JP2007213045A - 反射防止フィルム、偏光板、およびディスプレイ装置 - Google Patents

反射防止フィルム、偏光板、およびディスプレイ装置 Download PDF

Info

Publication number
JP2007213045A
JP2007213045A JP2007003851A JP2007003851A JP2007213045A JP 2007213045 A JP2007213045 A JP 2007213045A JP 2007003851 A JP2007003851 A JP 2007003851A JP 2007003851 A JP2007003851 A JP 2007003851A JP 2007213045 A JP2007213045 A JP 2007213045A
Authority
JP
Japan
Prior art keywords
layer
functional layer
group
antireflection film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007003851A
Other languages
English (en)
Inventor
Hiroyuki Yoneyama
博之 米山
Daiki Wakizaka
大樹 脇阪
Shuntaro Ibuki
俊太郎 伊吹
Yuichi Fukushige
裕一 福重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007003851A priority Critical patent/JP2007213045A/ja
Publication of JP2007213045A publication Critical patent/JP2007213045A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】機能層がその上下層である低屈折率層及び透明支持体との密着性を保ち、高い耐擦傷性をもちながら必要な光学性能を安定に示す反射防止フィルム、そのような反射防止フィルムを高い生産性で得ることのできる製造方法、さらにはそのような反射防止フィルムを用いた偏光板やディスプレイ装置を提供する。
【解決手段】透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層および最外層に位置する低屈折率層を有する反射防止フィルムであり、塗布、乾燥、硬化後の該機能層を5分割した各分割層の二重結合反応率を支持体側からα1、α2、α3、α4、及びα5とした場合に、下記数式(I)を満たす機能層を持つことを特徴とする反射防止フィルム。
式(I) α5<α1
[ただしα1〜α5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
中の二重結合性基の残量)}を表す。]
【選択図】なし

