JP5230236B2 - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
JP5230236B2
JP5230236B2 JP2008089066A JP2008089066A JP5230236B2 JP 5230236 B2 JP5230236 B2 JP 5230236B2 JP 2008089066 A JP2008089066 A JP 2008089066A JP 2008089066 A JP2008089066 A JP 2008089066A JP 5230236 B2 JP5230236 B2 JP 5230236B2
Authority
JP
Japan
Prior art keywords
image
exposure apparatus
substrate
wedge prism
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008089066A
Other languages
English (en)
Other versions
JP2009244446A (ja
Inventor
藤和 北村
憲司 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2008089066A priority Critical patent/JP5230236B2/ja
Priority to TW97143383A priority patent/TWI397787B/zh
Priority to CN 200810181722 priority patent/CN101551508B/zh
Publication of JP2009244446A publication Critical patent/JP2009244446A/ja
Application granted granted Critical
Publication of JP5230236B2 publication Critical patent/JP5230236B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、像面における像を一次元方向(シフト方向)にシフトさせる技術に関する。
露光装置や描画装置等に用いられる結像光学系において、像面における像の位置を一次元方向に任意の距離だけシフトさせる必要がある場合がある。このような場合として、例えば、大型の基板に複数の光学系を用いて同時に露光するような描画装置において、複数の光学系のピッチを正確に揃える必要がある場合や、多重露光を行う工程において基板の収縮などにより変化した下地パターンに正確に次のパターンを描画するために描画ピッチを揃える必要がある場合等である。
そこで従来より、像の位置をシフトさせる様々な機構が提案されている。例えば、
1.平行平板を光軸とシフト方向とを含む面に直交する軸で回転させることによって光の進行方向を変更させる機構、
2.光学系全体、光学系内の一部のレンズあるいはレンズ群を光軸に直交する面内で移動させる機構、
3.物体そのものをシフト方向に移動させる機構、
などが提案されている。
特許第2524151号公報
ところが、1.においては所望のシフト量を得るためには厚い平行平板を用いる必要があり、かつ、平行平板の回転による非点隔差の大きさ(絶対値)と変動とが大きいという問題がある。かといって、当該平行平板を薄くすればそれに応じて回転量が多くなり、装置自体が大型化するという問題がある。また、2.においては光学系の全体を移動させるため駆動系も含めると大掛かりな構成となるとともに、シフト方向に可動部等を収めるための空間が必要となる。しかも、光学系全体の移動に伴う位置決め精度の低下や再現性、熱的な問題もある。さらに、3.においては2.と同様の問題があり、特に、上流側に配置される物体が可変のもの(マスクやアパーチャ等)であったり、電気的にパターンを生成するものである場合に大掛かりな構成となる。
本発明は、上記課題に鑑みてなされたものであり、光学性能を損なうことなく、コンパクトで、かつ、高精度に、像を任意にシフトさせることが可能な機構を提供することを目的とする。
上記の課題を解決するため、請求項1の発明は、基板に光を照射する露光装置であって、光を出射する光源と、前記基板を保持する保持手段と、前記光源から出射された光をそれぞれ変調する複数の空間光変調デバイスと、それぞれの前記空間光変調デバイスに対応し、結像関係にある光学系の中の物空間または像空間に配置され、前記空間光変調デバイスで変調され生成された像を、前記基板の表面においてシフトさせる複数の像位置調整装置とを備え、前記像位置調整装置は、互いに逆向きに配置される頂角が略同一の2つのウエッジプリズムを有する光学系と、前記2つのウエッジプリズムの相対距離を変化させる調整機構とを備え、前記ウエッジプリズムの頂角αは、前記像の最大シフト量sと、前記調整機構による前記相対距離の最大変化量dと、前記ウエッジプリズムの屈折率nとに基づいて、前記調整機構が前記相対距離を変化させる可動範囲において、偏角が最小偏角の近傍となるように、α=(1/(n−1))×tan −1 (s/d)で決定されており、決定されており、前記最大シフト量sは、前記基板の表面において要求される前記像のシフト量と、前記基板の表面に結像するための倍率とに基づいて決定されている
また、請求項2の発明は、請求項1の発明に係る露光装置であって、前記調整機構が前記相対距離を変化させる可動範囲の中央位置において、非点隔差がほぼゼロとなる入射角となるように前記光学系の姿勢が決定されてい
また、請求項3の発明は、請求項1または2の発明に係る露光装置であって、前記像のシフト方向および光軸方向のいずれにも直交する第1軸を中心に、前記光学系を回転させる第1回転手段をさらに備え
また、請求項4の発明は、請求項1ないし3のいずれかの発明に係る露光装置であって、光軸方向に平行な第2軸を中心に、一方の前記ウエッジプリズムを回転させる第2回転手段をさらに備え
また、請求項5の発明は、請求項1ないし4のいずれかの発明に係る露光装置であって、前記像のシフト方向に平行な第3軸を中心に、一方の前記ウエッジプリズムを回転させる第3回転手段をさらに備え
