WO2013084787A1 - 赤外線検出素子,赤外線検出モジュール及びその製造方法 - Google Patents

赤外線検出素子,赤外線検出モジュール及びその製造方法 Download PDF

Info

Publication number
WO2013084787A1
WO2013084787A1 PCT/JP2012/080926 JP2012080926W WO2013084787A1 WO 2013084787 A1 WO2013084787 A1 WO 2013084787A1 JP 2012080926 W JP2012080926 W JP 2012080926W WO 2013084787 A1 WO2013084787 A1 WO 2013084787A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
infrared detection
pyroelectric
thermal expansion
detection element
Prior art date
Application number
PCT/JP2012/080926
Other languages
English (en)
French (fr)
Inventor
近藤 順悟
鈴木 健司
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to DE112012005068.1T priority Critical patent/DE112012005068B4/de
Priority to JP2013548200A priority patent/JP6186281B2/ja
Publication of WO2013084787A1 publication Critical patent/WO2013084787A1/ja
Priority to US14/295,820 priority patent/US9267846B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to an infrared detection element, an infrared detection module, and a manufacturing method thereof.
  • Pyroelectric elements are used as infrared detection elements used in infrared detection modules for security and gas detection.
  • the pyroelectric element includes a pyroelectric substrate and a pair of front and back electrodes provided on the front and back of the pyroelectric substrate.
  • infrared rays are irradiated on the surface of the pyroelectric element, the temperature of the pyroelectric substrate rises. Then, the spontaneous polarization changes according to the temperature change, the charge equilibrium state is lost on the surface of the pyroelectric substrate, and charge is generated. Infrared light is detected by taking out the generated electric charge through a conducting wire connected to a pair of electrodes.
  • the pyroelectric element As an infrared detection module having such a pyroelectric element, the pyroelectric element is fixed on the circuit board with a conductive adhesive, and the charge generated on the pyroelectric board is transferred to the circuit board side through the conductive adhesive. What is taken out is known (for example, Patent Document 1).
  • the present invention has been made in view of such problems, and has as its main object to further suppress the deformation of the pyroelectric substrate.
  • the present invention adopts the following means in order to achieve the main object described above.
  • the infrared detection element of the present invention is A pyroelectric substrate; A surface electrode formed on the surface of the pyroelectric substrate; A back electrode formed on the back surface of the pyroelectric substrate so as to face the front electrode; A first substrate bonded to the surface side of the pyroelectric substrate and having a smaller thermal expansion coefficient than the pyroelectric substrate; With The first substrate has a cavity facing the surface electrode, and a thermal expansion coefficient difference D obtained by subtracting the thermal expansion coefficient of the pyroelectric substrate from the thermal expansion coefficient of the pyroelectric substrate is 8.9 ppm / K. Is Is.
  • the first substrate is bonded to the surface side of the pyroelectric substrate.
  • substrate has a small thermal expansion coefficient compared with a pyroelectric board
  • substrate can be suppressed with a 1st board
  • the thermal expansion coefficient difference D is 8.9 ppm / K or less, the thermal expansion coefficient difference between the first substrate and the pyroelectric substrate does not become too large, and the thermal expansion coefficient between the first substrate and the pyroelectric substrate. Deformation of the infrared detection element due to the difference can be suppressed. By these, deformation of the pyroelectric substrate can be further suppressed.
  • the thermal expansion coefficient difference D is preferably 8.3 ppm / K or less, and more preferably 8 ppm / K or less.
  • the thermal expansion coefficient difference D may be 5 ppm / K or more.
  • the pyroelectric substrate may have a thickness of 10 ⁇ m or less (for example, 1 ⁇ m or more and 10 ⁇ m or less).
  • a thickness of 10 ⁇ m or less for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • the infrared detection element of the present invention can further suppress the deformation of the pyroelectric substrate, it is highly meaningful to apply the present invention when the thickness of the pyroelectric substrate is reduced.
  • the pyroelectric substrate is formed by cutting a single crystal of lithium tantalate from the Y axis to the Z axis around the X axis that coincides with the direction along the surface of the electrode. It may be a Y-off cut plate cut at an angle rotated by ° ⁇ ⁇ 90 °, 90 ° ⁇ ⁇ 180 °). Since lithium tantalate (LiTaO 3 , hereinafter referred to as “LT”) has a large pyroelectric coefficient and a high figure of merit, the use of this for a pyroelectric substrate can increase the sensitivity of the infrared detection element.
  • LT lithium tantalate
  • the cut angle ⁇ is preferably 30 ° or more and 60 ° or less, or 120 ° or more and 150 ° or less. If cut angle (theta) is 60 degrees or less or 150 degrees or less, generation
  • the thermal expansion coefficient of the LT Y-off cut plate is about 17 ppm / K. Therefore, the first substrate has a thermal expansion coefficient of 8 ppm / K. If it is large and has a smaller thermal expansion coefficient than the pyroelectric substrate, the difference in thermal expansion coefficient D between the first substrate and the pyroelectric substrate is greater than 0 ppm / K and less than 9 ppm / K. Further, since the S / N ratio of the infrared detection element tends to decrease as the thickness of the LT Y-off cut plate exceeds 10 ⁇ m, the thickness is preferably 10 ⁇ m or less. In the range where the thickness of the LT Y-off cut plate is less than 5 ⁇ m, the voltage sensitivity of the infrared detecting element tends to decrease as the thickness decreases. Therefore, the thickness is preferably 5 ⁇ m or more.
  • the infrared detection module of the present invention is An infrared detection element according to any one of the aspects described above; A second substrate bonded to the back side of the pyroelectric substrate and having a smaller thermal expansion coefficient than the pyroelectric substrate; It is equipped with.
  • the thermal expansion coefficient of the second substrate is smaller than the thermal expansion coefficient of the pyroelectric substrate, deformation due to the thermal expansion of the pyroelectric substrate can be suppressed not only in the first substrate but also in the second substrate. The deformation of the pyroelectric substrate can be further suppressed.
  • the infrared detection element and the second substrate are bonded to electrically connect the back electrode and the second substrate, and the infrared detection element is virtually connected from the first substrate side. It is good also as what was provided with the conductive adhesive located so that at least one part may overlap with the said 1st board
  • the manufacturing method of the infrared detection module of the present invention A pyroelectric substrate, a surface electrode formed on the surface of the pyroelectric substrate, a back electrode formed on the back surface of the pyroelectric substrate so as to face the surface electrode, and an adhesive on the surface side of the pyroelectric substrate And a cavity opposite to the surface electrode is formed, and a coefficient of thermal expansion is smaller than that of the pyroelectric substrate.
  • a second substrate is bonded to the back side of the pyroelectric substrate via a conductive adhesive, a load is applied between the first substrate and the second substrate, The infrared detection element is bonded via a conductive adhesive.
  • the conductive adhesive is located at a position at least partially overlapping with the first substrate when the infrared detection element is virtually transmitted from the first substrate side. Is going so. Therefore, a load is applied to the portion of the pyroelectric substrate to which the conductive adhesive is adhered, but the stress due to this load can be received by the first substrate.
  • the deformation of the pyroelectric substrate due to this stress can be further suppressed.
  • the first substrate has a smaller thermal expansion coefficient than the pyroelectric substrate, and the thermal expansion coefficient difference D is 8.9 ppm / K or less. . Therefore, the effect which suppresses more the deformation
  • various aspects of the above-described infrared detection element and infrared detection module may be employed.
  • FIG. 1 is a schematic perspective view of an infrared detection module 10.
  • FIG. 2 is a schematic perspective view of the infrared detection module 10 excluding the first substrate 36 and the adhesive layer 37 in FIG. 1 for convenience of explanation.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3. It is explanatory drawing of the cut angle of a Y-off cut board. It is a circuit diagram which shows the electrical connection state of the light-receiving parts 61 and 62.
  • FIG. 5 is a cross-sectional view schematically showing a manufacturing process of the infrared detection element 15.
  • FIG. 5 is an explanatory diagram schematically showing a manufacturing process of the infrared detection element 15.
  • FIG. 5 is a cross-sectional view schematically showing a mounting process of the infrared detection element 15.
  • FIG. It is sectional drawing of the infrared detection module 210 of the modification which has the single type infrared detection element 215.
  • FIG. It is sectional drawing of the infrared detection module 310 of Example 21 of an experiment. It is explanatory drawing of the heat cycle performed in the case of the measurement of piezoelectric noise.
  • FIG. 1 is a schematic perspective view of an infrared detection module 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of the infrared detection module 10 excluding the first substrate 36 and the adhesive layer 37 in FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG. 3
  • FIG. 5 is an explanatory view of the cut angle of the Y-off cut plate.
  • the infrared detection module 10 includes an infrared detection element 15 configured as a dual type infrared detection element (pyroelectric element) including two light receiving portions 61 and 62 (see FIG. 3), and the infrared detection element 15 from the back side.
  • a second substrate 70 to be supported, and conductive adhesives 81 and 82 for bonding the infrared detection element 15 and the second substrate 70 to fix the infrared detection element 15 to the second substrate 70 are provided.
  • the infrared detection element 15 is configured as a dual type infrared detection element including two light receiving portions 61 and 62.
  • the infrared detection element 15 includes a pyroelectric substrate 20, a front surface metal layer 40 formed on the surface of the pyroelectric substrate 20, a back surface metal layer 50 formed on the back surface of the pyroelectric substrate 20, and the pyroelectric substrate 20. And a first substrate 36 bonded to the front surface side via an adhesive layer 37.
  • the pyroelectric substrate 20 is an LT single crystal substrate having X, Y, and Z axes as crystal axes. As shown in FIG. 5, the pyroelectric substrate 20 rotates an LT single crystal by a cut angle ⁇ from the Y axis to the Z axis around the X axis that coincides with the direction along the substrate surface (electrode surface). This is a Y-off cut plate cut out at an angle.
  • LT has a large pyroelectric coefficient and a high figure of merit
  • use of this for the pyroelectric substrate 20 can increase the sensitivity of the infrared detection element 15.
  • the LT Y-off cut plate it is possible to suppress popcorn noise generated by changes in the environmental temperature.
  • a wafer having a larger diameter than the Z-cut plate can be used, and the number of chips taken per wafer can be increased.
  • the cut angle ⁇ is preferably 30 ° or more and 60 ° or less, or 120 ° or more and 150 ° or less. If cut angle (theta) is 60 degrees or less or 150 degrees or less, generation
  • the thickness of the pyroelectric substrate 20 is 10 ⁇ m or less (for example, 0.1 to 10 ⁇ m), preferably 1 to 10 ⁇ m, more preferably 5 to 10 ⁇ m.
  • the thickness of the pyroelectric substrate 20 that is the Y off-cut plate of LT 10 ⁇ m or less it is possible to further suppress a decrease in the S / N ratio of the infrared detection element 15.
  • the size of the pyroelectric substrate 20 is, for example, 0.1 to 5 mm in the vertical direction and 0.1 to 5 mm in the horizontal direction.
  • the surface metal layer 40 is formed on the surface of the pyroelectric substrate 20, and is electrically connected to the two surface electrodes 41 and 42 formed in a vertically long rectangle in the plan view, and the surface electrode 41 and the surface electrode 42 in the plan view. And a front electrode lead portion 46 formed in a horizontally long rectangle.
  • Examples of the material of the surface metal layer 40 include metals such as nickel, chrome, and gold. The higher the infrared absorption rate, the more preferable, and gold black may be used.
  • the thickness of the surface metal layer 40 is not particularly limited, but is, for example, 0.01 to 0.2 ⁇ m.
  • the surface metal layer 40 may have a two-layer structure in which a metal layer made of chromium is formed on the surface of the pyroelectric substrate 20 and a metal layer made of nickel is further formed thereon.
  • the back surface metal layer 50 is formed on the back surface of the pyroelectric substrate 20, and is formed into a square shape in plan view in conduction with the two back surface electrodes 51, 52 formed in a vertically long rectangle in plan view, and the back electrode 51.