Description

本発明は、反射防止フィルムおよびその製造方法、偏光板、ディスプレイ装置ならびに液晶表示装置に関する。
反射防止フィルムは一般に、陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や液晶表示装置(LCD)のようなディスプレイ装置において、外光の反射によるコントラスト低下や像の映り込みを防止するために、光学干渉の原理を用いて反射率を低減するようディスプレイの最表面に配置される。
このような反射防止フィルムは、支持体上に機能層(ハードコート層、防眩層、光拡散層、高屈折率層など)、さらにその上に適切な膜厚の低屈折率層を形成することにより作製できる。低い反射率を実現するために低屈折率層にはできるだけ屈折率の低い材料が望まれる。また反射防止フィルムは通常ディスプレイの最表面に用いられるため高い耐擦傷性が要求される。厚さ100nm前後の薄膜において高い耐擦傷性を実現するためには、皮膜自体の強度、および下層との密着性が必要である。
特許文献1には含フッ素ポリマーを利用した低屈折率層素材に、シランカップリング剤を酸触媒もしくは金属キレート触媒を用いて予め反応させて、加水分解および/または脱水縮合物を形成させ、それを塗布液に添加するという方法で、塗布乾燥工程での揮散を抑え、下層の機能層への密着性を強くし耐擦傷性が改良されることが記載されている。また、下層となるハードコート層素材にも同様なシランカップリング剤を添加することで、上下層の密着性がより強化され、耐擦傷性が大幅に改良されることも記載されている。
このような方法においても、下層のハードコート層について、上層である低屈折率層との密着性とともに、透明支持体との密着性をも両立することについては十分ではなかった。
特開2004−170901号公報
本発明の目的は、機能層がその下層である透明支持体及び上層と十分な密着性を有し、高い耐擦傷性をもちながら必要な光学性能を安定に示す反射防止フィルム、そして該反射防止フィルムを用いた偏光板及びディスプレイ装置を提供することにある。
さらには、該反射防止フィルムを高い生産性で得ることのできる製造方法を提供することにある。
そこで本発明者は鋭意努力の末、いくつかの手法により反射防止フィルム中の機能層内の二重結合反応率分布を変化させることで、透明支持体との密着性を維持しながら、上層である低屈折率層と高い結合力を持つことを見出した。
本発明によれば、下記構成の反射防止フィルム、偏光板、および画像表示装置が提供され、上記目的が達成される。
(1)
透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層および最層外層に位置する低屈折率層を有する反射防止フィルムであり、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からα1、α2、α3、α4、及びα5とした場合に、下記数式(I)を満たす機能層を持つことを特徴とする反射防止フィルム。
式(I) α5<α1
[ただしα1〜α5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
中の二重結合性基の残量)}を表す。]
(2)
透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層およびそれに隣接した低屈折率層を有する反射防止フィルムであり、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合性基の残量を支持体側からB1、B2、B3、B4、及びB5とした場合に、下記数式(I−B)を満たす機能層を持つことを特徴とする反射防止フィルム。
式(I−B) B1/B5<1.0
[ただしB1〜B5は、各分割層の二重結合性基の残量を表す。]
(3)
透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層およびそれに隣接した低屈折率層を有する反射防止フィルムであり、低屈折率層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からβ1、β2、β3、β4、及びβ5とした場合に、下記数式(II)及び(III)を満たす機能層を持つことを特徴とする反射防止フィルム。
式(II) β1>0.45
式(III) β5>0.45
[ただしβ1〜β5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
中の二重結合性基の残量)}を表す。]
(4)
透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層およびそれに隣接した低屈折率層を有する反射防止フィルムであり、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からα1、α2、α3、α4、及びα5とし、低屈折率層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からβ1、β2、β3、β4、及びβ5とした場合に、下記数式(II)、(III)、及び(IV)を満たす機能層を持つことを特徴とする(1)に記載の反射防止フィルム。
式(II) β1>0.45
式(III) β5>0.45
式(IV) β5−α5>0.1
[ただし、α1〜α5、β1〜β5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層中の二重結合性基の残量)}を表す。]
(5)
透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層およびそれに隣接した低屈折率層を有する反射防止フィルムであり、低屈折率層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合性基の残量を支持体側からC1、C2、C3、C4、及びC5とした場合に、下記数式(II−C)及び(III−C)を満たす機能層を持つことを特徴とする反射防止フィルム。
式(II−C) 0.8<C1/C5<3.6
式(III−C) XX<C5<YY
[ただしC1〜C5は、各分割層の二重結合性基の残量を表す。]
(6)
前記支持体と前記機能層との間に、前記支持体と前記機能層とが混合した混合領域を有することを特徴とする(1)〜(5)に記載の反射防止フィルム。
(7)
前記混合領域の層の厚さが0.1〜10μmであることを特徴とする(1)〜(6)に記載の反射防止フィルム。
(8)
前記機能層が、前記支持体中の樹脂を溶解または膨潤させる溶剤を含む塗布液により形成されることを特徴とする(1)〜(7)のいずれかに記載の反射防止フィルム。
(9)
前記支持体が、セルロースアシレートフィルムであることを特徴とする(1)〜(8)のいずれかに記載の反射防止フィルム。
(10)
前記支持体が、脂環式構造含有重合体樹脂又はラクトン環含有重合体樹脂であることを特徴とする(1)〜(9)のいずれかに記載の反射防止フィルム。
(11)
前記支持体が光重合開始剤を含有することを特徴とする(1)〜(10)のいずれかに記載の反射防止フィルム。
(12)
前記支持体が、共流延方式で作製され、機能層に接する層に光重合開始剤を含有することを特徴とする(1)〜(11)のいずれかに記載の反射防止フィルム。
(13)
前記機能層が、フッ素化光重合開始剤を含有していることを特徴とする(1)〜(12)のいずれかに記載の反射防止フィルム。
(14)
前記機能層が、さらに非フッ素化光重合開始剤を含有していることを特徴とする(13)に記載の反射防止フィルム。
(15)
前記機能層が、バインダーおよび該バインダーと屈折率の異なる透光性微粒子を含有していることを特徴とする(1)〜(14)のいずれかに記載の反射防止フィルム。
(16)
前記機能層が下記一般式(1)で表されるオルガノシラン化合物の加水分解物および/またはその部分縮合物を含有することを特徴とする(1)〜(15)のいずれかに記載の反射防止フィルム。
Figure 2007213045
(一般式(1)中、Rは水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。
は、単結合、*−COO−**、*−CONH−**、または、*−O−**を表す。
は2価の連結鎖を表す。R〜Rは、各々独立に、ハロゲン原子、水酸基、無置換のアルコキシ基、または無置換のアルキル基を表す。
は、水素原子または無置換のアルキル基を表す。
は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。
lはl=100−mの数式を満たす数(モル比率)を表し、mは0〜50の数(モル比率)を表す。
なお、該加水分解物および/またはその部分縮合物は、特定のl及びmを有する一般式(1)で表される化合物の複数種の混合物の加水分解物および/またはその部分縮合物であってもよい。)
(17)
透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層および最外層に位置する低屈折率層を有する反射防止フィルムの製造方法であり、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層について支持体側からα1、α2、α3、α4及びα5層としたとき、下記数式(I)を満たす機能層を形成する工程を含むことを特徴とする反射防止フィルムの製造方法。
式(I) α5<α1
[ただしα1〜α5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
中の二重結合性基の残量)}を表す。]
(18)
少なくとも透明支持体側から電離放射線が照射されたことを特徴とする(17)に記載の反射防止フィルムの製造方法。
(19)
(1)〜(16)のいずれかに記載の反射防止フィルムを、偏光板における偏光膜の2枚の保護フィルムのうちの少なくとも一方に用いたことを特徴とする偏光板。
(20)
(1)〜(16)のいずれかに記載の反射防止フィルム、または、(19)に記載の偏光板を有し、低屈折率層が視認側になるように配置したことを特徴とするディスプレイ装置。
(21)
(1)〜(16)のいずれかに記載の反射防止フィルムまたは(19)に記載の偏光板を、液晶セルがTNモード、VAモード、IPSモード、又はOCBモードであるディスプレイの最表層に用いたことを特徴とする液晶表示装置。
本発明の反射防止フィルムは、透明支持体と機能層の密着性が非常に良く、かつ高い耐擦傷性を持ちながら必要な光学性能を安定に示す。更に、防塵性、防汚性にも優れる。また本発明の反射防止フィルムは高い生産性で製造できる。本発明の反射防止フィルムを備えたディスプレイ装置、並びに本発明の反射防止フィルムを用いた偏光板を備えたディスプレイ装置は、外光の映り込みや背景の映り込みが少なく、極めて視認性が高い。
本発明の実施の一形態として、本発明の反射防止フィルムの基本的な構成を図面を参照しながら説明する。なお、本明細書において、「(数値1)〜(数値2)」という記載は「(数値1)以上(数値2)以下」の意味を表す。
図1に模式的に示される断面図は、本発明の反射防止フィルムの一例であり、反射防止フィルム1は、透明支持体2、二種類の機能層(帯電防止層3、防眩性ハードコート層4)、及び低屈折率層5の順序の層構成を有する。防眩性ハードコート層4には、マット粒子6が分散しており、防眩性ハードコート層4のマット粒子6以外の部分の素材の屈折率は1.50〜2.00の範囲にあることが好ましく、低屈折率層5の屈折率は1.20〜1.49の範囲にあることが好ましい。本発明において機能層は、このように帯電防止層でもよいし、防眩性を有するハードコート層でもよいし、防眩性を有しないハードコート層でもよく、また光拡散層でもよく、1層でもよいし、複数層、例えば2層〜4層で構成されていてもよい。低屈折率層は最外層に塗設される。
本発明の反射防止フィルムは、透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層および最外層に位置する低屈折率層を有する反射防止フィルムであり、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からα1、α2、α3、α4、及びα5とした場合に、下記数式(I)を満たす機能層を持つことを特徴とする反射防止フィルムである。
式(I) α5<α1
[ただしα1〜α5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
中の二重結合性基の残量)}を表す。]
<機能層>
本発明における機能層とは、例えば、光学機能層や物理機能層でもよく、光学機能層としては、高屈折率層や光拡散層が挙げられ、物理機能層としてはハードコート層や帯電防止層などが挙げられる。もちろん光学機能層と物理機能層と兼ねる場合もあり、例えば防眩性ハードコート層などが該当する。
本発明の機能層は電離放射線硬化性樹脂を含有し、例えば、モノマーを、光ラジカル開始剤の存在下、電離放射線の照射により、重合、硬化し、形成することができる。モノマーとしては、エチレン性不飽和基を有するモノマーが好ましい。
例えば、エチレン性不飽和基を有するモノマー、光ラジカル開始剤、無機微粒子などを含有する塗液を調製し、該塗液を透明支持体上に塗布後、溶剤を乾燥し、電離放射線による重合反応により硬化して、防眩性ハードコート層などの機能層を形成することができる。
本発明に使用できる好ましい電離放射線硬化性樹脂の例としては、後述の機能層の説明において、バインダーとして例示するもの及び電離放射線硬化性の化合物として例示するものの反応生成物などが挙げられる。
機能層中の残存二重結合分布としては、単純な光重合開始剤を用いただけでは、電離放射線を機能層表面側から照射すると機能層表面側の二重結合反応率に対して、機能層支持体側の二重結合反応率の方が小さくなる。このため、必要な機能層と支持体との密着力が得られるまで電離放射線を照射した場合、機能層表面側の二重結合反応率は高くなってしまい、上層である低屈折率層との界面結合力は比較的低くなり、反射防止フィルムの耐擦傷性が下がってしまう。
そこで本発明では、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体面からα1、α2、α3、α4、及びα5とした場合に、下記数式(I)を満たすことが有効であることを見出した。
数式(I) α5<α1
ただしα1〜α5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
中の二重結合性基の残量)}を表す。
より好ましくはα5<α1<0.90である。
α1とα5の好ましい範囲は、0.40<α1が好ましく、0.50<α1が更に好ましく、0.70<α1が最も好ましい。またα5はα1より小さい値であり、本発明の機能層が反射防止層等の層を上層として有する場合には、本発明の機能層と上層との間に強い密着を持たせるために、α5<0.5が好ましく、0.05<α5<0.40が更に好ましい。
更に本発明の機能層に低屈折率層を塗設し、乾燥・硬化させた後の機能層の二重結合反応率を支持体面からβ1、β2、β3、β4、及びβ5とした場合に、下記数式(II)、(III)を満たすことが、機能層と下層及び上層の密着改良に有効であることを見出した。
数式(II) 0.45<β1
数式(III) 0.45<β5
β1の好ましい範囲は、0.45<β1、更に好ましくは0.60<β1、最も好ましくは0.70<β1<0.95である。β5の好ましい範囲は、0.45<β1、更に好ましくは0.60<β1、最も好ましくは0.70<β1<0.95である。
また、機能層と上層の密着改良、特にスチールウール擦り耐性に代表される耐擦傷性改良を行うには、0.1<(β5−α5)が好ましく、0.2<(β5−α5)<0.9が更に好ましい。
本発明で厚み方向に分割して反応率を測定する機能層厚みとは、機能層と支持体の界面が明確である場合には、機能層の表面から支持体界面までの厚みをいい、機能層と支持体の界面に、機能層と支持体の混合層がある場合には、機能層と混合層のトータルの厚みをいう。混合層は断面方向からのSEM観察により厚みを測定することができる。機能層を5分割する際には、機能層をミクロトームを用いて表面から水平に5つの等膜厚の切片を切削する。機能層の表面や混合層が凹凸を有する場合は凹凸の中心を基準として膜厚を求める。
二重結合反応率は、以下の方法で測定することができる。
機能層をミクロトームを用いて表面から水平に5つの切片を切削する。この切片0.1mgに対して、KBr粉末2mgを加え、黄色灯下でよく混合し測定試料とする。この測定試料の作り方は、硬化試料、未硬化試料とも同じである。FT−IR装置(サーモ・ニコレー・ジャパン製、ニコレット710)を用いて、400cm−1〜4000cm−1の波長領域を測定し、C=C結合由来の810cm−1のピーク強度を求める。
機能層の塗布・乾燥のみの未硬化品のピーク強度(=二重結合残存量)Aと、機能層まで塗布・乾燥・硬化し、硬化後のフィルム切片のピーク強度Bを求める。各層について1−(B/A)を二重結合反応率として算出する。機能層を塗布・乾燥・硬化した後までの試料の二重結合反応率を支持体側より順にα1、α2、α3、α4、α5とする。
また、更に、反射防止フィルムの低屈折率層を塗布・乾燥・硬化した時点での、機能層についても上記と同様に硬化後のフィルム切片のピーク強度Cを求める。上記と同様にして二重結合反応率を求め、支持体側より順にβ1、β2、β3、β4、β5とする。
本発明の反射防止フィルムの二重結合反応率(αとβ)の好ましい範囲を上記で説明したが、以下には二重結合残存量を用いて本発明の好ましい範囲を説明する。
機能層までを塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合残存量は、上記C=C結合由来の810cm−1のピーク強度Bを支持体面からB1、B2、B3、B4、及びB5とした場合に、(B1/B5)<1.0であることが好ましい。
また、本発明の機能層に低屈折率を塗設し、乾燥・硬化させた後の機能層の二重結合残存量は、上記C=C結合由来の810cm−1のピーク強度Cを支持体面からC1、C2、C3、C4、及びC5とした場合に、0.80<(C1/C5)<3.60が好ましく、更に好ましくは0.90<(C1/C5)<3.00、最も好ましくは0.95<(C1/C5)<2.30である。(C1/C5)の値をこの範囲にすることで、機能層の上面と下面と双方に対する密着に優れた反射防止膜とすることができる。
以下、機能層の二重結合反応率を本発明の範囲にする方法について述べる。
例えば、支持体に接する機能層についてのα1及びα5層における二重結合反応率について、機能層を塗布・乾燥・硬化した後にα5<α1とするためには、以下の方法が挙げられる。
好ましい第1の態様としては、1−1)界面付近に存在する重合開始剤の密度を、機能層表面付近の密度より高くすること、1−2)機能層付近に存在する重合開始剤が機能性層表面付近の重合開始剤より有効に働くようせしめること、が挙げられる。
好ましい第2の態様としては、機能層の支持体側の二重結合反応率を選択的に上げるために、該領域の重合開始のトリガーの強度を機能層表面より高める方法が挙げられる。
以下、それぞれの方法について詳細に説明する。
先ず、前述の好ましい第1の態様の1−1)界面付近に存在する重合開始剤の密度を、機能層表面付近の密度より高くする方法について述べる。
例えば、機能層硬化前に、支持体及び機能層界面付近に重合開始剤を存在させること、そしてそのために、支持体及び支持体に接する機能層の少なくともいずれかに重合開始剤を存在させる態様が挙げられる。
[好ましい態様1−1−A:機能層に接する支持体に重合開始剤を含有させる方法]
本発明において、機能層が支持体に隣接する場合には、支持体に重合開始剤を含有させることができる。本発明における透明支持体が重合開始剤を含有する場合、光重合開始剤の添加量は、透明支持体中の樹脂に対して、5質量%以下が好ましく、より好ましくは0.0001〜3質量%、更に好ましくは0.001〜1質量%である。なお、支持体を共流延して作製する場合は、機能層に接する層のみ重合開始剤を含有させればよい。この場合の層中の含有量は、前述のものと同様である。
さらには支持体上への機能層の塗設のために、支持体を溶解または膨潤させる溶剤を含有する機能層形成用塗布液を用いることで、支持体及び機能層間に重合開始剤を含有する混合層を形成することが好ましい。前記混合層の厚さは0.1〜10μmが好ましい。
支持体を溶解または膨潤させる溶剤とは、支持体中の樹脂を溶解または膨潤させる溶剤である。このような溶剤の具体例については、後述の機能層に用いる溶剤の説明において例示する。
なお、支持体を共流延して作製する場合は、機能層に接する層のみ重合開始剤を含有させればよい。
[好ましい態様1−1−B:機能層の膜厚方向で重合開始剤密度を変化させる方法]
機能層を形成する塗布液を複数に分割して、同時又は硬化なしで逐次に塗布する際に、機能層のうち支持体に隣接する領域を形成する塗布液の重合開始剤密度を、機能層の最表面を形成する領域を形成する塗布液の重合開始剤密度より高くする方法を用いることができる。このように機能層を複数の塗布液に分割して形成する場合には、液数に制限はないが、製造の簡略化の点から2液以上5液以下が好ましく、2液以上4液以下が更に好ましい。開始剤の密度は、機能層の最表層を形成する塗布液に対して、機能層のうち最も支持体に近い部分を形成する塗布液が1.05〜5.0倍が好ましく、更に好ましくは1.5〜3.0倍である。ここでいう開始剤の密度とは、乾燥により揮発する成分が除去された後の成分中の開始剤の質量%のことをいう。
次に、前述の好ましい第1の態様の1−2)機能層付近に存在する重合開始剤が機能性層表面付近の重合開始剤より有効に働くようせしめる方法について述べる。
[好ましい態様1−2−A:機能層の膜厚方向で重合開始剤感光波長を変化させる方法]
光重合開始剤の感光波長を、機能層と支持体の近傍と機能層表面で変え、機能層と支持体の近傍がより選択的に重合開始する波長の電離放射線を照射する方法が挙げられる。これは、例えば以下の手段によって達成することができる。すなわち支持体に接する機能層を形成する塗布液を複数に分割して、同時又は硬化なしで逐次に塗布する際に、機能層のうち支持体に隣接する領域を形成する塗布液の光重合開始の感光波長を、機能層の最表面を形成する領域を形成する塗布液の重合開始剤の感光波長と変える方法である。
具体的な例を以下に述べる。まず機能層のうち支持体に隣接する領域を形成する塗布液の光重合開始剤として長波まで感光波長を有する光重合開始剤(A)を使用し、機能層の最表面を形成する領域を形成する塗布液の重合開始剤を長波まで感光波長を有さない光重合開始剤(B)を使用し、上記同時重層や未硬化の逐次塗布により機能層を塗設する。その後に、光重合開始剤(A)が感光し、光重合開始剤(B)が実質感光しない波長の光を主成分とする光を照射することにより、光重合開始剤(A)が偏在する支持体に隣接する機能層の重合を進めることができる。機能層をこのようにして硬化した後、低屈折率層を塗布し、光重合開始剤(B)が感光する光で低屈折率層と機能層を硬化することで、本発明の密着性に優れる反射防止フィルムが形成できる。
感光波長の異なる重合開始剤としては、以下の中から選ばれることが好ましい。
感光波長が近紫外領域(長波)にある重合開始剤としては、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド{“DAROCUR TPO”(商品名);チバ・スペシャルティ・ケミカルズ(株)製}、フェニレンビス(2,4,6−トリメチルベンゾイル)−ホスフィンオキシド{“IRGACURE 819”(商品名);チバ・スペシャルティ・ケミカルズ(株)製};ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルホスフィンオキシドなどのホスフィンオキシド類、2,4−ジエチルチオキサントン、2−クロロチオキサントン、1−クロロ−4−プロポキシチオキサントンなどのチオキサントン、N−メチルアクリドン、ビス(ジメチルアミノフェニル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オン{“IRGACURE 369”(商品名);チバ・スペシャルティ・ケミカルズ(株)製}などのケトン類、1,2−オクタンジオン−1−[4−(フェニルチオ)−2,2−(O−ベンゾイルオキシム)]などのオキシム類などの、400nm付近まで吸収末端がある化合物が好ましい。ホスフィンオキシド類が、作製したフィルムの着色を少なく、照射後の消色が大きいため、特に好ましい。
上記の重合開始剤とは感光波長域が異なっていて併用することができる重合開始剤として、主に紫外域に吸収のある開始剤を挙げると、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン{“IRGACURE 651”(商品名);チバ・スペシャルティ・ケミカルズ(株)製}、1−ヒドロキシシクロヘキシル−フェニルケトン{“IRGACURE 184”(商品名);チバ・スペシャルティ・ケミカルズ(株)製}、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンゾフェノン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン{“IRGACURE 907”(商品名);チバ・スペシャルティ・ケミカルズ(株)製}などのアセトフェノン類、ベンゾイン類、ベンゾフェノン類、ケタール類、アントラキノン類などの公知の開始剤を挙げることができる。
[好ましい態様1−2−B:機能層の膜厚方向で増減感剤量を変化させる方法]
また、1−2)の態様の別の好ましい1つの手段としては、重合開始剤に対する増感剤又は減感剤の量を、機能層の膜厚方向で変え、機能層と支持体の近傍がより選択的に重合進行するようにする方法が挙げられる。この方法も上記同時重層や未硬化逐次塗布時に、増感剤や減感剤の濃度を変えることにより達成できる。また、酸素がラジカル重合の減感剤であり、機能層表面側で酸素による硬化障害を意図的に起こし二重結合反応率を低下させることもできる。
[好ましい態様2:機能層の支持体側の重合開始のトリガーを高める方法]
好ましい第2の態様としては、機能層の支持体側の二重結合反応率を選択的に上げるために、該部分の重合開始のトリガーの強度を機能層表面より高める方法が挙げられる。具体的には、光重合開始剤の場合には、光照射を支持体の機能層が塗設されていない面側から照射することにより、機能層の支持体側界面の光量を機能層の表面側界面より高めることが可能である。UV光重合開始剤が一般的に多く使用されるため、支持体のUV吸収が少ないことが好ましい。具体的には、UV吸収剤を意図して添加していないセルロースアシレート、ラクトン環を有するアクリル系ポリマー、脂環式構造を有するポリマーなどが好ましい。具体的支持体については後述する。
また、機能層がUV吸収性や光散乱性の有機及び/又は無機の粒子を含む場合には、機能層表面からの光照射では支持体近傍の光量が減少してしまうため、裏面からの光照射が特に有効である。
また、熱重合開始剤の場合にも同様に、支持体側の面から加熱ロールなどで加温することで、支持体側界面をより優先的に加熱することができ、支持体側界面の二重結合反応率を高めることができる。
また、本発明においては上記好ましい態様1と好ましい態様2を組み合わせて用いることもできる。
以下、本発明に用いることのできる重合開始剤(光重合開始剤、フッ素化光重合開始剤、熱重合開始剤)、および光増感剤について説明する。
[光重合開始剤]
光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類が挙げられる。アセトフェノン類の例には、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノンおよび2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが含まれる。ベンゾイン類の例には、ベンゾインベンゼンスルホン酸エステル、ベンゾイントルエンスルホン酸エステル、ベンゾインメチルエーテル、ベンゾインエチルエーテルおよびベンゾインイソプロピルエーテルが含まれる。ベンゾフェノン類の例には、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノンおよびp−クロロベンゾフェノンが含まれる。ホスフィンオキシド類の例には、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが含まれる。
最新UV硬化技術(P.159,発行人;高薄一弘,発行所;(株)技術情報協会,1991年発行)にも種々の例が記載されており本発明に有用である。
市販の光開裂型の光ラジカル重合開始剤としては、チバ・スペシャリティ・ケミカルズ(株)製のイルガキュア(651,184,907)等が好ましい例として挙げられる。
光重合開始剤の使用量は、電離放射線硬化性化合物100質量部に対して、0.1〜30質量部の範囲で使用することが好ましく、より好ましくは1〜20質量部である。
本発明では、フッ素化光重合開始剤を用いることが好ましく、更にフッ素化光重合開始剤と非フッ素化光重合開始剤を併用することがより好ましい。これらを併用することで、機能層内の光重合開始剤分布を制御することができる。
[フッ素化光重合開始剤]
本発明の反射防止フィルムは、支持体上に、少なくとも1種のフッ素化光重合開始剤と電離放射線硬化性化合物を含有する組成物を電離放射線照射によって硬化してなる層を有することが好ましい。この層は、例えば、反射防止フィルムの好ましい構成として先に列挙したうちのいずれか1層以上の層であってもよい。
フッ素化光重合開始剤は一般的に、例えば塗布乾燥後に表面層付近の濃度が増加しやすく、電離放射線照射によって生じるラジカルが表層付近の酸素をクエンチすることにより、表層からの酸素の影響を軽減し、膜全体の効果的な重合を進行させ得る。
本発明においては下記一般式(4)〜(8)で表わされる化合物から選ばれる化合物を少なくとも一種用いることが特に好ましい。
以下、一般式(4)〜(8)で表わされる化合物について説明する。
Figure 2007213045
一般式(4)において、Yはハロゲン原子を表す。Yは−CY3、−NH、−NHR′、−NR′2、−OR′を表す。R′はアルキル基、フルオロアルキル基、またはアリール基を表す。またRは、Ra−Y1−、Ra−Y1−(CH−、Ra−(CH−Y1−、Ra−Y1−(CH−O−、Ra−Y1−(CH−S−及びRa−Y1−(CH−NR1−からなる群より選択される置換基、−CY3、アルキル基、置換アルキル基、フルオロアルキル基、置換フルオロアルキル基、アリール基、置換アリール基、または置換アルケニル基を表す。Y1は、互いに独立して、−O−、−S−、−O−C(=O)−及び−O−Si(R−(CH−からなる群より選択される二価の置換基を表す。R2は炭素数1〜12のアルキル又はフェニル基を表す。
Raは、直鎖状又は分岐鎖状の末端鎖:Z1CF(−O−C−(CF−(ここで、Z1はH又はFを表し;p及びqのうちの一方は、0〜20の整数を表し、他方は1〜20の整数を表す)を表す。
一般式(4)のうちY1が−CY3である化合物を用いた場合が特に好ましい。Yとして好ましくは、Cl,Br,F原子である。
一般式(4)で表される化合物の具体例は以下の通りである。
Figure 2007213045
Figure 2007213045
Figure 2007213045
Figure 2007213045
一般式(5)において、A1はフェニル基、ナフチル基、置換フェニル基、置換ナフチル基、または一般式(4)のRと同じものを表し、ここで置換基とはハロゲン原子、アルキル基、フルオロアルキル基、アルコキシ基、ニトロ基、シアノ基もしくはメチレンジオキシ基である。Yはハロゲン原子を表し、nは1〜3の整数を示す。
一般式(5)で表される化合物の具体例は以下の通りである。
Figure 2007213045
Figure 2007213045
一般式(6)において、Wは無置換もしくは置換されたフェニル基、無置換のナフチル基、または一般式(4)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。置換基としてハロゲン原子を含むときは1つ又は2つであり、その他の場合は1つである。X1は水素原子、フェニル基又は炭素数1〜3のアルキル基を表す。Yはハロゲン原子を表し、nは1〜3の整数を示す。
一般式(6)で表される化合物の具体例は以下の通りである。
Figure 2007213045
Figure 2007213045
一般式(7)において、W1は無置換もしくは置換されたフェニル基、無置換のナフチル基、または一般式(4)のRと同じものを表し、フェニル基の置換基はハロゲン原子、フルオロアルキル基、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。置換基の数は、置換基としてハロゲン原子を含むときは1つ又は2つであり、その他の場合は1つである。X2は水素原子、ハロゲン原子、シアノ基、アルキル基、フルオロアルキル基、またはアリル基を表す。Yはハロゲン原子を表し、nは1〜3の整数を示す。
一般式(7)で表される化合物の具体例は以下の通りである。
Figure 2007213045
Figure 2007213045
一般式(8)において、Zは無置換もしくは置換されたフェニル基、無置換のナフチル基、フルオロアルキル基、または一般式(4)のRと同じものを表し、フェニル基の置換基はハロゲン原子、ニトロ基、シアノ基、炭素数1〜3のアルキル基又は炭素数1〜4のアルコキシ基である。Xは同一でも異なっていても良く、水素原子、ハロゲン原子、アルキル基、または一般式(4)のRと同じものを表す。nは1〜5の整数を表す。Z、Xの内、少なくとも一つは一般式(4)のRと同じものを表す。
一般式(8)で表される化合物の具体例は以下の通りである。
Figure 2007213045
Figure 2007213045
一般式(4)〜(8)に示される化合物は、例えば、M. P. Hutt、E. F. ElslagerおよびL.M.Werbel著 Journal of Heterocyclic Chemistry 第7巻(No.3)、第511頁以降(1970年)に記載されている合成方法に準じて、当業者が容易に合成することができる。またS−トリアジン化合物は、下記の方法により合成される。すなわち、R.Adamsら編「Organic Syntheses」 (J.Wiley & Sons) Collective Volume 2、623頁に記載の方法、あるいは、V.Covielloら著、Helvetica Chimica Acta、59、819〜834(1976)に記載の方法に従い合成される」芳香族ニトリル化合物とハロアセトニトリルを用い、K. Wakabayashiら著、Bulletin of the Chemical Society of Japan、42、2924〜2930(1969)に記載の方法に従い環化させることにより合成することができる。
フッ素化光重合開始剤の使用量に特に制限はないが、電離放射線硬化性化合物100質量部に対して、0.1〜30質量部の範囲で使用することが好ましく、より好ましくは1〜20質量部である。
フッ素化光重合開始剤とともに非フッ素化光重合開始剤を併用する場合は、非フッ素化光重合開始剤は、フッ素化光重合開始剤100質量部に対して、50〜200質量部の範囲で使用することが好ましく、より好ましくは75〜150質量部である。
非フッ素化光重合開始剤は、フッ素原子を有さないかぎり、前述したような一般的な光重合開始剤であってよい。
[熱重合開始剤]
熱によりラジカルを発生する開始剤としては、有機あるいは無機過酸化物、有機アゾ及びジアゾ化合物等を用いることができる。
具体的には、有機過酸化物として過酸化ベンゾイル、過酸化ハロゲンベンゾイル、過酸化ラウロイル、過酸化アセチル、過酸化ジブチル、クメンヒドロぺルオキシド、ブチルヒドロぺルオキシド、無機過酸化物として、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等、アゾ化合物として2,2’−アゾビス(イソブチロニトリル)、2,2’−アゾビス(プロピオニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)等、ジアゾ化合物としてジアゾアミノベンゼン、p−ニトロベンゼンジアゾニウム等が挙げられる。
[光増感剤]
光重合開始剤に加えて、光増感剤を用いてもよい。光増感剤の具体例として、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、ミヒラーのケトンおよびチオキサントンを挙げることができる。
更にアジド化合物、チオ尿素化合物、メルカプト化合物などの助剤を1種以上組み合わせて用いてもよい。
市販の光増感剤としては、日本化薬(株)製のKAYACURE(DMBI,EPA)などが挙げられる。
[電離放射線硬化方法]
以下本発明に用いることのできる、電離放射線硬化の方法について述べる。
本発明における電離放射線種は特に制限されるものではなく、皮膜を形成する硬化性組成物の種類に応じて、紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。
紫外線反応性化合物を光重合させる紫外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、LED等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプまたはシンクロトロン放射光等も用いることができる。このうち、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプを好ましく利用できる。
本発明において、特定の波長に感度を有する重合開始剤を選択的作用させるために、重合開始剤の波長に適した上記光源を選択することができるが、バンドパスフィルターや短波長のカットフィルターなどを使用することも好ましい。
照射条件はそれぞれのランプによって異なるが、照射光量は10mJ/cm以上が好ましく、更に好ましくは、50mJ/cm〜10000mJ/cmであり、特に好ましくは、50mJ/cm〜2000mJ/cmである。
電離放射線を照射する時間については0.7秒以上60秒以下が好ましく、0.7秒以上10秒以下がより好ましい。0.5秒以下では、硬化反応が完了することができず、十分な硬化を行うことができない。また長時間低酸素条件を維持することは、設備が大型化し、多量の不活性ガスが必要であり好ましくない。
酸素濃度は6体積%以下の雰囲気で電離放射線硬化性化合物の架橋反応、又は、重合反応により形成することが好ましく、更に好ましくは酸素濃度が4体積%以下、特に好ましくは酸素濃度が2体積%以下、最も好ましくは1体積%以下である。必要以上に酸素濃度を低減するためには、窒素などの不活性ガスの多量の使用量が必要であり、製造コストの観点から好ましくない。
本発明では、支持体上に積層された少なくとも一層を複数回の電離放射線により硬化することができる。この場合、少なくとも2回の電離放射線が酸素濃度3体積%を超えることのない連続した反応室で行われることが好ましい。複数回の電離放射線照射を同一の低酸素濃度の反応室で行うことにより、硬化に必要な反応時間を有効に確保することができる。特に高生産性のため製造速度をあげた場合には、硬化反応に必要な電離放射線のエネルギーを確保するために複数回の電離放射線照射が必要となる。
[透明支持体]
本発明のフィルムの支持体としては、透明樹脂フィルム、透明樹脂板、透明樹脂シートや透明ガラスなど、特に限定は無い。透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、脂環式構造を有する重合体(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))、ラクトン環を有するアクリル系重合体などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、脂環式構造を有する重合体が好ましく、特にトリアセチルセルロースが好ましい。
支持体の厚さは通常25μm〜1000μm程度のものを用いることができるが、好ましくは25μm〜250μmであり、30μm〜90μmであることがより好ましい。
支持体の巾は任意のものを使うことができるが、ハンドリング、得率、生産性の点から通常は100〜5000mmのものが用いられ、800〜3000mmであることが好ましく、1000〜2000mmであることがさらに好ましい。支持体はロール形態の長尺で取り扱うことができ、通常100m〜5000m、好ましくは500m〜3000mのものである。
支持体の表面は平滑であることが好ましく、平均粗さRaの値が1μm以下であることが好ましく、0.0001〜0.5μmであることが好ましく、0.001〜0.1μmであることがさらに好ましい。
<セルロースアシレートフィルム>
上記各種フィルムの中でも、透明性が高く、光学的に複屈折が少なく、製造が容易であり、偏光板の保護フィルムとして一般に用いられているセルロースアシレートフィルムが好ましい。
セルロースアシレートフィルムについては力学特性、透明性、平面性などを改良する目的のため、種々の改良技術が知られており、公開技報2001−1745に記載された技術は公知のものとして本発明のフィルムに用いることができる。
本発明ではセルロースアシレートフィルムの中でもセルローストリアセテートフィルムが特に好ましく、セルロースアシレートフィルムに酢化度が59.0〜61.5%であるセルロースアセテートを使用することが好ましい。酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D−817−91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算に従う。
セルロースアシレートの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。
また、本発明に使用するセルロースアシレートは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の値が1.0に近いこと、換言すれば分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜1.7であることが好ましく、1.3〜1.65であることがさらに好ましく、1.4〜1.6であることが最も好ましい。
一般に、セルロースアシレートの2,3,6の水酸基は全体の置換度の1/3づつに均等に分配されるわけではなく、6位水酸基の置換度が小さくなる傾向がある。本発明ではセルロースアシレートの6位水酸基の置換度が、2,3位に比べて多いほうが好ましい。
全体の置換度に対して6位の水酸基が32%以上アシル基で置換されていることが好ましく、更には33%以上、特に34%以上であることが好ましい。さらにセルロースアシレートの6位アシル基の置換度が0.88以上であることが好ましい。6位水酸基は、アセチル基以外に炭素数3以上のアシル基であるプロピオニル基、ブチロイル基、バレロイル基、ベンゾイル基、アクリロイル基などで置換されていてもよい。各位置の置換度の測定は、NMRによって求めることができる。
本発明ではセルロースアシレートとして、特開平11−5851号公報の段落「0043」〜「0044」[実施例][合成例1]、段落「0048」〜「0049」[合成例2]、段落「0051」〜「0052」[合成例3]に記載の方法で得られたセルロースアセテートを用いることができる。
<セルロースアシレートフィルムの製造>
本発明で用いられるセルロースアシレートフィルムは、溶液製膜法(ソルベントキャスト法)により製造することができる。ソルベントキャスト法では、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造する。
有機溶媒は、炭素原子数が3〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステルおよび炭素原子数が1〜6のハロゲン化炭化水素から選ばれる溶媒を含むことが好ましい。二種類以上の有機溶媒を混合して用いてもよい。
エーテル、ケトンおよびエステルは、環状構造を有していてもよい。エーテル、ケトンおよびエステルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も、有機溶媒として用いることができる。有機溶媒は、アルコール性水酸基のような他の官能基を有していてもよい。二種類以上の官能基を有する有機溶媒の場合、その好ましい炭素原子数は、いずれかの官能基を有する化合物の上記で特定した好ましい炭素原子数の範囲内であればよい。
炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトールが含まれる。
炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロヘキサノンおよびメチルシクロヘキサノンが含まれる。
炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテートが含まれる。
二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノールが含まれる。
ハロゲン化炭化水素の炭素原子数は、1または2であることが好ましく、1であることが最も好ましい。ハロゲン化炭化水素のハロゲンは、塩素であることが好ましい。ハロゲン化炭化水素の水素原子が、ハロゲンに置換されている割合は、25〜75モル%であることが好ましく、30〜70モル%であることがより好ましく、35〜65モル%であることがさらに好ましく、40〜60モル%であることが最も好ましい。メチレンクロリドが、代表的なハロゲン化炭化水素である。