また、請求項6の発明は、請求項1ないし5のいずれかの発明に係る露光装置であって、前記調整機構は、前記2つのウエッジプリズムのうちの少なくとも一方を光軸方向に移動させることにより前記相対距離を変化させ
また、請求項7の発明は、請求項1ないし6のいずれかの発明に係る露光装置であって、前記像面における像のシフト量に応じて、前記調整機構を制御する制御手段をさらに備え
請求項1ないし請求項7に記載の発明は、互いに逆向きに配置される頂角が略同一の2つのウエッジプリズムを有する光学系と、2つのウエッジプリズムの相対距離を変化させる調整機構とを備えることにより、簡易な構成で像をシフトさせることができる。また、像をシフトさせる方向に物を移動させる機構が不要なため、装置を小型化することができる。
また、請求項1ないし請求項7に記載の発明は、像の最大シフト量と、調整機構による相対距離の最大変化量とに基づいて、調整機構が相対距離を変化させる可動範囲において、偏角が最小偏角の近傍となるように2つのウエッジプリズムの頂角が決定されていることにより、調整による非点隔差の変動を抑制することができる。
請求項2に記載の発明は、調整機構が相対距離を変化させる可動範囲の中央位置において、非点隔差がほぼゼロとなる入射角となるように光学系の姿勢が決定されていることにより、非点隔差の絶対値を抑制することができる。
請求項3に記載の発明は、像のシフト方向および光軸方向のいずれにも直交する第1軸を中心に、光学系を回転させる第1回転手段をさらに備えることにより、像をシフトさせた後に、非点隔差をなくすように調整することができる。
請求項4に記載の発明は、光軸方向に平行な第2軸を中心に、一方のウエッジプリズムを回転させる第2回転手段をさらに備えることにより、像をシフトさせたときに、当該像が像面においてシフト方向に直交する方向にずれた場合、これを調整することができる。
請求項5に記載の発明は、像のシフト方向に平行な第3軸を中心に、一方のウエッジプリズムを回転させる第3回転手段をさらに備えることにより、像が像面において第3軸に対して傾いている場合に、これを調整することができる。
請求項7に記載の発明は、像面における像のシフト量に応じて、調整機構を制御する制御手段をさらに備えることにより、例えば、オペレータの目視による調整に比べて正確性および調整速度が向上する。
以下、本発明の好適な実施の形態について、添付の図面を参照しつつ、詳細に説明する。
<1. 第1の実施の形態>
<1−1. 光学装置2の構成>
図1は、発明に係る光学装置2を示す図である。なお、以下の説明では、図1に示すようにX軸、Y軸およびZ軸を定義する。
光学装置2は、可動ステージ20、露光ヘッド21および制御部22を備え、可動ステージ20に支持された基板9に微細なパターン(像)を露光する露光装置として構成されている。すなわち、基板9の表面は光学装置2にとっての像面に相当する。
可動ステージ20の上面は水平面に加工されており、基板9を水平姿勢で保持する機能を有している。可動ステージ20は、図示しない吸着口から吸引を行うことにより、載置された基板9の裏面を吸着して当該基板9を所定の位置に保持する。
また、可動ステージ20は、制御部22からの制御信号に応じて、X軸方向およびY軸方向に直線的に移動することが可能とされている。すなわち、詳細は省略するが、可動ステージ20は、基板9をY軸方向に移動させる主走査駆動機構と、基板9をX軸方向に移動させる副走査駆動機構とを備えている。このような機構としては、例えば、リニアモータを採用することができる。
これにより、光学装置2は、露光ヘッド21から出射される露光光を基板9の表面の任意の位置に照射することが可能とされている。このように、光学装置2から出射される露光光は基板9の表面を像面として結像される。
露光ヘッド21は、光を照射するランプである光源23、光源23から出射された光を導く照明光学系24、照明光学系24によって導かれた光を変調する空間光変調デバイス25および結像光学系26を備えている。
照明光学系24は、ミラー240、レンズ241、光学フィルタ242、ロッドインテグレータ243、レンズ244、ミラー245およびミラー246を備えている。
光源23から出射された光は、ミラー240およびレンズ241により光学フィルタ242に導かれ、光学フィルタ242の透過率に従って所望の光量に調整される。
光学フィルタ242を透過した光は、ロッドインテグレータ243、レンズ244、ミラー245を介してミラー246へと導かれる。ミラー246は、所定の曲面を有しており、ミラー245からの光を集光しつつ空間光変調デバイス25へと導く。ミラー246は、ミラー245からの光を所定の角度で空間光変調デバイス25に入射させる機能を有している。
このように、照明光学系24は、光源23から出射された光を適宜調整して空間光変調デバイス25に導く機能を有している。なお、照明光学系24が備える構成は本実施の形態に示す例に限定されるものではなく、光路上に適宜、別のレンズやミラー等の光学素子が配置されてもよい。
本実施の形態における空間光変調デバイス25は、DMD(デジタルマイクロミラーデバイス)である。空間光変調デバイス25は、微少なミラーが一面に多数配列したアレイ構造を有しており、制御部22からの制御信号に応じて、各ミラーの反射面の角度を変更することが可能となっている。そして、制御部22から「ON」信号を与えられたミラーに反射された光は結像光学系26に向かって反射されるが、「OFF」信号を与えられたミラーに反射された光は結像光学系26には向かわないように構成されている。
結像光学系26は、第1結像レンズ260、ミラー261、像位置調整装置1および第2結像レンズ262を備える。空間光変調デバイス25は、第1結像レンズ260によって第2結像レンズ262に入射するまでに一次像(中間像)を形成し、一次像は、第2結像レンズ262によって像面で結像して最終像となる。図1に示すように、本実施の形態における像位置調整装置1は、一次像と第2結像レンズ262の第1面との間に配置されている。
第1結像レンズ260およびミラー261によって導かれた光は、像位置調整装置1に入射する。以下の説明では、像位置調整装置1に入射する当該光を「入射光λi」と称する。詳細は後述するが、像位置調整装置1は、入射光λiをX軸方向に任意の距離だけシフトさせる機能を有している。以下の説明では、像位置調整装置1から出射する光(シフトした光)を「出射光λo」と称する。