  • the back electrode lead part 56 and the back electrode lead part 57 which are electrically connected to the back electrode 52 and formed in a square shape in plan view are provided.
  • As the material and thickness of the back surface metal layer 50 the same materials as those for the front surface metal layer 40 described above can be used.
  • the back surface electrode 51 is formed on the back surface of the pyroelectric substrate 20 so as to face the front surface electrode 41
  • the back surface electrode 52 is formed on the back surface of the pyroelectric substrate 20 so as to face the front surface electrode 42.
  • the back electrode lead portions 56 and 57 are positioned such that at least a part of the back electrode lead portions 56 and 57 overlaps the first substrate 36 when the infrared detection element 15 is virtually transmitted from the first substrate side 36 (see FIG. 4). In other words, at least a part of the back electrode lead portions 56 and 57 is formed directly below the first substrate 36 in FIG. In FIG. 4, the positions of the back surface metal layer 50 and the conductive adhesives 81 and 82 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side are indicated by wavy lines.
  • the light receiving portion 61 is formed by a pair of electrodes (front surface electrode 41 and back surface electrode 51) and a light receiving region 21 that is a portion sandwiched between the front surface electrode 41 and the back surface electrode 51 in the pyroelectric substrate 20. is there.
  • the light receiving unit 62 is formed by a pair of electrodes (a front electrode 42 and a back electrode 52) and a light receiving region 22 that is a portion sandwiched between the front electrode 42 and the back electrode 52 in the pyroelectric substrate 20. It is a thing.
  • the surface electrodes 41 and 42 are formed as light receiving surfaces that receive infrared rays.
  • the voltage between the pair of electrodes changes.
  • the surface electrode 41 and the light receiving region 21 absorb the infrared rays to cause a temperature change.
  • a change in the spontaneous polarization of the light receiving region 21 due to this appears as a change in voltage between the front electrode 41 and the back electrode 51.
  • the first substrate 36 has a rectangular cavity 38 facing the surface electrodes 41 and 42 formed therein, and is a member formed in a frame shape surrounding the cavity 38 in a square shape.
  • the first substrate 36 is formed so as to avoid the surface electrodes 41 and 42 that are the light receiving surfaces of the light receiving portions 61 and 62 by the cavity 38, and surrounds the periphery of the surface electrodes 41 and 42 in a square shape.
  • Examples of the material of the first substrate 36 include glass, magnesium oxide, and quartz.
  • the first substrate 36 is not particularly limited.
  • the first substrate 36 has a length of 0.1 to 5 mm, a width of 0.1 to 5 mm, and a thickness of 0.15 to 5 mm.
  • the adhesive layer 37 adheres the first substrate 36 and the pyroelectric substrate 20.
  • the material of the adhesive layer 37 examples include a material obtained by solidifying an epoxy adhesive or an acrylic adhesive.
  • the thickness of the adhesive layer 37 is not particularly limited, but is, for example, 0.1 to 1 ⁇ m. Note that the pyroelectric substrate 20 and the first substrate 36 may be bonded using a direct bonding method such as anodic bonding without using the adhesive layer 37.
  • the first substrate 36 and the adhesive layer 37 are preferably made of a material having a lower thermal conductivity than the pyroelectric substrate 20.
  • the first substrate 36 has a smaller thermal expansion coefficient than the pyroelectric substrate 20, and a thermal expansion coefficient difference D obtained by subtracting the thermal expansion coefficient of the first substrate 36 from the thermal expansion coefficient of the pyroelectric substrate 20 is 8.9 ppm / K. It is as follows. Since the first substrate 36 has a smaller thermal expansion coefficient than the pyroelectric substrate 20, the first substrate 36 can suppress deformation due to the thermal expansion of the pyroelectric substrate 20.
  • the thermal expansion coefficient difference D is 8.9 ppm / K or less, the thermal expansion coefficient difference between the first substrate 36 and the pyroelectric substrate 20 does not become too large, and the first substrate 36 and the pyroelectric substrate 20 The deformation of the infrared detection element 15 due to the difference in thermal expansion coefficient can be suppressed.
  • the thermal expansion coefficient difference D is preferably 8.3 ppm / K or less, and more preferably 8 ppm / K or less.
  • the thermal expansion coefficient difference D may be 5 ppm / K or more.
  • the first substrate 36 has a thermal expansion coefficient of about 17 ppm / K.
  • the first substrate 36 has a thermal expansion coefficient of 8.1 ppm / K. If it carries out above, the thermal expansion coefficient difference D of the 1st board
  • the second substrate 70 is bonded to the back surface side of the pyroelectric substrate 20 and supports the infrared detection element 15 from the back surface side of the pyroelectric substrate 20.
  • Examples of the material of the second substrate 70 include silicon and alumina.
  • the second substrate 70 is not particularly limited.
  • the second substrate 70 has a length of 1 to 20 mm, a width of 1 to 20 mm, and a thickness of 0.1 to 2 mm.
  • the second substrate 70 is configured as a circuit substrate having electrical wiring (not shown) on the surface on the pyroelectric substrate 20 side. This electrical wiring is electrically connected to the conductive adhesive 81 and the conductive adhesive 82.
  • the second substrate 70 preferably has a thermal expansion coefficient smaller than that of the pyroelectric substrate 20 and the first substrate 36.
  • the thermal expansion coefficient of the second substrate 70 is smaller than the thermal expansion coefficient of the pyroelectric substrate 20
  • deformation due to the thermal expansion of the pyroelectric substrate 20 can be suppressed not only in the first substrate 36 but also in the second substrate 70.
  • the thermal expansion coefficient of the second substrate 70 is smaller than the thermal expansion coefficient of the first substrate 36
  • deformation of the pyroelectric substrate 20 can be further suppressed.
  • the second substrate 70 deforms the pyroelectric substrate 20 compared to the first substrate 36 by the amount that the second substrate 70 is bonded to the pyroelectric substrate 20 via the conductive adhesives 81 and 82.
  • This is thought to be because the effect of suppressing the tendency to decrease easily. That is, it is considered that the effect of suppressing the deformation of the pyroelectric substrate 20 between the first substrate 36 and the second substrate 70 is easier to balance when the thermal expansion coefficient of the second substrate 70 is smaller than that of the first substrate 36. It is done.
  • the conductive adhesives 81 and 82 bond the back surface side of the pyroelectric substrate 20 and the second substrate 70 to fix the infrared detection element 15 to the second substrate 70, and also connect the back surface electrodes 51 and 52 and the second substrate 70. It is electrically connected to the electrical wiring.
  • the conductive adhesive 81 bonds the electrical wiring of the second substrate 70 and the back electrode lead portion 56 and electrically connects them, and the conductive adhesive 82 is used for the second substrate 70.
  • the electrical wiring and the back electrode lead portion 57 are bonded to electrically connect them.
  • Examples of the material of the conductive adhesives 81 and 82 include a material obtained by adding a metal such as silver or carbon to an epoxy resin or a urethane resin.
  • the conductive adhesives 81 and 82 are not particularly limited, but have a diameter of 0.1 to 0.5 mm and a thickness of 10 to 100 ⁇ m, for example.
  • the conductive adhesives 81 and 82 are positioned so as to overlap the first substrate 36 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side (see FIG. 4). In other words, at least a part of the conductive adhesives 81 and 82 is formed directly below the first substrate 36 in FIG. Further, the conductive adhesives 81 and 82 are positioned so that there is no portion protruding from the first substrate 36 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side. The conductive adhesive 81 is positioned so as to overlap with the back electrode lead portion 56 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side.
  • the element 15 When the element 15 is virtually transmitted from the first substrate 36 side, it is positioned so as to overlap the back electrode lead portion 57.
  • the back electrode 51 and the second substrate 70 and the back electrode 52 and the second substrate 70 are more reliably connected via the back electrode leads 56 and 57 and the conductive adhesives 81 and 82. Can be made.
  • FIG. 6 is a circuit diagram illustrating an electrical connection state of the light receiving units 61 and 62.
  • the light receiving portions 61 and 62 of the infrared detecting element 15 are connected in series by the surface electrodes 41 and 42 being connected by the surface electrode lead portion 46.
  • the voltage between the back electrodes 51 and 52 at both ends of the series-connected circuit can be taken out to the second substrate 70 as the voltage between the conductive adhesives 81 and 82 via the back electrode leads 56 and 57. It has become.
  • the directions of spontaneous polarization of the light receiving regions 21 and 22 are opposite to each other in FIG. 6 (the same direction in FIG. 3).
  • the pyroelectric substrate 20 is a pyroelectric body, spontaneous polarization always occurs in the light receiving areas 21 and 22, even in normal times.
  • the light receiving portions 61 and 62 absorb the floating charges in the air and are electrically balanced with the spontaneous polarization, the apparent charges in both the light receiving regions 21 and 22 are zero. Therefore, no voltage is generated between the front surface electrode 41 and the back surface electrode 51 or between the front surface electrode 42 and the back surface electrode 52 in normal times, and no voltage is generated between the conductive adhesives 81 and 82.
  • the spontaneous polarization of the light receiving regions 21 and 22 changes.
  • the charge is biased, and the same voltage is generated between the front electrode 41 and the back electrode 51 or between the front electrode 42 and the back electrode 52.
  • the directions of spontaneous polarization of the light receiving regions 21 and 22 are opposite as shown in FIG. 6, the voltages of both cancel each other, and no voltage is generated between the conductive adhesives 81 and 82.
  • the infrared detection element 15 is a dual type element in which the light receiving portions 61 and 62 are connected so that the directions of spontaneous polarization are connected in series in the opposite direction, the infrared detection element 15 surrounds the infrared detection element 15 as well as the normal time. A voltage is not generated between the conductive adhesives 81 and 82 even when the amount of infrared rays in the atmosphere changes, and it is difficult to malfunction due to noise. On the other hand, when the amount of infrared rays applied to the light receiving portions 61 and 62 is not uniform, for example, when a person crosses the vicinity of the infrared detecting element 15, the temperature changes of the light receiving regions 21 and 22 are different in magnitude.
  • the infrared detection module 10 can be used as an infrared detection device that performs human body detection, fire detection, and the like.
  • the infrared detecting element 15 is used as an infrared detecting device, for example, the back electrode lead portions 56 and 57 are connected to an impedance conversion FET (field effect transistor) to connect the back electrode lead portions 56 and 57. This makes it easy to take out the voltage.
  • the surface electrodes 41 and 42 are covered with an infrared absorption layer made of gold black to increase infrared absorption efficiency, or a wavelength filter is provided so that only light of a specific wavelength reaches the light receiving units 21 and 22. It is possible to prevent malfunction due to noise.
  • FIG. 7 is a cross-sectional view schematically showing the manufacturing process of the infrared detection element 15, and FIG. 8 is an explanatory view schematically showing the manufacturing process of the infrared detection element 15.
  • a flat pyroelectric substrate 120 to be the pyroelectric substrate 20 is prepared (FIG. 7A).
  • the pyroelectric substrate 120 has, for example, an orientation flat (OF), and is a wafer that can cut out a plurality of pyroelectric substrates 20.
  • OF orientation flat
  • the size of the pyroelectric substrate 120 is not particularly limited.
  • the pyroelectric substrate 120 may have a diameter of 50 to 100 mm and a thickness of 200 ⁇ m to 1 mm.
  • a surface metal layer 140 to be the surface metal layer 40 is formed on the surface of the pyroelectric substrate 120 (FIGS. 7B and 8A).
  • the surface metal layer 140 is formed by forming a plurality of patterns to be the surface metal layer 40 on the surface of the pyroelectric substrate 120.
  • As the material of the surface metal layer 140 those described above can be used.
  • the thickness of the surface metal layer 140 is not particularly limited, but is, for example, 0.01 to 0.2 ⁇ m.
  • the surface metal layer 140 can be formed by, for example, vacuum deposition using a pyroelectric substrate 120 other than the portion on which the surface metal layer 140 is formed with a metal mask.
  • the surface metal layer 140 may be formed by sputtering, photolithography, or screen printing.