セルロースアシレート溶液(ドープ)の調整は一般的な方法で行なえる。一般的な方法とは、0℃以上の温度(常温または高温)で処理することを意味する。溶液の調製は、通常のソルベントキャスト法におけるドープの調製方法および装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶媒としてハロゲン化炭化水素(特にメチレンクロリド)を用いることが好ましい。非塩素系溶媒を用いることもでき、それについては発明協会公開技報公技番号2001−1745号に記載されているものが挙げられる。
セルロースアシレートの量は、得られる溶液中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。有機溶媒(主溶媒)中には、後述する任意の添加剤を添加しておいてもよい。
溶液は、常温(0〜40℃)でセルロースアシレートと有機溶媒とを攪拌することにより調製することができる。高濃度の溶液は、加圧および加熱条件下で攪拌してもよい。具体的には、セルロースアシレートと有機溶媒とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、かつ溶媒が沸騰しない範囲の温度に加熱しながら攪拌する。加熱温度は、通常は40℃以上であり、好ましくは60〜200℃であり、さらに好ましくは80〜110℃である。
各成分は予め粗混合してから容器に入れてもよい。また、順次容器に投入してもよい。
容器は攪拌できるように構成されている必要がある。窒素ガス等の不活性気体を注入して容器を加圧することができる。また、加熱による溶媒の蒸気圧の上昇を利用してもよい。あるいは、容器を密閉後、各成分を圧力下で添加してもよい。
加熱する場合、容器の外部より加熱することが好ましい。例えば、ジャケットタイプの加熱装置を用いることができる。また、容器の外部にプレートヒーターを設け、配管して液体を循環させることにより容器全体を加熱することもできる。
容器内部に攪拌翼を設けて、これを用いて攪拌することが好ましい。攪拌翼は、容器の壁付近に達する長さのものが好ましい。攪拌翼の末端には、容器の壁の液膜を更新するため、掻取翼を設けることが好ましい。
容器には、圧力計、温度計等の計器類を設置してもよい。容器内で各成分を溶剤中に溶解する。調製したドープは冷却後容器から取り出すか、あるいは、取り出した後、熱交換器等を用いて冷却する。
冷却溶解法により、溶液を調製することもできる。冷却溶解法では、通常の溶解方法では溶解させることが困難な有機溶媒中にもセルロースアシレートを溶解させることができる。なお、通常の溶解方法でセルロースアセテートを溶解できる溶媒であっても、冷却溶解法によると迅速に均一な溶液が得られるとの効果がある。
冷却溶解法では最初に、室温で有機溶媒中にセルロースアシレートを撹拌しながら徐々に添加する。
セルロースアシレートの量は、この混合物中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。さらに、混合物中には後述する任意の添加剤を添加しておいてもよい。
次に、混合物を好ましくは−100〜−10℃(より好ましくは−80〜−10℃、さらに好ましくは−50〜−20℃、最も好ましくは−50〜−30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(−75℃)や冷却したジエチレングリコール溶液(−30〜−20℃)中で実施できる。このように冷却すると、セルロースアセテートと有機溶媒の混合物は固化する。
冷却速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。冷却速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、冷却速度は、冷却を開始する時の温度と最終的な冷却温度との差を、冷却を開始してから最終的な冷却温度に達するまでの時間で割った値である。
さらに、これを好ましくは0〜200℃(より好ましくは0〜150℃、さらに好ましくは0〜120℃、最も好ましくは0〜50℃)に加温すると、有機溶媒中にセルロースアセテートが溶解する。昇温は、室温中に放置するだけでもよし、温浴中で加温してもよい。
加温速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。加温速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、加温速度は、加温を開始する時の温度と最終的な加温温度との差を加温を開始してから最終的な加温温度に達するまでの時間で割った値である。
以上のようにして、均一な溶液が得られる。なお、溶解が不充分である場合は冷却、加温の操作を繰り返してもよい。溶解が充分であるかどうかは、目視により溶液の外観を観察するだけで判断することができる。
冷却溶解法においては、冷却時の結露による水分混入を避けるため、密閉容器を用いることが望ましい。また、冷却加温操作において、冷却時に加圧し、加温時に減圧すると、溶解時間を短縮することができる。加圧および減圧を実施するためには、耐圧性容器を用いることが望ましい。
なお、セルロースアセテート(酢化度:60.9%、粘度平均重合度:299)を冷却溶解法によりメチルアセテート中に溶解した20質量%の溶液は、示差走査熱量測定(DSC)によると、33℃近傍にゾル状態とゲル状態との疑似相転移点が存在し、この温度以下では均一なゲル状態となる。従って、この溶液は疑似相転移温度以上、好ましくはゲル相転移温度プラス10℃程度の温度で保持する必要がある。ただし、この疑似相転移温度は、セルロースアセテートの酢化度、粘度平均重合度、溶液濃度や使用する有機溶媒により異なる。
調製したセルロースアシレート溶液(ドープ)から、ソルベントキャスト法によりセル
ロースアシレートフィルムを製造することができる。
ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成することが好ましい。流延前のドープは、固形分量が18〜35%となるように濃度を調整することが好ましい。
ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ソルベントキャスト法における流延および乾燥方法については、米国特許第2336310号、同2367603号、同2492078号、同2492977号、同2492978号、同2607704号、同2739069号、同2739070号、英国特許第640731号、同736892号の各明細書、特公昭45−4554号、同49−5614号、同62−115035号の各公報に記載がある。
ドープは、表面温度が10℃以下のドラムまたはバンド上に流延することが好ましい。
流延してから2秒以上風に当てて乾燥することが好ましい。得られたフィルムをドラムまたはバンドから剥ぎ取り、さらに100から160℃まで逐次温度を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラムまたはバンドの表面温度においてドープがゲル化することが必要である。
複数の調製したセルロースアシレート溶液(ドープ)を用い、ソルベントキャスト法により2層以上を流延してフィルムを作製することもできる。この場合、ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が10〜40質量%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。
2層以上の複数のセルロースアシレート液を流延する場合、複数のセルロースアシレート溶液を流延することが可能で、支持体の進行方向に間隔を置いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、特開平11−198285号、などの各公報に記載の方法が適応できる。また、2つの流延口からセルロースアシレート溶液を流延することによってもフィルム化することでもよく、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−104813号、特開昭61−158413号、特開平6−134933号、の各公報に記載の方法で実施できる。また、特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高・低粘度のセルロースアシレート溶液を同時に押出すセルロースアシレートフィルム流延方法でもよい。
あるいは、また2個の流延口を用いて、第一の流延口により支持体に成型したフィルムを剥ぎ取り、支持体面に接していた側に第二の流延を行なうことでより、フィルムを作製することでもよく、例えば特公昭44−20235号公報に記載されている方法である。流延するセルロースアシレート溶液は同一の溶液でもよいし、異なるセルロースアシレート溶液でもよく特に限定されない。複数のセルロースアシレート層に機能を持たせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押出せばよい。
さらに本発明では、セルロースアシレート溶液を、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)形成用溶液と同時に流延し、機能層とフィルム形成を同時形成することも実施しうる。
単層液では、通常、必要なフィルム厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押出すことが必要であり、その場合セルロースアシレート溶液の安定性が
悪くて固形物が発生し、ブツ故障となったり、平面性が不良であったりして問題となることがある。この解決法として、複数のセルロースアシレート溶液を流延口から流延する。これにより、高粘度の溶液を同時に支持体上に押出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。
セルロースアシレートフィルムには、機械的物性を改良するため、またはフィルム製造の際における流延後の乾燥速度を向上するために、可塑剤を添加することができる。可塑剤としては、リン酸エステルまたはカルボン酸エステルが用いられる。リン酸エステルの例には、トリフェニルフォスフェート(TPP)、ジフェニルビフェニルホスフェート、およびトリクレジルホスフェート(TCP)が含まれる。カルボン酸エステルとしては、フタル酸エステルおよびクエン酸エステルが代表的である。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)、ジフェニルフタレート(DPP)およびジエチルヘキシルフタレート(DEHP)が含まれる。クエン酸エステルの例には、O−アセチルクエン酸トリエチル(OACTE)およびO−アセチルクエン酸トリブチル(OACTB)が含まれる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DPP、DEHP)が好ましく用いられる。DEPおよびDPPが特に好ましい。
可塑剤の添加量は、セルロースアシレートの量の0.1〜25質量%であることが好ましく、1〜20質量%であることがさらに好ましく、3〜15質量%であることが最も好ましい。
セルロースアシレートフィルムには、劣化防止剤(例、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン)を添加してもよい。劣化防止剤については、特開平3−199201号、同5−197073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。劣化防止剤の添加量は、劣化防止剤の効果及びフィルム表面へのブリードアウト(滲み出し)を考慮して、調製する溶液(ドープ)の0.01〜1質量%であることが好ましく、0.01〜0.2質量%であることがさらに好ましい。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)、トリベンジルアミン(TBA)を挙げることができる。
セルロースアシレートフィルムには、フィルムのレターデーションを調整するため、必要に応じてレターデーション上昇剤を使用することができる。フィルムのレターデーションとしては、膜厚方向には0〜300nm、面内方向には0〜1000nmが好ましい。
少なくとも二つの芳香族環を有する芳香族化合物がレターデーション上昇剤として好ましく、芳香族化合物は、セルロースアシレート100質量部に対して、0.01〜20質量部の範囲で使用する。芳香族化合物は、セルロースアセテート100質量部に対して、0.05〜15質量部の範囲で使用することが好ましく、0.1〜10質量部の範囲で使用することがさらに好ましい。二種類以上の芳香族化合物を併用してもよい。
詳しくは、特開2000−111914号公報、同2000−275434号公報、同2002−236215号公報、国際公開第00/065384号パンフレット等に記載されている。
<セルロースアシレートフィルムの延伸処理>
作製されたセルロースアシレートフィルムは、さらに延伸処理により乾燥ムラや乾燥収縮で発生する膜厚ムラ、表面凹凸を改善することができる。また、延伸処理はレターデーションを調整することにも用いられる。
巾方向延伸処理の方法に特に限定はないが、その例としてテンターによる延伸方法が挙
げられる。
また、更に好ましくは、ロールの長手方向に縦延伸を行うことであり、ロールフィルムを搬送するパスロール間にて、それぞれのパスロールのドロー比(パスロール同士の回転比)を調節することにより、縦延伸が可能となる。
<ポリエチレンテレフタレートフィルム>
本発明では、ポリエチレンテレフタレートフィルムも、透明性、機械的強度、平面性、耐薬品性および耐湿性共に優れており、その上安価であり好ましく用いられる。
透明プラスチックフィルムとその上に設けられるハードコート層との密着強度をより向上させるため、透明プラスチックフィルムは易接着処理が施されたされたものであることが更に好ましい。
市販されている光学用易接着層付きPETフィルムとしては東洋紡績社製コスモシャインA4100、A4300等が挙げられる。
<脂環式構造を有する重合体>
本発明においては、脂環式構造を有する重合体樹脂を用いることも、支持体自身の安定性が高く好ましい。脂環式構造を含有する重合体は、重合体の繰り返し単位中に脂環式構造を有するものであり、主鎖中に脂環式構造を含有する重合体、及び測鎖に脂環式構造を含有する重合体のいずれも用いることができる。
脂環式構造としては、例えばシクロアルカン構造、シクロアルケン構造等が挙げられるが、熱安定性等の観点からシクロアルカン構造が好ましい。脂環式構造を構成する炭素数は特に制限は無いが、通常4〜30個、好ましくは5〜20個、より好ましくは5〜15個である。脂環式構造を構成する炭素原子数がこの範囲にあると、耐熱性及び柔軟性に優れた透明プラスチックフィルムを得ることができる。
脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合は、使用目的に応じて適宜選択すれば良いが、通常50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上である。脂環式構造を有する繰り返し単位が過度に少ないと耐熱性が低下し好ましくない。なお脂環式構造含有重合体における脂環式構造を有する繰り返し単位以外の繰り返し単位は、使用目的に応じて適宜選択される。
脂環式構造含有重合体の具体例としては、(i)ノルボルネン系重合体、(ii)単環の環状オレフィン系重合体、(iii)環状共役ジエン系重合体、(iv)ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。これらの中でも、透明性や成形性の観点から、ノルボルネン系重合体が好ましい。
上記ノルボルネン系樹脂としては、例えば、日本ゼオン社製、商品名「ZEONOR」、「ZEONEX」;ジェイエスアール社製、商品名「ARTON」;日立化成社製、商品名「OPTOREZ」;三井化学社製、商品名「APEL」等が市販されている。
<ラクトン環を有するアクリル系重合体>
本発明においては、特開2006−171464号公開公報に記載のラクトン環含有重合体を用いることも、支持体自身の安定性が高く好ましい。
続いて本発明の反射防止フィルムにおける機能層として使用できる各層について詳しく説明する。
[帯電防止層]
帯電防止層を形成する方法は、例えば、導電性微粒子と反応性硬化樹脂を含む導電性塗工液を塗工する方法、或いは透明膜を形成する金属や金属酸化物等を蒸着やスパッタリングして導電性薄膜を形成する方法等の従来公知の方法を挙げることができる。帯電防止層は、基材フィルムに直接又は基材フィルムとの接着を強固にするプライマー層を介して形成することができる。また、帯電防止層を反射防止膜の一部として使用することもできる。この場合、最表層から近い層で使用する場合には、膜の厚さが薄くても十分に帯電防止性を得ることができる。
帯電防止層の厚さは、0.01〜10μmが好ましく、0.03〜7μmであることがより好ましく、0.05〜5μmであることがさらに好ましい。本発明の帯電防止層の、25℃55%RHにおける表面抵抗値(log SR)は12Ω/sq以下であることが好ましく、10Ω/sq以下であることがより好ましい。また、表面抵抗値は、塗膜の透明性と両立するために5Ω/sq以上であることが好ましい。すなわち、本発明の帯電防止層の25℃55%RHにおける表面抵抗値は5〜12Ω/sqであることが好ましく、5〜10Ω/sqであることがより好ましい。
帯電防止層の表面抵抗は、四探針法により測定することができる。
帯電防止層の表面抵抗を上記範囲とすることで、透明でかつ、防塵性の良い反射防止フィルムが得られる。
また帯電防止層は環境の温湿度で表面抵抗値に変化の少ない電子伝導型であることが好ましい。
帯電防止層は、実質的に透明であることが好ましい。具体的には、帯電防止層のヘイズが、10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましく、1%以下であることが最も好ましい。さらに、波長550nmの光の透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましく、70%以上であることが最も好ましい。
本発明の帯電防止層は、強度が優れており、具体的な帯電防止層の強度は、1kg荷重の鉛筆硬度(JIS−K 5400)で、H以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがさらに好ましく、4H以上であることが最も好ましい。
(帯電防止層の導電性無機微粒子)
導電性無機微粒子の比表面積は、10〜400m/gであることが好ましく、20〜200m/gであることがさらに好ましく、30〜150m/gであることが最も好ましい。
導電性無機微粒子は、金属の酸化物または窒化物から形成することが好ましい。金属の酸化物または窒化物の例には、酸化錫、酸化インジウム、酸化亜鉛および窒化チタンが含まれる。中でも、酸化錫および酸化インジウムが特に好ましい。導電性無機微粒子は、これらの金属の酸化物または窒化物を主成分とし、さらに他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例には、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P、S、B、Nb、In、Vおよびハロゲン原子が含まれる。酸化錫および酸化インジウムの導電性を高めるために、Sb、P、B、Nb、In、Vおよびハロゲン原子を添加することが好ましい。Sbを含有する酸化錫(ATO)およびSnを含有する酸化インジウム(ITO)が特に好ましい。ATO中のSbの割合は、3〜20質量%であることが好ましい。ITO中のSnの割合は、5〜20質量%であることが好ましい。
帯電防止層に用いる導電性無機微粒子の一次粒子の平均粒子径は、1〜150nmであることが好ましく、5〜100nmであることがさらに好ましく、5〜70nmであることが最も好ましい。形成される帯電防止層中の導電性無機微粒子の平均粒子径は、1〜200nmであり、5〜150nmであることが好ましく、10〜100nmであることがさらに好ましく、10〜80nmであることが最も好ましい。導電性無機微粒子の平均粒子径は、粒子の質量を重みとした平均径であり、光散乱法や電子顕微鏡写真により測定できる。
導電性無機微粒子を表面処理してもよい。表面処理は、無機化合物または有機化合物を用いて実施する。表面処理に用いる無機化合物の例には、アルミナおよびシリカが含まれ、シリカ処理が特に好ましい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤およびチタネートカップリング剤が含まれ、シランカップリング剤が最も好ましい。二種類以上の表面処理を組み合わせて実施してもよい。
導電性無機微粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。
二種類以上の導電性無機微粒子を帯電防止層内で併用してもよい。
帯電防止層中の導電性無機微粒子の割合は、20〜90質量%であることが好ましく、25〜85質量%であることが好ましく、30〜80質量%であることがさらに好ましい。
導電性無機微粒子は、分散物の状態で帯電防止層の形成に使用することが好ましい。導電性無機微粒子の分散媒体は、沸点が60〜170℃の液体を用いることが好ましい。分散媒体の例には、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が含まれる。トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンおよびブタノールが特に好ましい。導電性無機微粒子は、分散機を用いて媒体中に分散できる。分散機の例には、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライターおよびコロイドミルが含まれる。サンドグラインダーミルおよび高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例には、ボールミル、三本ロールミル、ニーダーおよびエクストルーダーが含まれる。
(帯電防止層のバインダー)
帯電防止層は、架橋しているポリマーをバインダーとして用いることができる。該架橋性ポリマーはアニオン性基を有していることが好ましい。アニオン性基を有する架橋性ポリマーは、アニオン性基を有するポリマーの主鎖が架橋している構造を有する。アニオン性基は、導電性無機微粒子の分散状態を維持する機能を有する。架橋構造は、ポリマーに皮膜形成能を付与して、帯電防止層を強化する機能を有する。
ポリマーの主鎖の例には、ポリオレフィン(飽和炭化水素)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミドおよびメラミン樹脂が含まれる。ポリオレフィン主鎖、ポリエーテル主鎖およびポリウレア主鎖が好ましく、ポリオレフィン主鎖およびポリエーテル主鎖がさらに好ましく、ポリオレフィン主鎖が最も好ましい。
ポリオレフィン主鎖は、飽和炭化水素からなる。ポリオレフィン主鎖は、例えば、不飽和重合性基の付加重合反応により得られる。ポリエーテル主鎖は、エーテル結合(−O−)によって繰り返し単位が結合している。ポリエーテル主鎖は、例えば、エポキシ基の開環重合反応により得られる。ポリウレア主鎖は、ウレア結合(−NH−CO−NH−)によって、繰り返し単位が結合している。ポリウレア主鎖は、例えば、イソシアネート基とアミノ基との縮重合反応により得られる。ポリウレタン主鎖は、ウレタン結合(−NH−CO−O−)によって、繰り返し単位が結合している。ポリウレタン主鎖は、例えば、イソシアネート基と、水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリエステル主鎖は、エステル結合(−CO−O−)によって、繰り返し単位が結合している。ポリエステル主鎖は、例えば、カルボキシル基(酸ハライド基を含む)と水酸基(N−メチロール基を含む)との縮重合反応により得られる。ポリアミン主鎖は、イミノ結合(−NH−)によって、繰り返し単位が結合している。ポリアミン主鎖は、例えば、エチレンイミン基の開環重合反応により得られる。ポリアミド主鎖は、アミド結合(−NH−CO−)によって、繰り返し単位が結合している。ポリアミド主鎖は、例えば、イソシアネート基とカルボキシル基(酸ハライド基を含む)との反応により得られる。メラミン樹脂主鎖は、例えば、トリアジン基(例、メラミン)とアルデヒド(例、ホルムアルデヒド)との縮重合反応により得られる。なお、メラミン樹脂は、主鎖そのものが架橋構造を有する。
アニオン性基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アニオン性基は、連結基を介して側鎖として、主鎖に結合させることが好ましい。
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)およびリン酸基(ホスホノ)などが挙げられ、スルホン酸基およびリン酸基が好ましい。
アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。
アニオン性基とポリマーの主鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、およびこれらの組み合わせから選ばれる二価の基であることが好ましい。
架橋構造は、通常、二以上の主鎖を化学的に結合(好ましくは共有結合)するが、本発
明の帯電性層における架橋構造は、三以上の主鎖を共有結合することが好ましい。架橋構造は、−CO−、−O−、−S−、窒素原子、リン原子、脂肪族残基、芳香族残基およびこれらの組み合わせから選ばれる二価以上の基からなることが好ましい。
アニオン性基を有する架橋性ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることがさらに好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は2つ以上のアニオン性基を有していてもよい。コポリマー中の架橋構造を有する繰り返し単位の割合は、4〜98質量%であることが好ましく、6〜96質量%であることがさらに好ましく、8〜94質量%であることが最も好ましい。
アニオン性基を有する架橋性ポリマーの繰り返し単位は、アニオン性基と架橋構造の双方を有していてもよい。また、その他の繰り返し単位(アニオン性基も架橋構造もない繰り返し単位)が含まれていてもよい。
その他の繰り返し単位としては、アミノ基または四級アンモニウム基を有する繰り返し単位およびベンゼン環を有する繰り返し単位が好ましい。アミノ基または四級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。なお、アミノ基、四級アンモニウム基およびベンゼン環は、アニオン性基を有する繰り返し単位あるいは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
アミノ基または四級アンモニウム基を有する繰り返し単位では、アミノ基または四級アンモニウム基は、ポリマーの主鎖に直接結合させるか、あるいは連結基を介して主鎖に結合させる。アミノ基または四級アンモニウム基は、連結基を介して側鎖として、主鎖に結合させることが好ましい。アミノ基または四級アンモニウム基は、二級アミノ基、三級アミノ基または四級アンモニウム基であることが好ましく、三級アミノ基または四級アンモニウム基であることがさらに好ましい。二級アミノ基、三級アミノ基または四級アンモニウム基の窒素原子に結合する基は、アルキル基であることが好ましく、炭素原子数が1〜12のアルキル基であることが好ましく、炭素原子数が1〜6のアルキル基であることがさらに好ましい。四級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または四級アンモニウム基とポリマーの主鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、およびこれらの組み合わせから選ばれる二価の基であることが好ましい。架橋しているアニオン性基を有するポリマーが、アミノ基または四級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることがさらに好ましく、0.1〜28質量%であることが最も好ましい。
上記バインダーに対して、例えば特開2003−39586公開広報に記載の以下の反応性有機珪素化合物と併用することもできる。反応性有機珪素化合物は、電離放射線硬化型樹脂と反応性有機珪素化合物の合計に対して10〜100質量%の範囲で使用されることが好ましい。特に下記の(3)の電離放射線硬化性有機珪素化合物を使用する場合には、これだけを樹脂成分として導電層を形成することが可能である。以下に、反応性有機珪素化合物の具体例を挙げる。
(1)珪素アルコキシド
Si(OR′)で表せる化合物であり、ここでR、R′は炭素数1〜10のアルキル基を表し、m及びnはそれぞれm+n=4となる整数である。例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラペンタエトキシシラン、テトラペンタ−iso−プロポキシシラン、テトラペンタ−n−プロキシシラン、テトラペンタ−n−ブトキシシ
ラン、テトラペンタ−sec−ブトキシシラン、テトラペンタ−tert−ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルエトキシシラン、ジメチルメトキシシラン、ジメチルプロポキシシラン、ジメチルブトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ヘキシルトリメトキシシラン等が挙げられる。
(2)シランカップリング剤
例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルメトキシシラン・塩酸塩、γ−グリシドキシプロピルトリメトキシシラン、アミノシラン、メチルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラザン、ビニルトリス(β−メトキシエトキシ)シラン、オクタデシルジメチル[3−(トリメトキシシリル)プロピル]アンモニウムクロライド、メチルトリクロロシラン、ジメチルジクロロシラン等が挙げられる。
(3)電離放射線硬化性珪素化合物
電離放射線によって反応架橋する複数の基、例えば、重合性二重結合基を有する分子量5,000以下の有機珪素化合物が挙げられる。このような反応性有機珪素化合物は、片末端ビニル官能性ポリシラン、両末端ビニル官能性ポリシラン、片末端ビニル官能ポリシロキサン、両末端ビニル官能性ポリシロキサン、或いはこれらの化合物を反応させたビニル官能性ポリシラン、又はビニル官能性ポリシロキサン等が挙げられる。
その他の化合物としては、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロキシシラン化合物等が挙げられる。
[防眩性ハードコート層]
本発明の防眩性ハードコート層は、ハードコート性を付与するためのバインダー、防眩性を付与するためのマット粒子(透光性微粒子)、および高屈折率化、架橋収縮防止、高強度化のための無機フィラー、から形成されることが好ましい。
(防眩性ハードコート層のバインダー)
本発明の防眩性ハードコート層のバインダーとしては、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。これらの防眩性ハードコート層のバインダーポリマーは反応性架橋基を有することが好ましい。
飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体(バインダー前駆体)が好ましい。飽和炭化水素鎖を主鎖として有し、かつ反応性架橋基を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。
二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)ア
クリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンおよびその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。上記モノマーは2種以上併用してもよい。
二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは例えば、塗布後、加熱することによって架橋構造を形成することができる。
また高屈折率にするために、前記エチレン性不飽和モノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むことが好ましい。
高屈折率モノマーの具体例としては、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4’−メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。
防眩性ハードコート層のバインダーは、該層の塗布組成物の固形分量に対して20〜95質量%添加することが好ましい。
防眩性ハードコート層には、防眩性付与の目的で、通常、フィラー粒子より大きく、平均粒径が好ましくは1〜10μm、より好ましくは1.5〜7.0μmのマット粒子(透光性微粒子)、例えば無機化合物の粒子または樹脂粒子が含有される。
上記マット粒子の具体例としては、例えばシリカ粒子、TiO粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、シリカ粒子が好ましい。
マット粒子の形状は、真球あるいは不定形のいずれも使用できる。
また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。例えば、133ppi以上の高精細ディスプレイに反射防止フィルムを貼り付けた場合に、ギラツキと呼ばれる光学性能上の不具合のないことが要求される。ギラツキは、フィルム表面に存在する凹凸(防眩性に寄与)により、画素が拡大もしくは縮小され、輝度の均一性を失うことに由来するが、防眩性を付与するマット粒子より小さな粒子径で、バインダーの屈折率と異なるマット粒子を併用することにより大きく改
善することができる。
さらに、上記マット粒子の粒子径分布としては単分散であることが最も好ましく、各粒子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布のマット剤を得ることができる。
上記マット粒子は、形成された防眩性ハードコート層中のマット粒子量が好ましくは10〜2000mg/m、より好ましくは100〜1400mg/mとなるように防眩性ハードコート層に含有される。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
(オルガノシランの加水分解物および/またはその部分縮合物)
本発明の機能層のうちの少なくとも1層は、その層を形成する塗布液中に、オルガノシランの加水分解物および/またはその部分縮合物の少なくとも一種の成分、いわゆるゾル成分(以降このように称する場合もある)を含有することが耐擦傷性の点で好ましい。このゾル成分は、塗布液を塗布後、乾燥、加熱工程で縮合して硬化物を形成し上記機能層のバインダーの一部となる。また、該硬化物が重合性不飽和結合を有する場合、活性光線の照射により3次元構造を有するバインダーが形成される。
オルガノシラン化合物は、下記一般式(1)で表されるものが好ましい。
Figure 2007213045
上記一般式(1)において、Rは水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。水素原子、メチル基、メトキシ基、メトキシカルボニル基、シアノ基、フッ素原子、および塩素原子が好ましく、水素原子、メチル基、メトキシカルボニル基、フッ素原子、および塩素原子が更に好ましく、水素原子およびメチル基が特に好ましい。
は単結合、または、*−COO−**、*−CONH−**もしくは*−O−**を表し、単結合、*−COO−**および*−CONH−**が好ましく、単結合および*−COO−**が更に好ましく、*−COO−**が特に好ましい。*は=C(R)−に結合する位置を、**はLに結合する位置を表す。
一般式(1)において、Lは2価の連結鎖を表す。例えば、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基(例えば、エーテル、エステル、アミドなど)を有する置換もしくは無置換のアルキレン基、内部に連結基を有する置換もしくは無置換のアリーレン基が挙げられ、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、内部に連結基を有するアルキレン基が好ましく、無置換のアルキレン基、無置換のアリーレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が更に好ましく、無置換のアルキレン基、内部にエーテルあるいはエステル連結基を有するアルキレン基が特に好ましい。置換基は、ハロゲン、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基、アリール基等が挙げられ、これら置換基は更に置換されていても良い。
lはl=100−mの数式を満たす数(モル比率)を表し、mは0〜50の数(モル比率)を表す。mは0〜40の数がより好ましく、0〜30の数が特に好ましい。
一般式(1)において、R〜Rは、各々独立に、ハロゲン原子、水酸基、無置換のアルコキシ基、もしくは無置換のアルキル基を表す。R〜Rは塩素原子、水酸基、無置換の炭素数1〜6のアルコキシ基がより好ましく、水酸基、炭素数1〜3のアルコキシ基が更に好ましく、水酸基もしくはメトキシ基が特に好ましい。
R5は、水素原子または無置換のアルキル基を表す。Rは水素原子もしくは炭素数1〜3のアルキル基が好ましく、水素原子もしくはメチル基が特に好ましい。
一般式(1)において、Rは置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。アルキル基としては、炭素数1〜30のアルキル基か好ましく、より好ましくは炭素数1〜16、特に好ましくは1〜6のものである。アルキル基の具体例として、メチル、エチル、プロピル、イソプロピル、ヘキシル、デシル、ヘキサデシル等が挙げられる。アリール基としてはフェニル、ナフチル等が挙げられ、好ましくはフェニル基である。Rに含まれる置換基としては特に制限はないが、ハロゲン原子(フッ素、塩素、臭素等)、水酸基、メルカプト基、カルボキシル基、エポキシ基、アルキル基(メチル、エチル、i−プロピル、プロピル、t−ブチル等)、アリール基(フェニル、ナフチル等)、芳香族ヘテロ環基(フリル、ピラゾリル、ピリジル等)、アルコキシ基(メトキシ、エトキシ、i−プロポキシ、ヘキシルオキシ等)、アリールオキシ(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アリールチオ基(フェニルチオ等)、アルケニル基(ビニル、1−プロペニル等)、アシルオキシ基(アセトキシ、アクリロイルオキシ、メタクリロイルオキシ等)、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル等)、アリールオキシカルボニル基(フェノキシカルボニル等)、カルバモイル基(カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N−メチル−N−オクチルカルバモイル等)、アシルアミノ基(アセチルアミノ、ベンゾイルアミノ、アクリルアミノ、メタクリルアミノ等)等が挙げられ、これら置換基は更に置換されていても良い。置換基としてビニル重合性基以外の重合性官能基、例えばエポキシ基、イソシアナート基なども好ましい。Rの置換基としては、水酸基もしくは無置換のアルキル基が更に好ましく、水酸基もしくは炭素数1〜3のアルキル基が更に好ましく、水酸基もしくはメチル基が特に好ましい。
一般式(1)の化合物は1種類以上のシラン化合物を出発原料として合成される。以下に一般式(1)の出発原料となるシラン化合物の具体例を示すが、限定されるものではない。
Figure 2007213045
Figure 2007213045
Figure 2007213045
Figure 2007213045
Figure 2007213045
Figure 2007213045
Figure 2007213045
M−48: CH−Si(OCH
M−49: C−Si(OCH
M−50: t−C−Si(OCH
これらのうち、(M−1)、(M−2)、(M−25)、(M−48)、(M−49)を出発原料とすることが特に好ましい。
本発明のオルガノシランの加水分解物およびその部分縮合物の少なくともいずれかは塗布品性能の安定化のためには揮発性を抑えることが好ましく、具体的には、105℃における1時間当たりの揮発量が5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることが特に好ましい。
本発明のオルガノシランの加水分解物およびその部分縮合物の少なくともいずれかにおける前記ビニル重合性基を含有するオルガノシランの含有量は、30質量%〜100質量%が好ましく、50質量%〜100質量%がより好ましく、70質量%〜100質量%が特に好ましい。前記ビニル重合性基を含有するオルガノシランの含有量が30質量%より少ないと、固形分が生じたり、液が濁ったり、ポットライフが悪化したり、分子量の制御が困難(分子量の増大)であったり、重合性基の含有量が少ないために重合処理を行った場合の性能(例えば反射防止積層体の耐傷性)の向上が得られにくいために好ましくない。
本発明に用いられるゾル成分は上記オルガノシランを加水分解および/または部分縮合することにより調製される。
加水分解縮合反応は加水分解性基(X)1モルに対して0.05〜2.0モル、好ましくは0.1〜1.0モルの水を添加し、本発明に用いられる触媒の存在下、25〜100℃で、撹拌することにより行われる。
本発明のオルガノシランの加水分解物およびその部分縮合物の少なくともいずれかにおいて、ビニル重合性基を含有するオルガノシランの加水分解物およびその部分縮合物いずれかの質量平均分子量は、分子量が300未満の成分を除いた場合に、450〜20000が好ましく、500〜10000がより好ましく、550〜5000が更に好ましく、600〜3000が更に好ましい。
オルガノシランの加水分解物および/またはその部分縮合物における分子量が1000未満のものを30質量%以上含むことが好ましく、35質量%以上含むことがより好ましく、40質量%以上含むことが更に好ましい。30質量%未満の含有であると、分子量が20000より大きい成分を多く含有することになり、そのようなオルガノシランの加水分解物および/またはその部分縮合物を含有する硬化性組成物を硬化させて得られる硬化皮膜は、透明性や基板との密着性が劣る場合がある。
ここで、質量平均分子量および分子量は、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したGPC分析装置により、溶媒THF、示差屈折計検出によるポリスチレン換算で表した分子量であり、含有量は、分子量が300以上の成分のピーク面積を100%とした場合の、前記分子量範囲のピークの面積%である。
分散度(質量平均分子量/数平均分子量)は3.0〜1.1が好ましく、2.5〜1.1がより好ましく、2.0〜1.1が更に好ましく、1.5〜1.1が特に好ましい。
本発明のオルガノシランの加水分解物および部分縮合物の29Si−NMR分析により
一般式(1)の加水分解性基Xが−OSiの形で縮合している状態を確認できる。
この時、Siの3つの結合が−OSiの形で縮合している場合(T3)、Siの2つの結合が−OSiの形で縮合している場合(T2)、Siの1つの結合が−OSiの形で縮合している場合(T1)、Siが全く縮合していない場合を(T0)とした場合に縮合率αは数式(IX):α=(T3×3+T2×2+T1×1)/3/(T3+T2+T1+T0)で表され、縮合率は0.2〜0.95が好ましく、0.3〜0.93がより好ましく、0.4〜0.9がとくに好ましい。
加水分解や縮合が十分で、モノマー成分が増えすぎず、硬化が十分である点で、0.1以上が好ましい。加水分解や縮合が進みすぎず、加水分解可能な基が消費されすぎないため、バインダーポリマー、樹脂基板、無機微粒子などの相互作用が保たれ、これらを用いる効果が得られる点で、0.95以下が好ましい。
上記オルガノシラン化合物の加水分解物および部分縮合物の含有量は、比較的薄膜である低屈折率層の場合は少なく、厚膜である機能層の場合は多いことが好ましい。含有量は効果の発現、屈折率、膜の形状・面状等を考慮すると、含有層(添加層)の全固形分の0.1〜50質量%が好ましく、0.5〜30質量%がより好ましく、1〜15質量%が最も好ましい。
本発明で用いるオルガノシラン化合物の加水分解物および部分縮合物について詳細を説明する。
オルガノシランの加水分解反応、それに引き続く縮合反応は、一般に触媒の存在下で行われる。触媒としては、塩酸、硫酸、硝酸等の無機酸類;シュウ酸、酢酸、酪酸、マレイン酸、クエン酸、ギ酸、メタンスルホン酸、トルエンスルホン酸等の有機酸類;水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基類;トリエチルアミン、ピリジン等の有機塩基類;トリイソプロポキシアルミニウム、テトラブトキシジルコニウム、テトラブチルチタネート、ジブチル錫ジラウレート等の金属アルコキシド類;Zr、TiまたはAlなどの金属を中心金属とする金属キレート化合物等;KF、NH4Fなどの含F化合物が挙げられる。