このような構成により、結像光学系26は、空間光変調デバイス25によって変調された光を基板9の表面に導いて、像面に相当する当該表面の所望の位置に結像させる機能を有している。なお、以下では、第2結像レンズ262の倍率を「M」とする。
制御部22は、プログラムに従って動作することにより、各種データの演算や制御信号の生成を行い、光学装置2の各構成を制御する。例えば、基板9に露光するべき所望のパターンに応じて空間光変調デバイス25の各ミラーを制御したり、光源23のON・OFF制御、あるいは可動ステージ20の主走査方向および副走査方向の移動を制御する。
また、制御部22は、基板9の状態に応じて、像位置調整装置1を制御する。例えば、図示しない撮像カメラによって基板9に形成されたアライメントパターンを撮像し、基板9の位置ずれを検出する。そして、検出した位置ずれに応じて、必要なシフト量を求めて、像位置調整装置1を制御する。
なお、基板9の位置ずれとは、基板9の載置位置の位置ずれのみならず、基板9の熱膨張や収縮による歪みや撓みによる位置ずれ、基板9に形成されているパターンの位置ずれ等も含まれる。
<1−2. 像位置調整装置1の構成>
図2は、像位置調整装置1の構造を示す図である。なお、本実施の形態における像位置調整装置1は、所望されるシフト方向をX軸方向(副走査方向)としており、像位置調整装置1における光軸方向がZ軸方向となる。また、像位置調整装置1におけるシフト方向の像の最大シフト量(調整可能なシフト量)を「s」、第2ウエッジプリズム14の可動範囲幅(最大変化量)を「d」とする。
像位置調整装置1は、光学系10、調整機構11および像位置制御部12を備えており、後述するように、像を(−X)方向にシフトさせる機能を有する。
光学系10は、第1ウエッジプリズム13および第2ウエッジプリズム14を備えている。そして、第1ウエッジプリズム13と第2ウエッジプリズム14とは、略同一の構造(例えば、頂角α、屈折率nはいずれも同一)を有しており、図2に示すように、対向する面が互いに平行となるように、かつ、互いに逆向きに配置される。
詳細は図示しないが、調整機構11は、第2ウエッジプリズム14が固定される可動ステージと当該可動ステージをZ軸方向(光軸方向)に沿って直線的に移動させる駆動部とを備えている。そして、駆動部が可動ステージを移動させることにより、第1ウエッジプリズム13と第2ウエッジプリズム14との相対距離が変化する。このような駆動部としては、例えば、像位置制御部12によって制御される回転モータと、Z軸方向に平行に配置されるボールネジと、可動ステージに固定されるナット部とを有する直動機構を採用することができる。
像位置制御部12は、プログラムおよび制御部22からの制御信号に従って動作することにより、像位置調整装置1の各構成を制御する。特に、像位置制御部12は、制御部22から伝達されるシフト量に基づいて、調整機構11による第2ウエッジプリズム14の移動量を制御する。
図3は、光学系10を示す平面図である。なお、図3に二点鎖線で示す位置の第2ウエッジプリズム14は、最も(−Z)方向に第2ウエッジプリズム14を移動させた状態を示す。また、実線で示す位置の第2ウエッジプリズム14は、最も(+Z)方向に第2ウエッジプリズム14を移動させた状態を示す。
光学系10における第1ウエッジプリズム13は、入射する入射光λiが入射角i1(後述)となる姿勢で固定配置されている。そして、この姿勢の第1ウエッジプリズム13の出射面に対向するように、第2ウエッジプリズム14が逆向きの姿勢で配置される。そして、第1ウエッジプリズム13と第2ウエッジプリズム14との対向する面は互いに平行とされている。
図3に示すように、第1ウエッジプリズム13には、Z軸方向に進行する入射光λiが入射する。
第2ウエッジプリズム14が第1ウエッジプリズム13に密着するように配置されているとき(二点鎖線で示す位置にあるとき)、光学系10は平行平板と等価となり、出射される光は図3に示す出射光λo1となる。この出射光λo1の光軸はZ軸方向となり、入射光λiの光軸と平行となる。
このときの出射光λo1は、入射光λiよりも(−X)方向にδだけシフトしているが、第2ウエッジプリズム14はこれ以上(−Z)方向に移動させることはできない。したがって、光学系10は、入射光λiを少なくとも最小シフト量δだけはシフトさせることになる。しかし、この最小シフト量δは予め既知であるため、これを考慮して結像光学系26を設計することができる。
像位置調整装置1は、入射光λiを(−X)方向に、δ+s/2だけシフトさせた位置を基準位置とするように、入射光λiの位置が決定されている。これにより、本実施の形態における像位置調整装置1は、基準位置を中心にX軸方向に±s/2だけシフト調整することが可能な装置として設計されている。
一方、第2ウエッジプリズム14が実線で示される位置に移動したとき、第1ウエッジプリズム13からは光λmが出射される。このとき入射光λiの光軸と光λmの光軸とのなす角が第1ウエッジプリズム13の偏角θである。また、第2ウエッジプリズム14には第1ウエッジプリズム13から出射した光λmが入射し、出射光λo2が出射される。そして、出射光λo2の光軸は、出射光λo1と同様にZ軸方向となり、入射光λiの光軸と平行となる。
このときの出射光λo2は、入射光λiよりも(−X)方向にδ+sだけシフトしているが、第2ウエッジプリズム14はこれ以上(+Z)方向に移動させることはできない。したがって、光学系10は、入射光λiを最大でδ+sだけシフトさせることが可能である。しかし、先述のように、最小シフト量δは調整不能な範囲であるから、像位置調整装置1における最大シフト量は、先述のように「s」となる。
以上のように、本実施の形態における像位置調整装置1は、第1ウエッジプリズム13と第2ウエッジプリズム14との相対距離を変化させることによって、入射光λiによる像の位置を一次元方向(シフト方向:X軸方向)に調整することができる。このとき、必要となる動きは、第2ウエッジプリズム14を光軸方向に直線的に移動させるだけなので、比較的単純、かつ、小型の構成で実現することができる。
<1−3. 設計方法>
