JP5174995B2 - 焦電素子 - Google Patents

焦電素子 Download PDF

Info

Publication number
JP5174995B2
JP5174995B2 JP2012540974A JP2012540974A JP5174995B2 JP 5174995 B2 JP5174995 B2 JP 5174995B2 JP 2012540974 A JP2012540974 A JP 2012540974A JP 2012540974 A JP2012540974 A JP 2012540974A JP 5174995 B2 JP5174995 B2 JP 5174995B2
Authority
JP
Japan
Prior art keywords
pyroelectric
substrate
cut
metal layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012540974A
Other languages
English (en)
Other versions
JPWO2012114579A1 (ja
Inventor
知義 多井
健司 鈴木
順悟 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2012540974A priority Critical patent/JP5174995B2/ja
Application granted granted Critical
Publication of JP5174995B2 publication Critical patent/JP5174995B2/ja
Publication of JPWO2012114579A1 publication Critical patent/JPWO2012114579A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • H10N15/15Thermoelectric active materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、焦電素子に関する。
セキュリティー用やガス検知用の赤外線検出器として、焦電素子が用いられている。焦電素子は、焦電基板と、該焦電基板の表裏に設けられた一対の電極とを備えている。焦電素子の表面に赤外線が照射されると、焦電基板の温度が上昇する。すると、その温度変化に応じて自発分極が変化して焦電基板の表面では電荷の平衡状態が崩れ、電荷が発生する。発生した電荷を一対の電極に接続された導線を介して取り出すことで、赤外線を検出する。
ところで、焦電素子は、焦電基板として、焦電係数が大きく性能指数が高いタンタル酸リチウム(LiTaO3,以下「LT」と略すことがある)を用いたものが知られている(例えば特許文献1)。このようにLTを用いた焦電素子では、ポップコーンノイズと呼ばれる突発的なノイズの発生が問題となる。ポップコーンノイズは焦電基板の表面に蓄積した電荷が高電圧になり放電されることが原因と考えられる。こうしたポップコーンノイズの発生を抑制する技術がいくつか開発されている(例えば特許文献2,3)。特許文献2には、受光部の周囲3方向をくり抜き、熱変化を加えた時に生じる応力集中を抑制し、その結果、ポップコーンノイズの発生を著しく軽減できると記載されている。特許文献3には、焦電基板の体積抵抗率を1×1010〜1×1013Ωcmとすると、温度変化により電荷が発生しても、発生した電荷は焦電基板内を通って速やかに消滅するため、焦電基板の表面は、高電圧にならず、放電性が抑制され、ポップコーンノイズが低減できると記載されている。
特開平6−160194 特開平10−2793 特開2006−203009
しかしながら、特許文献2では、焦電基板をサンドブラストによりくり抜くため工程数が増加するし、加工ばらつきによる感度のばらつきが発生するという問題があった。また、特許文献3では、体積抵抗率を小さくすることにより、焦電性が劣化し感度が低下するという問題があった。このため、ポップコーンノイズの発生を容易に抑制することが求められている。また、ポップコーンノイズの発生を抑制できたとしても、S/N比が大きく低下したのでは実用上問題があるため、S/N比の低下も合わせて抑制することが求められている。
本発明は、このような問題を解決するためになされたものであり、S/N比を大きく低下させることなく、ポップコーンノイズの発生を容易に抑制することを主目的とする。
本発明者らが鋭意研究したところ、焦電基板としてLT基板を用いる場合、従来は焦電係数の大きいZ板(電極面の法線方向が単結晶のZ軸と一致するLT基板)が用いられていたが、その焦電係数が大きいことが災いしてポップコーンノイズが発生していることを究明した。そして、焦電基板として、LT単結晶であってZ板ではなく所定のカット角を有するYオフカット板を用いていれば、ポップコーンノイズの発生を抑制できると共にS/N比の低下も合わせて抑制できることを見いだし、本発明を完成するに至った。
本発明の焦電素子は、
結晶軸としてX軸、Y軸及びZ軸を有するタンタル酸リチウムの単結晶基板である焦電基板と、該焦電基板の表裏に設けられた一対の電極とを備えた焦電素子であって、
前記焦電基板は、前記タンタル酸リチウムの単結晶を、前記電極の面に沿った方向と一致する前記X軸の回りに、前記Y軸から前記Z軸方向にカット角θだけ回転させた角度で切り出したYオフカット板であり、前記カット角θは30〜60°,120〜150°である。
カット角θは、通常、0〜180°の範囲で設定される。カット角θが90°の基板は、基板表面の法線方向とZ軸とが一致するものであり、これをZ板と称する。カット角θが0°あるいは180°の基板は、基板表面の法線方向とY軸とが一致するものであり、これをY板と称する。そして、カット角θが0°<θ<90°、90°<θ<180°の基板をYオフカット板と称する。LT単結晶からなる焦電基板は、Z軸方向に焦電電荷が発生するため、電極面の法線方向とZ軸とが一致するZ板の場合に最も焦電係数が大きくなり、Yオフカット板の場合にはZ板よりも焦電係数が小さくなる。また、Yオフカット板において、カット角θが0°<θ<90°の範囲内にあるときには、カット角θが小さいほど、電極面の法線方向とZ軸とのなす角度が大きくなるため、焦電係数は小さくなる。また、カット角が90°<θ<180°の範囲内にあるときには、カット角θが大きいほど、電極面の法線方向とZ軸とのなす角度が大きくなるため、焦電係数は小さくなる。