上記触媒は単独で使用しても良く、或いは複数種を併用しても良い。
オルガノシランの加水分解・縮合反応は、無溶媒でも、溶媒中でも行うことができるが成分を均一に混合するために有機溶媒を用いることが好ましく、例えばアルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などが好適である。
溶媒はオルガノシランと触媒を溶解させるものが好ましい。また、有機溶媒が塗布液あるいは塗布液の一部として用いることが工程上好ましく、含フッ素ポリマーなどのその他の素材と混合した場合に、溶解性あるいは分散性を損なわないものが好ましい。
このうち、アルコール類としては、例えば1価アルコールまたは2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1〜8の飽和脂肪族アルコールが好ましい。
これらのアルコール類の具体例としては、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなど、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、
酢酸ブチル、炭酸プロピレンなどを挙げることができる。
これらの有機溶媒は、1種単独であるいは2種以上を混合して使用することもできる。該反応における固形分の濃度は特に限定されるものではないが通常1%〜100%の範囲である。
オルガノシランの加水分解性基1モルに対して通常0.05〜2モル、好ましくは0.1〜1モルの水を添加し、上記溶媒の存在下あるいは非存在下に、そして触媒の存在下に、通常25〜100℃で、撹拌することにより行われる。
本発明においては、一般式R33OH(式中、R33は炭素数1〜10のアルキル基を示す)で表されるアルコールと一般式R34COCHCOR35(式中、R34は炭素数1〜10のアルキル基、R35は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、TiまたはAlから選ばれる金属を中心金属とする少なくとも1種の金属キレート化合物の存在下で、25〜100℃で撹拌することにより加水分解を行うことが好ましい。
もしくは触媒に含F化合物を使用する場合、含F化合物が完全に加水分解・縮合を進行させる能力が有るため、添加する水量を選択することにより重合度が決定でき、任意の分子量の設定が可能となるので好ましい。すなわち、平均重合度Mのオルガノシラン加水分解物/部分縮合物を調整するためには、Mモルの加水分解性オルガノシランに対して(M−1)モルの水を使用すれば良い。
金属キレート化合物は、一般式R33OH(式中、R33は炭素数1〜10のアルキル基を示す)で表されるアルコールとR34COCHCOR35(式中、R34は炭素数1〜10のアルキル基、R35は炭素数1〜10のアルキル基または炭素数1〜10のアルコキシ基を示す)で表される化合物とを配位子とした、Zr、Ti、Alから選ばれる金属を中心金属とするものであれば特に制限なく好適に用いることができる。この範疇であれば、2種以上の金属キレート化合物を併用しても良い。本発明に用いられる金属キレート化合物は、一般式Zr(OR331(R34COCHCOR35p2、Ti(OR33q1(R34COCHCOR35q2、およびAl(OR33r1(R34COCHCOR35r2で表される化合物群から選ばれるものが好ましく、前記オルガノシラン化合物の加水分解物および部分縮合物の縮合反応を促進する作用をなす。
金属キレート化合物中のR33およびR34は、同一または異なってもよく炭素数1〜10のアルキル基、具体的にはエチル基、n−プロピル基、i−プロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、フェニル基などである。また、Rは、前記と同様の炭素数1〜10のアルキル基のほか、炭素数1〜10のアルコキシ基、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基などである。また、金属キレート化合物中のp1、p2、q1、q2、r1、およびr2は、それぞれp1+p2=4、q1+q2=4、r1+r2=3となる様に決定される整数を表す。
これらの金属キレート化合物の具体例としては、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジ−n−ブトキシビス(エチルアセトアセテート)ジルコニウム、n−ブトキシトリス(エチルアセトアセテート)ジルコニウム、テトラキス(n−プロピルアセトアセテート)ジルコニウム、テトラキス(アセチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウムなどのジルコニウムキレート化合物;ジイソプロポキシ・ビス(エチルアセトアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセテート)チタニウム、ジイソプロポキシ・ビス(アセチルアセトン)チタニウムなどのチタニウムキレート化合物;ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトナートアルミニウム、イソプロポキシビス(エチルアセトアセテート)アルミニウム、イソプロポキシビス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム、トリス(ア
セチルアセトナート)アルミニウム、モノアセチルアセトナート・ビス(エチルアセトアセテート)アルミニウムなどのアルミニウムキレート化合物などが挙げられる。
これらの金属キレート化合物のうち好ましいものは、トリ−n−ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウムである。これらの金属キレート化合物は、1種単独であるいは2種以上混合して使用することができる。また、これらの金属キレート化合物の部分加水分解物を使用することもできる。
金属キレート化合物は、前記オルガノシラン化合物に対し、好ましくは0.01〜50質量%、より好ましくは0.1〜50質量%、さらに好ましくは0.5〜10質量%の割合で用いられる。金属キレート化合物が上記範囲で用いられることによりオルガノシラン化合物の縮合反応が早く、塗膜の耐久性が良好であり、オルガノシラン化合物の加水分解物および部分縮合物と金属キレート化合物を含有してなる組成物の保存安定性が良好である。
本発明に用いられるその他の層(機能層)および低屈折率組成物の塗布液には、上記ゾル成分および金属キレート化合物を含む組成物に加えて、β−ジケトン化合物およびβ−ケトエステル化合物の少なくともいずれかが添加されることが好ましい。以下にさらに説明する。
本発明で使用されるのは、一般式R34COCHCOR35で表されるβ−ジケトン化合物およびβ−ケトエステル化合物の少なくともいずれかであり、本発明に用いられる組成物の安定性向上剤として作用するものである。すなわち、前記金属キレート化合物(ジルコニウム、チタニウムおよびアルミニウム化合物の少なくともいずれかの化合物)中の金属原子に配位することにより、これらの金属キレート化合物によるオルガノシラン化合物の加水分解物および部分縮合物の縮合反応を促進する作用を抑制し、得られる組成物の保存安定性を向上させる作用をなすものと考えられる。β−ジケトン化合物およびβ−ケトエステル化合物を構成するR34およびR35は、前記金属キレート化合物を構成するR34およびR35と同様である。
このβ−ジケトン化合物およびβ−ケトエステル化合物の具体例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−n−プロピル、アセト酢酸−i−プロピル、アセト酢酸−n−ブチル、アセト酢酸−sec−ブチル、アセト酢酸−t−ブチル、2,4−ヘキサン−ジオン、2,4−ヘプタン−ジオン、3,5−ヘプタン−ジオン、2,4−オクタン−ジオン、2,4−ノナン−ジオン、5−メチル−ヘキサン−ジオンなどを挙げることができる。これらのうち、アセト酢酸エチルおよびアセチルアセトンが好ましく、特にアセチルアセトンが好ましい。これらのβ−ジケトン化合物およびβ−ケトエステル化合物は、1種単独でまたは2種以上を混合して使用することもできる。本発明においてβ−ジケトン化合物およびβ−ケトエステル化合物は、金属キレート化合物1モルに対し好ましくは2モル以上、より好ましくは3〜20モル用いられる。得られる組成物の保存安定性の点で、2モル以上が好ましい。
防眩性ハードコート層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。
また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた防眩性ハードコート層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも
好ましい。好ましい粒径は前述の無機フィラーと同じである。
防眩性ハードコート層に用いられる無機フィラーの具体例としては、TiO、ZrO、Al、In、ZnO、SnO、Sb、ITOとSiO等が挙げられる。TiOおよびZrOが高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、防眩性ハードコート層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
本発明の防眩性ハードコート層のマット粒子を除いた部分の屈折率は、1.50〜2.00であることが好ましく、より好ましくは1.50〜1.80である。屈折率を上記範囲とするには、バインダー及び無機フィラーの種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。
防眩性ハードコート層の膜厚は1〜10μmが好ましく、1.2〜8μmがより好ましい。
[光拡散層]
本発明の反射防止フィルムにおける光拡散層の目的は、液晶表示装置の視野角(特に下方向視野角)を拡大し、観察方向の視角が変化してもコントラスト低下、階調または黒白反転、あるいは色相変化を抑止することである。
本発明者等は、ゴニオフォトメーターで測定される散乱光の強度分布が視野角改良効果に相関することを確認した。すなわち、バックライトから出射された光が視認側の偏光板表面に設置された光拡散フィルムに含有される透光性微粒子の内部散乱の効果により拡散されればされるほど視野角特性がよくなる。しかし、あまり拡散されすぎると、後方散乱が大きくなり、正面輝度が減少する、あるいは、散乱が大きすぎて画像鮮明性が劣化する等の問題が生じる。従って、散乱光強度分布をある範囲に制御することが必要となる。そこで、鋭意検討の結果、所望の視認特性を達成するには、散乱光プロファイルの出射角0°の光強度に対して、特に視認角改良効果と相関ある30°の散乱光強度が0.01%〜0.2%であることが好ましく、0.02%〜0.15%が更に好ましく、0.03%〜0.1%が特に好ましい。
散乱光プロファイルは、作成した光散乱フィルムについて、(株)村上色彩技術研究所製の自動変角光度計GP−5型を用いて測定できる。
本発明の光拡散層はバインダーである透光性樹脂、無機フィラーおよび少なくとも一種類の透光性微粒子から形成される。バインダー及び無機フィラーは前述の防眩性ハードコート層と同様のものが使用でき、透光性微粒子は前述のマット粒子と同様のものが用いられる。
透光性粒子は平均粒子径0.1〜5μmであることが好ましい。透光性粒子及び無機フィラーは、透光性樹脂に分散されており、該透光性粒子と該透光性樹脂との屈折率の差は0.02〜0.2であることが好ましい。
透光性粒子は光拡散層全固形分中に3〜30質量%含有されていることが好ましい。透光性粒子がこの配合量で含有されることで、良好な視野角特性が得られる。
光拡散性層のバインダーは、該層の塗布組成物の固形分量に対して、5〜80質量%添加することが好ましい。
光拡散性層の膜厚は、1〜10μmが好ましく、1.2〜8μmがより好ましい。
[ハードコート層]
ハードコート層は、反射防止フィルムに物理強度を付与するために防眩性ではない、いわゆる平滑なハードコート層も好ましく用いられ、透明支持体の表面に設ける。特に、透明支持体と前記機能層(帯電防止層、防眩性ハードコート層、及び光拡散層)の間に設けることが好ましい。
ハードコート層は、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む塗布組成物を透明支持体上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。
電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。
光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。
光重合性官能基を有する光重合性多官能モノマーの具体例としては、防眩性ハードコート層で例示したものが挙げられ、光重合開始剤、光増感剤を用いて重合することが好ましい。光重合反応は、ハードコート層の塗布および乾燥後、紫外線照射により行うことが好ましい。
ハードコート層は、脆性の付与のために重量平均分子量が500以上のオリゴマーおよび/またはポリマーを添加してもよい。
オリゴマー、ポリマーとしては、(メタ)アクリレート系、セルロース系、スチレン系の重合体や、ウレタンアクリレート、ポリエステルアクリレート等が挙げられる。好ましくは、側鎖に官能基を有するポリ(グリシジル(メタ)アクリレート)やポリ(アリル(メタ)アクリレート)等が挙げられる。
ハードコート層におけるオリゴマーおよび/またはポリマーの含有量は、ハードコート層の全質量に対し5〜80質量%であることが好ましく、より好ましくは25〜70質量%、特に好ましくは35〜65質量%である。
ハードコート層のバインダーは、該層の塗布組成物の固形分量に対して30〜95質量%添加することが好ましい。
ハードコート層は、一次粒子の平均粒径が200nm以下の無機微粒子を含有することが好ましい。ここでいう平均粒径は質量平均径である。一次粒子の平均粒径を200nm以下にすることで透明性を損なわないハードコート層を形成できる。
無機微粒子はハードコート層の硬度を高くすると共に、塗布層の硬化収縮を抑える機能がある。また、ハードコート層の屈折率を制御する目的にも添加される。
無機微粒子としては、高屈折率層で例示した無機微粒子に加え、二酸化珪素、酸化アルミニウム、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム、二酸化チタン、酸化ジルコニウム、酸化錫、ITO、酸化亜鉛などの微粒子が挙げられる。好ましくは、二酸化珪素、二酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化錫、ITO、酸化亜鉛である。
無機微粒子の一次粒子の好ましい平均粒径は5〜200nm、より好ましくは10〜150nmであり、さらに好ましくは20〜100nm、特に好ましくは20〜50nmである。
ハードコート層の中において、無機微粒子はなるべく微細に分散されていることが好ましい。
ハードコート層の中における無機微粒子の粒子サイズは、好ましくは平均粒径で5〜3
00nm、より好ましくは10〜200nmであり、さらに好ましくは20〜150nm、特に好ましくは20〜80nmである。
ハードコート層における無機微粒子の含有量は、ハードコート層の全質量に対し10〜90質量%であることが好ましく、より好ましくは15〜80質量%、特に好ましくは15〜75質量%である。
ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μm、特に好ましくは0.7〜5μmである。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
ハードコート層の形成において、電離放射線硬化性の化合物の架橋反応、又は、重合反応により形成される場合、架橋反応、又は、重合反応は酸素濃度が10体積%以下の雰囲気で実施することが好ましい。酸素濃度が10体積%以下の雰囲気で形成することにより、物理強度や耐薬品性に優れたハードコート層を形成することができる。
好ましくは酸素濃度が6体積%以下の雰囲気で電離放射線硬化性化合物の架橋反応、又は、重合反応により形成することであり、更に好ましくは酸素濃度が4体積%以下、特に好ましくは酸素濃度が2体積%以下、最も好ましくは1体積%以下である。
酸素濃度を10体積%以下にする手法としては、大気(窒素濃度約79体積%、酸素濃度約21体積%)を別の気体で置換することが好ましく、特に好ましくは窒素で置換(窒素パージ)することである。
ハードコート層は、透明支持体の表面に、ハードコート層形成用の塗布組成物を塗布することで形成することが好ましい。
[低屈折率層]
次に本発明の低屈折率層について以下に説明する。
本発明の低屈折率層は、例えば、バインダーおよび無機微粒子を含有する塗布液を硬化することにより形成することができる。
本発明の反射防止フィルムの低屈折率層の屈折率は、好ましくは1.20〜1.49であり、より好ましくは1.30〜1.44の範囲にある。
さらに、低屈折率層は下記数式(II)を満たすことが低反射率化の点で好ましい。
数式(II)
(mλ/4)×0.7<n1d1<(mλ/4)×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
なお、上記数式(II)を満たすとは、上記波長の範囲において数式(II)を満たすm(正の奇数、通常1である)が存在することを意味している。
(中空シリカ粒子)
本発明の低屈折率層は、屈折率の上昇を低下するために中空構造を持つ無機微粒子を含んでも良い。該中空無機微粒子は中空構造のシリカであることが好ましい。中空のシリカ微粒子は屈折率が1.15〜1.40が好ましく、更に好ましくは1.17〜1.35、最も好ましくは1.17〜1.30である。ここでの屈折率は粒子全体として屈折率を表し、中空シリカ粒子を形成している外殻のシリカのみの屈折率を表すものではない。この時、粒子内の空腔の半径をa、粒子外殻の半径をbとすると、下記数式(III)から算出される空隙率xは、好ましくは10〜60%、さらに好ましくは20〜60%、最も好ましくは30〜60%である。
(数式III):x=(4πa/3)/(4πb/3)×100
中空のシリカ粒子の外殻の厚みが十分厚く、粒子の強度が十分であるため、耐擦傷性の観点から屈折率は1.17以上が好ましい。
なお、これら中空シリカ粒子の屈折率はアッベ屈折率計(アタゴ(株)製)にて測定をおこなった。
また中空シリカの製造方法は、例えば特開2001−233611や特開2002−79616に記載されている。
中空シリカの配合量は、1mg/m〜100mg/mが好ましく、より好ましくは5mg/m〜80mg/m、更に好ましくは10mg/m〜60mg/mである。配合量が上記範囲であることにより、耐擦傷性に優れ、低屈折率層表面に微細な凹凸が減少し、黒の締まりなどの外観や積分球反射率が良化する。
中空シリカの平均粒径は、低屈折率層の厚みの30%以上150%以下が好ましく、より好ましくは35%以上80%以下、更に好ましくは40%以上60%以下である。即ち、低屈折率層の厚みが100nmであれば、中空シリカの粒径は30nm以上150nm以下が好ましく、より好ましくは35nm以上80nm以下、更に好ましくは、40nm以上60nm以下である。
シリカ微粒子の粒径が上記範囲であることにより屈折率が低下し、低屈折率層表面に微細な凹凸が減少し、黒の締まりなどの外観、積分球反射率が良化する。シリカ微粒子は、結晶質でも、アモルファスのいずれでも良く、また単分散粒子が好ましい。形状は、球径が最も好ましいが、不定形であっても問題無い。
ここで、中空シリカの平均粒径は電子顕微鏡写真から求めることができる。
本発明においては、中空シリカと併用して空腔のないシリカ粒子を用いることができる。空腔のないシリカの好ましい粒子サイズは、30nm以上150nm以下、更に好ましくは35nm以上80nm以下、最も好ましくは40nm以上60nm以下である。
また、平均粒径が低屈折率層の厚みの25%未満であるシリカ微粒子(「小サイズ粒径のシリカ微粒子」と称す)の少なくとも1種を上記の粒径のシリカ微粒子(「大サイズ粒径のシリカ微粒子」と称す)と併用することが好ましい。
小サイズ粒径のシリカ微粒子は、大サイズ粒径のシリカ微粒子同士の隙間に存在することができるため、大サイズ粒径のシリカ微粒子の保持剤として寄与することができる。
小サイズ粒径のシリカ微粒子の平均粒径は、1nm以上20nm以下が好ましく、5nm以上15nm以下が更に好ましく、10nm以上15nm以下が特に好ましい。このようなシリカ微粒子を用いると、原料コストおよび保持剤効果の点で好ましい。
シリカ微粒子は、分散液中あるいは塗布液中で、分散安定化を図るために、あるいはバインダー成分との親和性、結合性を高めるために、プラズマ放電処理やコロナ放電処理のような物理的表面処理、界面活性剤やカップリング剤等による化学的表面処理がなされていても良い。カップリング剤の使用が特に好ましい。カップリング剤としては、アルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。なかでも、アクリロイル基またはメタクリロイル基を有するシランカップリング剤による処理が特に有効である。
上記カップリング剤は、通常低屈折率層の無機フィラーの表面処理剤として該層塗布液調製以前にあらかじめ表面処理を施すために用いられるが、該層塗布液調製時にさらに添加剤として添加して該層に含有させることが好ましい。
シリカ微粒子は、表面処理前に、媒体中に予め分散されていることが、表面処理の負荷軽減のために好ましい。
本発明の低屈折率層を形成するバインダーは、前述の防眩性ハードコート層に用いるバインダーと同様のものが使用できるが、更に低屈折率バインダーとして、含フッ素ポリマーであってもよい。フッ素ポリマーとしては動摩擦係数0.03〜0.15、水に対する接触角90〜120°の熱または電離放射線により架橋する含フッ素ポリマーが好ましい。
低屈折率層に用いられる含フッ素ポリマーとしてはパーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリエトキシシラン)の加水分解、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。
含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM[大阪有機化学(株)製]やM−2020[ダイキン製]等)、完全または部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。
架橋反応性付与のための構成単位としてはグリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位、カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。
また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶剤への溶解性、皮膜の透明性等の観点から適宜フッ素原子を含有しないモノマーを共重合することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸−2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロ二トリル誘導体等を挙げることができる。
上記のポリマーに対しては特開平10−25388号および特開平10−147739号各公報に記載のごとく適宜硬化剤を併用しても良い。
本発明で特に有用な含フッ素ポリマーは、パーフルオロオレフィンとビニルエーテル類
またはビニルエステル類のランダム共重合体である。特に単独で架橋反応可能な基((メタ)アクリロイル基等のラジカル反応性基、エポキシ基、オキセタニル基等の開環重合性基等)を有していることが好ましい。これらの架橋反応性基含有重合単位はポリマーの全重合単位の5〜70mol%を占めていることが好ましく、特に好ましくは30〜60mol%を占めていることである。
本発明に用いられる含フッ素共重合体の好ましい形態として下記一般式1のものが挙げられる。
Figure 2007213045
一般式1中、Lは炭素数1〜10の連結基を表し、より好ましくは炭素数1〜6の連結基であり、特に好ましくは2〜4の連結基であり、直鎖であっても分岐構造を有していてもよく、環構造を有していてもよく、O、N、Sから選ばれるヘテロ原子を有していても良い。
好ましい例としては、*−(CH−O−**,*−(CH−NH−**,*−(CH−O−**,*−(CH−O−**,*−(CH−O−(CH−O−**,*−CONH−(CH−O−**,*−CHCH(OH)CH−O−**,*−CHCHOCONH(CH−O−**(*はポリマー主鎖側の連結部位を表し、**は(メタ)アクリロイル基側の連結部位を表す。)等が挙げられる。mは0または1を表わす。
一般式1中、Xは水素原子またはメチル基を表す。硬化反応性の観点から、より好ましくは水素原子である。
一般式1中、Aは任意のビニルモノマーから導かれる繰返し単位を表わし、ヘキサフルオロプロピレンと共重合可能な単量体の構成成分であれば特に制限はなく、基材への密着性、ポリマーのTg(皮膜硬度に寄与する)、溶剤への溶解性、透明性、滑り性、防塵・防汚性等種々の観点から適宜選択することができ、目的に応じて単一あるいは複数のビニルモノマーによって構成されていても良い。
好ましい例としては、メチルビニルエーテル、エチルビニルエーテル、t−ブチルビニルエーテル、シクロへキシルビニルエーテル、イソプロピルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル、アリルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、グリシジルメタアクリレート、アリル(メタ)アクリレート、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリレート類、スチレン、p−ヒドロキシメチルスチレン等のスチレン誘導体、クロトン酸、マレイン酸、イタコン酸等の不飽和カルボン酸およびその誘導体等を挙げることができるが、より好ましくはビニルエーテル誘導体、ビニルエステル誘導体であり、特に好ましくはビニルエーテル誘導体である。
一般式1中、x、y、及びzはそれぞれの構成成分のモル%を表わし、好ましくは30≦x≦60、5≦y≦70、0≦z≦65を満たす値を表す。より好ましくは、35≦x≦55、30≦y≦60、0≦z≦20の場合であり、特に好ましくは40≦x≦55、40≦y≦55、0≦z≦10の場合である。
本発明に用いられる含フッ素共重合体の特に好ましい形態として一般式2が挙げられる。
Figure 2007213045
一般式2においてX、x、及びyは一般式1と同じ意味を表し、好ましい範囲も同じである。
nは2≦n≦10の整数を表し、2≦n≦6であることが好ましく、2≦n≦4であることが特に好ましい。
Bは任意のビニルモノマーから導かれる繰返し単位を表わし、単一組成であっても複数の組成によって構成されていても良い。例としては、前記一般式1におけるAの例として説明したものが当てはまる。
z1およびz2はそれぞれの繰返し単位のmol%を表わし、好ましくは0≦z1≦65、0≦z2≦65を満たす値を表す。それぞれ0≦z1≦30、0≦z2≦10であることがより好ましく、0≦z1≦10、0≦z2≦5であることが特に好ましい。
一般式1又は2で表される含フッ素共重合体は、例えば、ヘキサフルオロプロピレン成分とヒドロキシアルキルビニルエーテル成分とを含んでなる共重合体に前記のいずれかの手法により(メタ)アクリロイル基を導入することにより合成できる。
以下に本発明で有用な含フッ素共重合体の好ましい例を示すが本発明はこれらに限定されるものではない。
Figure 2007213045
Figure 2007213045
Figure 2007213045
Figure 2007213045
Figure 2007213045
上記含フッ素ポリマーの重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。
本発明の低屈折率層の反応性架橋基を有するバインダーとしては、反応性架橋基として(メタ)アクリロイル基、エポキシ基、イソシアナート基のいずれかを有するバインダーであることが好ましく、反応性架橋基として(メタ)アクリロイル基を有するバインダーであることがより好ましい。
本発明に用いられる共重合体の合成は、種々の重合方法、例えば溶液重合、沈澱重合、懸濁重合、沈殿重合、塊状重合、乳化重合によって水酸基含有重合体等の前駆体を合成した後、前記高分子反応によって(メタ)アクリロイル基を導入することにより行なうことができる。重合反応は回分式、半連続式、連続式等の公知の操作で行なうことができる。
重合の開始方法はラジカル開始剤を用いる方法、光または放射線を照射する方法等がある。これらの重合方法、重合の開始方法は、例えば鶴田禎二「高分子合成方法」改定版(日刊工業新聞社刊、1971)や大津隆行、木下雅悦共著「高分子合成の実験法」化学同人、昭和47年刊、124〜154頁に記載されている。
上記重合方法のうち、特にラジカル開始剤を用いた溶液重合法が好ましい。溶液重合法で用いられる溶剤は、例えば酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ベンゼン、トルエン、アセトニトリル、塩化メチレン、クロロホルム、ジクロロエタン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノールのような種々の有機溶剤の単独あるいは2種以上の混合物でも良いし、水との混合溶媒としても良い。
重合温度は生成するポリマーの分子量、開始剤の種類などと関連して設定する必要があり0℃以下から100℃以上まで可能であるが、50〜100℃の範囲で重合を行なうことが好ましい。
反応圧力は、適宜選定可能であるが、通常は、1〜100kg/cm、特に、1〜30kg/cm程度が望ましい。反応時間は、5〜30時間程度である。
得られたポリマーの再沈殿溶媒としては、イソプロパノール、ヘキサン、メタノール等が好ましい。
本発明において、無機フィラーの凝集、沈降を抑制する目的で、各層を形成するための塗布液に分散安定化剤を併用することも好ましい。分散安定化剤としては、ポリビニルアルコール、ポリビニルピロリドン、セルロース誘導体、ポリアミド、リン酸エステル、ポリエーテル、界面活性剤および、シランカップリング剤、チタンカップリング剤等を使用することができる。特に前述のシランカップリング剤が硬化後の皮膜が強いため好ましい。
本発明の低屈折率層形成組成物は液の形態をとることが好ましく、好ましくは前記バインダー、無機微粒子、及び必要に応じて各種添加剤およびラジカル重合開始剤を適当な溶剤に溶解して作製することができる。この際固形分の濃度は、用途に応じて適宜選択されるが一般的には0.01〜60質量%程度であり、好ましくは0.5〜50質量%、特に好ましくは1%〜20質量%程度である。
また低屈折率層の皮膜硬度の観点からは硬化剤等の添加剤を添加することは必ずしも有利ではないが、高屈折率層との界面密着性等の観点から、多官能(メタ)アクリレート化合物、多官能エポキシ化合物、ポリイソシアネート化合物、アミノプラスト、多塩基酸またはその無水物等の硬化剤を少量添加することもできる。これらを添加する場合には低屈折率層皮膜の全固形分に対して0〜30質量%の範囲であることが好ましく、0〜20質量%の範囲であることがより好ましく、0〜10質量%の範囲であることが特に好ましい。
防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のシリコーン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することもできる。これらの添加剤を添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。
シリコーン系化合物の好ましい例としてはジメチルシリルオキシ単位を繰り返し単位として複数個含む化合物鎖の末端および/または側鎖に置換基を有するものが挙げられる。ジメチルシリルオキシを繰り返し単位として含む化合物鎖中にはジメチルシリルオキシ以外の構造単位を含んでもよい。置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、フルオロアルキル基、ポリオキシアルキレン基、カルボキシル基、アミノ基などを含む基が挙げられる。分子量に特に制限はないが、10万以下であることが好ましく、5万以下であることがより好ましく、3000〜30000であることが特に好ましく、10000〜20000であることが最も好ましい。シリコーン系化合物のシリコーン原子含有量には特に制限はないが18.0質量%以上であることが好ましく、25.0〜37.8質量%であることが特に好ましく、30.0〜37.0質量%であることが最も好ましい。好ましいシリコーン系化合物の例としては信越化学(株)製、X−22−174DX、X−22−2426、X−22−164B、X−22−164C、X−22−170DX、X−22−176D、X−22−1821(以上商品名)やチッソ(株)製、FM−0725、FM−7725、FM−4421、FM−5521、FM6621、FM−1121やGelest製DMS−U22、RMS−033、RMS−083、UMS−182、DMS−H21、DMS−H31、HMS−301、FMS121、FMS123、FMS131、FMS141、FMS221(以上商品名)などが挙げられるがこれらに限定されるものではない。
フッ素系化合物としては、フルオロアルキル基を有する化合物が好ましい。該フルオロアルキル基は炭素数1〜20であることが好ましく、より好ましくは1〜10であり、直鎖(例えば−CFCF、−CH(CFH、−CH(CFCF、−CHCH(CFH等)であっても、分岐構造(例えばCH(CF、CHCF(CF、CH(CH)CFCF、CH(CH)(CFCFH等)であっても、脂環式構造(好ましくは5員環または6員環、例えばパーフルオロシクロへキシル基、パーフルオロシクロペンチル基またはこれらで置換されたアルキル基等)であっても良く、エーテル結合を有していても良い(例えばCHOCHCFCF、CHCHOCHH、CHCHOCHCH17、CHCHOCFCFOCFCFH等)。該フルオロアルキル基は同一分子中に複数含まれていてもよい。
フッ素系化合物は、さらに低屈折率層皮膜との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。該置換基は同一であっても異なっていても良く、複数個あることが好ましい。好ましい置換基の例としてはアクリロイル基、メタクリロイル基、ビニル基、アリール基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基などが挙げられる。フッ素系化合物はフッ素原子を含まない化合物との共重合体であっても共重合オリゴマーであってもよく、分子量に特に制限はない。フッ素系化合物のフッ素原子含有量には特に制限は無いが20質量%以上であることが好ましく、30〜70質量%であることが特に好ましく、40〜70質量%であることが最も好ましい。好ましいフッ素系化合物の例としてはダイキン化学工業(株)製、R−2020、M−2020、R−3833、M−3833(以上商品名)、大日本インキ(株)製、メガファックF−171、F−172、F−179A、ディフェンサMCF−300(以上商品名)などが挙げられるがこれらに限定されるものではない。
防塵性、帯電防止等の特性を付与する目的で、公知のカチオン系界面活性剤あるいはポリオキシアルキレン系化合物のような防塵剤、帯電防止剤等を適宜添加することもできる。これら防塵剤、帯電防止剤は前述したシリコーン系化合物やフッ素系化合物にその構造単位が機能の一部として含まれていてもよい。これらを添加剤として添加する場合には低屈折率層全固形分の0.01〜20質量%の範囲で添加されることが好ましく、より好ましくは0.05〜10質量%の範囲で添加される場合であり、特に好ましくは0.1〜5質量%の場合である。好ましい化合物の例としては大日本インキ(株)製、メガファックF−150(商品名)、東レダウコーニング(株)製、SH−3748(商品名)などが挙げられるが、これらに限定されるわけではない。
[溶剤]
本発明の反射防止フィルムにおいて機能層(防眩性ハードコート層、光拡散層、高屈折率層、ハードコート層等)および低屈折率層を形成するための塗布液に用いる溶剤について以下に説明する。
機能層を形成するための塗布液の溶剤は、支持体と機能層の間に混合領域を形成する為に、透明支持体を溶解または膨潤させる性質を持った溶剤を選択することが好ましい。
塗布液にそのような溶剤を用いることにより、塗布直後から支持体を溶解あるいは膨潤しつつ機能層が形成され、支持体と機能層の界面が不明確になると同時に、機能層の樹脂成分と支持体の樹脂成分が混合した領域の層が形成される。
また、機能層表面の凹凸の制御(凹凸を小さくする、あるいは平らにする)および機能層の強度の両立を図るために、透明支持体(例えばトリアセチルセルロース支持体)を溶解しない溶剤を、少なくとも一種類以上混合するのが好ましい。より好ましくは、透明支持体を溶解する溶剤のうちの少なくとも一種類が、透明支持体を溶解しない溶剤のうちの少なくとも一種類よりも高沸点であることが好ましい。さらに好ましくは、透明支持体を溶解する溶剤のうち最も沸点の高い溶剤と、透明支持体を溶解しない溶剤のうち最も沸点の高い溶剤との沸点温度差が30℃以上であることであり、最も好ましくは50℃以上であることである。
支持体がセルロースアシレートフィルム、脂環式構造を有する重合体又はラクトン環を有するアクリル系重合体の場合、支持体を溶解または膨潤させる性質を持った溶剤としては、
炭素子数が3〜12のエーテル類:具体的には、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4−ジオキサン、1,3−ジオキソラン、1,3,5−トリオキサン、テトラヒドロフラン、アニソールおよびフェネトール等、
炭素数が3〜12のケトン類:具体的には、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、およびメチルシクロヘキサノン等、
炭素数が3〜12のエステル類:具体的には、蟻酸エチル、蟻酸プロピル、蟻酸n−ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン醸エチル、酢酸n−ペンチル、およびγ−プチロラクトン等、
2種類以上の官能基を有する有機溶媒:具体的には、2−メトキシ酢酸メチル、2−エトキシ酢酸メチル、2−エトキシ酢酸エチル、2−エトキシプロピオン酸エチル、2−メトキシエタノール、2−プロポキシエタノール、2−ブトキシエタノール、1,2−ジアセトキシアセトン、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、およびアセト酢酸エチル等が挙げられる。
これらは1種単独であるいは2種以上を組み合わせて用いることができる。透明支持体を溶解する溶剤としてはケトン系溶剤が好ましく、メチルエチルケトン、シクロヘキサノンが特に好ましい。
透明支持体(好ましくはトリアセチルセルロース)を溶解しない溶剤として、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノー
ル、tert−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール、酢酸イソブチル、メチルイソブチルケトン、2−オクタノン、2−ペンタノン、2−ヘキサノン、2−ヘプタノン、3−ペンタノン、3−ヘプタノン、4−ヘプタノン、トルエンが挙げられる。
これらは1種単独であるいは2種以上を組み合わせて用いることができる。
透明支持体を溶解する溶剤の総量(A)と透明支持体を溶解しない溶剤の総量(B)の質量割合(A/B)は、10/90〜100/0が好ましく、より好ましくは20/80〜100/0であり、さらに好ましく30/70〜100/0である。
本発明の反射防止フィルムにおいて、機能層および低屈折率層成分を前述の組成の溶媒で希釈することにより、それらの層形成用塗布液が調製される。塗布液濃度は、塗布液の粘度、層素材の比重などを考慮して適宜調節されることが好ましいが、0.1〜80質量%が好ましく、より好ましくは1〜60質量%である。
また各々の機能層および低屈折率層用の溶媒は同一組成であってもよいし、異なっていてもよい。
本発明の反射防止フィルムを液晶表示装置に用いる場合、片面に粘着層を設ける等して通常ディスプレイの最表面に配置する。また、本発明の反射防止フィルムと偏光板を組み合わせてもよい。該透明支持体がトリアセチルセルロースの場合は偏光板の偏光層を保護する保護フィルムとして通常トリアセチルセルロースが用いられるため、本発明の反射防止フィルムをそのまま保護フィルムに用いることがコストの上では好ましい。
[鹸化処理]
本発明の反射防止フィルムは、片面に粘着層を設ける等してディスプレイの最表面に配置したり、そのまま偏光板用保護フィルムとして使用される場合には、十分に接着させるためには透明支持体上に最外層を形成した後、鹸化処理を実施することが好ましい。鹸化処理は、公知の手法、例えば、アルカリ液の中に該フィルムを適切な時間浸漬して実施される。アルカリ液に浸漬した後は、該フィルムの中にアルカリ成分が残留しないように、水で十分に水洗したり、希薄な酸に浸漬してアルカリ成分を中和することが好ましい。
鹸化処理することにより、最外層を有する側とは反対側の透明支持体の表面が親水化される。
親水化された表面は、ポリビニルアルコールを主成分とする偏光膜との接着性を改良するのに特に有効である。また、親水化された表面は、空気中の塵埃が付着しにくくなるため、偏光膜と接着させる際に偏光膜と反射防止フィルムの間に塵埃が入りにくく、塵埃による点欠陥を防止するのに有効である。
鹸化処理は、最外層を有する側とは反対側の透明支持体の表面の水に対する接触角が40゜以下になるように実施することが好ましい。更に好ましくは30゜以下、特に好ましくは20゜以下である。
アルカリ鹸化処理の具体的手段としては、例えば以下の(1)及び(2)の2つの手段から選択することができる。汎用のトリアセチルセルロースフィルムと同一の工程で処理できる点で(1)が優れているが、反射防止膜面まで鹸化処理されるため、表面がアルカリ加水分解されて膜が劣化する点、鹸化処理液が残ると汚れになる点が問題になり得る。その場合には、特別な工程となるが、(2)が優れる。
(1)透明支持体上に反射防止層を形成後に、アルカリ液中に少なくとも1回浸漬することで、該フィルムの裏面を鹸化処理する。
(2)透明支持体上に反射防止層を形成する前または後に、アルカリ液を該反射防止フィルムの反射防止フィルムを形成する面とは反対側の面に塗布し、加熱、水洗および/または中和することで、該フィルムの裏面だけを鹸化処理する。
[塗布方式]
本発明の反射防止フィルムは以下の方法で形成することができるが、この方法に制限されない。
まず、各層を形成するための成分を含有した塗布液が調製される。次に、機能層を形成するための塗布液をディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法により透明支持体上に塗布し、加熱・乾燥するが、マイクログラビアコート法、ワイヤーバーコート法、ダイコート法がより好ましく、ダイコート法が特に好ましい。更に、構成を後述のように工夫したダイを使用して塗布を行うことが最も好ましい。
その後、光照射あるいは加熱して、機能層を形成するモノマー等を重合して硬化する。これにより機能層が形成される。ここで必要であれば、機能層を複数層とすることができる。
次に、同様にして低屈折率層を形成するための塗布液を機能層上に塗布し、光照射あるいは加熱し低屈折率層が形成される。このようにして本発明の反射防止フィルムが得られる。
[ダイコーターの構成]
図2は、本発明の実施の際に使用できるスロットダイを用いたコーターの断面図の一例である。コーター10はバックアップロール11に支持されて連続走行するウェブ12に対して、スロットダイ13から塗布液14をビード14aにして塗布することにより、ウェブ12上に塗膜14bを形成する。
スロットダイ13の内部にはポケット15、スロット16が形成されている。ポケット15は、その断面が曲線及び直線で構成されており、たとえば、図2に示されるような略円形でもよいし、又は半円形でもよい。ポケット15は、スロットダイ13の幅方向にその断面形状をもって延長された塗布液の液溜め空間で、その有効延長の長さは、塗布幅と同等か若干長めにするのが一般的である。
ポケット15への塗布液14の供給は、スロットダイ13の側面から、又はスロット開口部16aとは反対側の面の中央から行う。また、ポケット15には塗布液14が漏れ出ることを防止する栓が設けられている。
スロット16は、ポケット15からウェブ12への塗布液14の流路であり、ポケット15と同様にスロットダイ13の幅方向にその断面形状をもち、ウェブ側に位置する開口部16aは、一般に、図示しない幅規制板のようなものを用いて、概ね塗布幅と同じ長さの幅になるように調整する。このスロット16のスロット先端における、バックアップロール11のウェブ走行方向の接線とのなす角は、30°以上90°以下が好ましい。