次に、第1の実施の形態における像位置調整装置1の第1ウエッジプリズム13(第2ウエッジプリズム14)の頂角αと、これらの姿勢を決定するために必要な入射角i1とを最適に決定する設計方法について説明する。
図4は、一般的な三角プリズム8に光が入射する様子を示す図である。ここで、三角プリズム8の角αは、第1ウエッジプリズム13(第2ウエッジプリズム14)の頂角αに相当し、三角プリズム8の屈折率は、第1ウエッジプリズム13(第2ウエッジプリズム14)の屈折率nに等しいものとする。また、各i2,r1,r2を図4に示すように定義し、像面(基板9の表面)において要求される最大のシフト量(最大実シフト量)を「S」とする。
なお、最大実シフト量Sは、光学装置2において調整可能な最大のシフト量となる値であるから、例えば、光学装置2に対する要求スペックから任意に決定することができる。また、可動範囲dは、光軸方向にどれだけの空間を設けられるかによって決定される値であり、結像光学系26に組み込むことが可能な像位置調整装置1のサイズ等から任意に決定することができる。
まず、頂角αを求める手法について説明する。像位置調整装置1における最大シフト量s、可動範囲dおよび偏角θには式1の関係が成立する。
Figure 0005230236
次に、三角プリズム8において、各境界面での屈折の公式と偏角の定義により、式2、式3、式4および式5が成立する。
Figure 0005230236
Figure 0005230236
Figure 0005230236
Figure 0005230236
次に、式5を入射角i1で微分することにより、式6を得る。
Figure 0005230236
図5は、入射角i1と偏角θとの関係および入射角i1とdθ/di1との関係を示す図である。なお、図5は、α=10[deg]の場合を示している。
図5によれば、入射角i1を変化させた場合、偏角θには極小値(最小偏角)が存在することがわかる。
一般に、偏角θが最小偏角となるように入射角i1を決定すると、第2ウエッジプリズム14の移動による非点隔差の変動を抑制することができる。一方、図5から明らかなように、偏角θが最小偏角(極小値)となるのは、dθ/di1=0(式6の右辺の値が「0」)となるときである。このことから、偏角θが最小偏角となるときには、i1=i2,r1=r2の関係が成立することがわかる。このようにして得られたr1=r2と、式3から式7が求まる。
Figure 0005230236
さらに、i1=i2からsini1=sini2の関係が成立し、式2および式4に式7を代入すると式8が求まる。
Figure 0005230236
収差の発生を考慮すると、三角プリズム8(第1ウエッジプリズム13)において頂角αは、小さい方が望ましい(ただしdを無視した場合)。したがって、頂角αを小さく設計するならば、sinα≒αという近似関係が成立する。また、入射角i1も小さいため、同様の近似関係が成立し、sini1≒i1である。
これらの近似関係を式8に代入すると、式9が求まる。
Figure 0005230236
そして、式9を式5に代入すると、式10が求まる。
Figure 0005230236
また、式10を式1に代入すると、式11が求まる。
Figure 0005230236
なお、本実施の形態では、図1に示すように、光学系10(像位置調整装置1)と像面との間に第2結像レンズ262が配置されている。言い換えれば、物体(あるいはこれに対応する像)と第2結像レンズ262の第1面までの間(物空間)に像位置調整装置1が配置される。したがって、当該第2結像レンズ262の倍率Mにより、s=S/Mの関係が成立する。したがって、頂角αを像面において要求される最大実シフト量S(光学装置2に要求されるシフト量)を用いて表せば、式12となる。
Figure 0005230236
なお、像位置調整装置1は、第2結像レンズ262の最終面と像面との間(すなわち像空間)に配置することも可能であり、その場合は、s=Sの関係が成立する。
このように、本実施の形態における第1ウエッジプリズム13および第2ウエッジプリズム14の頂角αは、像位置調整装置1に要求される最大シフト量sと、当該最大シフト量sを実現するために許容される第2ウエッジプリズム14の可動範囲dとに基づいて、式11によって求めることができる。
以下、本実施の形態では、第2結像レンズ262の倍率Mを0.1[倍]、像面で要求される最大実シフト量Sを0.25[mm](すなわち、最大シフト量sは、2.5[mm])、第1ウエッジプリズム13(第2ウエッジプリズム14)の屈折率nを1.476、第2ウエッジプリズム14の可動範囲dを30[mm]とする。これらの数値から頂角αを求めれば、α≒10[deg]となる。
このように第1ウエッジプリズム13および第2ウエッジプリズム14の頂角αを設計することにより、像位置調整装置1において像の位置を調整するときにおいて、偏角θが最小偏角付近となり、かつ可動範囲全域を利用することができるように、頂角αを最適化できる。
次に、像位置調整装置1における第1ウエッジプリズム13(第2ウエッジプリズム14)のY軸周りの回転姿勢を決定するための入射角i1を決定する手法について説明する。
図6は、第2ウエッジプリズム14を調整機構11によって光軸方向に移動させたときの非点隔差の変化を示す図である。図6は、頂角αが「10[deg]」の場合を図示している。また、図6に示す6つのグラフは、入射角が5.3,6.245,6.5,6.8,7.391,8.3[deg]のときの非点隔差の変化をそれぞれ示している。
上記の式5および式8によって最小偏角となる偏角θは「4.782[deg]」であり、偏角θが最小偏角となるときの入射角は「7.391[deg]」である。図6において入射角=7.391[deg]のグラフを見れば、第2ウエッジプリズム14を移動させたときの非点隔差の変動はほぼ「0」となっており、偏角θが最小偏角となるように入射角i1を決定すれば、第2ウエッジプリズム14を移動させることに伴う非点隔差の変動を最小限に抑制することができることがわかる。
しかしながら、このときの非点隔差の値は、第1ウエッジプリズム13と第2ウエッジプリズム14との相対距離が「0」(平行平板と等価な状態)における非点隔差となり、必ずしも小さい値とはならない。図6を見れば、このときの非点隔差の絶対値は、約0.0012[mm]となっている。