  • the first substrate 136 to be the first substrate 36 is bonded to the surface of the pyroelectric substrate 120 via the adhesive layer 137 (FIGS. 7C and 8B).
  • the first substrate 136 has an orientation flat (OF) and is a wafer having a size capable of cutting out a plurality of first substrates 36.
  • As the material and thickness of the first substrate 136 those described above can be used.
  • the size of the first substrate 136 is not particularly limited. For example, the diameter can be 50 to 100 mm.
  • a number of rectangular holes 138 are formed in the first substrate 136 in advance by, for example, a water jet method (see FIG. 8A).
  • the first substrate 136 becomes the first substrate 36 after dicing, and the rectangular hole 138 becomes the cavity 38 after dicing.
  • the adhesive layer 137 is the adhesive layer 37 described above, and the above-described materials can be used for the adhesive layer 137.
  • the pyroelectric substrate 120 and the first substrate 136 are bonded as follows, for example. First, the adhesive layer 137 is applied to the entire surface of the pyroelectric substrate 120 where the surface metal layer 140 is formed, and alignment is performed so that the rectangular hole 138 of the adhesive layer 137 is positioned on the surface metal layer 140. The electric substrate 120 and the first substrate 136 are bonded together.
  • the back surface of the pyroelectric substrate 120 of the composite 115 is polished until the pyroelectric substrate 120 has a predetermined thickness, and then the back surface metal layer 150 to be the back surface metal layer 50 is formed on the back surface of the pyroelectric substrate 120. It forms (FIG.7 (d)).
  • the back metal layer 150 is formed by forming a plurality of patterns to be the back metal layer 50 on the back surface of the pyroelectric substrate 120.
  • the back metal layer 150 is formed so that portions of the surface metal layer 140 that become the surface electrodes 41 and 42 make a pair with portions that become the back electrodes 51 and 52, respectively.
  • the material of the back metal layer 150 the above-described materials can be used.
  • the thickness of the back metal layer 150 is not particularly limited, but is, for example, 0.01 to 0.2 ⁇ m.
  • the back metal layer 150 can be formed in the same manner as the front metal layer 140. Thereby, the composite 110 becomes an aggregate of a large number of infrared detection elements 15.
  • each infrared detection element 15 is cut out from the composite 110 on which the back metal layer 150 is formed (FIGS. 7E and 8C). Thereby, a plurality of infrared detecting elements 15 shown in FIGS. 1 to 4 are obtained.
  • a dashed line in FIG. 8C indicates a cut line at the time of dicing.
  • FIG. 9 is a cross-sectional view schematically showing the mounting process of the infrared detection element 15.
  • the conductive adhesives 181 and 182 are provided on the back side of the pyroelectric substrate 20 of the infrared detecting element 15 so as to be electrically connected to the back electrode lead portions 56 and 57. Apply (FIG. 9A).
  • the conductive adhesives 181 and 182 become the above-described conductive adhesives 81 and 82, and the above-described materials can be used for the conductive adhesives 181 and 182.
  • the conductive adhesives 181 and 182 are applied to a position overlapping the first substrate 36 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side. Specifically, the conductive adhesive 181 is applied to a position that overlaps the first substrate 36 and the back electrode lead portion 56 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side. The conductive adhesive 182 is applied to a position that overlaps the first substrate 36 and the back electrode lead portion 57 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side.
  • a second substrate 70 is prepared, and conductive adhesives 181 and 182 are provided on the back side of the pyroelectric substrate 20 so as to electrically connect the back electrode lead portions 56 and 57 and the second substrate 70.
  • the second substrate 70 is bonded (FIG. 9B). Note that electrical wiring is formed on the second substrate 70 so as to be electrically connected to the conductive adhesives 181 and 182 in advance.
  • the infrared detection element 15 is bonded to the second substrate 70 via the conductive adhesives 81 and 82, and the infrared detection module 10 shown in FIGS. 1 to 4 is obtained.
  • the conductive adhesives 81 and 82 are more in the surface direction of the pyroelectric substrate 20 than the conductive adhesives 181 and 182 (the left-right direction in FIG. 9). To spread. For this reason, the conductive adhesives 81 and 82 do not protrude from the first substrate 36 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side in the expanded state.
  • the adhesives 181 and 182 are applied.
  • the conductive adhesives 181 and 182 are positioned so as to overlap the first substrate 36 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side. It can be received by the first substrate 36. Thereby, a deformation
  • the first substrate 36 is bonded to the surface side of the pyroelectric substrate 20. Since the first substrate 36 has a smaller thermal expansion coefficient than the pyroelectric substrate 20, the first substrate 36 can suppress deformation due to the thermal expansion of the pyroelectric substrate 20. Moreover, since the thermal expansion coefficient difference D is 8.9 ppm / K or less, the thermal expansion coefficient difference between the first substrate 36 and the pyroelectric substrate 20 does not become too large, and the first substrate 36 and the pyroelectric substrate 20 The deformation of the infrared detection element 15 due to the difference in thermal expansion coefficient can be suppressed. By these, deformation of the pyroelectric substrate can be further suppressed.
  • the first substrate 36 is formed with a cavity 38 that faces the surface electrodes 41 and 42, and is formed in a frame shape surrounding the periphery of the surface electrodes 41 and 42. Therefore, compared with the case where the first substrate has a shape that does not completely surround the periphery of the surface electrode, the effect of suppressing the deformation of the pyroelectric substrate 20 by the first substrate 36 is enhanced.
  • the pyroelectric substrate 20 has a thickness of 10 ⁇ m or less, and the pyroelectric substrate 20 is easily deformed when the thickness is reduced, the first substrate has a smaller thermal expansion coefficient and thermal expansion than the pyroelectric substrate. It is highly significant to suppress the deformation of the pyroelectric substrate 20 by setting the coefficient difference D to 8.9 ppm / K or less.
  • the pyroelectric substrate 20 is made of LT having a large pyroelectric coefficient and a high performance index, the sensitivity of the infrared detecting element 15 can be increased. Further, since the pyroelectric substrate 20 is an LT Y-off cut plate, it is possible to suppress popcorn noise generated due to a change in environmental temperature. Further, a wafer having a larger diameter than the Z-cut plate can be used as the pyroelectric substrate 120, and the number of chips per wafer (the number of pyroelectric substrates 20 that can be cut out) can be increased. .
  • the first and second conductive adhesives 81 and 82 that bond the infrared detection element 15 and the second substrate 70 virtually pass through the infrared detection element 15 from the first substrate 36 side. It is positioned so as to overlap the substrate 36. By doing so, when the pyroelectric substrate is pushed up by the thermal expansion of the conductive adhesives 81 and 82, the deformation of the pyroelectric substrate due to the thermal expansion of the conductive adhesive can be further suppressed.
  • the infrared detection module 10 is formed on the back surface of the pyroelectric substrate 20 and is electrically connected to the back surface electrodes 51 and 52. When the infrared detection element 15 is virtually transmitted from the first substrate 36 side, the infrared detection module 10 is first connected.
  • Back electrode lead portions 56 and 57 are provided so as to overlap the substrate 36.
  • the conductive adhesives 81 and 82 adhere the back electrode lead portions 56 and 57 and the second substrate 70 to electrically connect the back electrode lead portions 56 and 57 and the second substrate 70. Therefore, the conductive adhesives 81 and 82 and the back electrodes 51 and 52 can be more reliably conducted.
  • the conductive adhesives 81 and 82 have no portion protruding from the first substrate 36 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side. It is only necessary that at least a part of the conductive adhesives 81 and 82 is positioned so as to overlap the first substrate 36 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side. , 82 may protrude from the first substrate 36.
  • the first substrate 36 is a member having a rectangular cavity 38 inside and a frame shape surrounding the cavity 38, but a cavity facing the surface electrodes 41, 42 is formed. If so, the first substrate 36 may have any shape.
  • the cavity 38 may be round, or the cavity 38 may not be completely surrounded by the first substrate 36, and a part may face the outer periphery of the infrared detection element 15. Further, the cavity 38 does not have to face the entire surface electrodes 41, 42, and only needs to face a part of the surface electrodes 41, 42.
  • the conductive adhesives 181 and 182 are applied to the back side of the pyroelectric substrate 20 and then the pyroelectric substrate 20 and the second substrate 70 are bonded together. If bonding is performed so that the conductive adhesives 181 and 182 are located at positions where the first substrate 36 overlaps when virtually transmitted from the side of the first substrate 36, the present invention is not limited to this. For example, after the conductive adhesives 181 and 182 are applied to the surface of the second substrate 70 on the side to be bonded to the pyroelectric substrate 20, the pyroelectric substrate 20 and the second substrate 70 may be bonded together. .
  • the thickness of the pyroelectric substrate 20 is set to 10 ⁇ m or less, but the thickness of the pyroelectric substrate 20 may exceed 10 ⁇ m.
  • the pyroelectric substrate 20 is an LT Y-off cut plate, but an LT other than the Y off-cut plate, such as an LT Z plate, may be used for the pyroelectric substrate 20.
  • the pyroelectric substrate 20 is not limited to LT but may be any pyroelectric material, and may be a ferroelectric ceramic such as lead zirconate titanate.
  • the conductive adhesive 81 is positioned so as to overlap the back electrode lead portion 56 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side, and the conductive adhesive 82. Is positioned so as to overlap with the back electrode lead portion 57 when the infrared detection element 15 is virtually transmitted from the first substrate 36 side, but is not limited thereto.
  • the conductive adhesive 81 and the back electrode lead portion 56 may be positioned so as not to overlap.
  • the conductive adhesive 82 and the electrode lead portion 57 may be positioned so as not to overlap.
  • the back electrode lead portions 56 and 57 may not be provided.
  • the back electrode 51 may be directly connected, and the conductive adhesive 82 and the back electrode 52 may be directly connected.
  • the surface metal layer 140 to be the surface metal layer 40 is integrally formed on the surface of the pyroelectric substrate 120.
  • the surface metal layers 41 and 42 and the surface electrode lead portion 46 are separately formed. May be.
  • the back surface metal layer 150 to be the back surface metal layer 50 is integrally formed on the back surface of the pyroelectric substrate 120.
  • the back surface metal layers 51 and 52 and the back electrode lead portions 56 and 57 May be formed separately.
  • the back electrode lead portions 56 and 57 may be formed after cutting out each infrared detecting element.
  • the infrared detection element 15 is a dual type, but the infrared detection element 15 is a single type in which one front electrode and one back electrode are formed, or a quad in which four front electrodes and four back electrodes are formed. It is good also as a type.
  • FIG. 10 is a cross-sectional view of a modified infrared detection module 210 having a single-type infrared detection element 215. In FIG. 10, the same components as those in the infrared detection module 10 in FIG. The infrared detection module 210 includes an infrared detection element 215.
  • the infrared detection element 215 includes a pyroelectric substrate 20, a surface metal layer 240 formed on the surface of the pyroelectric substrate 20, a back metal layer 250 formed on the back surface of the pyroelectric substrate 20, and the pyroelectric substrate 20.
  • a side metal layer 290 formed on the side surface and a first substrate 36 bonded to the surface side of the pyroelectric substrate 20 via an adhesive layer 237 are provided.
  • the surface metal layer 240 has a surface electrode 241 and a surface electrode lead portion 246.
  • the surface electrode 241 is formed in the cavity 38, and the first substrate 36 is formed so as to avoid the surface electrode 241.
  • a portion of the surface electrode lead portion 246 is formed immediately below the first substrate 36 in FIG.
  • the back metal layer 250 has a back electrode 251 facing the front electrode 241, a back electrode lead portion 256, and a front electrode lead portion 257.
  • the back electrode lead portion 256 is electrically connected to the back electrode 251, and when the infrared detection element 215 is virtually transmitted from the first substrate side 36, the first substrate 36 and at least a part of the back electrode lead portion 256 are in contact with each other. It is located so as to overlap.
  • the front electrode lead portion 257 is not electrically connected to the back electrode 251 and is electrically connected to the side metal layer 290.