今回、カット角θが0°<θ<90°の範囲内にあるとき、60°以下であればポップコーンノイズの発生を抑制できることがわかった。つまり、カット角θが60°のときの焦電係数と同じかそれより小さければ、ポップコーンノイズの発生を抑制できることがわかった。この結果から、カット角θが90°<θ<180°の範囲内にあるときには、120°以上であればポップコーンノイズの発生を抑制できるといえる。電極面の法線方向とZ軸とのなす角度は、カット角θが60°のときと120°のときとで同じであるため、焦電係数が同じ値になるからである。一方、カット角θが0°<θ<90°の範囲内にあるとき、30°以上であれば、S/N比を基板厚40μm以上のZ板を使用した場合の50%以上に維持できることがわかった。この結果から、カット角θが90°<θ<180°の範囲内にあるときには、150°以下であれば、S/N比を基板厚40μm以上のZ板を使用した場合の50%以上に維持できるといえる。以上のことから、カット角θが30°〜60°、120〜150°であれば、ポップコーンノイズの発生を抑制しつつ、S/N比の低下も抑制することができる。
本発明の焦電素子において、Yオフカット板の厚さは10μm以下(例えば1〜10μm)とするのが好ましい。Yオフカット板の厚さは1〜10μmではS/N比はZ板とほぼ同等の一定の値となるが、10μmを超えて厚くなるにつれてS/N比が低下する傾向を示す。ちなみに、Yオフカット板の厚さが5〜100μmの範囲では、電圧感度はZ板と比べてわずかに小さい、ほぼ一定の値となり、5μm未満の範囲では、厚さが小さくなるにつれて電圧感度は小さくなる傾向を示す。
第1実施形態の焦電素子10の概略斜視図である。 図1のA−A断面図である。 焦電基板20に使用されるYオフカット板のカット角の説明図である。 焦電素子10の受光部61,62の電気的な接続状態を示す回路図である。 焦電素子10の製造工程を模式的に示す断面図である。 第2実施形態の焦電素子210の概略斜視図である。 図6のB−B断面図である。 第2実施形態の焦電素子210の作製手順を示す説明図である。 ポップコーンノイズの測定の際に行ったヒートサイクルの説明図である。 電圧感度とS/N比を測定した実験系の説明図である。
[第1実施形態]
図1は第1実施形態の焦電素子10の概略斜視図、図2は図1のA−A断面図、図3は焦電基板20に使用されるYオフカット板のカット角の説明図である。
焦電素子10は、2つの受光部61,62(図2参照)を備えたデュアルタイプの焦電素子として構成されている。この焦電素子10は、焦電基板20と、この焦電基板20を支持する支持部材30と、焦電基板20の表面に設けられた表面金属層40と、焦電基板20の裏面に設けられた裏面金属層50とを備えている。
焦電基板20は、結晶軸としてX軸、Y軸及びZ軸を有するLT単結晶の基板である。この焦電基板20は、図3に示すように、LT単結晶を、基板表面(電極面)に沿った方向と一致するX軸の回りに、Y軸からZ軸方向にカット角θだけ回転させた角度で切り出したYオフカット板である。このYオフカット板は、電極面に沿う方向をX1,電極面の法線方向をX2,X1とX2の両方に直交する軸をX3としたとき、X1はX軸と一致し、X2はX軸の回りにY軸からZ軸方向にカット角θだけ回転させた軸であり、X3はその回転に伴ってZ軸からカット角θだけ回転させた軸である。カット角θは、30〜60°の範囲内又は120〜150°の範囲内で設定されている。X2とZ軸とのなす角度(90°−θ)がゼロに近いほど、つまり、カット角θが90°に近いほど、焦電係数は大きくなることが知られている。また、カット角θのYオフカット板とカット角(180°−θ)のYオフカット板とは、X2とZ軸とのなす角度が共に(90°−θ)であるため、焦電係数の絶対値が同じになる。また、焦電基板20の厚さは、10μm以下(例えば0.1〜10μm)であり、好ましくは1〜10μm、より好ましくは5〜10μmである。焦電基板20の大きさは、例えば縦が0.1〜5mm、横が0.1〜5mmである。
支持部材30は、支持層32と、接着層34と、支持基板36とを備えている。支持層32は、焦電基板20の裏面に形成されて焦電基板20を支持するものである。支持層32の材料としては、例えば、二酸化珪素が挙げられる。支持層32の厚さは、特に限定するものではないが、例えば、0.1〜1μmである。接着層34は、支持層32と支持基板36とを接着するものであり、支持基板36の表面全面に形成されている。接着層34の材料としては、例えば、エポキシ系接着剤やアクリル系接着剤を固化させたものが挙げられる。接着層34の厚さは、特に限定するものではないが、例えば、0.1〜1μmである。接着方法として、接着剤以外に陽極接合、直接接合法を用いても良い。支持基板36は、接着層34を介して支持層32に接着される平板状の基板である。支持基板36の材料としては、例えば、ガラスやLT,LN(ニオブ酸リチウム)が挙げられる。支持基板36は、特に限定するものではないが、例えば、縦が0.1〜5mm,横が0.1〜5mm,厚さが0.15〜0.5mmである。支持層32,接着層34,支持基板36は、いずれも焦電基板20よりも熱伝導率が低い材料であることが好ましい。また、この支持部材30には、図2に示すように空洞38が形成され、支持層32はこの空洞38の外周を四角く囲うように形成されている。すなわち、支持層32は空洞38以外の部分で焦電基板20を裏面から支持している。