本実施の形態では、第2ウエッジプリズム14を可動範囲dの中央の位置(出射光λoが基準位置となる位置)にセットした状態で、偏角θが最小偏角となる光学系10のY軸周りの回転姿勢から入射角を少しずつ小さくする方向に光学系10のY軸周りの回転姿勢を変化させて、非点隔差が「0」となるときの入射角をシミュレーションにより求める。
図6を見れば、偏角θが最小偏角となる入射角(=7.391[deg])から入射角を減少させると、徐々に、非点隔差の絶対値が減少し、シフト量が「0」のときに非点隔差が「0」となるのは入射角が「6.245[deg]」のグラフであることがわかる。そして、入射角「6.25[deg]」を境に、非点隔差の絶対値が再び増加することもわかる。
したがって、本実施の形態における像位置調整装置1では、入射角i1を「6.245[deg]」となるように、第1ウエッジプリズム13および第2ウエッジプリズム14のY軸周りの回転姿勢を決定する。このように第1ウエッジプリズム13および第2ウエッジプリズム14のY軸周りの回転姿勢を最適化することにより、像位置調整装置1における像の位置調整が不要の場合(基準位置の場合)には非点隔差をほぼ「0」とすることができるとともに、位置調整を行った場合にも、発生する非点隔差を最小限に抑制することができ、光学性能を損なうことなく像をシフトさせることができる。
<2. 第2の実施の形態>
第1の実施の形態における光学装置2は1つの像位置調整装置1を備えていたが、像位置調整装置1が組み込まれる装置はこのような装置に限定されるものではない。
図7は、第2の実施の形態における光学装置3を示す図である。
光学装置3は、光学装置3の構成の基台となるベース30、ベース30の上面に掛け渡された架橋構造のフレーム31および基板9を保持する保持部32を備えている。
保持部32は、ステージ320、第1プレート321、および第2プレート322を備えており、光学装置3における被処理対象物である基板9を所定の姿勢で保持する機能を有している。
ステージ320の上面は水平面とされており、図示しない吸着口から吸引を行うことにより、基板9を吸着して、当該基板9を水平姿勢で保持する。第1プレート321には、回転機構35を介してステージ320が取り付けられる。すなわち、第1プレート321とステージ320とは回転機構35の回転軸を中心として回転自在に取り付けられている。第2プレート322の上面には、副走査機構34が設けられており、第2プレート322と第1プレート321とは副走査機構34を介して取り付けられている。さらに、第2プレート322は主走査機構33を介してベース30に取り付けられている。
主走査機構33は、リニアモータ330と、一対のガイド331とを備えている。リニアモータ330は、ベース30の上面に固設される固定子と、第2プレート322の裏面に取り付けられる移動子とを備えており、当該移動子と当該固定子との電磁的相互作用によって第2プレート322をY軸方向に移動させる駆動力を生成する。一対のガイド331は、Y軸方向に長手方向を有する部材であって、X軸方向の両側に分かれてそれぞれがベース30に固設されている。ガイド331は、第2プレート322の裏面と迎合しており、第2プレート322の移動方向を規制する機能を有している。
このような構造により、主走査機構33は、制御部38からの制御信号に応じて、第2プレート322をY軸方向に移動させることにより、基板9を描画ヘッド37に対して相対的に移動させ、主走査方向の走査を実現する。
副走査機構34は、リニアモータ340と、一対のガイド341とを備えている。リニアモータ340は、第2プレート322の上面に固設される固定子と、第1プレート321の裏面に取り付けられる移動子とを備えており、当該移動子と当該固定子との電磁的相互作用によって第1プレート321をX軸方向に移動させる駆動力を生成する。一対のガイド341は、X軸方向に長手方向を有する部材であって、Y軸方向の両側に分かれてそれぞれが第2プレート322に固設されている。ガイド341は、第1プレート321の裏面と迎合しており、第1プレート321の移動方向を規制する機能を有している。
このような構造により、副走査機構34は、制御部38からの制御信号に応じて、第1プレート321をX軸方向に移動させることにより、基板9を描画ヘッド37に対して相対的に移動させ、副走査方向の走査を実現する。
回転機構35は、上端がステージ320の裏面中央に固設されるZ軸に平行な回転軸と、当該回転軸を回動させるモータとを備えている。回転機構35が当該モータによって回動軸を回転させると、ステージ320が水平姿勢のまま、当該回転軸を中心に回動する。
図8は、第2の実施の形態における光源部36および描画ヘッド37を示す図である。図7では図示を省略しているが、光源部36は、各描画ヘッド37ごとに設けられている。
詳細は図示しないが、光源部36は、レーザ駆動部と、レーザ発振器と、照明光学系とから構成されている。制御部38からの制御信号に基づいてレーザ駆動部が動作すると、レーザ発振器からパルス光が発振され、発振されたパルス光は照明光学系を介して描画ヘッド37へと導かれる。
複数の描画ヘッド37(図7では7つの描画ヘッド37を図示している)は、X軸方向に配列した状態でフレーム31に固設されており、それぞれが保持部32に保持された基板9の表面に対向するように配置されている。
各描画ヘッド37は、光源部36から入射したパルス光の出射方向をZ軸方向となるように調整する出射部370、パルス光を所望のパターンに応じて部分的に遮光するアパーチャユニット371、基板9の表面(像面)における像の位置を調整する像位置調整装置1および結像レンズ372を備えている。すなわち、光学装置3では、像位置調整装置1および結像レンズ372が結像光学系を構成している。
図9は、基板9の表面における像をシフトさせる例を概略的に示す図である。図9の左側に示す基板90は正常な状態の基板9であり、右側に示す基板91は熱により膨張してX軸方向のサイズが変化した基板9を示す。
小領域92ないし98は、各描画ヘッド37から出射されるパルス光の基準となる結像位置を示している。また、像99は、小領域92の中央部に描画される像(描画パターン)を示す。