  • the front electrode lead portion 257 is positioned so that at least a portion thereof overlaps the first substrate 36 when the infrared detection element 215 is virtually transmitted from the first substrate side 36.
  • the side metal layer 290 is electrically connected to the front electrode lead portion 246 and the front electrode lead portion 257, whereby the surface electrode 241 and the front electrode lead portion 257 are electrically connected.
  • a light receiving portion 261 is formed by the surface electrode 241, the back surface electrode 251, and the light receiving region 221 that is a portion of the pyroelectric substrate 20 sandwiched between the surface electrode 241 and the back surface electrode 251.
  • the conductive adhesive 81 is electrically connected to the back electrode lead portion 256 and overlaps the first substrate 36 and the back electrode lead portion 256 when the infrared detection element 215 is virtually transmitted from the first substrate 36 side. Is located.
  • the conductive adhesive 82 is electrically connected to the front electrode lead portion 257, and overlaps the first substrate 36 and the front electrode lead portion 257 when the infrared detection element 215 is virtually transmitted from the first substrate 36 side. positioned.
  • the front electrode 241 and the back electrode 251 are formed in a rectangular shape, for example, and the front electrode lead portions 246 and 257 and the back electrode lead portion 256 are formed in a square shape, for example.
  • the infrared detection module 210 configured in this manner, the voltage between the front electrode 241 and the back electrode 251 is applied to the conductive adhesive 81 via the front electrode lead portions 246 and 257, the back electrode lead portion 256 and the side metal layer 290. , 82 can be taken out to the second substrate 70 as a voltage. Also in this infrared detection module 210, deformation of the pyroelectric substrate 20 can be further suppressed as in the above-described embodiment.
  • the infrared detection module 210 can be manufactured by the same method as the infrared detection module 10 described above, although the formation patterns of the front surface metal layer 240 and the back surface metal layer 250 are different.
  • the side metal layer 290 may be formed by the same method as that for the front surface metal layer and the back surface metal layer after cutting out each infrared detection element 215 in the same manner as in FIG.
  • the shape of the front and back electrodes in the single-type and quad-type infrared detection elements is described in, for example, Japanese Patent Application Laid-Open No. 2006-203209.
  • the number of conductive adhesives may be four according to the number of backside electrodes, and the number of conductive adhesives is not limited to two.
  • Example 1 As Experimental Example 1, the infrared detection module 10 of the present embodiment was manufactured using the method described above.
  • a pyroelectric substrate 120 (thermal expansion coefficient: 17 ppm / K), which is an LT substrate having an OF portion, a diameter of 4 inches, and a thickness of 350 ⁇ m, was prepared (FIG. 7A).
  • This pyroelectric substrate 120 becomes the pyroelectric substrate 20 after dicing.
  • a number of surface metal layers 140 made of nickel and chromium were formed on the surface of the pyroelectric substrate 120 (FIGS. 7B and 8A).
  • the surface metal layer 140 was formed by vacuum deposition by covering the pyroelectric substrate 120 other than the portion where the surface metal layer 140 was formed with a metal mask.
  • the vacuum deposition was first performed at a film formation rate of 5 ⁇ / s until the thickness reached 0.02 ⁇ m, and then at a film formation rate of 10 ⁇ / s until the thickness reached 0.1 ⁇ m.
  • the pressure during film formation by vacuum deposition was 2.7 ⁇ 10 ⁇ 4 Pa, and the temperature of the pyroelectric substrate 120 was about 100 ° C. Thereby, a surface metal layer 140 having a thickness of 0.12 ⁇ m was formed.
  • the pattern of the surface metal layer 140 was formed to be the surface metal layer 40 having the shape shown in FIGS. Specifically, the surface electrodes 41 and 42 were formed to have a size of 2 mm in length and 0.5 mm in width, and a portion to be the surface electrode lead portion 46 in a size of 0.1 mm in length and 0.5 mm in width.
  • a first substrate 136 (thermal expansion coefficient is 12 ppm / K), which is a glass substrate having an OF portion, a diameter of 4 inches, and a thickness of 500 ⁇ m, is prepared, and is a rectangle having a length of 2.1 mm and a width of 2.1 mm.
  • a large number of holes 138 were formed by a water jet method (see FIG. 8A). The first substrate 136 becomes the first substrate 36 after dicing, and the rectangular hole 138 becomes the cavity 38 after dicing.
  • an epoxy adhesive was applied to the surface of the pyroelectric substrate 120, and alignment was performed so that the portions to be the surface electrodes 41 and 42 were inserted into the rectangular holes 138 of the first substrate 136. Then, the thickness of the epoxy adhesive is set to 0.1 ⁇ m by press bonding, and the pyroelectric substrate 120 bonded to the first substrate 136 is left at 200 ° C. for 1 hour to cure the epoxy adhesive to form the adhesive layer 137. (FIG. 7C, FIG. 8B). The adhesive layer 137 becomes the adhesive layer 37 after dicing. Then, the epoxy adhesive in the rectangular hole 138 was removed including the epoxy adhesive adhering to the part used as the surface electrodes 41 and 41 among the surface metal layers 140 by sputtering using Ar ion.
  • the obtained composite is turned upside down, the first substrate 136 is bonded and fixed to a polishing jig made of silicon carbide, and the surface of the pyroelectric substrate 120 on which the first substrate 136 is not bonded is fixed abrasive.
  • the thickness of the pyroelectric substrate 120 was reduced to 50 ⁇ m. Further, the surface was polished with diamond abrasive grains to reduce the thickness to 12 ⁇ m. Then, the surface was finish-polished using loose abrasive grains and a non-woven polishing pad, and polished until the pyroelectric substrate 120 had a thickness of 10 ⁇ m. The finish polishing was performed in order to remove the work-affected layer generated on the pyroelectric substrate 120 by polishing with diamond abrasive grains.
  • the pattern of the back surface metal layer 150 was formed to be the back surface metal layer 50 having the shape shown in FIGS. 1 to 4 after dicing. Specifically, the portions to be the back electrodes 51 and 52 are formed to be 2 mm in length and 0.5 mm in width, and the portions to be the back electrode lead portions 56 and 57 are 0.5 mm in length and 0.5 mm in width. . Then, the infrared detection element 15 having a length of 2.5 mm and a width of 2.5 mm was cut out by dicing from the composite 110 on which the back metal layer 150 was formed (FIGS. 7E and 8C).
  • conductive adhesives 181 and 182 in which silver particles are dispersed in an epoxy adhesive are applied to the back side of the pyroelectric substrate 20 of the infrared detection element 15 so as to be electrically connected to the back electrode 40.
  • This application was performed at a position where the conductive adhesives 181 and 182 overlapped with the first substrate 36 when the infrared detection element 15 was virtually transmitted from the first substrate 36 side.
  • the conductive adhesive 181 was applied to a position overlapping the first substrate 36 and the back electrode lead portion 56 when the infrared detection element 15 was virtually transmitted from the first substrate 36 side.
  • the conductive adhesive 182 was applied to a position overlapping the first substrate 36 and the back electrode lead portion 57 when the infrared detection element 15 was virtually transmitted from the first substrate 36 side.
  • the second substrate 70 a circuit substrate in which electrical wiring is provided on a silicon substrate (thermal expansion coefficient is 3 ppm / K) is prepared, and the back electrode lead portions 56 and 57 and the second substrate 70 are electrically connected.
  • the second substrate 70 was bonded to the back side of the pyroelectric substrate 20 via the conductive adhesives 181 and 182 so as to be conductive (FIG. 9B).
  • the conductive adhesives 181 and 182 might be located on the electric wiring of the 2nd board
  • the substrate is left at 100 ° C. for 1 hour to conduct conductive bonding.
  • the agents 181 and 182 were cured, and the infrared detection element 15 was bonded to the second substrate 70 via the conductive adhesives 81 and 82 (FIG. 9C).
  • the infrared detection module 10 having the configuration shown in FIGS. 1 to 4 was obtained.
  • Example 11 The infrared detection module 10 of Experimental Example 11 was produced in the same manner as in Experimental Example 1 except that a circuit board having electrical wiring on an alumina substrate (thermal expansion coefficient: 7 ppm / K) was used as the second substrate 70. .
  • Example 21 an infrared detection module was prepared in which the conductive adhesive was positioned so as not to overlap the first substrate when the infrared detection element was virtually transmitted from the first substrate side.
  • a cross-sectional view of the infrared detection module 310 of Experimental Example 21 is shown in FIG.
  • the same components as those of the infrared detection module 10 described above are denoted by the same reference numerals, and description thereof is omitted.
  • the back metal layer formed on the back surface of the pyroelectric substrate 20 is only the back electrode 51 and the back electrode 52, and the back electrode lead portions 56 and 57 are not formed.
  • the conductive adhesive 381 directly connects the back electrode 51 and the second substrate 70, and the conductive adhesive 382 directly connects the back electrode 52 and the second substrate 70.
  • the conductive adhesive 381 is positioned so as to overlap the back electrode 51, and the conductive adhesive 382 is overlapped with the back electrode 52. positioned. Therefore, when the infrared detection element 315 is virtually transmitted from the first substrate 36 side, the conductive adhesives 381 and 382 are positioned so as not to overlap the first substrate 36.
  • the infrared detection module 310 of Experimental Example 21 was manufactured by the same process as Experimental Example 1. That is, the infrared detection module 310 was manufactured in the same manner as in Experimental Example 1 except that the formation pattern of the back surface metal layer and the position where the conductive adhesive was applied were different.
  • Example 22 An infrared detection module 310 of Experimental Example 22 was produced in the same manner as in Experimental Example 21, except that a circuit board in which electrical wiring was provided on an alumina substrate (thermal expansion coefficient: 7 ppm / K) was used as the second substrate 70. .
  • Example 23 An infrared detection module 310 of Experimental Example 23 was produced in the same manner as Experimental Example 21 except that the thermal expansion coefficient of the glass substrate serving as the first substrate 36 was different from that of Experimental Example 21.
  • Table 1 summarizes the thermal expansion coefficient, the thermal expansion coefficient difference D, the material of the second substrate 70, and the thermal expansion coefficient of the second substrate 70 in Experimental Examples 1 to 23.
  • Experimental examples 1 to 5, 11 to 15, and 21 to 23 correspond to examples of the present invention, and the others correspond to comparative examples.
  • the piezoelectric noise is a voltage generated by the piezoelectric effect of the pyroelectric substrate 20 caused by deformation of the pyroelectric substrate 20 due to thermal stress.
  • the measurement was performed by performing a heat cycle test on each infrared detection module.
  • the heat cycle test was performed in the following procedure.
  • Each infrared detection module was housed in an environmental tester, and the temperature in the environmental tester was periodically changed from ⁇ 10 to 80 ° C. Specifically, the temperature was changed as shown in FIG. 12, and this was taken as one cycle, and a total of 100 cycles were tested. And it was measured whether the piezoelectric noise generate
  • ten infrared detection modules were prepared for each experimental example, and the number of piezoelectric noises generated among the ten infrared detection modules was examined.
  • the results of Evaluation Test 1 are shown in Table 1.
  • the first substrate has a smaller thermal expansion coefficient than the pyroelectric substrate, the thermal expansion coefficient difference D is 8.9 ppm / K or less, more specifically, the thermal expansion coefficient difference D is 5 ppm / K.
  • piezoelectric noise is present in the experimental examples 1 to 5 and 11 to 15 in the experimental examples 1 to 5 and 11 to 15, piezoelectric noise is present. No piezoelectric noise was generated in Experimental Examples 21 to 23.
  • the difference in thermal expansion coefficient between the pyroelectric substrate 20 and the pyroelectric substrate 20 becomes so large that the pyroelectric substrate 20 and the infrared detection element 15 are deformed due to the difference in thermal expansion coefficient between the first substrate 36 and the pyroelectric substrate 20. It is done.