表面金属層40は、焦電基板20の表面に形成されており、平面視で縦長の長方形に形成された2つの表面電極41,42と、表面電極41と導通し平面視で正方形に形成されたリード部46と、表面電極42と導通し平面視で正方形に形成されたリード部47とを備えている。この表面金属層40の材料としては、例えばニッケルやクロム,金などの金属が挙げられ、赤外線吸収率が高いほど好ましい。表面金属層40の厚さは、特に限定するものではないが、例えば0.01〜0.2μmである。また、表面金属層40は、焦電基板20の表面上にクロムからなる金属層を形成し、さらにその上にニッケルからなる金属層を形成した2層構造であってもよい。
裏面金属層50は、焦電基板20の裏面に形成されており、平面視で縦長の長方形に形成された2つの裏面電極51,52と、裏面電極51及び裏面電極52を導通し平面視で横長の長方形に形成されたリード部56とを備えている。この裏面金属層50の材料としては、上述した表面金属層40と同様のものを用いることができる。裏面金属層50の厚さは、特に限定するものではないが、例えば0.01〜0.2μmである。裏面電極51は、表面電極41と対向するように焦電基板20の裏面に形成されており、裏面電極52は、表面電極42と対向するように焦電基板20の裏面に形成されている。
受光部61は、一対の電極(表面電極41及び裏面電極51)と、焦電基板20のうち表面電極41と裏面電極51とに挟まれた部分である受光領域21とで形成されたものである。同様に、受光部62は、一対の電極(表面電極42及び裏面電極52)と、焦電基板20のうち表面電極42と裏面電極52とに挟まれた部分である受光領域22とで形成されたものである。この受光部61,62では、赤外線の照射による温度変化が生じると、一対の電極間の電圧が変化する。例えば、受光部61に赤外線が照射されると、表面電極41及び受光領域21が赤外線を吸収して温度変化が生じる。そして、これによる受光領域21の自発分極の変化が、表面電極41と裏面電極51との間の電圧の変化として現れるようになっている。また、表面電極41、42は赤外線吸収率が高い金黒膜であってもよい。金黒膜は微粒子上に堆積した金膜のことをいう。
続いて、こうして構成された焦電素子10の動作について説明する。図4は、焦電素子10の受光部61,62の電気的な接続状態を示す回路図である。図示するように、焦電素子10の受光部61,62は、裏面電極51,52がリード部56によって接続されることで、直列に接続されている。そして、この直列接続された回路の両端である表面電極41,42間の電圧が、リード部46,47間の電圧として取り出せるようになっている。なお、本実施形態では、受光領域21,22の自発分極の向きは、図4においては互いに逆方向(図2においては同方向)になっている。この焦電素子10において、焦電基板20は焦電体であるため、平常時であっても受光領域21,22には常に自発分極が起きている。しかし、受光部61,62が空気中の浮遊電荷を吸着して自発分極と電気的に釣り合うため受光領域21,22ともに見かけ上の電荷はゼロとなる。そのため、平常時には表面電極41と裏面電極51との間や表面電極42と裏面電極52との間には電圧が生じず、リード部46,47間には電圧は生じない。また、焦電素子10を取り囲む雰囲気の赤外線量の変化(例えば周囲の温度の変化)により受光領域21,22の温度が共に同じように変化した場合には、受光領域21,22の自発分極がいずれも変化して電荷の偏りが生じ、表面電極41と裏面電極51との間や表面電極42と裏面電極52との間に同じ大きさの電圧が生じる。しかし、受光領域21,22の自発分極の向きは図4に示すように逆方向になっているため、両者の電圧は打ち消し合い、リード部46,47間にはやはり電圧が生じない。このように、焦電素子10は自発分極の向きが逆向きに直列接続されるように受光部61,62を接続したデュアルタイプの素子であるため、平常時だけでなく焦電素子10を取り囲む雰囲気の赤外線量の変化時にもリード部46,47間に電圧は生じず、ノイズで誤動作しにくい構成となっている。一方、例えば人が焦電素子10の付近を横切る場合など、受光部61,62に照射される赤外線の量が均等でなくなる場合には、受光領域21,22の温度変化が異なる大きさとなる。そのため、この温度変化により表面電極41と裏面電極51との間に生じる電圧と表面電極42と裏面電極52との間に生じる電圧とが異なる値となって完全には打ち消し合わず、リード部46,47間には電圧が生じる。これにより、焦電素子10は人体検知や火災検知などを行う赤外線検出装置として用いることができる。なお、焦電素子10を赤外線検出装置として用いる場合には、例えば、リード部46,47とインピーダンス変換用のFET(電界効果型トランジスタ)とを接続してリード部46,47間の電圧を増幅することができる。また、表面電極41,42を金黒からなる赤外線吸収層で覆って赤外線の吸収効率を高めたり、波長フィルターを設けて特定の波長の光のみが受光部21,22に到達するようにすることでノイズによる誤動作を防止したりすることができる。
次に、こうした焦電素子10の製造方法について説明する。図5は、焦電素子10の製造工程を模式的に示す断面図である。まず、焦電基板20となる平坦な焦電基板120を用意する(図5(a))。この焦電基板120は、例えばオリエンテーションフラット(OF)を有し、焦電基板20を複数切り出すことができる大きさのウエハーである。焦電基板120の材料としては上述したものを用いることができる。焦電基板120の大きさは、特に限定するものではないが、例えば直径が50〜100mm、厚さが200μm〜1mmとすることができる。
続いて、焦電基板120の裏面に裏面金属層50となる裏面金属層150を形成する(図5(b))。裏面金属層150は、焦電基板120の裏面に裏面金属層50となるパターンを複数形成したものである。裏面金属層150の材料としては上述したものを用いることができる。裏面金属層150の厚さは、特に限定するものではないが、例えば0.01〜0.2μmである。裏面金属層150の形成は、例えば焦電基板120のうち裏面金属層150を形成する部分以外をメタルマスクでカバーし、真空蒸着により行うことができる。また、他にスパッタリングやフォトリソグラフィ,スクリーン印刷を用いて裏面金属層150を形成してもよい。