スロット16の開口部16aが位置するスロットダイ13の先端リップ17は、先細り状に形成されており、その先端はランドと呼ばれる平坦部18とされている。このランド18であって、スロット16に対してウェブ12の走行方向の上流側を上流側リップランド18a、下流側を下流側リップランド18bと称する。
図3は、スロットダイ13の断面形状を従来のものと比較して示すもので、(A)は、工夫されたスロットダイ13を示し、(B)は、従来のスロットダイ30を示している。従来のスロットダイ30では、上流側リップランド31aと下流側リップランド31bのウェブ12との距離は等しい。なお、(B)において、符号32はポケット、33はスロットを示している。これに対して、工夫されたスロットダイ13では、下流側リップランド長さILOが短くされており、これによって、湿潤膜厚が20μm以下の塗布を精度よく行うことができる。
上流側リップランド18aのランド長さIUPは特に限定はされないが、100μm〜1mmの範囲が好ましく採用される。下流側リップランド18bのランド長さILOは30μm以上100μm以下が好ましく、より好ましくは30μm以上80μm以下、更に好ましくは30μm以上60μm以下である。
先端リップ17のエッジ又はランドが欠けにくく、塗膜にスジが発生しにくくなり、塗布が可能となる点で、下流側リップのランド長さILOは、30μm以上が好ましい。また、下流側の濡れ線位置の設定が容易になり、塗布液が下流側で広がりにくくなる。この下流側での塗布液の濡れ広がりは、濡れ線の不均一化を意味し、塗布面上にスジなどの不良形状を招くという問題につながることが従来より知られている。
一方、ビードが形成でき、薄層塗布を行うことが可能である点で、下流側リップのランド長さILOは100μm以下が好ましい。
更に、下流側リップランド18bは、上流側リップランド18aよりもウェブ12に近接したオーバーバイト形状であり、このため減圧度を下げることができて、薄膜塗布に適したビード形成が可能となる。下流側リップランド18bと上流側リップランド18aのウェブ12との距離の差(以下、オーバーバイト長さLOと称する)は30μm以上120μm以下が好ましく、更に好ましくは30μm以上100μm以下、最も好ましくは30μm以上80μm以下である。
スロットダイ13がオーバーバイト形状のとき、先端リップ17とウェブ12の隙間GLとは、下流側リップランド18bとウェブ12の隙間を示す。
図4は、本発明の実施に使用できる塗布工程のスロットダイ及びその周辺を示す斜視図の一例である。ウェブ12の走行方向側とは反対側に、ビード14aに対して充分な減圧調整を行えるよう、接触しない位置に減圧チャンバー40を設置する。減圧チャンバー40は、その作動効率を保持するためのバックプレート40aとサイドプレート40bを備えており、バックプレート40aとウェブ12の間、サイドプレート40bとウェブ12の間にはそれぞれ隙間GB、GSが存在する。
図5は、近接している減圧チャンバー40とウェブWを示す断面図である。サイドプレート40bとバックプレート40aは、図5のようにチャンバー本体と一体のものであってもよいし、適宜隙間を変えられるようにチャンバーにネジなどで留められている構造でもよい。
いかなる構造であっても、バックプレート40aとウェブ12の間、サイドプレート40bとウェブ12の間に実際にあいている部分を、それぞれ隙間GB、GSと定義する。減圧チャンバー40のバックプレート40aとウェブ12との隙間GBとは、減圧チャンバー40を図4のようにウェブ12及びスロットダイ13の下方に設置した場合、バックプレート40aの最上端からウェブ12までの隙間を示す。
バックプレート40aとウェブ12との隙間GBを、スロットダイ13の先端リップ17とウェブ12との隙間GLよりも大きくして設置するのが好ましい。これにより、バックアップロール11の偏心に起因するビード近傍の減圧度変化を抑制することができる。
たとえば、スロットダイ13の先端リップ17とウェブ12との隙間GLが30μm以上100μm以下のとき、バックプレート40aとウェブ12の間の隙間GBは100μ
m以上500μm以下とするのが好ましい。
[材質、精度]
ウェブ12の走行方向側の先端リップ17のウェブ走行方向における長さは、長いほどビード形成に不利であり、この長さがスロットダイ幅方向における任意の個所間でばらつくと、かすかな外乱によりビードが不安定になる。したがって、この長さをスロットダイ幅方向における変動幅が20μm以内とすることが好ましい。
また、スロットダイの先端リップ17の材質については、ステンレス鋼などのような材質を用いるとダイ加工の段階でだれてしまい、前記のようにスロットダイ先端リップ17のウェブ走行方向における長さを30〜100μmの範囲にしても、先端リップ17の精度を満足できないことがある。
したがって、高い加工精度を維持するためには、特許第2817053号公報に記載されているような超硬材質のものを用いることが重要である。具体的には、スロットダイの少なくとも先端リップ17を、平均粒径5μm以下の炭化物結晶を結合してなる超硬合金にすることが好ましい。
超硬合金としては、タングステンカーバイド(以下、WCと称す)などの炭化物結晶粒子をコバルトなどの結合金属によって結合したものなどがあり、結合金属としては他にチタン、タンタル、ニオブ及びこれらの混合金属を用いることもできる。WC結晶の平均粒径としては、粒径3μm以下が更に好ましい。
高精度な塗布を実現するためには、先端リップ17のウェブ走行方向側のランドの前記長さ及びウェブとの隙間のスロットダイ幅方向のばらつきも重要な因子となる。この二つの因子の組み合わせ、すなわち、隙間の変動幅をある程度抑えられる範囲内の真直度を達成することが望ましい。好ましくは、前記隙間のスロットダイ幅方向における変動幅が5μm以下になるように先端リップ17とバックアップロール11との真直度を出す。
本発明で用いられるマイクログラビアコート法とは、直径が約10〜100mm、好ましくは約20〜50mmで全周にグラビアパターンが刻印されたグラビアロールを支持体の下方に、かつ支持体の搬送方向に対してグラビアロールを逆回転させると共に、該グラビアロールの表面からドクターブレードによって余剰の塗布液を掻き落として、定量の塗布液を前記支持体の上面が自由状態にある位置におけるその支持体の下面に塗布液を転写させて塗工することを特徴とするコート法である。ロール形態の透明支持体を連続的に巻き出し、該巻き出された支持体の一方の側に、少なくともハードコート層乃至含フッ素ポリマーを含む低屈折率層の内の少なくとも一層をマイクログラビアコート法によって塗工することができる。
マイクログラビアコート法による塗工条件としては、グラビアロールに刻印されたグラビアパターンの線数は50〜800本/インチが好ましく、100〜300本/インチがより好ましく、グラビアパターンの深度は1〜600μmが好ましく、5〜200μmがより好ましく、グラビアロールの回転数は3〜800rpmであることが好ましく、5〜200rpmであることがより好ましく、支持体の搬送速度は0.5〜100m/分であることが好ましく、1〜50m/分がより好ましい。
[偏光板]
偏光板は、偏光膜を両面から挟む2枚の保護フィルムで主に構成される。本発明の反射防止フィルムは、偏光膜を両面から挟む2枚の保護フィルムのうち少なくとも1枚に用いることが好ましい。本発明の反射防止フィルムが保護フィルムを兼ねることで、偏光板の
製造コストを低減できる。また、本発明の反射防止フィルムを最表層に使用することにより、外光の映り込み等が防止され、耐傷性、防汚性等も優れた偏光板とすることができる。
偏光膜としては公知の偏光膜や、偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜から切り出された偏光膜を用いてもよい。偏光膜の吸収軸が長手方向に平行でも垂直でもない長尺の偏光膜は以下の方法により作成することができる。
即ち、連続的に供給されるポリマーフィルムの両端を保持手段により保持しつつ張力を付与して延伸した偏光膜で、少なくともフィルム幅方向に1.1〜20.0倍に延伸し、フィルム両端の保持装置の長手方向進行速度差が3%以内であり、フィルム両端を保持する工程の出口におけるフィルムの進行方向と、フィルムの実質延伸方向のなす角が、20〜70゜傾斜するようにフィルム進行方向を、フィルム両端を保持させた状態で屈曲させてなる延伸方法によって製造することができる。特に45°傾斜させたものが生産性の観点から好ましく用いられる。
ポリマーフィルムの延伸方法については、特開2002−86554号公報の段落[0020]〜[0030]に詳しい記載がある。
偏光子の2枚の保護フィルムのうち、反射防止フィルム以外のフィルムが、光学異方層を含んでなる光学補償層を有する光学補償フィルムであることも好ましい。光学補償フィルム(位相差フィルム)は、液晶表示画面の視野角特性を改良することができる。
光学補償フィルムとしては、公知のものを用いることができるが、視野角を広げるという点では、特開2001−100042号公報に記載されているディスコティック構造単位を有する化合物からなる光学補償層を有し、該ディスコティック化合物と支持体とのなす角度が層の深さ方向において変化していることを特徴とする光学補償フィルムが好ましい。
該角度は光学異方性層の支持体面側からの距離の増加とともに増加していることが好ましい。
偏光子の2枚の保護フィルムのうち、少なくとも1枚の保護フィルムの透明支持体が下記式(IV)および(V)を満たすことが、液晶表示画面の斜め方向からの表示改良効果が高く好ましく、特に本発明の透明支持体が下記式(IV)および(V)を満たすことが特に好ましい。
(IV):0≦Re(630)≦10、かつ|Rth(630)|≦25
(V) :|Re(400)−Re(700)|≦10、かつ|Rth(400)−Rth(700)|≦35
ここで、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーション及び厚さ方向のレターデーションを表わす。
[画像表示装置]
本発明の反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に適用することができる。本発明の反射防止フィルムは透明支持体を有しているので、透明支持体側を画像表示装置の画像表示面に接着して用いられる。
本発明の反射防止フィルムは、偏光膜の表面保護フィルムの片側として用いた場合、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等のモードの透過型、反射型、または半透過型の液晶表示装置に好ましく用いることができる。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置であり、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。
さらに、ベンド配向モードの液晶セル、光学異方層を含む偏光板を含めた全体として、波長450nm、波長550nmおよび波長630nmのいずれの測定においても、下記式(1’)を満足する光学特性を有することが、液晶表示画面の斜め方向からの表示改良効果が高く好ましく、特に本発明の光学フィルムを保護フィルムとした偏光板が下記式(1’)をみたすことが特に好ましい。
式(1’):0.05<(Δn×d)/(Re×Rth)<0.20
[式(1’)中、Δnは液晶セル中の棒状液晶性分子の固有複屈折率であり;dはnmを単位とする液晶セルの液晶層の厚さであり;Reは光学異方層全体の面内レターデーション値であり;Rthは光学異方層全体の厚み方向のレターデーション値である。
ECBモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向しており、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。例えば「EL、PDP、LCDディスプレイ」東レリサーチセンター発行(2001)などに記載されている。
特にTNモードやIPSモードの液晶表示装置に対しては、特開2001−100043該公報等に記載されているように、視野角拡大効果を有する光学補償フィルムを偏光膜の裏表2枚の保護フィルムの内の本発明の反射防止フィルムとは反対側の面に用いることにより、1枚の偏光板の厚みで反射防止効果と視野角拡大効果を有する偏光板を得ることができ、特に好ましい。
本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、特別の断りの無い限り、「部」及び「%」は質量基準である。
(ゾル液aの調製)
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。
質量平均分子量は1800であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。29Si−NMR測定から算出される前述の数式(IX)による縮合率αは0.88であった。また、ガスクロマトグラフィー分析から、原料のアクリロキシプロピルトリメトキシシランは全く残存していなかった。
(ゾル液bの調製)
温度計、窒素導入管、滴下ロートを備えた1,000mlの反応容器に、アクリロキシオキシプロピルトリメトキシシラン187g(0.80mol)、メチルトリメトキシシラン27.2g(0.20mol)、メタノール320g(10mol)とKF0.06g(0.001mol)を仕込み、攪拌下室温で水15.1g(0.86mol)をゆっくり滴下した。滴下終了後室温で3時間攪拌した後、メタノール還溜下2時間加熱攪拌した。この後、低沸分を減圧留去し、更にろ過することによりゾル液bを120g得た。このようにして得た物質をGPC測定した結果、質量平均分子量は1500であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は30%であった。
また1H−NMRの測定結果から、得られた物質の構造は、以下の一般式で表される構造であった。なお、80:20はモル比である。
Figure 2007213045
更に、29Si−NMR測定による縮合率αは0.56であった。この分析結果から、本シランカップリング剤ゾルは直鎖状構造部分が大部分であることも分かった。
また、ガスクロマトグラフィー分析から、原料のアクリロキシプロピルトリメトキシシランは5%以下の残存率であった。
(フッ素化光重合開始剤1)
フッ素化光重合開始剤1は、本明細書中に既に記載してあるものである。
Figure 2007213045
(フッ素系表面改質剤(FP−1)の合成)
攪拌機、還流冷却器を備えた反応器に、1H,1H,7H−ドデカフルオロヘプチルアクリレート39.93g、ジメチル2,2’−アゾビスイソブチレート1.1g、2−ブタノン30gを加え窒素雰囲気下で6時間78℃に加熱して反応を完結させた。質量平均分子量は2.9×10であった。
(1)セルロースアセテート溶液の調製
〔セルロースアセテート溶液A−1の組成〕
セルローストリアセテート 100質量部
メチレンクロライド(第1溶媒) 320質量部
メタノール(第2溶媒) 83質量部
1−ブタノール(第3溶媒) 3質量部
可塑剤A(トリフェニルフォスフェート) 7.6質量部
可塑剤B(ビフェニルジフェニルフォスフェイト) 3.8質量部
UV剤a:2(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール 0.7質量部
UV剤b:2(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)−5−クロルベンゾトリアゾール 0.3質量部
クエン酸エステル混合物(クエン酸、モノエチルエステル、ジエチルエステル、トリエチルエステル混合物) 0.006質量部
微粒子(二酸化ケイ素(粒径15nm)、モース硬度 約7) 0.05質量部
イルガキュア907 1.0質量部
上記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液A−1を調製した。
上記セルロースアセテート溶液A−1からイルガキュア907を除いた以外は全て同じにしたものをセルロースアセテート溶液A−2とした。
上記セルロースアセテート溶液A−2からUV剤aとUV剤bを除去した以外は全て同じにしたものをセルロースアセテート溶液A−3とした。
(2)塗布液の調製
〔防眩性ハードコート層用塗布液B−1の組成〕
PET−30 50.0g
フッ素化光重合開始剤1 1.0g
イルガキュア184 1.0g
SX−350(30%) 1.5g
架橋アクリル−スチレン粒子(30%) 13.0g
FP−1 0.75g
ゾル液b 9.5g
トルエン 38.5g
〔光拡散性ハードコート層用塗布液B−2の組成〕
デソライトZ7404 100g
DPHA 30g
フッ素化光重合開始剤1 1.0g
ゾル液b 9.5g
KE−P150 9.0g
MXS−300 3.5g
MEK 30g
MIBK 15g
上記塗布液を孔径30μmのポリプロピレン製フィルターでろ過して防眩性ハードコート液B−1、光拡散性ハードコート液B−2を調製した。
上記塗布液からフッ素化光重合開始剤1を除いた以外は全て防眩性ハードコート層用塗布液B−1と同じにしたものをB−3、光拡散性ハードコート層要塗布液B−2と同じにしたものをB−4とした。
〔防眩性ハードコート層用塗布液B−5の組成〕
PET−30 50.0g
イルガキュア184 2.0g
SX−350(30%) 1.5g
架橋アクリル−スチレン粒子(30%) 13.0g
FP−1 0.075g
トルエン 36.5g
シクロヘキサノン 2.0g
〔光拡散性ハードコート層用塗布液B−6の組成〕
デソライトZ7404 100g
DPHA 30g
イルガキュア184 1.0g
KE−P150 9.0g
MXS−300 3.5g
MEK 10g
MIBK 35g
〔ハードコート層用塗布液B−7の組成〕
PET−30 50.0g
イルガキュア184 2.0g
FP−1 0.075g
トルエン 36.5g
シクロヘキサノン 2.0g
〔防眩性ハードコート層用塗布液B−8の組成〕
PET−30 40.0g
DPHA 10.0g
イルガキュア369 2.0g
SX−350(30%) 1.0g
架橋アクリル−スチレン粒子(30%) 9.0g
トルエン 36.5g
シクロヘキサノン 2.0g
〔防眩性ハードコート層用塗布液B−9の組成〕
PET−30 40.0g
DPHA 10.0g
イルガキュア184 2.0g
SX−350(30%) 1.0g
架橋アクリル−スチレン粒子(30%) 9.0g
FP−1 0.075g
トルエン 36.5g
シクロヘキサノン 2.0g
〔防眩性ハードコート層用塗布液B−10の組成〕
PET−30 40.0g
DPHA 10.0g
イルガキュア907 2.0g
SX−350(30%) 1.0g
架橋アクリル−スチレン粒子(30%) 9.0g
トルエン 36.5g
シクロヘキサノン 2.0g
〔防眩性ハードコート層用塗布液B−11の組成〕
PET−30 40.0g
DPHA 10.0g
イルガキュア907 0.5g
イルガキュア184 1.5g
SX−350(30%) 1.0g
架橋アクリル−スチレン粒子(30%) 9.0g
FP−1 0.075g
トルエン 36.5g
シクロヘキサノン 2.0g
〔防眩性ハードコート層用塗布液B−12の組成〕
PET−30 40.0g
DPHA 10.0g
イルガキュア907 0.95g
イルガキュア184 2.85g
SX−350(30%) 1.0g
架橋アクリル−スチレン粒子(30%) 9.0g
トルエン 36.5g
シクロヘキサノン 2.0g
〔防眩性ハードコート層用塗布液B−13の組成〕
PET−30 40.0g
DPHA 10.0g
イルガキュア907 0.35g
イルガキュア184 1.05g
SX−350(30%) 1.0g
架橋アクリル−スチレン粒子(30%) 9.0g
FP−1 0.075g
トルエン 36.5g
シクロヘキサノン 2.0g
〔防眩性ハードコート層用塗布液B−14の組成〕
PET−30 40.0g
DPHA 10.0g
イルガキュア907 0.95g
イルガキュア184 2.85g
カヤキュアーDETX 0.6g
SX−350(30%) 1.0g
架橋アクリル−スチレン粒子(30%) 9.0g
トルエン 36.5g
シクロヘキサノン 2.0g
〔低屈折率層用塗布液C−1の組成〕
含フッ素ポリマーB(6%) 13.0g
MEK−ST−L(30%) 1.0g
ゾル液a 0.5g
MEK 5.0g
シクロヘキサノン 0.5g
〔低屈折率層用塗布液C−2の組成〕
含フッ素ポリマーA(6%) 10g
MEK−ST(30%) 0.5g
MEK−ST−L(30%) 0.5g
ゾル液a 0.2g
MEK 1.5g
シクロヘキサノン 0.4g
〔低屈折率層用塗布液C−3の組成〕
含フッ素ポリマーB(6%) 78.3g
中空シリカ(18.2%) 21.4g
MEK−ST−L 3.0g
ゾル液a 1.7g
MEK 4.8g
シクロヘキサノン 5.8g
〔低屈折率層用塗布液C−4の組成〕
DPHA 3.0g
中空シリカ(18.2%) 40.0g
RMS−033 0.7g
イルガキュア907 0.2g
ゾル液a 6.0g
MEK 290.0g
シクロヘキサノン 9.0g
〔低屈折率層用塗布液C−5の組成〕
DPHA 1.5g
P−3 5.5g
中空シリカ(18.2%) 20.0g
RMS−033 0.7g
イルガキュア907 0.2g
ゾル液a 6.0g
MEK 305.0g
シクロヘキサノン 9.0g
〔低屈折率層用塗布液C−6の組成〕
DPHA 1.5g
含フッ素ポリマーC(10%) 55.0g
中空シリカ(18.2%) 20.0g
RMS−033 0.7g
イルガキュア907 0.2g
ゾル液a 6.0g
MEK 255.5g
シクロヘキサノン 9.0g
上記溶液を攪拌後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層
用塗布液を調製した。
それぞれ使用した化合物を以下に示す。
・セルローストリアセテート:置換度2.84、粘度平均重合度306、含水率0.2質量%、ジクロロメタン溶液中6質量%の粘度 315mPa・s、平均粒子径1.5mmであって標準偏差0.5mmである粉体
・PET−30:ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[日本化薬(株)製]
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物[日本化薬(株)製]
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・イルガキュア369:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・イルガキュア907:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・カヤキュアーDETX:光増感剤[日本化薬(株)製]
・SX−350:平均粒径3.5μm架橋ポリスチレン粒子[屈折率1.60、綜研化学(株)製、30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
・架橋アクリル−スチレン粒子:平均粒径3.5μm[屈折率1.55、綜研化学(株)製、30%トルエン分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
・デソライトZ7404:ZrO微粒子含有ハードコート剤[屈折率1.62、固形分濃度60.4%、JSR(株)製]
・KEP−150:平均粒径1.5μmシリカ粒子[屈折率1.46、日本触媒(株)製、30%MEK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
・MXS−300:平均粒径3μmPMMA粒子[屈折率1.49、綜研化学(株)製、30%MIBK分散液、ポリトロン分散機にて10000rpmで20分分散後使用]
・含フッ素ポリマーA:特開平11−189621、実施例1に記載の含フッ素ポリマー80g、硬化剤として サイメル303 15g(日本サイテックインダストリーズ(株)、硬化触媒として キャタリスト4050 2.0g(日本サイテックインダストリーズ(株)をMEKに溶解して6%にしたもの[屈折率1.42、固形分濃度6%、]
・含フッ素ポリマーB:特開平11−189621、実施例1に記載の含フッ素ポリマー
80g、硬化剤として サイメル303 20g(日本サイテックインダストリーズ(株)、硬化触媒として キャタリスト4050 2.0g(日本サイテックインダストリーズ(株)をMEKに溶解して6%にしたもの[屈折率1.44、固形分濃度6%、JSR(株)製]
・P−3:特開2004−45462号公報に記載の含フッ素共重合体P−3(重量平均分子量約50000)
・含フッ素ポリマーC:エチレン性不飽和基含有含フッ素ポリマー(特開2005−89536公報製造例3に記載のフッ素ポリマー(A−1))をMIBKで希釈し10%にしたもの
・MEK−ST:コロイダルシリカ分散物[平均粒径10〜20nm、固形分濃度30%、日産化学(株)製]
・MEK−ST−L:コロイダルシリカ分散物[MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製]
・中空シリカ:中空シリカゾル[CS−60 IPA、屈折率1.31、平均粒径60nm、シェル厚み10nm、固形分濃度18.2%、触媒化成工業(株)製]をKBM−5103表面修飾したもの表面修飾率対シリカ30質量%
・KBM−5103:シランカップリング剤(アクリロキシプロピルトリメトキシシラン)[信越化学工業(株)製]
・RMS−033:反応性シリコーン[Gelest(株)製]
[実施例1:反射防止フィルム試料の作成と評価]
(1)透明支持体の製膜
セルロースアセテート溶液A−1を充分に攪拌して、ドープを調製した。流延口から3層のドープを、表面の平均粗さが0.01μm以下で、−5℃に冷却されたドラム上に共流延した。流延後、溶媒含有率70質量%の状態で剥ぎ取り、フィルムの巾方向の両端をピンテンター(特開平4−1009号公報の図3に記載のピンテンター)で固定し、溶媒含有率が3〜5質量%の状態で、横方向(機械方向に垂直な方向)の延伸率が3%となる間隔を保ちつつ90℃〜110℃の温度で乾燥した。その後、130℃に設定した熱処理装置のロール間を搬送することにより、溶媒含有率が0.3質量%以下になるまで乾燥し、厚み80μmの透明支持体を作製した。
(2)防眩性ハードコート層の塗設
上記記載の80μmの厚さのトリアセチルセルロースフイルムをロール形態で巻き出して直接、防眩性ハードコート層塗布液B−1を線数135本/インチ、深度60μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度10m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量250mJ/cmの紫外線を照射して厚さ7μmの防眩性ハードコート層を形成し、巻き取った。
(3)光拡散性ハードコート層については、光拡散性ハードコート層塗布液を用いて、厚さ3.5μmとして、上記防眩性ハードコート層の塗設と同様の方法により形成した。
(4)低屈折率層の塗設
防眩性ハードコート層を塗設したトリアセチルセルロースフイルムを再び巻き出して、上記低屈折率層用塗布液C−1を線数200本/インチ、深度30μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、搬送速度20m/分の条件で塗布し、120℃で75秒乾燥の後、更に10分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量240mJ/cmの紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取った。
(反射防止フィルム試料1〜6、101〜106の作成)
上記塗設方法にて、セルロースアシレート溶液、ハードコート層用塗布液、低屈折率層用塗布液、紫外線照射量を表1に示すような組み合わせに変更して反射防止フィルム試料を作成した。
(5)反射防止フィルムの鹸化処理
製膜後、前記試料について、以下の処理を行った。1.5mol/Lの水酸化ナトリウム水溶液を調製し、55℃に保温した。0.01mol/Lの希硫酸水溶液を調製し、35℃に保温した。 作製した反射防止フィルムを上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。
最後に試料を120℃で十分に乾燥させた。
このようにして、鹸化処理済み反射防止フィルムを作製した。
(反射防止フィルム及び偏光板の評価)
得られた反射防止フィルム及び偏光板について、以下の項目の評価を行った。結果を表1に示す。
(1)混合領域の層の厚さ測定
反射防止フィルムの断面をミクロトームを用いて切削し、断面から走査型電子顕微鏡(日立製作所製、S−570)を用いて反射電子モードで観察し、撮影された写真より混合領域の層の厚さを求めた。
(2)二重結合反応率の測定
反射防止フィルムの機能層を塗布・乾燥・硬化した時点で、この機能層をミクロトームを用いて表面から水平に5つの切片を切削した。この切片0.1mgに対して、KBr粉
末2mgを加え、黄色灯下でよく混合し測定試料とした。FT−IR装置(サーモ・ニコ
レー・ジャパン製、ニコレット710)を用いて、400cm−1〜4000cm−1の
波長領域を測定し、C=C結合由来の810cm−1のピーク強度を求めた。塗布・乾燥のみのUV未硬化品のピーク強度(=二重結合残存量)Aと、各フィルム切片のピーク強度Bを求めた。各層について1−(B/A)を計算し、二重結合反応率を支持体側より順にα1、α2、α3、α4、α5として算出した。
反射防止フィルムの低屈折率層を塗布・乾燥・硬化した時点での、機能層についても上記と同様にして二重結合反応率を求め、支持体側より順にβ1、β2、β3、β4、β5として算出した。
(3)密着性評価
反射防止フィルムの低屈折率層を有する側の表面にカッターナイフで碁盤目状に縦11本、横11本の切り込みを入れて合計100個の正方形の升目を刻み、日東電工(株)製のポリエステル粘着テープ(NO.31B)を圧着して密着試験を同じ場所で繰り返し3回行った。剥がれの有無を目視で観察し、下記の4段階評価を行った。
◎ :100個の升目中に剥がれが全く認められなかったもの
○ :100個の升目中に剥がれが認められたものが2升以内のもの
△ :100個の升目中に剥がれが認められたものが3〜10升のもの
× :100個の升目中に剥がれが認められたものが10〜20升のもの
×× :100個の升目中に剥がれが認められたものが21升を超えたもの
(4)ヘイズ
反射防止フィルムのヘイズをヘイズメーターMODEL 1001DP(日本電色工業(株)製)を用いて測定した。
(5)積分球反射率
反射防止フィルムを、分光光度計V−550(日本分光(株)製)の積分球に装着して、380〜780nmの波長領域において、積分球反射率を測定し、450〜650nmの平均反射率を算出し、反射防止性を評価した。
(6)スチールウール耐傷性
ラビングテスターを用いて、以下の条件でこすりテストをおこなった。
評価環境条件:25℃、60%RH
こすり材:試料と接触するテスターのこすり先端部(1cm×1cm)にスチールウール(日本スチールウール(株)製、No.0000)を巻いて、動かないようバンド固定した。
移動距離(片道):13cm、こすり速度:13cm/秒、荷重:500g/cm2、先端部接触面積:1cm×1cm、こすり回数:10往復。
こすり終えた試料の裏側に油性黒インキを塗り、反射光で目視観察して、こすり部分の傷を、以下の基準で評価した。
A:非常に注意深く見ても、全く傷が見えない。
B:弱い傷が見える。
C:中程度の傷が見える。
D:一目見ただけで分かる傷がある。
Figure 2007213045
表1に示される結果より、以下のことが明らかである。
本発明の反射防止フィルムは、支持体との密着性にすぐれ、耐擦傷性も高く性能が向上している。
また本発明のゾル液bの代わりに、X−40−2671G(シランカップリング剤、信越化学工業製)を用いても同様な反射防止フィルムが得られ、高い性能が得られた。
また本発明のセルロースアシレート溶液A−1中のUV剤bの代わりに、UV剤c:2(2’−ヒドロキシ−3’−tert−ブチルフェニル−5’−メチル)−5−クロルベンゾトリアゾール、を用いても同様な高い性能を持つ反射防止フィルムが得られた。
[実施例2:反射防止フィルム試料の作成と評価]
(1)透明支持体の製膜
実施例1で作製したセルロースアセテート溶液A−2を使用した実施例1の厚み80μの透明支持体をTAC−2とした。
セルロースアセテート溶液A−3を十分に攪拌して、ドープを調製し、実施例1と同様にして厚み80μの透明支持体を作製した。この支持体をTAC−3とした。
また、シクロオレフィン系フィルム(ゼオノアフィルムZF14−100、日本ゼオン社製、厚み100μm)の一方の面(機能層との接着界面となる面)に、塗布直前にコロナ放電処理を行った。この支持体をCOP−1とした。
また、WO2006/025445号公報の実施例20に準じてラクトン環含有重合体を主成分とする厚さ50μの延伸フィルムを作製した。この一方の面に、塗布直前にコロナ放電処理を行った。この支持体をRAK−1とした。
(2)防眩性ハードコート層の塗設
上記支持体TAC−3上に、防眩性ハードコート層塗布液B−5を図2に記載のダイコーターで搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下(酸素濃度約1000ppm)で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量200mJ/cmの紫外線を防眩性ハードコート層側から照射して厚さ7.5μmの防眩性ハードコート層を形成し、巻き取った。
(3)低屈折率層の塗設
防眩性ハードコート層の上に上記低屈折率層用塗布液C−6を図2に記載のダイコーターで搬送速度40m/分の条件で塗布し、90℃で75秒乾燥の後、窒素パージ下(酸素濃度約100ppm)で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量240mJ/cmの紫外線を照射し、厚さ95nmの低屈折率層を形成し、巻き取った。このようにして得られた試料を201とする。
(反射防止フィルム試料202〜215の作成)
上記塗設方法にて、支持体、機能層用塗布液、機能層厚み、低屈折率層用塗布液、機能層硬化時の紫外線照射方向及び照射量を表2に示すような組み合わせに変更して反射防止フィルム試料を作成した。表2中、機能層硬化時に機能層表面側から光照射する方法は上面と、支持体面側から光照射する方法は下面と、表記した。
このようにして得られた試料は、実施例1に準じて評価を行った。評価結果を表2に合わせて示す。
Figure 2007213045
表2から、以下のことが明らかである。
UV剤を含有した支持体を用いた試料(試料201、202)は、機能層の硬化の光照射を機能層側・支持体側のどちらから行ってもα1が小さく密着の悪い試料であった。支持体にUV吸収剤を含まない試料で、支持体側から光照射した試料(試料204、206、208)は、密着とSW耐性に優れる試料であった。機能層側からの光照射では、機能層が紫外線吸収や散乱性の粒子を含有する試料や、機能層が厚い試料は、α1が小さくなる傾向があり(試料211と201、213、215の比較)、密着の悪化が大きいが、この問題は支持体側からの光照射で改善できることが分る(試料202、214)。
[実施例3:反射防止フィルム試料の作成と評価]
(反射防止フィルム(301)の作製)
実施例2の支持体TAC−2をロール形態で巻き出して、図6のギーサーを用いて、防眩性ハードコート層塗布液B−8を31aから、防眩性ハードコート層塗布液B−9を31bから塗出し、搬送速度15m/分の条件で塗布し、80℃で90秒乾燥の後、さらに窒素パージ下(酸素濃度約1000ppm)で空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量450mJ/cm2の紫外線を照射して機能層を硬化させ巻き取った。防眩性ハードコート層B−8及び防眩性ハードコート層B−9の硬化後の膜厚がそれぞれ3.0μmおよび9.0μmになるように塗布量を調整した。
光照射時には、以下の透過率を有するUVカットフィルターを介して防眩性ハードコート層側から照射した。上記照射量はUVカットフィルターを介さない状態での塗膜面での値である。
UVカットフィルター(TD−80UL富士フイルム社製):
395nmでの透過率 約50%
385nmでの透過率 約10%
375nmでの透過率 約1%
図6に示されるスロットダイは、上流側リップランド長Lが0.5mm、中流リップランド長Lが0.5mm、下流側リップランド長Lが50μmで、2つのスロットの開口部のウェブ走行方向における長さは共に150μmのものを使用した。
このようにして得られた防眩性ハードコート層の上に、上記低屈折率層用塗布液C−6を図2に記載のダイコーターで搬送速度40m/分の条件で塗布し、90℃で75秒乾燥の後、窒素パージ下(酸素濃度約100ppm)で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm、照射量240mJ/cmの紫外線を照射し、厚さ95nmの低屈折率層を形成し、巻き取った。このようにして得られた試料を301とする。
(反射防止フィルム試料302〜307の作成)
上記塗設方法にて、支持体、機能層用塗布液、機能層厚み、低屈折率層用塗布液を表3に示すような組み合わせに変更して反射防止フィルム試料を作成した。試料305は防眩性ハードコート層塗布液B−12のみを実施例2のダイコーターを使用し、硬化後膜厚が12μになるよう塗設した。
このようにして得られた試料は、実施例1に準じて評価を行った。評価結果を表3に合わせて示す。
Figure 2007213045
表3から、以下のことが明らかである。
長波まで吸収波長を有する光重合開始剤を支持体に近い部分に塗設した試料(試料301、302)、光重合開始剤の密度の高い液を支持体に近い部分に塗設した試料(試料304)、及び増感剤を支持体に近い部分に塗設した試料(試料305)は、均一な塗布液を用いて作製した試料(試料303)に対して密着性とスチールウール擦り耐性に優れることが分る。
また、実施例3の試料301において、防眩性ハードコート層を同時に塗布するのではなく、防眩性ハードコート層塗布液B−8を3.0μ厚で塗布・乾燥した後に、防眩性ハードコート層B−9を9.0μ厚で塗布乾燥することだけが異なる以外は試料301と同様にして反射防止フィルムを作製し評価した結果、密着とスチールウール擦り耐性に優れる試料が得られた。
[実施例4]
1.5mol/L、55℃のNaOH水溶液中に2分間浸漬したあと中和、水洗した、80μmの厚さのトリアセチルセルロースフイルム(TAC−TD80U、富士フイルム(株)製)と、実施例1の本発明試料(鹸化処理済み)に、ポリビニルアルコールにヨウ素を吸着させ、延伸して作製した偏光膜の両面を接着、保護して偏光板を作製した。このようにして作製した偏光板を、反射防止膜側が最表面となるように透過型TN液晶表示装置搭載のノートパソコンの液晶表示装置(偏光選択層を有する偏光分離フィルムである住友3M(株)製のD−BEFをバックライトと液晶セルとの間に有する)の視認側の偏光板と貼り代えた。
外光の映り込みがないために優れたコントラストが得られ、反射像が目立たず優れた視認性を有していた。
[実施例5]
PVAフィルムをヨウ素2.0g/l、ヨウ化カリウム4.0g/lの水溶液に25℃にて240秒浸漬し、さらにホウ酸10g/lの水溶液に25℃にて60秒浸漬後、特開2002−86554号公報に記載の図2の形態のテンター延伸機に導入し、5.3倍に延伸し、テンターを延伸方向に対し図2の如く屈曲させ、以降幅を一定に保った。80℃雰囲気で乾燥させた後テンターから離脱した。左右のテンタークリップの搬送速度差は、0.05%未満であり、導入されるフィルムの中心線と次工程に送られるフィルムの中心線のなす角は、46゜であった。ここで|L1−L2|は0.7m、Wは0.7mであり、|L1−L2|=Wの関係にあった。テンター出口における実質延伸方向Ax−Cxは、次工程へ送られるフィルムの中心線22に対し45゜傾斜していた。テンター出口におけるシワ、フィルム変形は観察されなかった。
さらに、PVA((株)クラレ製PVA−117H)3%水溶液を接着剤としてケン化処理した富士フイルム(株)製フジタック(セルローストリアセテート、レターデーション値3.0nm)と貼り合わせ、さらに80℃で乾燥して有効幅650mmの偏光板を得た。得られた偏光板の吸収軸方向は、長手方向に対し45゜傾斜していた。この偏光板の550nmにおける透過率は43.7%、偏光度は99.97%であった。さらに310×233mmサイズに裁断したところ、91.5%の面積効率で辺に対し45゜吸収軸が傾斜した偏光板を得た。
次に、実施例1の本発明試料(鹸化処理済み)の各々のフィルムを上記偏光板と貼り合わせて反射防止付き偏光板を作製した。この偏光板を用いて反射防止層を最表層に配置した液晶表示装置を作製した。
外光の映り込みがないために優れたコントラストが得られ、反射像が目立たず優れた視認性を有していた。
[実施例6]
実施例1の本発明試料を貼りつけた透過型TN液晶セルの視認側の偏光板の液晶セル側の保護フィルム、およびバックライト側の偏光板の液晶セル側の保護フィルムとして、光学補償フィルム(ワイドビューフィルムエース、富士フイルム(株)製)を用いたところ、明室でのコントラストに優れ、且つ上下左右の視野角が非常に広く、極めて視認性に優れ、表示品位の高い液晶表示装置が得られた。
また、本発明試料101〜104(光拡散性ハードコート層品)は、出射角0°に対する30°の散乱光強度が0.06%であり、この光拡散性により、特に下方向の視野角アップ、左右方向の黄色味が改善され、非常に良好な液晶表示装置であった。
尚、該光拡散性ハードコート層用塗布液B−2またはB−4から、架橋PMMA粒子、シリカ粒子を除去した以外、全く本発明試料101〜104と同様に作製したフィルムでは、出射角0°に対する30°の散乱光強度が実質0%であり、下方向視野角アップ、黄色味改善効果は全く得られなかった。
[実施例7]
セルロースアシレート溶液として、アセチル置換度2.94のセルロースアシレートを用い、光学的異方性低下剤A−19を49.3%(対セルロースアシレート)、波長分散調整剤UV−102を7.6%(対セルロースアシレート)となるようにして、同様にして厚み80μmのセルロースアシレートフィルム試料201を作製した。得られたフィルムのレターデーションReは−1.0nm(TD方向に遅相軸のため負とする)、厚み方向のレターデーションRthは−2.0nmといずれも十分に小さい値であった。このセルロースアシレートフィルム試料を偏光子の2枚の保護フィルムのうちセル側の保護フィルムの透明支持体に、本発明の実施例1の本発明試料を偏光子の視認側の保護フィルムとした。特開平10−48420号公報の実施例1に記載の液晶表示装置、特開平9−26572号公報の実施例1に記載のディスコティック液晶分子を含む光学異方性層、ポリビニルアルコールを塗布した配向膜、特開2000−154261号公報の図2〜9に記載のVA型液晶表示装置、及び特開2000−154261号公報の図10〜15に記載のOCB型液晶表示装置での評価をしたところ、いずれの場合においてもコントラスト視野角が良好な性能が得られた。
Figure 2007213045
Figure 2007213045
[実施例8]
実施例1の本発明試料を、有機EL表示装置の表面のガラス板に粘着剤を介して貼り合わせたところ、ガラス表面での反射が抑えられ、視認性の高い表示装置が得られた。
[実施例9]
実施例1の本発明試料を用いて、片面反射防止フィルム付き偏光板を作製し、偏光板の反射防止膜を有している側の反対面にλ/4板を張り合わせ、反射防止膜側が最表面になるように、有機EL表示装置の表面のガラス板に貼り付けたところ、表面反射および、表面ガラスの内部からの反射がカットされ、極めて視認性の高い表示が得られた。
本発明の反射防止フィルムの模式的な断面図の一例である。 本発明の実施の際に使用できるスロットダイを用いたコーターの断面図の一例である。 (A)はスロットダイの断面形状の一例を示し、(B)は従来のスロットダイの断面形状の一例を示す。 本発明の実施に使用できる塗布工程のスロットダイ及びその周辺を示す斜視図の一例である。 近接している減圧チャンバー40とウェブ12を示す断面図の一例である。 本発明に使用できる2層を同時に塗設できるスロットダイコーターの断面図の一例である。
符号の説明
1 反射防止フィルム
2 透明支持体
3 帯電防止層
4 防眩性ハードコート層
5 低屈折率層
6 マット粒子
10 コーター
11 バックアップロール
12 ウェブ
13 スロットダイ
14 塗布液
14a ビード
14b 塗膜
15 ポケット
16 スロット
16a スロット開口部
17 先端リップ
18 ランド
18a 上流側リップランド
18b 下流側リップランド
IUP 上流側リップランド18aのランド長さ
ILO 下流側リップランド18bのランド長さ
LO オーバーバイト長さ(下流側リップランド18bと上流側リップランド18aのウェブWとの距離の差)
GL 先端リップ17とウェブWの隙間(下流側リップランド18bとウェブWの隙間)30 従来のスロットダイ
31a 上流側リップランド
31b 下流側リップランド
32 ポケット
33 スロット
40 減圧チャンバー
40a バックプレート
40b サイドプレート
GB バックプレート40aとウェブWの間の隙間
GS サイドプレート40bとウェブWの間の隙間
W ウェブ
上流側リップランドのランド長さ
中流側リップランドのランド長さ
下流側リップランドのランド長さ