  • the reason why the number of piezoelectric noises generated in Experimental Examples 1-5 and 11-15 is smaller than in Experimental Examples 21-23 is considered to be as follows. That is, in Experimental Examples 21 to 23, the conductive adhesives 381 and 382 are positioned so as not to overlap the first substrate 36 when the infrared detection element 315 is virtually transmitted from the first substrate 36 side. Yes. Therefore, it is considered that when the pyroelectric substrate 20 is pushed up by the thermal expansion of the conductive adhesives 381 and 382, the pyroelectric substrate 20 is deformed and piezoelectric noise is likely to be generated as compared with Experimental Example 1. In Experimental Examples 1 to 5 and 11 to 15, the presence of the first substrate 36 immediately above the conductive adhesive is considered to further suppress deformation of the pyroelectric substrate 20 due to thermal expansion of the conductive adhesive. .
  • the present invention can be used for an infrared detection device used for security such as a human body detection sensor or gas detection such as a fire detection sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

 赤外線検出素子15では、焦電基板20の表面側に第1基板36が接着されている。そして、第1基板36が焦電基板20と比べて熱膨張係数が小さいことで、焦電基板20の熱膨張による変形を第1基板36で抑制できる。また、熱膨張係数差Dが8.9ppm/K以下であることで、第1基板36と焦電基板20との熱膨張係数差が大きくなりすぎず、第1基板36と焦電基板20との熱膨張係数差による赤外線検出素子15の変形を抑制できる。

Description

赤外線検出素子,赤外線検出モジュール及びその製造方法
 本発明は、赤外線検出素子,赤外線検出モジュール及びその製造方法に関する。
 セキュリティー用やガス検知用の赤外線検出モジュールに用いる赤外線検出素子として、焦電素子が用いられている。焦電素子は、焦電基板と、焦電基板の表裏に設けられた一対の表面電極及び裏面電極とを備えている。この焦電素子の表面に赤外線が照射されると、焦電基板の温度が上昇する。すると、その温度変化に応じて自発分極が変化して焦電基板の表面では電荷の平衡状態が崩れ、電荷が発生する。発生した電荷を一対の電極に接続された導線を介して取り出すことで、赤外線を検出する。このような焦電素子を有する赤外線検出モジュールとしては、焦電素子を回路基板上に導電性接着剤で固定して、焦電基板で発生した電荷を導電性接着剤を介して回路基板側に取り出すものが知られている(例えば、特許文献1)。
特開平10-38679号公報
 ところで、赤外線検出素子に用いる焦電基板は、熱膨張により反りなどの変形が発生すると、圧電効果により電圧が生じる。これにより、この電圧がノイズとなって現れる場合があった。そのため、赤外線検出素子において、焦電基板の熱膨張による変形を抑制することが望まれている。
 本発明は、このような課題に鑑みなされたものであり、焦電基板の変形をより抑制することを主目的とする。
 本発明は、上述の主目的を達成するために以下の手段を採った。
 本発明の赤外線検出素子は、
 焦電基板と、
 前記焦電基板の表面に形成された表面電極と、
 前記表面電極と対向するように該焦電基板の裏面に形成された裏面電極と、
 前記焦電基板の表面側に接着され前記焦電基板と比べて熱膨張係数が小さい第1基板と、
 を備え、
 前記第1基板は、前記表面電極に対向する空洞が形成されており、前記焦電基板の熱膨張係数から該第1基板の熱膨張係数を引いた熱膨張係数差Dが8.9ppm/K以下である、
 ものである。
 この赤外線検出素子では、焦電基板の表面側に第1基板が接着されている。そして、第1基板が焦電基板と比べて熱膨張係数が小さいことで、焦電基板の熱膨張による変形を第1基板で抑制できる。また、熱膨張係数差Dが8.9ppm/K以下であることで、第1基板と焦電基板との熱膨張係数差が大きくなりすぎず、第1基板と焦電基板との熱膨張係数差による赤外線検出素子の変形を抑制できる。これらにより、焦電基板の変形をより抑制することができる。この場合において、熱膨張係数差Dは、8.3ppm/K以下とすることが好ましく、8ppm/K以下とすることがより好ましい。熱膨張係数差Dは、5ppm/K以上としてもよい。
 本発明の赤外線検出素子において、前記焦電基板は、厚さが10μm以下(例えば1μm以上10μm以下)であるものとしてもよい。最近では、セキュリティーやガス検知応用に関しては、高感度、高速応答を要求され、焦電基板の厚みを薄くする構造が望まれている。しかし、厚さを薄くすると焦電基板の変形による圧電ノイズが発生しやすくなる。本発明の赤外線検出素子は、焦電基板の変形をより抑制することができるため、焦電基板の厚さを薄くした場合に本発明を適用する意義が高い。
 本発明の赤外線検出素子において、前記焦電基板は、タンタル酸リチウムの単結晶を、前記電極の面に沿った方向と一致するX軸の回りにY軸からZ軸方向にカット角θ(0°<θ<90°,90°<θ<180°)だけ回転させた角度で切り出したYオフカット板であるものとしてもよい。タンタル酸リチウム(LiTaO3,以下「LT」)は、焦電係数が大きく性能指数が高いため、これを焦電基板に用いることで、赤外線検出素子の高感度化を図ることができる。さらに、LTのYオフカット板を用いることにより、環境温度の変化により発生するポップコーンノイズを抑制できる。また、Zカット板よりも大口径のウエハーを使用することができ、ウエハー当たりのチップ取数を増やすことが可能となる。この場合において、カット角θは、30°以上60°以下、又は120°以上150°以下とすることが好ましい。カット角θが60°以下又は150°以下であれば、赤外線検出素子におけるポップコーンノイズの発生をより抑制できる。カット角θが30°以上又は120°以上であれば、S/N比の低下をより抑制することができる。なお、焦電基板がLTのYオフカット板である場合は、LTのYオフカット板の熱膨張係数が17ppm/K程度であるため、前記第1基板を、熱膨張係数が8ppm/Kより大きく、且つ前記焦電基板と比べて熱膨張係数が小さいものとすれば、第1基板と焦電基板との熱膨張係数差Dが0ppm/K超過9ppm/K未満となる。また、LTのYオフカット板の厚さが10μmを超えて厚くなるにつれて赤外線検出素子のS/N比が低下する傾向を示すため、厚さを10μm以下とすることが好ましい。LTのYオフカット板の厚さが5μm未満の範囲では、厚さが小さくなるにつれて赤外線検出素子の電圧感度は小さくなる傾向を示すため、厚さは5μm以上とすることが好ましい。
 本発明の赤外線検出モジュールは、
 上述したいずれかの態様の赤外線検出素子と、
 前記焦電基板の裏面側に接着され、該焦電基板と比べて熱膨張係数が小さい第2基板と、
 を備えたものである。
 この赤外線検出モジュールでは、第2基板の熱膨張係数が焦電基板の熱膨張係数よりも小さいことで、焦電基板の熱膨張による変形を第1基板だけでなく第2基板でも抑えることができ、焦電基板の変形をより抑制することができる。
 本発明の赤外線検出モジュールは、前記赤外線検出素子と前記第2基板とを接着して前記裏面電極と該第2基板とを電気的に導通し、前記赤外線検出素子を前記第1基板側から仮想的に透過したときに前記第1基板と少なくとも一部が重なるように位置している導電性接着剤を備えたものとしてもよい。こうすることで、導電性接着剤の熱膨張により焦電基板が押し上げられるときに、導電性接着剤の熱膨張による焦電基板の変形をより抑制できる。この場合において、前記第2基板は、前記第1基板と比べて熱膨張係数が小さいものとしてもよい。
 本発明の赤外線検出モジュールの製造方法は、
 焦電基板と、前記焦電基板の表面に形成された表面電極と、前記表面電極と対向するように該焦電基板の裏面に形成された裏面電極と、前記焦電基板の表面側に接着され前記表面電極に対向する空洞が形成されており、前記焦電基板と比べて熱膨張係数が小さく前記焦電基板の熱膨張係数から該第1基板の熱膨張係数を引いた熱膨張係数差Dが8.9ppm/K以下である第1基板と、を備えた赤外線検出素子を、導電性接着剤を介して第2基板に接着した赤外線検出モジュールの製造方法であって、
(a)前記赤外線検出素子を用意する工程と、
(b)前記赤外線検出素子と前記第2基板とを電気的に導通させるように前記焦電基板の裏面側に前記導電性接着剤を介して該第2基板を貼り合わせる工程と、
(c)前記第1基板と前記第2基板との間に荷重を加えて、該第2基板に前記導電性接着剤を介して前記赤外線検出素子を接着する工程と、
 を含み、
 前記工程(b)では、前記赤外線検出素子を前記第1基板側から仮想的に透過したときに該第1基板と少なくとも一部が重なる位置に前記導電性接着剤が位置するように前記貼り合わせを行う、
 ものである。
 この赤外線検出モジュールの製造方法では、焦電基板の裏面側に導電性接着剤を介して第2基板を貼り合わせ、第1基板と第2基板との間に荷重を加えて、第2基板に導電性接着剤を介して赤外線検出素子を接着している。このとき、焦電基板と第2基板との貼り合わせは、赤外線検出素子を第1基板側から仮想的に透過したときに第1基板と少なくとも一部が重なる位置に導電性接着剤が位置するように行っている。そのため、焦電基板のうち導電性接着剤が接着されている部分には荷重がかかるが、この荷重による応力を第1基板で受けることができる。これにより、この応力による焦電基板の変形をより抑制することができる。なお、この赤外線検出モジュールの製造方法により製造された赤外線検出モジュールでは、第1基板が焦電基板と比べて熱膨張係数が小さく、熱膨張係数差Dが8.9ppm/K以下となっている。そのため、上述した本発明の赤外線検出素子や赤外線検出モジュールと同様に、焦電基板の熱膨張による変形をより抑制する効果が得られる。この赤外線検出モジュールの製造方法において、上述した赤外線検出素子や赤外線検出モジュールの種々の態様を採用してもよい。
赤外線検出モジュール10の概略斜視図である。 説明の便宜上、図1における第1基板36,接着層37を除いた赤外線検出モジュール10の概略斜視図である。 図1のA-A断面図である。 図3のB-B断面図である。 Yオフカット板のカット角の説明図である。 受光部61,62の電気的な接続状態を示す回路図である。 赤外線検出素子15の製造工程を模式的に示す断面図である。 赤外線検出素子15の製造工程を模式的に示す説明図である。 赤外線検出素子15の実装工程を模式的に示す断面図である。 シングルタイプの赤外線検出素子215を有する変形例の赤外線検出モジュール210の断面図である。 実験例21の赤外線検出モジュール310の断面図である。 圧電ノイズの測定の際に行ったヒートサイクルの説明図である。
 図1は本発明の一実施形態である赤外線検出モジュール10の概略斜視図、図2は説明の便宜上、図1における第1基板36,接着層37を除いた赤外線検出モジュール10の概略斜視図、図3は図1のA-A断面図、図4は図3のB-B断面図、図5はYオフカット板のカット角の説明図である。
 赤外線検出モジュール10は、2つの受光部61,62(図3参照)を備えたデュアルタイプの赤外線検出素子(焦電素子)として構成された赤外線検出素子15と、赤外線検出素子15を裏面側から支持する第2基板70と、赤外線検出素子15と第2基板70とを接着して赤外線検出素子15を第2基板70に固定する導電性接着剤81,82と、を備えている。
 赤外線検出素子15は、2つの受光部61,62を備えたデュアルタイプの赤外線検出素子として構成されている。この赤外線検出素子15は、焦電基板20と、焦電基板20の表面に形成された表面金属層40と、焦電基板20の裏面に形成された裏面金属層50と、焦電基板20の表面側に接着層37を介して接着された第1基板36と、を備えている。