次に、焦電基板120の裏面に、支持層32となる支持層132を形成する(図5(c))。支持層132は、裏面金属層150との位置関係が図1,2の裏面金属層50と支持層32との位置関係と同じになり空洞38が形成されるよう、焦電基板120の裏面に支持層32となるパターンを複数形成したものである。支持層132の材料としては上述したものを用いることができる。支持層132の厚さは、特に限定するものではないが、例えば0.1〜1μmである。支持層132の形成は、例えば次のように行う。まず、スパッタリングにより焦電基板120の裏面全体に支持層132となる層を形成する。そして、フォトリソグラフィにより支持層132として残したい部分にのみレジスト膜を形成してエッチングマスクとした後、エッチングによりエッチングマスクがされていない部分(空洞38となる部分)を除去する。これにより支持層132が形成される。
次に、支持基板36となる支持基板136を用意し、支持基板136の表面及び支持層132の裏面の一方又は両方に接着層34となる接着剤を塗布する。そして、支持基板136の表面と支持層132の裏面とを貼り合わせ、接着剤を硬化させて接着層134とする(図5(d))。これにより、焦電基板120,裏面金属層150,支持層132,接着層134,支持基板136からなり、空洞38となる空洞138が形成された複合体110が得られる。接着層134の材料としては、上述したものを用いることができる。また、接着層134の厚さは、特に限定するものではないが、例えば0.1〜1μmである。
そして、複合体110のうち焦電基板120が所定の厚さになるまで焦電基板120の表面を研磨し、その後、焦電基板120の表面に表面金属層40となる表面金属層140を形成する(図5(e))。表面金属層140は、焦電基板120の表面に表面金属層40となるパターンを複数形成したものである。表面金属層140の形成は、表面金属層140のうち表面電極41,42となる部分がそれぞれ裏面電極51,52となる部分と対をなすように行う。表面金属層140の材料としては上述したものを用いることができる。表面金属層140の厚さは、特に限定するものではないが、例えば0.01〜0.2μmである。表面金属層140の形成は、裏面金属層150と同様の方法で行うことができる。これにより、複合体110は、多数の焦電素子10の集合体となる。
そして、表面金属層140を形成した複合体110から1つ1つの焦電素子10を切り出す。これにより、図1〜2に示した焦電素子10が複数得られる。
ここで、LT基板の焦電係数について説明する。LT基板は、Z軸方向に焦電電荷が発生するため、電極面の法線方向とZ軸とが一致するZ板の場合に最も焦電係数が大きくなり、Yオフカット板の場合にはZ板よりも焦電係数が小さくなる。また、Yオフカット板において、カット角θが0°<θ<90°の範囲内にあるときには、カット角θが小さいほど、電極面の法線方向とZ軸とのなす角度が大きくなるため、焦電係数は小さくなる。また、カット角が90°<θ<180°の範囲内にあるときには、カット角θが大きいほど、電極面の法線方向とZ軸とのなす角度が大きくなるため、焦電係数は小さくなる。なお、焦電係数pは、下記式(1)で表される。
p=(ΔQ/ΔT)×(1/S) …(1)
(ΔQ:電荷変動量、ΔT:温度変化量、S:面積)
今回、焦電基板20に使用するYオフカット板のカット角θが0°<θ<90°の範囲内にあるとき、60°以下であればポップコーンノイズの発生を抑制できることがわかった。つまり、カット角θが60°のときの焦電係数と同じかそれより小さければ、ポップコーンノイズの発生を抑制できることがわかった。この結果から、カット角θが90°<θ<180°の範囲内にあるときには、120°以上であればポップコーンノイズの発生を抑制できるといえる。電極面の法線方向とZ軸とのなす角度は、カット角θが60°のときと120°のときとで同じであるため、焦電係数が同じ値になるからである。一方、カット角θが0°<θ<90°の範囲内にあるとき、30°以上であれば、S/N比を同じ板厚のZ板の50%以上に維持できることがわかった。この結果から、カット角θが90°<θ<180°の範囲内にあるときには、150°以下であれば、S/N比を同じ板厚のZ板の50%以上に維持できるといえる。以上のことから、カット角θが30°〜60°、120〜150°であれば、ポップコーンノイズの発生を抑制しつつ、S/N比の低下も抑制することができる。
ところで、本願の基礎となるUS仮出願61/469885を出願した時点では、周知の式Q=CV(Cはキャパシタンス、Vは電圧)においてキャパシタンスCを定数と考え、電荷変動量ΔQは表面電位の変動量ΔVに比例することを前提とし、上記式(1)により焦電係数pを算出した。そして、カット角θが30〜60°、120〜150°の範囲であれば、焦電係数pがZ板の8割程度に保つことができると判断した。しかし、その後の研究により、キャパシタンスCは定数ではなく、カット角θに応じて(例えばsinθとかsin2θなどに応じて)変動するものであり、焦電係数pはZ板の8割よりも低下している可能性があることがわかった。キャパシタンスCがカット角θに応じてどのように変動するかについては、いまだ確定できていないが、sinθの関数である可能性が高いと推測している。
以上詳述した焦電素子10によれば、焦電基板20として、カット角θが30〜60°,120〜150°のLT単結晶のYオフカット板であり、カット角θが30〜60°,120〜150°のものを用いているため、ポップコーンノイズの発生を抑制すると共にS/N比の低下も抑制することができる。また、Yオフカット板の厚さは10μm以下(例えば1〜10μm)であるため、S/N比が更に向上する。
こうした焦電素子10は、直径4インチの大判のLT基板を利用して製造することができるため、大量生産に適している。LT単結晶はチョクラルスキー法により引き上げて成長させるが、カット角θが30〜48°であれば4インチで引き上げることができる。このため、焦電基板120としてカット角θが30〜48°のLT基板を採用する場合には、直径4インチの単結晶を引き上げ方向に対して直角にスライスして得られる直径4インチのLT基板を利用して製造することができる。一方、Z板(θ=90°)は、直径4インチの単結晶を引き上げ方向に対して斜めにスライスして得られるLT基板を利用して製造することになるが、その場合、LT基板の直径は3インチ程度になってしまう。