正常な状態の基板90に対して描画するときは、各像位置調整装置1によるシフト量は「0」に調整され、各描画ヘッド37による像は、基準位置に結像される。一方、X軸方向のサイズが膨張により変化した基板91に対して、基板90の場合と同じ位置に像を結像させると、小領域92ないし98における像の位置がずれることになる。図9に波線で示す像99bは、像99をシフトさせることなく、同じ位置に結像させた場合の位置を示す。
しかし、光学装置3は、各描画ヘッド37がそれぞれに像位置調整装置1を備えているので、基板91の膨張に応じて、像99が小領域92の中央に結像されるように、(−X)方向に出射光をシフトさせ、基板91の小領域92aの中央に像99aを結像させることが可能である。
なお、パルス光を所望のパターンの光束にする構成としてアパーチャユニット371を用いる例で説明したが、例えば、アパーチャユニット371の代わりに、基準となるパターンが形成されたマスク等を用いてもよい。また、回折格子型の空間光変調素子を用いてもよい。
以上のように、第2の実施の形態における光学装置3のように、複数の像位置調整装置1を備えることによって、複数の描画ヘッド37のピッチを揃えたりすることも可能である。
<3. 第3の実施の形態>
上記実施の形態における像位置調整装置1は、調整機構11によって第2ウエッジプリズム14のZ軸方向の位置を調整することによって像のX軸方向の位置のみ調整が可能とされていた。しかし、像位置調整装置1に他の駆動機構を設けることにより、他の様々状態を調整することも可能である。
図10は、第3の実施の形態における像位置調整装置1aの構造を示す図である。像位置調整装置1aは、第1回転機構15、第2回転機構16および第3回転機構17を備えている点が、上記実施の形態における像位置調整装置1と異なっている。
第1回転機構15は、Y軸を中心に光学系10を回転させる機構である。Y軸は、シフト方向に平行なX軸と、光軸方向に平行なZ軸とに直交する軸である。したがって、Y軸は本発明における第1軸に相当し、第1回転機構15は本発明における第1回転手段に相当する。
上記実施の形態における像位置調整装置1では、シフト量が「0」のときに非点隔差が「0」となるように設計されていた。したがって、第2ウエッジプリズム14を中央位置から移動させて像の位置をシフトさせると、その値が小さいくなるように抑制はされているものの、必ず非点隔差は生じる。
本実施の形態における像位置調整装置1aは、像の位置を調整した後に(第2ウエッジプリズム14の位置を調整した後に)、非点隔差が「0」となるように、第1回転機構15によって光学系10を回転させることにより入射角i1を微調整する。これにより、シフト量にかかわらず、非点隔差の発生を抑制できる。
第2回転機構16は、Z軸を中心に一方のウエッジプリズム(第1ウエッジプリズム13または第2ウエッジプリズム14のうちの一方)を回転させる機構である。先述のように、Z軸は光軸方向に平行な軸である。したがって、Z軸は本発明における第2軸に相当し、第2回転機構16は本発明における第2回転手段に相当する。
第1ウエッジプリズム13や第2ウエッジプリズム14の加工精度等の原因によって、第2ウエッジプリズム14を移動させると、像面における像がY軸方向にずれる場合がある。このような場合、像位置調整装置1は、第2回転機構16によって一方のウエッジプリズムをZ軸を中心に回転させることにより、Y軸方向に発生したずれを補正することができる。したがって、像位置調整装置1aは、より高精度に、像をX軸方向(一次元方向)にシフトさせることができる。
第3回転機構17は、X軸を中心に一方のウエッジプリズムを回転させる機構である。先述のように、X軸はシフト方向に平行な軸である。したがって、X軸は本発明における第3軸に相当し、第3回転機構17は本発明における第3回転手段に相当する。
像が像面において本来のX軸から傾いている場合には、第3回転機構17によって一方のウエッジプリズムをX軸を中心に回転させることにより、この傾きを補正できる。
なお、図10では、第3回転機構17の回転軸(X軸)、第1回転機構15の回転軸(Y軸)、第2回転機構16の回転軸(Z軸)は、1点で交わるように設定されているが、これらの軸は互いに交差しなくてもよい。また、交点の位置は、図10に示される位置に限定されるものではない。
<4. 変形例>
以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく様々な変形が可能である。
例えば、像位置調整装置1によって像の位置を調整しなければならなくなる原因は上記実施の形態に挙げたものに限定されるものではない。例えば、光学装置2の結像光学系26における製造誤差や、光学装置3の複数の描画ヘッド37のヘッド間差を補正するものであってもよい。
また、像位置調整装置1による像の位置調整は、他の位置調整手法と併用されてもよい。例えば、第1の実施の形態における光学装置2において、X軸方向のずれを、可動ステージ20の副走査方向の移動により大きく補正しつつ、像位置調整装置1による微調整を行うように構成してもよい。
また、上記実施の形態では、露光装置として構成される光学装置2や描画装置として構成される光学装置3に像位置調整装置1を組み込む例について説明したが、像位置調整装置1の用途はこれに限定されるものではない。例えば、像位置調整装置1は、ずれ量を測定する検出装置に応用することも可能である。すなわち、実像(被写体)を示す入射光λi像面(CCD)における基準像に一致させるために、基準位置からどれだけ第2ウエッジプリズム14を移動させる必要があったかに基づいて、実像のずれ量を測定することも可能である。
また、基板9としては、カラーフィルタ用の基板、液晶表示装置やプラズマ表示装置等のフラットパネルディスプレス(FDP)用のガラス基板、半導体基板、プリント基板などが該当するが、もちろんこれに限定されるものではない。
発明に係る光学装置を示す図である。 像位置調整装置の構造を示す図である。 光学系を示す平面図である。 一般的な三角プリズムに光が入射する様子を示す図である。 入射角と偏角との関係および入射角とdθ/di1との関係を示す図である。 第2ウエッジプリズムを調整機構によって光軸方向に移動させたときの非点隔差の変化を示す図である。 第2の実施の形態における光学装置を示す図である。 第2の実施の形態における光源部および描画ヘッドを示す図である。 基板の表面における像をシフトさせる例を概略的に示す図である。 第3の実施の形態における像位置調整装置の構造を示す図である。
