させて巻き取った。 (低屈折率層の塗設−2)
本発明の各種ハードコート層を塗設した後、さらに、上記低屈折率層用塗布液LN-6〜LN-8については、バーコーターにて、低屈折率層の乾燥膜厚が95nmになるようにウエット塗布し、続いて、120℃で150秒間乾燥の後、更に100℃で8分間乾燥させてから、窒素パージにより、酸素濃度100ppmの雰囲気下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量110mJ/cm2の紫外線を照射し、低屈折率層を形成させて巻き取った。
得られたフィルムに対して、前述と同様な評価を行った。その結果を表9に示す。
Figure 0005232365
本発明のフッ素化光重合開始剤化合物を使用した反射防止フィルムは十分な反射防止性能を有しながら耐擦傷性にも優れていることがわかる。
[実施例11]・・・光学フイルムの作成例
表10及び表11に示すハードコート層用塗布液(HCL−1)〜(HCL−4)、及びオーバーコート層用塗布液(OCL−1)〜(OCL−4)を調製した。
Figure 0005232365
Figure 0005232365
表中の構成成分は固形分の質量百分率で示す。使用した化合物の詳細を以下に示す。
MANDA:
(2官能アクリレート、KAYARAD MANDA、日本化薬(株)製、分子量312)
PETA:
(ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物、日本化薬(株)製、平均分子量約300)
DPHA:
(ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートの混合物、日本化薬(株)製、平均分子量540)
M−215:
(イソシアヌル酸EO変性ジアクリレート、東亜合成(株)製、分子量369)
IRG184:
(光重合開始剤、イルガキュア184、日本チバガイギー(株)製)
IRG369:
(光重合開始剤、イルガキュア369、日本チバガイギー(株)製)
「FZ−2191」:ポリエーテル変性シリコーン。(東レ・ダウコーニング(株)製)
続いて、上記のようにして得られたハードコート層及びオーバーコート層用塗布液を用いて以下の光学フイルムを作製した。
(光学フィルム(11−1)の作製)
膜厚80μm、幅1340mmのトリアセチルセルロースフィルム“TAC−TD80U”{富士写真フイルム(株)製}上に、ハードコート層用塗料(HCL-1)をマイクログラビア塗工方式で、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、窒素パージ(酸素濃度0.05%以下)しながら、160W/cmの空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、放射照度400mW/cm、照射エネルギー量20mJ/cmの紫外線を照射して塗布層を硬化させ、膜厚5.0μmのハードコート層を作製した。
このようにして得られたハードコート層の上に、上記オーバーコート層用塗料(OCL−1)をダイコーター塗工方式で、硬化後の膜厚が3.0μmになるように調節しながら、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、窒素パージ(酸素濃度0.1%)しながら、160W/cmの空冷メタルハライドランプ{アイグラフィックス(株)製}を用いて、放射照度400mW/cm、照射エネルギー量240mJ/cmの紫外線を照射して塗布層を硬化させ、試料11−1を得た。
以下、前述表1に記載した条件と同じように処理した試料11−2〜11−12を下記表12に示す。
Figure 0005232365
このようにして得られた試料11−1〜11−12に対して、前記の表2と同様の評価を行った結果を表13に示す。
Figure 0005232365
フッ素化光重合開始剤化合物を使用した水準の光学フィルムは酸素濃度が高くても十分な硬化が進行し耐擦傷性に優れていることがわかる。
本発明において用いられる、電離放射線照射反応室及び前室を具備した製造装置の一例を示した模式図である。 本発明の電離放射線照射反応室及び前室を具備した製造装置のウェッブ入り口面の動作の一例を示した側面図である。 本発明において用いられる、電離放射線照射反応室及び前室を具備した製造装置の、前室のウェッブ入り口面の一例を模式的に示した図である。 図3の前室のウェッブ入り口面の動作を模式的に示した側面図である。 本発明の反射防止フィルムの反射防止層の塗設及び硬化を行なう装置の一例を示す図である。 本発明において好ましく用いられるダイコーターの一実施形態を示す概略断面図である。 (A)図6のダイコーターの拡大図である。(B)従来のスロットダイを示す概略断面図である。 本発明において好ましく用いられる塗布工程のスロットダイ及びその周辺を示す斜視図である。 図8の減圧チャンバーとウェッブとの関係を模式的に示す断面図である。 図8の減圧チャンバーとウェッブとの関係を模式的に示す断面図である。
符号の説明
A 送り出しロール
B 巻き取りロール
100,200,300,400 製膜ユニット
101,201,301,401 塗布液塗布工程
102,202,302,402 塗膜乾燥工程
103,203,303,403 塗膜硬化工程
1 反射防止フィルム
2 透明支持体
3 光拡散層
4 低屈折率層
5 透光性粒子
W ウェッブ
10 コーター
11 バックアップロール
13 スロットダイ
14 塗布液
14a ビード形状
14b 塗膜
15 ポケット
16 スロット
16a スロット開口部
17 先端リップ
18 ランド(平坦部)
18a 上流側リップランド
18b 下流側リップランド
UP 上流側リップランド18aのランド長さ
LO 下流側リップランド18bのランド長さ
LO オーバーバイト長さ
L 先端リップ17とウェッブWの隙間
30 スロットダイ
31a 上流側リップランド
31b 下流側リップランド
32 ポケット
33 スロット
40 減圧チャンバー
40a バックプレート
40b サイドプレート
40c ネジ
B バックプレート40aとウェッブWの間の隙間
S サイドプレート40bとウェッブWの間の隙間