[第2実施形態]
図6は第2実施形態の焦電素子210の概略斜視図、図7は図6のB−B断面図である。
焦電素子210は、1つの受光部261(図7参照)を備えたシングルタイプの焦電素子として構成されている。この焦電素子210は、焦電基板220と、この焦電基板220を支持する支持部材230と、焦電基板220の表面に設けられた表面金属層240と、焦電基板220の裏面に設けられた裏面金属層250とを備えている。
焦電基板220は、LT単結晶のYオフカット板であり、カット角θは、30〜60°,120〜150°である。また、焦電基板220の厚さは10μm以下(例えば1〜10μm)であり、好ましくは5〜10μmである。この焦電基板220は、第1実施形態の焦電基板20と同じであるため、詳しい説明は省略する。
支持部材230は、支持基板236と、接着層237とを備えている。支持基板236は、内部に空洞238を有する四角形のフレームに形成されており、焦電基板220の表面に形成されて焦電基板220を支持するものである。支持基板236の材料としては、例えば、ガラスやLT,LNが挙げられる。支持基板236は、特に限定するものではないが、例えば、縦が0.1〜5mm、横が0.1〜5mm、厚さが0.15〜5mmである。接着層237は、支持基板236と焦電基板220とを接着するものである。接着層237の材料としては、例えば、エポキシ系接着剤やアクリル系接着剤を固化させたものが挙げられる。接着層237の厚さは、特に限定するものではないが、例えば、0.1〜1μmである。接着方法として、接着剤以外に陽極接合、表面活性化法などの直接接合法を用いても良い。支持基板236,接着層237は、いずれも焦電基板220よりも熱伝導率が低い材料であることが好ましい。
表面金属層240は、焦電基板220の表面に形成されており、平面視で縦長の長方形に形成された表面電極241と、表面電極241と導通するリード部246とを備えている。裏面金属層250は、焦電基板220の裏面にて表面金属層240と対向するように形成されており、平面視で縦長の長方形に形成された裏面電極251と、裏面電極251と導通するリード部256とを備えている。表面金属層240及び裏面金属層250の材料や厚さは、第1実施形態の表面金属層40及び裏面金属層50と同じであるため、ここではその説明を省略する。
受光部261は、一対の電極(表面電極241及び裏面電極251)と、焦電基板220のうち表面電極241と裏面電極251とに挟まれた部分である受光領域221とで形成されたものである。この受光部261では、赤外線の照射による温度変化が生じると、一対の電極間の電圧が変化する。例えば、受光部261の表面側に赤外線が照射されると、表面電極241及び受光領域221が赤外線を吸収して温度変化が生じる。そして、これによる受光領域221の自発分極の変化が、表面電極241と裏面電極251との間の電圧の変化として現れるようになっている。
続いて、こうして構成された焦電素子210の動作は、2つの焦電素子210の裏面電極251同士を電気的に接続し、各表面電極241にリード線を取り付ければ、実質的に第1実施形態の焦電素子10と同様の構成となり同様に動作するため、ここではその説明を省略する。
以上詳述した焦電素子210によれば、焦電基板220としてLT単結晶のYオフカット板であり、カット角θが30〜60°,120〜150°のものを用いているため、ポップコーンノイズの発生を抑制すると共にS/N比の低下も抑制することができる。また、Yオフカット板の厚さは10μm以下(例えば1〜10μm)であるため、S/N比が更に向上する。こうしたYオフカット板は直径4インチの大判のものを利用することができる。
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施しうることは言うまでもない。
例えば、上述した第1及び第2実施形態では、空洞38,238は、支持層32、支持基板236により四角く囲われているものとしたが、空洞38,238はどのような形状としてもよい。例えば、支持層32、支持基板236により丸く囲われているものとしてもよいし、空洞38,238が支持層32、支持基板236に完全には囲われておらず、一部が焦電素子10,210の外周に面していてもよい。
上述した第1実施形態の焦電素子10はデュアルタイプ、第2実施形態の焦電素子210はシングルタイプとしたが、焦電素子10をシングルタイプやクワッドタイプとしてもよいし、焦電素子210をデュアルタイプやクワッドタイプとしてもよい。なお、クワッドタイプの焦電素子における表面電極及び裏面電極の形状については、例えば特開平2006−203009号公報に記載されている。
[実施例1]
実施例1では、第2実施形態の焦電素子210を作製した。図8はその作製手順を示す説明図である。
まず、OF部を有し、直径4インチ,厚さが350μmのLT基板320を用意した。LT基板320は48°Yオフカット板(カット角θ=48°)を用いた。このLT基板320は、ダイシング後に焦電基板220となるものである。続いて、このLT基板320の表面にニッケル及びクロムからなる表面金属層240を多数形成した(図8(a))。表面金属層240の形成は、LT基板320のうち表面金属層240を形成する部分以外をメタルマスクでカバーし、真空蒸着により行った。なお、真空蒸着は、まずクロムを5Å/sの成膜レートで厚さ0.02μmとなるまで行い、続いてニッケルを10Å/sの成膜レートで厚さ0.1μmとなるまで行った。真空蒸着による成膜時の圧力は2.7×10-4Pa,LT基板320の温度は約100℃であった。これにより、厚さ0.12μmの表面金属層240を形成した。なお、表面金属層240のパターンは、表面電極241が縦2mm,横2mm、リード部246が縦0.1mm,横2mmの大きさとなるように形成した。
続いて、OF部を有し、直径4インチ,厚さが500μmのガラス基板336を用意し、縦3mm,横3mmの矩形穴338をウォータージェット法により多数形成した(図8(a)参照)。なお、ガラス基板336は、ダイシング後に支持基板236となるものであり、矩形穴338は、ダイシング後に空洞238となるものである。