Claims (18)

  1. 透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層および最外層に位置する低屈折率層を有する反射防止フィルムであり、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からα1、α2、α3、α4、及びα5とした場合に、下記数式(I)を満たす機能層を持つことを特徴とする反射防止フィルム。
    式(I) α5<α1
    [ただしα1〜α5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
    中の二重結合性基の残量)}を表す。]
  2. 透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層およびそれに隣接した低屈折率層を有する反射防止フィルムであり、低屈折率層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からβ1、β2、β3、β4、及びβ5とした場合に、下記数式(II)及び(III)を満たす機能層を持つことを特徴とする反射防止フィルム。
    式(II) β1>0.45
    式(III) β5>0.45
    [ただしβ1〜β5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
    中の二重結合性基の残量)}を表す。]
  3. 透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層およびそれに隣接した低屈折率層を有する反射防止フィルムであり、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からα1、α2、α3、α4、及びα5とし、低屈折率層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層の二重結合反応率を支持体側からβ1、β2、β3、β4、及びβ5とした場合に、下記数式(II)、(III)、及び(IV)を満たす機能層を持つことを特徴とする請求項1に記載の反射防止フィルム。
    式(II) β1>0.45
    式(III) β5>0.45
    式(IV) β5−α5>0.1
    [ただし、α1〜α5、β1〜β5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層中の二重結合性基の残量)}を表す。]
  4. 前記支持体と前記機能層との間に、前記支持体と前記機能層とが混合した混合領域を有することを特徴とする請求項1〜3のいずれかに記載の反射防止フィルム。
  5. 前記混合領域の層の厚さが0.1〜10μmであることを特徴とする請求項4に記載の反射防止フィルム。
  6. 前記機能層が、前記支持体中の樹脂を溶解または膨潤させる溶剤を含む塗布液により形成されることを特徴とする請求項1〜5のいずれかに記載の反射防止フィルム。
  7. 前記支持体が、セルロースアシレートフィルムであることを特徴とする請求項1〜6のいずれかに記載の反射防止フィルム。
  8. 前記支持体が光重合開始剤を含有することを特徴とする請求項1〜7のいずれかに記載の反射防止フィルム。
  9. 前記支持体が、共流延方式で作製され、機能層に接する層に光重合開始剤を含有することを特徴とする請求項1〜8のいずれかに記載の反射防止フィルム。
  10. 前記機能層が、フッ素化光重合開始剤を含有していることを特徴とする請求項1〜9のいずれかに記載の反射防止フィルム。
  11. 前記機能層が、さらに非フッ素化光重合開始剤を含有していることを特徴とする請求項10に記載の反射防止フィルム。
  12. 前記機能層が、バインダーおよび該バインダーと屈折率の異なる透光性微粒子を含有していることを特徴とする請求項1〜11のいずれかに記載の反射防止フィルム。
  13. 前記機能層が下記一般式(1)で表されるオルガノシラン化合物の加水分解物および/またはその部分縮合物を含有することを特徴とする請求項1〜12のいずれかに記載の反射防止フィルム。
    Figure 2007213045