Claims (22)

  1. 支持体上に塗布された層が、少なくとも1種の下記一般式(1)または(5)で表されるフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物の硬化物を含むことを特徴とする光学フィルム。
    Figure 0005232365
    一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3 または−L−CY 3 を表し、Lはアリール基を表す。
    Rは、R a −Y 1 −(CH 2 s −O−、R a −Y 1 −(CH 2 s −S−及びR a −Y 1 −(CH 2 s −NR 1 −からなる群より選択される置換基、またはこれらの置換基を有するアリール基、置換アリール基、または置換アルケニル基を表す。R 1 は水素原子、メチル基、エチル基またはR a −Y 1 −(CH 2 s −を表し、sは2〜10の整数を表す。1は、互いに独立して、単結合、−O−、−S−からなる群より選択される二価の置換基を表す。R a は、直鎖状又は分岐鎖状の末端鎖でありZ 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し、qは、7〜20の整数を表す)を表す。
    Figure 0005232365
    一般式(5)において、Zは無置換もしくは置換されたフェニル基を表し、フェニル基の置換基は、Ra−O−(CH 2 )r−O−基、ハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、またはRa−O−(CH 2 )r−O−基を表し、rは1〜10の整数を表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つはRa−O−(CH 2 )r−O−基を含み、R a は、直鎖状又は分岐鎖状の末端鎖であり、Z 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し;qは、7〜20の整数を表す)を表わす。
  2. 前記一般式(1)の化合物のRが下記の2価の基から選ばれる基を含むことを特徴とする請求項1に記載の光学フィルム。
    Figure 0005232365
  3. 前記一般式(1)または(5)の化合物が、下記の化合物の少なくとも1つであることを特徴とする請求項1に記載の光学フィルム。
    Figure 0005232365
  4. 支持体上に塗布された層が、前記少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物と、少なくとも1種の非フッ素化光重合開始剤とを含有する組成物の硬化物を含むことを特徴とする請求項1〜3のいずれか1項に記載の光学フィルム。
  5. 前記電離放射線硬化性化合物が二個以上のエチレン性不飽和基を有する化合物であることを特徴とする請求項1〜4のいずれか1項に記載の光学フィルム。
  6. 支持体上に少なくとも反射防止層を有する反射防止フィルムであって、前記支持体上に積層された層の少なくとも一層が、少なくとも1種の下記一般式(1)または(5)のいずれか一つで表されるフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物を電離放射線照射によって硬化させてなる層であることを特徴とする反射防止フィルム。
    Figure 0005232365
    一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3 または−L−CY 3 を表し、Lはアリール基を表す。
    Rは、R a −Y 1 −(CH 2 s −O−、R a −Y 1 −(CH 2 s −S−及びR a −Y 1 −(CH 2 s −NR 1 −からなる群より選択される置換基、またはこれらの置換基を有するアリール基、置換アリール基、または置換アルケニル基を表す。R 1 は水素原子、メチル基、エチル基またはR a −Y 1 −(CH 2 s −を表し、sは2〜10の整数を表す。1は、互いに独立して、単結合、−O−、−S−からなる群より選択される二価の置換基を表す。R a は、直鎖状又は分岐鎖状の末端鎖でありZ 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し、qは、7〜20の整数を表す)を表す。
    Figure 0005232365
    一般式(5)において、Zは無置換もしくは置換されたフェニル基を表し、フェニル基の置換基は、Ra−O−(CH 2 )r−O−基、ハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、またはRa−O−(CH 2 )r−O−基を表し、rは1〜10の整数を表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つはRa−O−(CH 2 )r−O−基を含み、R a は、直鎖状又は分岐鎖状の末端鎖であり、Z 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し;qは、7〜20の整数を表す)を表わす。
  7. 前記一般式(1)の化合物のRが下記の2価の基から選ばれる基を含むことを特徴とする請求項6に記載の反射防止フィルム。
    Figure 0005232365