次に、LT基板320の表面にエポキシ接着剤を1μm塗布し、ガラス基板336の各矩形穴338の中に各表面金属層240が入るようにアライメントし、貼り合わせた。そして、プレス圧着によりエポキシ接着剤の厚さを0.1μmとし、ガラス基板336と貼り合わせたLT基板320を200℃で1時間放置してエポキシ接着剤を硬化させて接着層334を形成し、複合体260とした(図8(b))。接着層334は、ダイシング後に接着層237になるものである。その後、Arイオンを使用したスパッタリングにより表面金属層240に付着した接着剤を除去した。
そして、複合体260を上下逆にし、ガラス基板336を炭化珪素で作成した研磨治具に接着固定し、LT基板320のうちガラス基板336を貼り合わせていない面を固定砥粒の研削機で研削加工し、LT基板320の厚みを50μmまで薄くした。さらに、その面をダイヤモンド砥粒で研磨加工し、厚みを12μmまで薄くした。その後、その面を遊離砥粒及び不織布系研磨パットを用いて仕上げ研磨を行い、LT基板320の厚みが10μmとなるまで研磨した。なお、仕上げ研磨は、ダイヤモンド砥粒による研磨加工でLT基板320に生じた加工変質層を除去するために行った。
このようにしてLT基板320を研磨した後、LT基板320の裏面(表面金属層240が形成されていない面)に裏面金属層250(図6及び図7参照)を多数形成した。この工程は、表面金属層240の形成と同様の材料及び条件で行った。なお、裏面金属層250のパターンは、裏面電極251が縦2mm,横2mm、リード部256が縦0.5mm,横2mmの大きさとなるように形成した。そして、裏面金属層250を形成した複合体から縦3.5mm×横3.5mmの焦電素子210をダイシングにより切り出した(図8(c))。図8(c)の一点鎖線は、ダイシング時のカット線を示す。得られた焦電素子210は、焦電基板220がLT単結晶からなるカット角θ=48°のYオフカット板でその基板厚が10μmのものである。
[実施例2〜6、比較例1〜4]
実施例1の作製手順に準じて、実施例2〜6、比較例1〜4の焦電素子210を作製した。各焦電素子210の焦電基板120のカット角θ、基板厚は表1に示すとおりである。
[評価試験]
各実施例及び各比較例の焦電素子210について、ポップコーンノイズ、電圧感度、S/N比、熱時定数を測定した。
(1)ポップコーンノイズの測定
各焦電素子210に対して、ヒートサイクル試験を行い、ポップコーンノイズの発生を調べた。ヒートサイクル試験は、次のような手順で行った。各焦電素子210を環境試験器に収容し、環境試験器内の温度を−10〜50℃まで周期的に変化させた。具体的には、図9に示すように温度を変化させた。そして、ヒートサイクル試験を15時間行い、その間に突発的な大きな出力(ポップコーンノイズ)が発生したか否かを調べた。その結果を表1に示す。
(2)電圧感度RvとS/N比の測定
図10に示す実験系にて電圧感度RvとS/N比を測定した。この実験系では、赤外線は、黒体放射装置402を使用して焦電素子210まで平面波ミラー404とコンカーブミラー406を用いてアライメントし、チョッパー408を介して焦電素子210の受光部261の窓面に集光した。焦電素子210の受光部261の面積は2mm×2mmとした。入力赤外光は、チョッパー408により周波数10Hzでチョッピングして照射した。焦電素子210の電圧感度Rvは、ロックインアンプ410で測定した。なお、ロックインアンプ410内の電圧変換回路の入力インピーダンスは1011Ωとした。各焦電素子210の電圧感度Rvを表1に示す。
次に、入力赤外光がない場合のノイズ電圧Vnを測定した。主なノイズ成分は、温度ノイズ、tanδノイズ、入力インピーダンスノイズであった。これらの測定値から下記式によりS/N比を算出した。各焦電素子210のS/N比を表1に示す。
S/N=A0.5×Rv/Vn(Aは焦電素子210の受光面積)
(3)熱時定数の測定
各焦電素子210の熱時定数すなわち立ち上がり時間を測定した。具体的には、まず、600Kの黒体炉から50cm離れた場所に焦電素子210を配置した。次に、赤外線を焦電素子210に照射して、出力をデジタルオシロで記録した。出力ピーク値の10%から90%までの時間を算出し、その時間を熱時定数とした。各焦電素子210の熱時定数を表1に示す。
Figure 0005174995
(4)評価結果
表1から明らかなように、カット角θが30〜60°のYオフカット板を用いた実施例1〜6では、ポップコーンノイズは発生しなかった。一方、カット角θが65°のYオフカット板やZ板を用いた比較例2〜4では、ポップコーンノイズが発生した。
また、実施例1,3,4では、厚さ10μmのYオフカット板を用いたが、S/N比は同じ厚さのZ板を用いた比較例3の40%以上であり、Yオフカット板を用いたことによるS/N比の低下は少なかった。実施例6では、厚さ40μmのYオフカット板を用いたが、S/N比は同じ厚さのZ板を用いた比較例4の75%以上であり、やはりYオフカット板を用いたことによるS/N比の低下は少なかった。実施例1,2,6では、いずれもカット角θが48°のYオフカット板を用いたが、基板厚が薄いほどS/N比が向上した。一方、カット角θが20°のYオフカット板を用いた比較例1では、ポップコーンノイズは発生しなかったが、S/N比は同じ板厚のZ板を用いた比較例3の40%以下に低下してしまった。なお、熱時定数(応答性)は、カット角θに依存せず、LT基板の厚さに依存した。
以上のことから、焦電基板120としてカット角θが30〜60°のYオフカット板を用いた場合には、ポップコーンノイズの発生を抑制すると共にS/N比の低下も抑制することができることがわかった。また、Yオフカット板の厚さは10μm以下(例えば1〜10μm)であれば、S/N比が更に向上することがわかった。
本出願は、2011年3月31日に出願された米国特許仮出願第61/469885号及び2011年2月24日に出願された日本国特許出願2011−37850号を優先権主張の基礎としており、引用によりその内容全てが本明細書に含まれる。
本発明の焦電素子は、例えばセキュリティー用やガス検知用の赤外線検出センサに利用可能である。