    (一般式(1)中、Rは水素原子、メチル基、メトキシ基、アルコキシカルボニル基、シアノ基、フッ素原子、または塩素原子を表す。
    は、単結合、*−COO−**、*−CONH−**、または、*−O−**を表す。
    は2価の連結鎖を表す。R〜Rは、各々独立に、ハロゲン原子、水酸基、無置換のアルコキシ基、または無置換のアルキル基を表す。
    は、水素原子または無置換のアルキル基を表す。
    は置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表す。
    lはl=100−mの数式を満たす数(モル比率)を表し、mは0〜50の数(モル比率)を表す。
    なお、該加水分解物および/またはその部分縮合物は、特定のl及びmを有する一般式(1)で表される化合物の複数種の混合物の加水分解物および/またはその部分縮合物であってもよい。)
  14. 透明支持体上に少なくとも1層の電離放射線硬化性樹脂を含有する機能層および最外層に位置する低屈折率層を有する反射防止フィルムの製造方法であり、機能層を塗布、乾燥、硬化した後の該機能層を5分割した各分割層について支持体側からα1、α2、α3、α4及びα5層としたとき、下記数式(I)を満たす機能層を形成する工程を含むことを特徴とする反射防止フィルムの製造方法。
    式(I) α5<α1
    [ただしα1〜α5は、1−{(各分割層の二重結合性基の残量)/(未硬化時の機能層
    中の二重結合性基の残量)}を表す。]
  15. 少なくとも透明支持体側から電離放射線が照射されたことを特徴とする請求項14に記載の反射防止フィルムの製造方法。
  16. 請求項1〜13のいずれかに記載の反射防止フィルムを、偏光板における偏光膜の2枚の保護フィルムのうちの少なくとも一方に用いたことを特徴とする偏光板。
  17. 請求項1〜13のいずれかに記載の反射防止フィルム、または、請求項16に記載の偏光板を有し、低屈折率層が視認側になるように配置したことを特徴とするディスプレイ装置。
  18. 請求項1〜13のいずれかに記載の反射防止フィルムまたは請求項16に記載の偏光板を、液晶セルがTNモード、VAモード、IPSモード、又はOCBモードであるディスプレイの最表層に用いたことを特徴とする液晶表示装置。
JP2007003851A 2006-01-16 2007-01-11 反射防止フィルム、偏光板、およびディスプレイ装置 Pending JP2007213045A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003851A JP2007213045A (ja) 2006-01-16 2007-01-11 反射防止フィルム、偏光板、およびディスプレイ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006007785 2006-01-16
JP2007003851A JP2007213045A (ja) 2006-01-16 2007-01-11 反射防止フィルム、偏光板、およびディスプレイ装置