  8. 前記一般式(1)または(5)の化合物が、下記の化合物の少なくとも1つであることを特徴とする請求項6に記載の反射防止フィルム。
    Figure 0005232365

  9. 前記少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物が、更に少なくとも1種の非フッ素化光重合開始剤を含有することを特徴とする請求項6〜8のいずれか1項に記載の反射防止フィルム。
  10. 前記電離放射線硬化性化合物が二個以上のエチレン性不飽和基を有する化合物であることを特徴とする請求項6〜9のいずれか1項に記載の反射防止フィルム。
  11. 前記反射防止層が低屈折率層を有し、該低屈折率層が含フッ素ポリマーを含有する塗布液によって形成されたことを特徴とする請求項6〜10のいずれか1項に記載の反射防止フィルム。
  12. 前記含フッ素ポリマーが、下記一般式1で表わされる含フッ素ポリマーであることを特徴とする請求項11に記載の反射防止フィルム。
    Figure 0005232365
    〔一般式1中、Lは炭素数1〜10の連結基を表し、mは0または1を表す。Xは水素原子またはメチル基を表す。Aは任意のビニルモノマーの重合単位を表し、単一成分であっても複数の成分で構成されていてもよい。また、シリコーン部位を含んでいても良い。x、y、zはそれぞれの構成成分のモル%を表し、30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。〕
  13. 前記含フッ素ポリマーが、下記一般式2で表わされる含フッ素ポリマーであることを特徴とする請求項11に記載の反射防止フィルム。
    Figure 0005232365
    一般式2においてRは炭素数1〜10のアルキル基、又はエチレン性不飽和基(−C(=O)C(−X)=CH2)を表す。
    mは1≦m≦10の整数を表す。
    nは2≦n≦10の整数を表す。
    Bは任意のビニルモノマーから導かれる繰返し単位を表わし、単一組成であっても複数の組成によって構成されていても良い。また、シリコーン部位を含んでいても良い。
    x、y、z1およびz2はそれぞれの繰返し単位のmol%を表す。ただし、x+y+z1+z2=100である。
  14. 前記低屈折率層が中空シリカ微粒子を含有していることを特徴とする請求項11〜13のいずれか1項に記載の反射防止フィルム。
  15. 透明基材上に、少なくとも一層からなる反射防止層を有する反射防止フィルムの製造方法であって、
    前記透明基材上に積層される層の少なくとも一層を、少なくとも1種の下記一般式(1)または(5)のいずれか一つで表されるフッ素化光重合開始剤と電離放射線硬化性化合物とを含有する組成物を電離放射線照射によって硬化させてなり、
    前記透明基材上に積層される層の少なくとも一層を、下記(i)〜(iii)の工程を含み、さらに下記(ii)の搬送工程と(iii)の硬化工程とが連続して行なわれる層形成方法によって形成することを特徴とする反射防止フィルムの製造方法。(i)透明基材上に塗布層を塗設する工程、(ii)該塗布層を有するフィルムを、膜面温度が25℃以上になるように加熱しながら、大気中の酸素濃度より低い酸素濃度雰囲気下で搬送する工程、(iii)該フィルムに酸素濃度15体積%以下の雰囲気下で膜面温度が25℃以上になるように加熱しながら電離放射線を照射し、塗布層を硬化する工程。
    Figure 0005232365
    一般式(1)において、Yはハロゲン原子を表す。Y1は−CY3 または−L−CY 3 を表し、Lはアリール基を表す。
    Rは、R a −Y 1 −(CH 2 s −O−、R a −Y 1 −(CH 2 s −S−及びR a −Y 1 −(CH 2 s −NR 1 −からなる群より選択される置換基、またはこれらの置換基を有するアリール基、置換アリール基、または置換アルケニル基を表す。R 1 は水素原子、メチル基、エチル基またはR a −Y 1 −(CH 2 s −を表し、sは2〜10の整数を表す。1は、互いに独立して、単結合、−O−、−S−からなる群より選択される二価の置換基を表す。R a は、直鎖状又は分岐鎖状の末端鎖でありZ 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し、qは、7〜20の整数を表す)を表す。