Claims (3)

  1. 結晶軸としてX軸、Y軸及びZ軸を有するタンタル酸リチウムの単結晶基板である焦電基板と、該焦電基板の表裏に設けられた一対の電極とを備えた焦電素子であって、
    前記焦電基板は、前記タンタル酸リチウムの単結晶を、前記電極の面に沿った方向と一致する前記X軸の回りに前記Y軸から前記Z軸方向にカット角θだけ回転させた角度で切り出したYオフカット板であり、前記カット角θは30〜60°,120〜150°である、焦電素子。
  2. 前記Yオフカット板の厚さは10μm以下である、
    請求項1に記載の焦電素子。
  3. 前記Yオフカット板の厚さは5〜10μmである、
    請求項2に記載の焦電素子。
JP2012540974A 2011-02-24 2011-10-20 焦電素子 Active JP5174995B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012540974A JP5174995B2 (ja) 2011-02-24 2011-10-20 焦電素子

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011037850 2011-02-24
JP2011037850 2011-02-24
US201161469885P 2011-03-31 2011-03-31
US61/469885 2011-03-31
JP2012540974A JP5174995B2 (ja) 2011-02-24 2011-10-20 焦電素子
PCT/JP2011/074202 WO2012114579A1 (ja) 2011-02-24 2011-10-20 焦電素子

Publications (2)

Publication Number Publication Date
JP5174995B2 true JP5174995B2 (ja) 2013-04-03
JPWO2012114579A1 JPWO2012114579A1 (ja) 2014-07-07

Family

ID=46720383

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012540974A Active JP5174995B2 (ja) 2011-02-24 2011-10-20 焦電素子
JP2012540968A Active JP5730327B2 (ja) 2011-02-24 2012-02-16 焦電素子及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012540968A Active JP5730327B2 (ja) 2011-02-24 2012-02-16 焦電素子及びその製造方法

Country Status (6)

Country Link
US (2) US8436306B2 (ja)
EP (2) EP2555266B1 (ja)
JP (2) JP5174995B2 (ja)
KR (2) KR101283058B1 (ja)
CN (2) CN103493231B (ja)
WO (2) WO2012114579A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115781946A (zh) * 2022-11-29 2023-03-14 山东大学 一种铌酸锂晶体的压缩式高温压电敏感切型及制备与应用
CN115781946B (zh) * 2022-11-29 2024-06-04 山东大学 一种铌酸锂晶体的压缩式高温压电敏感切型及制备与应用

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084787A1 (ja) 2011-12-05 2013-06-13 日本碍子株式会社 赤外線検出素子,赤外線検出モジュール及びその製造方法
JP2016191610A (ja) * 2015-03-31 2016-11-10 パナソニックIpマネジメント株式会社 人体検知装置
JP1630705S (ja) * 2018-06-13 2019-05-07
JP1659230S (ja) * 2018-06-13 2020-05-11
JP1630704S (ja) * 2018-06-13 2019-05-07
JP1630432S (ja) * 2018-06-13 2019-05-07
JP1630431S (ja) * 2018-06-13 2019-05-07
JP1659174S (ja) * 2018-06-13 2020-05-11
JP1630429S (ja) * 2018-06-13 2019-05-07
JP1630703S (ja) * 2018-06-13 2019-05-07
JP1630430S (ja) * 2018-06-13 2019-05-07
FR3084208B1 (fr) * 2018-07-18 2020-10-23 Commissariat Energie Atomique Dispositif de detection pyroelectrique a membrane suspendue contrainte
US11329625B2 (en) 2019-07-18 2022-05-10 Resonant Inc. Film bulk acoustic sensors using thin LN-LT layer
US10862454B1 (en) * 2019-07-18 2020-12-08 Resonant Inc. Film bulk acoustic resonators in thin LN-LT layers
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
EP4375630A1 (en) 2022-11-24 2024-05-29 Photona GmbH Pyroelectric infrared detector device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230826A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Works Ltd 焦電素子
JP2000164946A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd 焦電形素子