Publications (1)

Publication Number Publication Date
JP2007213045A true JP2007213045A (ja) 2007-08-23

Family

ID=38491477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003851A Pending JP2007213045A (ja) 2006-01-16 2007-01-11 反射防止フィルム、偏光板、およびディスプレイ装置

Country Status (1)

Country Link
JP (1) JP2007213045A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093170A (ja) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd クッション性を有するグラビア版及びその製造方法
JP2009090662A (ja) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd グラビア印刷装置
JP2009093171A (ja) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd クッション性を有するグラビア版の製造方法
JP2010083029A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd 透明ハードコートフィルム
WO2015029349A1 (ja) * 2013-08-30 2015-03-05 パナソニックIpマネジメント株式会社 表示デバイス及びその製造方法
WO2015046142A1 (ja) * 2013-09-30 2015-04-02 富士フイルム株式会社 遮光されたロール状フィルム、遮光されたロール状フィルムの製造方法、熱重合開始剤を含むロール状フィルム、熱重合開始剤を含むロール状フィルムの製造方法、ハードコートフィルム、ハードコートフィルムの製造方法、偏光板および液晶表示装置
WO2023190672A1 (ja) * 2022-03-31 2023-10-05 ホヤ レンズ タイランド リミテッド 光学物品の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093170A (ja) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd クッション性を有するグラビア版及びその製造方法
JP2009090662A (ja) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd グラビア印刷装置
JP2009093171A (ja) * 2007-09-20 2009-04-30 Think Laboratory Co Ltd クッション性を有するグラビア版の製造方法
JP2010083029A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd 透明ハードコートフィルム
WO2015029349A1 (ja) * 2013-08-30 2015-03-05 パナソニックIpマネジメント株式会社 表示デバイス及びその製造方法
US9731479B2 (en) 2013-08-30 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Display device and manufacturing method therefor
WO2015046142A1 (ja) * 2013-09-30 2015-04-02 富士フイルム株式会社 遮光されたロール状フィルム、遮光されたロール状フィルムの製造方法、熱重合開始剤を含むロール状フィルム、熱重合開始剤を含むロール状フィルムの製造方法、ハードコートフィルム、ハードコートフィルムの製造方法、偏光板および液晶表示装置
JP2015091936A (ja) * 2013-09-30 2015-05-14 富士フイルム株式会社 遮光されたロール状フィルム、遮光されたロール状フィルムの製造方法、熱重合開始剤を含むロール状フィルム、熱重合開始剤を含むロール状フィルムの製造方法、ハードコートフィルム、ハードコートフィルムの製造方法、偏光板および液晶表示装置
KR101830557B1 (ko) * 2013-09-30 2018-02-20 후지필름 가부시키가이샤 차광된 롤 형상 필름, 차광된 롤 형상 필름의 제조 방법, 열중합 개시제를 포함하는 롤 형상 필름, 열중합 개시제를 포함하는 롤 형상 필름의 제조 방법, 하드 코트 필름, 하드 코트 필름의 제조 방법, 편광판 및 액정 표시 장치
WO2023190672A1 (ja) * 2022-03-31 2023-10-05 ホヤ レンズ タイランド リミテッド 光学物品の製造方法

Similar Documents

Publication Publication Date Title
JP4887013B2 (ja) 反射防止フィルム及びそれを用いたディスプレイ装置
JP4404769B2 (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP5102958B2 (ja) 反射防止フィルムの製造方法
JP2007249191A (ja) 光学フィルム、反射防止フィルム、偏光板、及び画像表示装置
JP2007108724A (ja) 防眩性反射防止フィルム、これを用いた偏光板および液晶表示装置
JP2007293303A (ja) 光散乱フィルム、偏光板、及び画像表示装置
JP2007045142A (ja) 防眩性フィルム、反射防止フィルム、その製造方法、該フィルムを用いた偏光板および該偏光板を用いた液晶表示装置
JP2006048025A (ja) 反射防止フィルムおよびその製造方法
JP2007108725A (ja) 光学フィルム、反射防止フィルム、それを用いた偏光板およびディスプレイ装置
JP2005309399A (ja) 光拡散フィルムの製造方法、反射防止フィルムおよびそれを用いた偏光板並びに液晶表示装置
JP2007256844A (ja) 光学フィルム、反射防止フィルム、光学フィルムの製造方法、それを用いた偏光板およびディスプレイ装置
JP2006113561A (ja) 光散乱性フィルムの製造方法、該光散乱性フィルムを用いた偏光板、該偏光板を用いた液晶表示装置
JP2006257402A (ja) 低屈折率層形成塗布組成物、反射防止フィルム、偏光板、および液晶表示装置
JP2006276839A (ja) 光学機能フィルム、その製造方法、並びにそれを用いた偏光板及び画像表示装置
JP2007083228A (ja) 被膜シートの製造方法、被膜シート、光学フィルム、反射防止フィルム、偏光板、および液晶表示装置
JP2008105191A (ja) 光学フィルム、反射防止フィルム、偏光板、表示装置、及び光学フィルムの製造方法
JP4792305B2 (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP2007233375A (ja) 反射防止フィルム、これを用いた偏光板および画像表示装置
JP2007065635A (ja) 光学フィルム、特に反射防止フィルム及びその製造方法、並びに反射防止フィルムを用いた偏光板及び液晶表示装置
JP2007213045A (ja) 反射防止フィルム、偏光板、およびディスプレイ装置
JP2007133162A (ja) 防眩性フィルム、その製造方法、これを用いた偏光板および画像表示装置
JP2007196164A (ja) 光学フィルムの製造方法、光学フィルム、偏光板、及び画像表示装置
JP2007034213A (ja) 反射防止フィルム、それを用いた偏光板及びディスプレイ装置
JP2006154791A (ja) 光散乱性フィルムの製造方法、光散乱性フィルムを用いた偏光板、偏光板を用いた液晶表示装置
JP2006096861A (ja) 塗布組成物、光学機能層、反射防止フィルム、偏光板、及び画像表示装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126