符号の説明
1,1a 像位置調整装置
10 光学系
11 調整機構
12 像位置制御部
13 第1ウエッジプリズム
14 第2ウエッジプリズム
15 第1回転機構
16 第2回転機構
17 第3回転機構
2,3 光学装置
20 可動ステージ
21 露光ヘッド
22 制御部
23 光源
24 照明光学系
25 空間光変調デバイス
26 結像光学系
30 ベース
32 保持部
33 主走査機構
34 副走査機構
36 光源部
37 描画ヘッド
371 アパーチャユニット
372 結像レンズ
38 制御部
9 基板

Claims (7)

  1. 基板に光を照射する露光装置であって、
    光を出射する光源と、
    前記基板を保持する保持手段と、
    前記光源から出射された光をそれぞれ変調する複数の空間光変調デバイスと、
    それぞれの前記空間光変調デバイスに対応し、結像関係にある光学系の中の物空間または像空間に配置され、前記空間光変調デバイスで変調され生成された像を、前記基板の表面においてシフトさせる複数の像位置調整装置と、
    を備え、
    前記像位置調整装置は、
    互いに逆向きに配置される頂角が略同一の2つのウエッジプリズムを有する光学系と、
    前記2つのウエッジプリズムの相対距離を変化させる調整機構と、
    を備え
    前記ウエッジプリズムの頂角αは、前記像の最大シフト量sと、前記調整機構による前記相対距離の最大変化量dと、前記ウエッジプリズムの屈折率nとに基づいて、前記調整機構が前記相対距離を変化させる可動範囲において、偏角が最小偏角の近傍となるように、α=(1/(n−1))×tan −1 (s/d)で決定されており、
    前記最大シフト量sは、前記基板の表面において要求される前記像のシフト量と、前記基板の表面に結像するための倍率とに基づいて決定されている露光装置
  2. 請求項1に記載の露光装置であって、
    前記調整機構が前記相対距離を変化させる可動範囲の中央位置において、非点隔差がほぼゼロとなる入射角となるように前記光学系の姿勢が決定されている露光装置
  3. 請求項1または2に記載の露光装置であって、
    前記像のシフト方向および光軸方向のいずれにも直交する第1軸を中心に、前記光学系を回転させる第1回転手段をさらに備える露光装置
  4. 請求項1ないし3のいずれかに記載の露光装置であって、
    光軸方向に平行な第2軸を中心に、一方の前記ウエッジプリズムを回転させる第2回転手段をさらに備える露光装置
  5. 請求項1ないし4のいずれかに記載の露光装置であって、
    前記像のシフト方向に平行な第3軸を中心に、一方の前記ウエッジプリズムを回転させる第3回転手段をさらに備える露光装置
  6. 請求項1ないし5のいずれかに記載の露光装置であって、
    前記調整機構は、前記2つのウエッジプリズムのうちの少なくとも一方を光軸方向に移動させることにより前記相対距離を変化させる露光装置
  7. 請求項1ないし6のいずれかに記載の露光装置であって、
    前記基板の表面における像のシフト量に応じて、前記調整機構を制御する制御手段をさらに備える露光装置
JP2008089066A 2008-03-31 2008-03-31 露光装置 Active JP5230236B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008089066A JP5230236B2 (ja) 2008-03-31 2008-03-31 露光装置
TW97143383A TWI397787B (zh) 2008-03-31 2008-11-10 Exposure device
CN 200810181722 CN101551508B (zh) 2008-03-31 2008-12-04 像位置调整装置以及光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089066A JP5230236B2 (ja) 2008-03-31 2008-03-31 露光装置

Publications (2)

Publication Number Publication Date
JP2009244446A JP2009244446A (ja) 2009-10-22
JP5230236B2 true JP5230236B2 (ja) 2013-07-10

Family

ID=41155838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089066A Active JP5230236B2 (ja) 2008-03-31 2008-03-31 露光装置

Country Status (3)

Country Link
JP (1) JP5230236B2 (ja)
CN (1) CN101551508B (ja)
TW (1) TWI397787B (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703069B2 (ja) 2010-09-30 2015-04-15 株式会社Screenホールディングス 描画装置および描画方法
JP2013069850A (ja) * 2011-09-22 2013-04-18 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
NL2009806A (en) * 2011-12-05 2013-06-10 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
KR101259327B1 (ko) 2012-04-09 2013-05-06 포항공과대학교 산학협력단 자체상관기
CN103365103B (zh) * 2012-04-10 2015-09-30 上海微电子装备有限公司 一种调焦调平装置及调焦调平方法
CN102914870A (zh) * 2012-11-08 2013-02-06 中国电子科技集团公司第十一研究所 基于楔形棱镜补偿光学焦平面的装置