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015003B2 (ja) * 1978-02-14 1985-04-17 株式会社村田製作所 焦電型赤外線検出素子の製造方法
JPS54151295U (ja) * 1978-04-12 1979-10-20
JPS5646427A (en) 1979-09-21 1981-04-27 Mitsubishi Electric Corp Float-type level meter
JPS6037413B2 (ja) 1979-09-25 1985-08-26 株式会社東芝 赤外線検出装置
US4383174A (en) 1979-09-25 1983-05-10 Tokyo Shibaura Denki Kabushiki Kaisha Pyroelectric detector and method for manufacturing the same
GB2197753B (en) 1986-11-12 1990-01-24 Philips Electronic Associated Infrared radiation detection device
CH676523A5 (ja) * 1988-06-01 1991-01-31 Cerberus Ag
US5739626A (en) * 1991-04-27 1998-04-14 Ngk Spark Plug Co., Ltd. Piezoelectric sensor
JPH0518816A (ja) * 1991-07-09 1993-01-26 Matsushita Electric Ind Co Ltd 焦電アレイセンサ
JPH05187918A (ja) * 1992-01-09 1993-07-27 Murata Mfg Co Ltd 焦電素子
JPH05231933A (ja) * 1992-02-19 1993-09-07 Matsushita Electric Ind Co Ltd 焦電素子
JPH06160194A (ja) 1992-04-25 1994-06-07 Nippon Ceramic Co Ltd 焦電型赤外線センサ
JPH0634435A (ja) * 1992-07-13 1994-02-08 Murata Mfg Co Ltd 焦電形赤外線検出器
JPH0894436A (ja) * 1994-09-22 1996-04-12 Matsushita Electric Ind Co Ltd 焦電型赤外線検出器およびその製造方法
KR0144651B1 (ko) * 1994-09-30 1998-08-17 이형도 초전형 적외선 센서
JPH08172225A (ja) * 1994-12-20 1996-07-02 Fujitsu Ltd 半導体装置及びその製造方法
CN2264390Y (zh) * 1995-09-27 1997-10-08 云辰电子开发股份有限公司 热释电型红外线探测器
TW346688B (en) 1996-04-15 1998-12-01 Matsushita Electric Works Ltd Pyroelectric-type IR receiving element and IR sensor using the same
JP3372180B2 (ja) 1996-04-15 2003-01-27 松下電工株式会社 焦電型赤外線検知素子及び焦電型赤外線センサ
JP3391236B2 (ja) * 1997-10-07 2003-03-31 株式会社村田製作所 赤外線センサ
DE69932897T2 (de) * 1998-02-13 2007-03-08 Matsushita Electric Industrial Co., Ltd., Kadoma Infrarot-detektorelement, infrarot-sensoreinheit und infrarotdetektor mit diesem infrarot-detektorelement
JP2000298061A (ja) * 1999-04-14 2000-10-24 Murata Mfg Co Ltd 赤外線センサ
US6222304B1 (en) * 1999-07-28 2001-04-24 The Charles Stark Draper Laboratory Micro-shell transducer
JP2006203009A (ja) 2005-01-21 2006-08-03 Yamajiyu Ceramics:Kk 焦電型赤外線検出素子および焦電型赤外線検出器
JP2007255929A (ja) * 2006-03-20 2007-10-04 Kyoto Univ 焦電型赤外線センサ
CN101437777B (zh) * 2006-04-28 2013-09-11 株式会社村田制作所 热电性陶瓷组合物、热电元件以及红外线检测器
TW201015099A (en) * 2008-09-10 2010-04-16 Koninkl Philips Electronics Nv System, device and method for emergency presence detection
CN101612363B (zh) 2009-08-07 2014-08-06 张喜田 升高白蛋白的天然药物制剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230826A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Works Ltd 焦電素子
JP2000164946A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd 焦電形素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115781946A (zh) * 2022-11-29 2023-03-14 山东大学 一种铌酸锂晶体的压缩式高温压电敏感切型及制备与应用
CN115781946B (zh) * 2022-11-29 2024-06-04 山东大学 一种铌酸锂晶体的压缩式高温压电敏感切型及制备与应用

Also Published As

Publication number Publication date
CN103493231B (zh) 2015-02-25
JPWO2012114972A1 (ja) 2014-07-07
KR20120112873A (ko) 2012-10-11
CN103493231A (zh) 2014-01-01
WO2012114972A1 (ja) 2012-08-30
US8754373B2 (en) 2014-06-17
EP2555266A1 (en) 2013-02-06
EP2554958A1 (en) 2013-02-06
CN102822646A (zh) 2012-12-12
KR20120115584A (ko) 2012-10-18
EP2555266A4 (en) 2013-05-22
EP2554958A9 (en) 2013-05-08
US20130020484A1 (en) 2013-01-24
US8436306B2 (en) 2013-05-07
JP5730327B2 (ja) 2015-06-10
JPWO2012114579A1 (ja) 2014-07-07
EP2555266B1 (en) 2014-03-19
KR101331336B1 (ko) 2013-11-19
US20130015353A1 (en) 2013-01-17
CN102822646B (zh) 2014-12-17
EP2554958B1 (en) 2014-04-09
KR101283058B1 (ko) 2013-07-05
EP2554958A4 (en) 2013-05-22
WO2012114579A1 (ja) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5174995B2 (ja) 焦電素子
US11239405B2 (en) Method of producing a composite substrate
US10629470B2 (en) Composite substrate, elastic wave device, and method for producing elastic wave device
CN104465850B (zh) 基于石墨烯吸收层的热释电红外探测器及其制造方法
WO2015172434A1 (zh) 热释电单晶敏感元、其制备方法、以及包含其的热释电红外探测器
CN104458006A (zh) 一种热释电红外探测器敏感元件及其制造方法
JP6186281B2 (ja) 赤外線検出素子,赤外線検出モジュール及びその製造方法
JP2012520576A (ja) 焦電材料、放射線センサ、放射線センサの作製方法、ならびにタンタル酸リチウムおよびニオブ酸リチウムの使用
Xu et al. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect
CN104409554A (zh) 基于炭黑吸收层的热释电红外探测器及其制造方法
JP5933997B2 (ja) 焦電素子及びその製造方法
CN105300529A (zh) 光谱平坦的热释电探测器用吸收层及其制备方法
JP2017049252A (ja) 物理量センサおよびその製造方法
CN105352608A (zh) 宽光谱热释电探测器用吸收层及其制备方法
CN106644982A (zh) 一种气体分析仪热释电光谱探测器的制备方法
de KLERK Phonon Behavior in Dielectric Materials
JPS62119418A (ja) 焦電形赤外検出薄膜素子
JPH08179044A (ja) CdTe放射線検出器の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150