    Figure 0005232365
    一般式(5)において、Zは無置換もしくは置換されたフェニル基を表し、フェニル基の置換基は、Ra−O−(CH 2 )r−O−基、ハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、またはRa−O−(CH 2 )r−O−基を表し、rは1〜10の整数を表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つはRa−O−(CH 2 )r−O−基を含み、R a は、直鎖状又は分岐鎖状の末端鎖であり、Z 1 CF 2 −(CF 2 q −(ここで、Z 1 は水素原子又はフッ素原子を表し;qは、7〜20の整数を表す)を表わす。
  16. 前記一般式(1)の化合物のRが下記の2価の基から選ばれる基を含むことを特徴とする請求項15に記載の反射防止フィルムの製造方法。
    Figure 0005232365

  17. 前記一般式(1)または(5)の化合物が、下記の化合物の少なくとも1つであることを特徴とする請求項15に記載の反射防止フィルムの製造方法。
    Figure 0005232365

  18. 前記反射防止フィルムの製造方法が、バックアップロールによって支持されて連続走行するウェブの表面に、スロットダイの先端リップのランドを近接させて、前記先端リップのスロットから塗布液を塗布する工程を有し、該塗布液が、前記スロットダイのウェブ進行方向側の先端リップのウェブ走行方向におけるランド長さが30μm以上100μm以下であり、且つ前記スロットダイを塗布位置にセットしたときに、前記ウェブの進行方向とは逆側の先端リップとウェブの隙間を、前記ウェブ進行方向側の先端リップとウェブとの隙間よりも30μm以上120μm以下大きくなるように設置した塗布装置を用いて塗布されることを特徴とする請求項15〜17のいずれか1項に記載の反射防止フィルムの製造方法。
  19. 前記塗布液の塗布時における粘度が2.0[mPa・sec]以下、且つ、ウェブ表面に塗り付けられる塗布液の量が2.0〜5.0[ml/m2]であることを特徴とする請求項18に記載の反射防止フィルムの製造方法。
  20. 前記塗布液を、連続走行するウェブ表面に、25[m/min]以上の速度で塗布することを特徴とする請求項18または19に記載の反射防止フィルムの製造方法。
  21. 請求項6〜14のいずれか1項に記載の反射防止フィルムが、偏光板における2枚の保護フィルムのうち一方に用いられていることを特徴とする偏光板。
  22. 請求項1〜5のいずれか1項に記載の光学フィルム、請求項6〜14のいずれか1項に記載の反射防止フィルム、または請求項21に記載の偏光板が用いられていることを特徴とする画像表示装置。
JP2006149809A 2005-06-01 2006-05-30 フッ素化光重合開始剤を含む光学フィルム、反射防止フィルム、偏光板、およびそれを用いた画像表示装置 Active JP5232365B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149809A JP5232365B2 (ja) 2005-06-01 2006-05-30 フッ素化光重合開始剤を含む光学フィルム、反射防止フィルム、偏光板、およびそれを用いた画像表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005161569 2005-06-01
JP2005161569 2005-06-01
JP2006149809A JP5232365B2 (ja) 2005-06-01 2006-05-30 フッ素化光重合開始剤を含む光学フィルム、反射防止フィルム、偏光板、およびそれを用いた画像表示装置