 焦電基板20は、結晶軸としてX軸、Y軸及びZ軸を有するLT単結晶の基板である。この焦電基板20は、図5に示すように、LT単結晶を、基板表面(電極面)に沿った方向と一致するX軸の回りに、Y軸からZ軸方向にカット角θだけ回転させた角度で切り出したYオフカット板である。このYオフカット板は、電極面に沿う方向をX1,電極面の法線方向をX2,X1とX2の両方に直交する軸をX3としたとき、X1はX軸と一致し、X2はX軸の回りにY軸からZ軸方向にカット角θだけ回転させた軸であり、X3はその回転に伴ってZ軸からカット角θだけ回転させた軸である。カット角θは、0°<θ<90°,90°<θ<180°の範囲内で設定されている。LTは、焦電係数が大きく性能指数が高いため、これを焦電基板20に用いることで、赤外線検出素子15の高感度化を図ることができる。LTのYオフカット板を用いることにより、環境温度の変化により発生するポップコーンノイズを抑制できる。また、Zカット板よりも大口径のウエハを使用することができ、ウエハ当たりのチップ取数を増やすことが可能となる。なお、カット角θは、30°以上60°以下、又は120°以上150°以下とすることが好ましい。カット角θが60°以下又は150°以下であれば、赤外線検出素子におけるポップコーンノイズの発生をより抑制できる。カット角θが30°以上又は120°以上であれば、S/N比の低下をより抑制することができる。焦電基板20の厚さは、10μm以下(例えば0.1~10μm)であり、好ましくは1~10μm、より好ましくは5~10μmである。LTのYオフカット板である焦電基板20の厚さを10μm以下とすることで、赤外線検出素子15のS/N比の低下をより抑制することができる。LTのYオフカット板である焦電基板20の厚さを5μm以上とすることで、赤外線検出素子15の電圧感度の低下をより抑制することができる。焦電基板20の大きさは、例えば縦が0.1~5mm、横が0.1~5mmである。
 表面金属層40は、焦電基板20の表面に形成されており、平面視で縦長の長方形に形成された2つの表面電極41,42と、表面電極41及び表面電極42を導通し平面視で横長の長方形に形成された表電極リード部46とを備えている。この表面金属層40の材料としては、例えばニッケルやクロム,金などの金属が挙げられ、赤外線吸収率が高いほど好ましく、金黒でもよい。表面金属層40の厚さは、特に限定するものではないが、例えば0.01~0.2μmである。また、表面金属層40は、焦電基板20の表面上にクロムからなる金属層を形成し、さらにその上にニッケルからなる金属層を形成した2層構造であってもよい。
 裏面金属層50は、焦電基板20の裏面に形成されており、平面視で縦長の長方形に形成された2つの裏面電極51,52と、裏面電極51と導通し平面視で正方形に形成された裏電極リード部56と、裏面電極52と導通し平面視で正方形に形成された裏電極リード部57とを備えている。この裏面金属層50の材料や厚さとしては、上述した表面金属層40と同様のものを用いることができる。裏面電極51は、表面電極41と対向するように焦電基板20の裏面に形成されており、裏面電極52は、表面電極42と対向するように焦電基板20の裏面に形成されている。裏電極リード部56,57は、赤外線検出素子15を第1基板側36から仮想的に透過したときに第1基板36と少なくとも一部が重なるように位置している(図4参照)。言い換えると、裏電極リード部56,57の少なくとも一部が、図3における第1基板36の真下に形成されている。なお、図4では、赤外線検出素子15を第1基板36側から仮想的に透過したときの裏面金属層50,導電性接着剤81,82の位置を波線で示している。
 受光部61は、一対の電極(表面電極41及び裏面電極51)と、焦電基板20のうち表面電極41と裏面電極51とに挟まれた部分である受光領域21とで形成されたものである。同様に、受光部62は、一対の電極(表面電極42及び裏面電極52)と、焦電基板20のうち表面電極42と裏面電極52とに挟まれた部分である受光領域22とで形成されたものである。受光部61,62は、表面電極41,42側が赤外線の照射を受ける受光面として形成されている。この受光部61,62では、赤外線の照射による温度変化が生じると、一対の電極間の電圧が変化する。例えば、受光部61に赤外線が照射されると、表面電極41及び受光領域21が赤外線を吸収して温度変化が生じる。そして、これによる受光領域21の自発分極の変化が、表面電極41と裏面電極51との間の電圧の変化として現れるようになっている。
 第1基板36は、表面電極41,42に対向する矩形の空洞38が内部に形成されており、この空洞38を四角く囲う枠形状に形成された部材である。この第1基板36は、この空洞38によって受光部61,62の受光面である表面電極41,42を避けるように形成され、表面電極41,42の周辺を四角く囲っている。この第1基板36の材料としては、例えば、ガラスや酸化マグネシウム,水晶が挙げられる。第1基板36は、特に限定するものではないが、例えば、縦が0.1~5mm、横が0.1~5mm、厚さが0.15~5mmである。接着層37は、第1基板36と焦電基板20とを接着するものである。接着層37の材料としては、例えば、エポキシ系接着剤やアクリル系接着剤を固化させたものが挙げられる。接着層37の厚さは、特に限定するものではないが、例えば、0.1~1μmである。なお、接着層37を用いず、陽極接合などの直接接合法を用いて焦電基板20と第1基板36とを接着してもよい。第1基板36,接着層37は、いずれも焦電基板20と比べて熱伝導率が低い材料であることが好ましい。
 第1基板36は、焦電基板20と比べて熱膨張係数が小さく、焦電基板20の熱膨張係数から第1基板36の熱膨張係数を引いた熱膨張係数差Dが8.9ppm/K以下である。第1基板36が焦電基板20と比べて熱膨張係数が小さいことで、焦電基板20の熱膨張による変形を第1基板36で抑制できる。また、熱膨張係数差Dが8.9ppm/K以下であることで、第1基板36と焦電基板20との熱膨張係数差が大きくなりすぎず、第1基板36と焦電基板20との熱膨張係数差による赤外線検出素子15の変形を抑制できる。この場合において、熱膨張係数差Dは、8.3ppm/K以下とすることが好ましく、8ppm/K以下とすることがより好ましい。熱膨張係数差Dは、5ppm/K以上としてもよい。なお、焦電基板20がLTのYオフカット板である場合は、第1基板36の熱膨張係数は17ppm/K程度であるため、第1基板36を、熱膨張係数が8.1ppm/K以上とすれば、第1基板36と焦電基板20との熱膨張係数差Dが8.9ppm/K以下となる。また、第1基板36の熱膨張係数は、8.7ppm/K以上とすることが好ましく、9ppm/K以上とすることがより好ましい。また、第1基板36の熱膨張係数は12ppm/K以下であるものとしてもよい。
 第2基板70は、焦電基板20の裏面側に接着されており、赤外線検出素子15を焦電基板20の裏面側から支持するものである。第2基板70の材料としては、例えば、シリコンやアルミナが挙げられる。第2基板70は、特に限定するものではないが、例えば、縦が1~20mm、横が1~20mm、厚さが0.1~2mmである。この第2基板70には、焦電基板20側の面に図示しない電気配線がなされた回路基板として構成されている。この電気配線は、導電性接着剤81,導電性接着剤82と導通している。なお、第2基板70は、熱膨張係数が焦電基板20及び第1基板36の熱膨張係数よりも小さいものとすることが好ましい。第2基板70の熱膨張係数が焦電基板20の熱膨張係数よりも小さいことで、焦電基板20の熱膨張による変形を第1基板36だけでなく第2基板70でも抑えることができる。また、第2基板70の熱膨張係数が第1基板36の熱膨張係数よりも小さいことで、焦電基板20の変形をより抑制できる。これは、第2基板70が導電性接着剤81,82を介して焦電基板20と接着されている分だけ、第1基板36と比べて第2基板70の方が焦電基板20の変形を抑制する効果が小さくなりやすいためと考えられる。すなわち、第1基板36よりも第2基板70の熱膨張係数を小さくした方が、第1基板36と第2基板70との焦電基板20の変形を抑制する効果のバランスが取りやすくなると考えられる。
 導電性接着剤81,82は、焦電基板20の裏面側と第2基板70とを接着して赤外線検出素子15を第2基板70に固定すると共に裏面電極51,52と第2基板70の電気配線とを電気的に導通するものである。具体的には、導電性接着剤81は第2基板70の電気配線と裏電極リード部56とを接着してこれらを電気的に導通しており、導電性接着剤82は第2基板70の電気配線と裏電極リード部57とを接着してこれらを電気的に導通している。導電性接着剤81,82の材料としては、例えば、エポキシ系やウレタン系の樹脂に銀などの金属又は炭素等を添加したものが挙げられる。導電性接着剤81,82は、特に限定するものではないが、例えば直径0.1~0.5mm,厚さが10~100μmである。
 この導電性接着剤81,82は、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36と重なるように位置している(図4参照)。言い換えると、導電性接着剤81,82の少なくとも一部が、図3において第1基板36の真下に形成されている。さらに、導電性接着剤81,82は、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36からはみ出す部分がないように位置している。また、導電性接着剤81は、赤外線検出素子15を第1基板36側から仮想的に透過したときに裏電極リード部56と重なるように位置しており、導電性接着剤82は、赤外線検出素子15を第1基板36側から仮想的に透過したときに裏電極リード部57と重なるように位置している。これにより、裏電極リード部56,57及び導電性接着剤81,82を介して、裏面電極51と第2基板70との間や裏面電極52と第2基板70との間をより確実に導通させることができる。
 続いて、こうして構成された赤外線検出モジュール10の動作について説明する。図6は、受光部61,62の電気的な接続状態を示す回路図である。図示するように、赤外線検出素子15の受光部61,62は、表面電極41,42が表電極リード部46によって接続されることで、直列に接続されている。そして、この直列接続された回路の両端である裏面電極51,52間の電圧が、裏電極リード部56,57を介して導電性接着剤81,82間の電圧として第2基板70に取り出せるようになっている。なお、本実施形態では、受光領域21,22の自発分極の向きは、図6においては互いに逆方向(図3においては同方向)になっている。この赤外線検出素子15において、焦電基板20は焦電体であるため、平常時であっても受光領域21,22には常に自発分極が起きている。しかし、受光部61,62が空気中の浮遊電荷を吸着して自発分極と電気的に釣り合うため受光領域21,22ともに見かけ上の電荷はゼロとなる。そのため、平常時には表面電極41と裏面電極51との間や表面電極42と裏面電極52との間には電圧が生じず、導電性接着剤81,82間には電圧は生じない。また、赤外線検出素子15を取り囲む雰囲気の赤外線量の変化(例えば周囲の温度の変化)により受光領域21,22の温度が共に同じように変化した場合には、受光領域21,22の自発分極がいずれも変化して電荷の偏りが生じ、表面電極41と裏面電極51との間や表面電極42と裏面電極52との間に同じ大きさの電圧が生じる。しかし、受光領域21,22の自発分極の向きは図6に示すように逆方向になっているため、両者の電圧は打ち消し合い、導電性接着剤81,82間にはやはり電圧が生じない。このように、赤外線検出素子15は自発分極の向きが逆向きに直列接続されるように受光部61,62を接続したデュアルタイプの素子であるため、平常時だけでなく赤外線検出素子15を取り囲む雰囲気の赤外線量の変化時にも導電性接着剤81,82間に電圧は生じず、ノイズで誤動作しにくい構成となっている。一方、例えば人が赤外線検出素子15の付近を横切る場合など、受光部61,62に照射される赤外線の量が均等でなくなる場合には、受光領域21,22の温度変化が異なる大きさとなる。そのため、この温度変化により表面電極41と裏面電極51との間に生じる電圧と表面電極42と裏面電極52との間に生じる電圧とが異なる値となって完全には打ち消し合わず、導電性接着剤81,82間には電圧が生じる。これにより、赤外線検出モジュール10は人体検知や火災検知などを行う赤外線検出装置として用いることができる。なお、赤外線検出素子15を赤外線検出装置として用いる場合には、例えば、裏電極リード部56,57とインピーダンス変換用のFET(電界効果型トランジスタ)とを接続して裏電極リード部56,57間の電圧を取り出しやすくすることができる。また、表面電極41,42を金黒からなる赤外線吸収層で覆って赤外線の吸収効率を高めたり、波長フィルターを設けて特定の波長の光のみが受光部21,22に到達するようにすることでノイズによる誤動作を防止したりすることができる。