CN103488062B (zh) * 2013-10-14 2017-04-05 天津津芯微电子科技有限公司 一种可双向滑动楔形棱镜聚焦装置
JP5927711B1 (ja) * 2014-06-19 2016-06-01 アキム株式会社 レンズ素子搬送機構、コントローラ、光軸調整装置並びに、光学モジュール製造設備及びその製造方法
CN105549327B (zh) * 2014-10-29 2018-03-02 上海微电子装备(集团)股份有限公司 曝光装置的调整装置及调整方法
CN112166366B (zh) * 2018-06-04 2022-12-06 三菱电机株式会社 光照射装置
CN110737098B (zh) * 2018-07-19 2021-08-17 上海微电子装备(集团)股份有限公司 一种分光装置
TWI707130B (zh) * 2019-12-31 2020-10-11 由田新技股份有限公司 移載裝置、光學檢測設備及光學檢測方法
CN112025088B (zh) * 2020-08-06 2022-04-15 武汉华工激光工程有限责任公司 一种激光光束像散补偿方法及激光加工系统
JP2023142214A (ja) * 2022-03-24 2023-10-05 株式会社Screenホールディングス 光学装置、露光装置および露光方法
CN116338943A (zh) * 2023-02-23 2023-06-27 上海御微半导体技术有限公司 基于棱镜组的像差补偿方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD203786A1 (de) * 1981-11-02 1983-11-02 Guenter Schoeppe Anordnung fuer interferenzmikroskope
JPH0735992A (ja) * 1993-07-16 1995-02-07 Tochigi Nikon:Kk 固体撮像装置
JP3359123B2 (ja) * 1993-09-20 2002-12-24 キヤノン株式会社 収差補正光学系
JPH07104278A (ja) * 1993-09-30 1995-04-21 Sony Corp 光軸変換装置及びビデオプロジェクター
CN1314978C (zh) * 2002-04-26 2007-05-09 国际商业机器公司 偏振光束分离器
JP2004319899A (ja) * 2003-04-18 2004-11-11 Nikon Corp 露光装置及び露光方法
JP4244156B2 (ja) * 2003-05-07 2009-03-25 富士フイルム株式会社 投影露光装置
US8009271B2 (en) * 2004-12-16 2011-08-30 Nikon Corporation Projection optical system, exposure apparatus, exposure system, and exposure method
JP4858439B2 (ja) * 2005-01-25 2012-01-18 株式会社ニコン 露光装置及び露光方法並びにマイクロデバイスの製造方法
JP2006261155A (ja) * 2005-03-15 2006-09-28 Fuji Photo Film Co Ltd 露光装置及び露光方法
JP2006329744A (ja) * 2005-05-25 2006-12-07 Nec Corp 赤外線誘導装置

Also Published As

Publication number Publication date
CN101551508B (zh) 2013-09-04
JP2009244446A (ja) 2009-10-22
CN101551508A (zh) 2009-10-07
TW200941154A (en) 2009-10-01
TWI397787B (zh) 2013-06-01

Similar Documents

Publication Publication Date Title
JP5230236B2 (ja) 露光装置
US20060018560A1 (en) Exposure device and exposure method
KR100907779B1 (ko) 기판 이동 장치
KR20140052840A (ko) 레이저 조사 유닛 및 레이저 가공 장치
JP5096852B2 (ja) 線幅測定装置および線幅測定装置の検査方法
US5523574A (en) Exposure apparatus
JP2010087310A (ja) 露光装置およびデバイス製造方法
KR102372650B1 (ko) 투영 광학계, 노광 장치, 물품의 제조 방법, 및 조정 방법
JP3279979B2 (ja) ウエハとマスクとの位置検出装置及び変形誤差検出方法
KR101870001B1 (ko) 노광 장치, 노광 방법 및 디바이스의 제조 방법
KR20200049528A (ko) 노광장치, 및 물품 제조방법
JP6139870B2 (ja) 露光方法、露光装置および物品の製造方法
KR101012579B1 (ko) 이미지 위치 조정 장치 및 광학 장치
JP7075302B2 (ja) 光学装置、投影光学系、露光装置、および物品の製造方法
JP7178932B2 (ja) 露光装置、および物品製造方法
TWI827384B (zh) 光學裝置、曝光裝置及曝光方法
WO2022220211A1 (ja) 描画装置および描画方法
JP4224805B2 (ja) 投影露光光学系および投影露光装置
WO2024057622A1 (ja) 光学装置、露光装置および露光方法
JP2024041379A (ja) 描画装置
JP2008304834A (ja) パターン描画装置および歪み補正方法
JPH10242037A (ja) 斜光軸光学系を用いた位置検出装置及び方法
JP3967330B2 (ja) レーザ加工装置及びレーザ加工方法
JPH0752712B2 (ja) 露光装置
JP4051204B2 (ja) 投影露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250