Publications (2)

Publication Number Publication Date
JP2007011309A JP2007011309A (ja) 2007-01-18
JP5232365B2 true JP5232365B2 (ja) 2013-07-10

Family

ID=37749832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149809A Active JP5232365B2 (ja) 2005-06-01 2006-05-30 フッ素化光重合開始剤を含む光学フィルム、反射防止フィルム、偏光板、およびそれを用いた画像表示装置

Country Status (1)

Country Link
JP (1) JP5232365B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016869B2 (ja) * 2005-08-12 2012-09-05 富士フイルム株式会社 光学フィルム、反射防止フィルム、その製造方法、これを用いた偏光板およびディスプレイ装置
JP2008207467A (ja) * 2007-02-27 2008-09-11 Sumitomo Chemical Co Ltd 耐擦傷性樹脂板及びそれを用いた携帯型情報端末の表示窓保護板
JP5135845B2 (ja) * 2007-03-28 2013-02-06 凸版印刷株式会社 積層体の製造方法および光学フィルムの製造方法
US10222510B2 (en) 2016-03-09 2019-03-05 Lg Chem, Ltd Anti-reflective film
JP6623121B2 (ja) * 2016-06-08 2019-12-18 デクセリアルズ株式会社 光硬化性樹脂組成物、並びに画像表示装置、及びその製造方法
KR102052720B1 (ko) 2016-06-27 2019-12-05 비아비 솔루션즈 아이엔씨. 고채도 플레이크
KR102052719B1 (ko) * 2016-06-27 2019-12-05 비아비 솔루션즈 아이엔씨. 광학 디바이스
JP2018028656A (ja) 2016-06-27 2018-02-22 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. 磁性物品
JP2019143076A (ja) * 2018-02-22 2019-08-29 冨士薬品工業株式会社 硬化性組成物
EP4149758A4 (en) * 2020-05-14 2024-09-11 3M Innovative Properties Company MULTILAYER OPTICAL FILMS HAVING AT LEAST ONE FLUORINATED (CO)POLYMER LAYER WITH A FLUORINATED PHOTOINITIATOR AND METHOD FOR THE PRODUCTION AND USE THEREOF
JP7164781B1 (ja) 2021-11-24 2022-11-02 東洋インキScホールディングス株式会社 積層体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172309A (ja) * 1999-12-20 2001-06-26 Jsr Corp 硬化性樹脂組成物、硬化物および反射防止膜積層体
GB2360283B (en) * 2000-02-08 2002-08-21 Ciba Sc Holding Ag Monoacylarylphosphines and acylphosphine oxides and sulphides
JP3962781B2 (ja) * 2000-06-12 2007-08-22 エルジー・ケミカル・カンパニー・リミテッド 機能性アルキルチオ基を含むトリアジン系化合物及び光重合開始剤(triazine−basedcompoundcomprisingfunctionalizedalkylthiogroups、andphotpolymerizationinitiator)
JP2003211052A (ja) * 2002-01-23 2003-07-29 Fuji Photo Film Co Ltd 塗布装置及び塗布方法
JP2004024967A (ja) * 2002-06-24 2004-01-29 Nitto Denko Corp 被膜シートの製造方法、反射防止シートの製造方法、反射防止シート、光学素子および画像表示装置
JP4265734B2 (ja) * 2002-07-08 2009-05-20 富士フイルム株式会社 反射防止膜、反射防止フィルムおよび画像表示装置
JP2004117555A (ja) * 2002-09-24 2004-04-15 Fuji Photo Film Co Ltd 光または熱硬化性組成物
JP2004318054A (ja) * 2003-03-28 2004-11-11 Fuji Photo Film Co Ltd 偏光板及びその製造方法、並びに画像表示装置
JP2005037904A (ja) * 2003-06-24 2005-02-10 Fuji Photo Film Co Ltd 光学補償シート、その製造方法、それを用いた偏光板及び液晶表示装置