 次に、こうした赤外線検出モジュール10の製造方法について説明する。まず、赤外線検出素子15の製造方法について説明する。図7は、赤外線検出素子15の製造工程を模式的に示す断面図であり、図8は、赤外線検出素子15の製造工程を模式的に示す説明図である。まず、焦電基板20となる平坦な焦電基板120を用意する(図7(a))。この焦電基板120は、例えばオリエンテーションフラット(OF)を有し、焦電基板20を複数切り出すことができる大きさのウエハーである。焦電基板120の材料としては上述したものを用いることができる。焦電基板120の大きさは、特に限定するものではないが、例えば直径が50~100mm、厚さが200μm~1mmとすることができる。
 続いて、焦電基板120の表面に表面金属層40となる表面金属層140を形成する(図7(b),図8(a))。表面金属層140は、焦電基板120の表面に表面金属層40となるパターンを複数形成したものである。表面金属層140の材料としては上述したものを用いることができる。表面金属層140の厚さは、特に限定するものではないが、例えば0.01~0.2μmである。表面金属層140の形成は、例えば焦電基板120のうち表面金属層140を形成する部分以外をメタルマスクでカバーし、真空蒸着により行うことができる。また、他にスパッタリングやフォトリソグラフィ,スクリーン印刷を用いて表面金属層140を形成してもよい。
 続いて、第1基板36となる第1基板136を焦電基板120の表面に接着層137を介して接着する(図7(c),図8(b))。この第1基板136は、オリエンテーションフラット(OF)を有し、第1基板36を複数切り出すことができる大きさのウエハーである。第1基板136の材料や厚さは上述したものを用いることができる。第1基板136の大きさは、特に限定するものではないが、例えば直径が50~100mmとすることができる。この第1基板136には、例えばウォータージェット法により予め多数の矩形穴138を形成しておく(図8(a)参照)。なお、第1基板136は、ダイシング後に第1基板36となるものであり、矩形穴138は、ダイシング後に空洞38となるものである。接着層137は、上述した接着層37となるものであり、接着層137の材料は上述したものを用いることができる。焦電基板120と第1基板136との接着は例えば以下のように行う。まず、焦電基板120の表面金属層140を形成した側の面全体に接着層137を塗布し、接着層137の矩形穴138が表面金属層140上に位置するように位置合わせを行い、焦電基板120と第1基板136とを貼り合わせる。そして、接着層137を硬化させた後、接着層137のうち矩形穴138内に露出した部分を、例えばArイオンを使用したスパッタリングにより除去する。これにより、第1基板136を焦電基板120の表面に接着層137を介して接着した複合体115が得られる。
 次に、複合体115のうち焦電基板120が所定の厚さになるまで焦電基板120の裏面を研磨し、その後、焦電基板120の裏面に裏面金属層50となる裏面金属層150を形成する(図7(d))。裏面金属層150は、焦電基板120の裏面に裏面金属層50となるパターンを複数形成したものである。裏面金属層150の形成は、表面金属層140のうち表面電極41,42となる部分がそれぞれ裏面電極51,52となる部分と対をなすように行う。裏面金属層150の材料としては上述したものを用いることができる。裏面金属層150の厚さは、特に限定するものではないが、例えば0.01~0.2μmである。裏面金属層150の形成は、表面金属層140と同様の方法で行うことができる。これにより、複合体110は、多数の赤外線検出素子15の集合体となる。
 そして、裏面金属層150を形成した複合体110から1つ1つの赤外線検出素子15を切り出す(図7(e),図8(c))。これにより、図1~4に示した赤外線検出素子15が複数得られる。図8(c)の一点鎖線は、ダイシング時のカット線を示す。
 続いて、赤外線検出素子15を第2基板70に実装する工程について説明する。図9は、赤外線検出素子15の実装工程を模式的に示す断面図である。上述した工程で赤外線検出素子15を用意すると、まず、裏電極リード部56,57と電気的に導通するように赤外線検出素子15の焦電基板20の裏面側に導電性接着剤181,182を塗布する(図9(a))。導電性接着剤181,182は、上述した導電性接着剤81,82となるものであり、導電性接着剤181,182の材料は上述したものを用いることができる。なお、導電性接着剤181,182は、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36と重なる位置に塗布する。具体的には、導電性接着剤181は、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36及び裏電極リード部56と重なる位置に塗布する。導電性接着剤182は、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36及び裏電極リード部57と重なる位置に塗布する。
 続いて、第2基板70を用意し、裏電極リード部56,57と第2基板70とを電気的に導通させるように焦電基板20の裏面側に導電性接着剤181,182を介して第2基板70を貼り合わせる(図9(b))。なお、第2基板70には、あらかじ導電性接着剤181,182と導通するように電気配線を形成しておく。
 そして、第1基板36と第2基板70との間に荷重を加え、導電性接着剤181,182を硬化させて導電性接着剤81,82とする(図9(c))。これにより、第2基板70に導電性接着剤81,82を介して赤外線検出素子15が接着され、図1~4に示した赤外線検出モジュール10が得られる。なお、第1基板36と第2基板70との間に加える荷重により、導電性接着剤81,82は導電性接着剤181,182よりも焦電基板20の表面方向(図9の左右方向)に広がる。そのため、広がった後の状態で赤外線検出素子15を第1基板36側から仮想的に透過したときに導電性接着剤81,82が第1基板36からはみ出すことのないように考慮して、導電性接着剤181,182の塗布を行う。
 ここで、第1基板36と第2基板70との間に荷重を加える際には、焦電基板20のうち導電性接着剤181,182が塗布されている部分には荷重による応力がかかる。また、導電性接着剤181,182を硬化させる際には、導電性接着剤181,182が収縮することにより応力がかかる場合がある。本実施形態では、導電性接着剤181,182が、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36と重なるように位置しているため、これらの応力を第1基板36で受けることができる。これにより、製造時の焦電基板20の変形をより抑制することができる。
 以上詳述した赤外線検出素子15では、焦電基板20の表面側に第1基板36が接着されている。そして、第1基板36が焦電基板20と比べて熱膨張係数が小さいことで、焦電基板20の熱膨張による変形を第1基板36で抑制できる。また、熱膨張係数差Dが8.9ppm/K以下であることで、第1基板36と焦電基板20との熱膨張係数差が大きくなりすぎず、第1基板36と焦電基板20との熱膨張係数差による赤外線検出素子15の変形を抑制できる。これらにより、焦電基板の変形をより抑制することができる。
 また、第1基板36は、表面電極41,42に対向する空洞38が形成されており、表面電極41,42の周辺を囲む枠形状に形成されている。そのため、第1基板が表面電極の周辺を完全には囲んでいないような形状である場合に比べて、第1基板36によって焦電基板20の変形を抑制する効果が高まる。
 また、焦電基板20の厚さが10μm以下であり、厚さを薄くすると焦電基板20は変形しやすくなるため、第1基板を焦電基板と比べて熱膨張係数が小さくし且つ熱膨張係数差Dを8.9ppm/K以下として焦電基板20の変形をより抑制する意義が高い。
 また、焦電基板20は、焦電係数が大きく性能指数が高いLTからなるものであるため、赤外線検出素子15の高感度化を図ることができる。さらに、焦電基板20は、LTのYオフカット板であるため、環境温度の変化により発生するポップコーンノイズを抑制できる。また、Zカット板よりも大口径のウエハーを焦電基板120として使用することができ、ウエハー1枚あたりのチップ取数(切り出すことのできる焦電基板20の数)を増やすことが可能となる。
 また、赤外線検出モジュール10では、赤外線検出素子15と第2基板70とを接着する導電性接着剤81,82が、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36と重なるように位置している。こうすることで、導電性接着剤81,82の熱膨張により焦電基板が押し上げられるときに、導電性接着剤の熱膨張による焦電基板の変形をより抑制できる。
 また、赤外線検出モジュール10は、焦電基板20の裏面に形成されて裏面電極51,52と電気的に導通し、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36と重なるように位置している裏電極リード部56,57を備えている。そして、導電性接着剤81,82は、裏電極リード部56,57と第2基板70とを接着して裏電極リード部56,57と第2基板70とを電気的に導通している。そのため、導電性接着剤81,82と裏面電極51,52とをより確実に導通させることができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施しうることは言うまでもない。
 例えば、上述した実施形態では、導電性接着剤81,82は、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36からはみ出す部分がないものとしたが、導電性接着剤81,82の少なくとも一部が、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36と重なるように位置していればよく、導電性接着剤81,82の一部が第1基板36からはみ出しているものとしてもよい。
 上述した実施形態では、第1基板36は、内部に矩形の空洞38を有しこの空洞38を四角く囲う枠形状に形成された部材としたが、表面電極41,42に対向する空洞が形成されていれば第1基板36をどのような形状としてもよい。例えば、空洞38が丸い形状であるものとしてもよいし、空洞38が第1基板36に完全には囲われておらず、一部が赤外線検出素子15の外周に面していてもよい。また、空洞38が表面電極41,42の全体と対向している必要はなく、表面電極41,42の一部と対向していればよい。
 上述した実施形態では、焦電基板20の裏面側に導電性接着剤181,182を塗布してから焦電基板20と第2基板70とを貼り合わせるものとしたが、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36と重なる位置に導電性接着剤181,182が位置するように貼り合わせを行うものとすれば、これに限られない。例えば、第2基板70のうち焦電基板20と貼り合わせを行う側の面に導電性接着剤181,182を塗布してから、焦電基板20と第2基板70とを貼り合わせてもよい。
 上述した実施形態では、焦電基板20の厚さは10μm以下としたが、焦電基板20の厚さが10μmを超えていてもよい。
 上述した実施形態では、焦電基板20はLTのYオフカット板であるものとしたが、例えばLTのZ板など、Yオフカット板以外のLTを焦電基板20に用いてもよい。また、焦電基板20はLTに限らず焦電体であればよく、例えば、チタン酸ジルコン酸鉛などの強誘電体セラミックスであってもよい。
 上述した実施形態では、導電性接着剤81は、赤外線検出素子15を第1基板36側から仮想的に透過したときに裏電極リード部56と重なるように位置しており、導電性接着剤82は、赤外線検出素子15を第1基板36側から仮想的に透過したときに裏電極リード部57と重なるように位置しているものとしたが、これに限られない。例えば、導電性接着剤81と裏電極リード部56とが重ならないように位置していてもよい。また、導電性接着剤82と電極リード部57とが重ならないように位置していてもよい。あるいは、裏電極リード部56,57を備えないものとしてもよい。この場合、赤外線検出素子15を第1基板36側から仮想的に透過したときに裏面電極51,52の一部が第1基板と重なるように位置しているものとして、導電性接着剤81と裏面電極51とが直接導通し、導電性接着剤82と裏面電極52とが直接導通していてもよい。
 上述した実施形態では、焦電基板120の表面に表面金属層40となる表面金属層140を一体形成するものとしたが、表面金属層41,42と表電極リード部46とを別々に形成しても良い。同様に、上述した実施形態では、焦電基板120の裏面に裏面金属層50となる裏面金属層150を一体形成するものとしたが、裏面金属層51,52と裏電極リード部56,57とを別々に形成しても良い。例えば、裏電極リード部56,57については、1つ1つの赤外線検出素子を切り出したあとに形成してもよい。