Also Published As

Publication number Publication date
JP2007011309A (ja) 2007-01-18

Similar Documents

Publication Publication Date Title
JP5232365B2 (ja) フッ素化光重合開始剤を含む光学フィルム、反射防止フィルム、偏光板、およびそれを用いた画像表示装置
JP4878796B2 (ja) 光学フィルムの製造方法
JP4887013B2 (ja) 反射防止フィルム及びそれを用いたディスプレイ装置
JP5102958B2 (ja) 反射防止フィルムの製造方法
KR20060129509A (ko) 반사 방지 필름의 제조방법, 반사 방지 필름, 편광판 및화상 표시 장치
JP2007045142A (ja) 防眩性フィルム、反射防止フィルム、その製造方法、該フィルムを用いた偏光板および該偏光板を用いた液晶表示装置
US7629051B2 (en) Optical film containing fluorinated photopolymerization initiator, antireflective film, polarizing plate and image display unit including same
KR20100127954A (ko) 반사방지필름 및 이를 포함하는 편광판
JP2007249191A (ja) 光学フィルム、反射防止フィルム、偏光板、及び画像表示装置
JP2006113561A (ja) 光散乱性フィルムの製造方法、該光散乱性フィルムを用いた偏光板、該偏光板を用いた液晶表示装置
WO2006030949A1 (en) Method of producing light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate
JP2005307176A (ja) 微粒子分散物、コーティング組成物、それを用いて形成した光学フィルムおよび反射防止フィルム、並びにそれを用いた偏光板、画像表示装置
JP2006048025A (ja) 反射防止フィルムおよびその製造方法
JP2005309392A (ja) 反射防止フィルムの製造方法、反射防止フィルム、偏光板、および画像表示装置
JP2007168429A (ja) 反射防止フィルム、その製造方法、並びにそれを用いた偏光板、及びディスプレイ装置
JP4792305B2 (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP5358080B2 (ja) 無機微粒子、組成物、硬化物、光学フィルム、偏光板、及び画像表示装置
JP5010813B2 (ja) 防眩性反射防止フィルム、その製造方法、該防眩性反射防止フィルムを用いた偏光板および該偏光板を用いた液晶表示装置
JP2006072320A (ja) 反射防止フィルムの製造方法、反射防止フィルム、偏光板、および画像表示装置
JP2007065635A (ja) 光学フィルム、特に反射防止フィルム及びその製造方法、並びに反射防止フィルムを用いた偏光板及び液晶表示装置
JP2007213045A (ja) 反射防止フィルム、偏光板、およびディスプレイ装置
JP4839037B2 (ja) 光学フィルムの製造方法
JP2006293329A (ja) 反射防止フィルム及びその製造方法、並びにそのような反射防止フィルムを用いた偏光板、及びそのような反射防止フィルム又は偏光板を用いた画像表示装置。
JP2006154791A (ja) 光散乱性フィルムの製造方法、光散乱性フィルムを用いた偏光板、偏光板を用いた液晶表示装置
JP2007177192A (ja) 透明フィルムおよびその製造方法、偏光板、画像表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250