 上述した実施形態では、赤外線検出素子15はデュアルタイプとしたが、赤外線検出素子15を表面電極及び裏面電極が1つずつ形成されたシングルタイプや表面電極及び裏面電極が4つずつ形成されたクワッドタイプとしてもよい。図10は、シングルタイプの赤外線検出素子215を有する変形例の赤外線検出モジュール210の断面図である。なお、図10において、図3の赤外線検出モジュール10と同じ構成要素については同一の符合を付して、説明を省略する。赤外線検出モジュール210は、赤外線検出素子215を備えている。この赤外線検出素子215は、焦電基板20と、焦電基板20の表面に形成された表面金属層240と、焦電基板20の裏面に形成された裏面金属層250と、焦電基板20の側面に形成された側面金属層290と、焦電基板20の表面側に接着層237を介して接着された第1基板36と、を備えている。表面金属層240は、表面電極241と、表電極リード部246とを有している。表面電極241は空洞38内に形成されており、第1基板36は表面電極241を避けるように形成されている。表電極リード部246は、一部が図10における第1基板36の直下に形成され、表面電極241及び側面金属層290と導通している。裏面金属層250は、表面電極241と対向する裏面電極251と、裏電極リード部256,表電極リード部257と、を有している。裏電極リード部256は、裏面電極251と導通しており、赤外線検出素子215を第1基板側36から仮想的に透過したときに第1基板36と裏電極リード部256の少なくとも一部とが重なるように位置している。表電極リード部257は、裏面電極251とは導通せず、側面金属層290と導通している。表電極リード部257は、赤外線検出素子215を第1基板側36から仮想的に透過したときに第1基板36と少なくとも一部が重なるように位置している。側面金属層290は、表電極リード部246及び表電極リード部257と導通しており、これにより表面電極241と表電極リード部257とが導通している。また、表面電極241と、裏面電極251と、焦電基板20のうち表面電極241と裏面電極251とに挟まれた部分である受光領域221とで受光部261が形成されている。そして、導電性接着剤81は、裏電極リード部256と導通しており、赤外線検出素子215を第1基板36側から仮想的に透過したときに第1基板36及び裏電極リード部256と重なるように位置している。導電性接着剤82は、表電極リード部257と導通しており、赤外線検出素子215を第1基板36側から仮想的に透過したときに第1基板36及び表電極リード部257と重なるように位置している。表面電極241及び裏面電極251は、例えば長方形に形成され、表電極リード部246,257、裏電極リード部256は、例えば正方形に形成されている。こうして構成された赤外線検出モジュール210では、表面電極241と裏面電極251との間の電圧を、表電極リード部246,257、裏電極リード部256及び側面金属層290を介して導電性接着剤81,82間の電圧として第2基板70に取り出すことができる。この赤外線検出モジュール210においても、上述した実施形態と同様に焦電基板20の変形をより抑制することができる。なお、赤外線検出モジュール210は、表面金属層240及び裏面金属層250の形成パターンが異なるが、上述した赤外線検出モジュール10と同様の方法で製造することができる。また、側面金属層290の形成は、図7(e)と同様に1つ1つの赤外線検出素子215を切り出したあとで、表面金属層や裏面金属層と同様の方法で行えばよい。なお、シングルタイプやクワッドタイプの赤外線検出素子における表面電極及び裏面電極の形状については、例えば特開平2006-203009号公報に記載されている。また、クワッドタイプでは裏面電極の数に応じて導電性接着剤を4つとするなどとしてもよく、導電性接着剤の数は2つに限られない。
[実験例1]
 実験例1として、本実施形態の赤外線検出モジュール10を上述した方法を用いて作製した。
 まず、OF部を有し、直径4インチ,厚さが350μmのLT基板である焦電基板120(熱膨張係数は17ppm/K)を用意した(図7(a))。焦電基板120は48°Yオフカット板(カット角θ=48°)を用いた。この焦電基板120は、ダイシング後に焦電基板20となるものである。続いて、この焦電基板120の表面にニッケル及びクロムからなる表面金属層140を多数形成した(図7(b),図8(a))。表面金属層140の形成は、焦電基板120のうち表面金属層140を形成する部分以外をメタルマスクでカバーし、真空蒸着により行った。なお、真空蒸着は、まずクロムを5Å/sの成膜レートで厚さ0.02μmとなるまで行い、続いてニッケルを10Å/sの成膜レートで厚さ0.1μmとなるまで行った。真空蒸着による成膜時の圧力は2.7×10-4Pa,焦電基板120の温度は約100℃であった。これにより、厚さ0.12μmの表面金属層140を形成した。なお、表面金属層140のパターンは、ダイシング後に図1,2,4に示した形状の表面金属層40となるように形成した。具体的には、表面電極41,42となる部分が縦2mm,横0.5mm、表電極リード部46となる部分が縦0.1mm,横0.5mmの大きさとなるように形成した。
 続いて、OF部を有し、直径4インチ,厚さが500μmのガラス基板である第1基板136(熱膨張係数は12ppm/K)を用意し、縦2.1mm,横2.1mmの矩形穴138をウォータージェット法により多数形成した(図8(a)参照)。なお、第1基板136は、ダイシング後に第1基板36となるものであり、矩形穴138は、ダイシング後に空洞38となるものである。
 次に、焦電基板120の表面にエポキシ接着剤を1μm塗布し、第1基板136の各矩形穴138の中に各表面電極41,42となる部分が入るようにアライメントし、貼り合わせた。そして、プレス圧着によりエポキシ接着剤の厚さを0.1μmとし、第1基板136と貼り合わせた焦電基板120を200℃で1時間放置してエポキシ接着剤を硬化させて接着層137を形成した(図7(c),図8(b))。接着層137は、ダイシング後に接着層37になるものである。その後、Arイオンを使用したスパッタリングにより表面金属層140のうち表面電極41,41となる部分に付着したエポキシ接着剤を含め、矩形穴138内のエポキシ接着剤を除去した。
 そして、得られた複合体を上下逆にし、第1基板136を炭化珪素で作成した研磨治具に接着固定し、焦電基板120のうち第1基板136を貼り合わせていない面を固定砥粒の研削機で研削加工し、焦電基板120の厚みを50μmまで薄くした。さらに、その面をダイヤモンド砥粒で研磨加工し、厚みを12μmまで薄くした。その後、その面を遊離砥粒及び不織布系研磨パットを用いて仕上げ研磨を行い、焦電基板120の厚みが10μmとなるまで研磨した。なお、仕上げ研磨は、ダイヤモンド砥粒による研磨加工で焦電基板120に生じた加工変質層を除去するために行った。
 このようにして焦電基板120を研磨した後、焦電基板120の裏面(表面金属層140が形成されていない面)に裏面金属層150を多数形成した(図7(d))。この工程は、表面金属層140の形成と同様の材料及び条件で行った。なお、裏面金属層150のパターンは、ダイシング後に図1~4に示した形状の裏面面金属層50となるように形成した。具体的には、裏面電極51,52となる部分が縦2mm,横0.5mm、裏電極リード部56,57となる部分が縦0.5mm,横0.5mmの大きさとなるように形成した。そして、裏面金属層150を形成した複合体110から縦2.5mm×横2.5mmの赤外線検出素子15をダイシングにより切り出した(図7(e),図8(c))。
 続いて、裏面電極40と電気的に導通するように赤外線検出素子15の焦電基板20の裏面側に、エポキシ系接着剤に銀粒子が分散している導電性接着剤181,182を塗布した(図9(a))。この塗布は、導電性接着剤181,182が、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36と重なる位置に行った。具体的には、導電性接着剤181は、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36及び裏電極リード部56と重なる位置に塗布した。導電性接着剤182は、赤外線検出素子15を第1基板36側から仮想的に透過したときに第1基板36及び裏電極リード部57と重なる位置に塗布した。
 続いて、第2基板70として、シリコン基板(熱膨張係数は3ppm/K)上に電気配線を施した回路基板を用意し、裏電極リード部56,57と第2基板70とを電気的に導通させるように焦電基板20の裏面側に導電性接着剤181,182を介して第2基板70を貼り合わせた(図9(b))。なお、貼り合わせの際には、第2基板70の電気配線上に導電性接着剤181,182が位置するようにアライメントした。その後、第1基板36と第2基板70との間に1kgf程度の荷重をかけて第2基板70と赤外線検出素子15とを固定し、この状態で100℃で1時間放置して導電性接着剤181,182を硬化させて、第2基板70に導電性接着剤81,82を介して赤外線検出素子15を接着した(図9(c))。これにより、図1~4に示した形態の赤外線検出モジュール10を得た。
[実験例2~10]
 第1基板36となるガラス基板の熱膨張係数が実験例1と異なる点以外は、実験例1と同様にして、実験例2~10の赤外線検出モジュール10を作製した。
[実験例11]
 第2基板70として、アルミナ基板(熱膨張係数:7ppm/K)上に電気配線を施した回路基板を用いた以外は実験例1と同様にして、実験例11の赤外線検出モジュール10を作製した。
[実験例12~20]
 第1基板36となるガラス基板の熱膨張係数が実験例11と異なる点以外は実験例11と同様にして、実験例12~20の赤外線検出モジュール10を作製した。
[実験例21]
 実験例21として、導電性接着剤が、赤外線検出素子を第1基板側から仮想的に透過したときに第1基板と重ならないように位置している赤外線検出モジュールを作製した。この実験例21の赤外線検出モジュール310の断面図を図11に示す。図11において、上述した赤外線検出モジュール10と同じ構成要素については同じ符号を付し、説明を省略する。この赤外線検出モジュール310の赤外線検出素子315では、焦電基板20の裏面に形成された裏面金属層が裏面電極51,裏面電極52のみであり、裏電極リード部56,57が形成されていない。そして、導電性接着剤381は裏面電極51と第2基板70とを直接導通し、導電性接着剤382は裏面電極52と第2基板70とを直接導通している。そして、赤外線検出素子315を第1基板36側から仮想的に透過したときに、導電性接着剤381は裏面電極51と重なるように位置し、導電性接着剤382は裏面電極52と重なるように位置している。そのため、赤外線検出素子315を第1基板36側から仮想的に透過したときに、導電性接着剤381,382はいずれも第1基板36と重ならないように位置している。
 この実験例21の赤外線検出モジュール310を、実験例1と同様の工程により製造した。すなわち、裏面金属層の形成パターンと、導電性接着剤を塗布する位置とが異なる点以外は、実験例1と同様にして赤外線検出モジュール310を製造した。
[実験例22]
 第2基板70として、アルミナ基板(熱膨張係数:7ppm/K)上に電気配線を施した回路基板を用いた以外は実験例21と同様にして、実験例22の赤外線検出モジュール310を作製した。
[実験例23]
 第1基板36となるガラス基板の熱膨張係数が実験例21と異なる点以外は、実験例21と同様にして、実験例23の赤外線検出モジュール310を作製した。
 実験例1~23における第1基板36の熱膨張係数,熱膨張係数差D,第2基板70の材質,第2基板70の熱膨張係数を表1にまとめて示す。なお、実験例1~5,11~15,21~23が本発明の実施例に相当し、それ以外が比較例に相当する。
[評価試験1]
 実験例1~23の赤外線検出モジュールについて、圧電ノイズの発生有無を測定した。なお、圧電ノイズとは、熱応力によって焦電基板20が変形することによる焦電基板20の圧電効果によって発生する電圧である。測定は、各赤外線検出モジュールに対して、ヒートサイクル試験を行うことにより行った。ヒートサイクル試験は、次のような手順で行った。各赤外線検出モジュールを環境試験器に収容し、環境試験器内の温度を-10~80℃まで周期的に変化させた。具体的には、図12に示すように温度を変化させ、これを1サイクルとして、計100サイクルの試験を行った。そして、その間に圧電ノイズが発生したか否かを測定した。なお、各実験例について赤外線検出モジュールを10個ずつ用意し、10個のうち圧電ノイズが発生した個数を調べた。
 評価試験1の結果を表1に示す。表1からわかるように、第1基板が焦電基板と比べて熱膨張係数が小さく、熱膨張係数差Dが8.9ppm/K以下、より具体的には熱膨張係数差Dが5ppm/K以上8.9ppm/K以下(=第1基板36の熱膨張係数が8.1ppm/K以上12ppm/K以下)である実験例のうち、実験例1~5,11~15においては圧電ノイズが発生しておらず、実験例21~23においては圧電ノイズが発生したのは1個であった。一方、熱膨張係数差Dが8.9ppm/K超過である実験例6~10,16~20については、実験例1~5,11~15,21~23と比べて圧電ノイズが発生した個数が多く、熱膨張係数差Dが大きいほど圧電ノイズが発生した個数が多くなる傾向がみられた。これらの結果から、第1基板が焦電基板と比べて熱膨張係数が小さく、熱膨張係数差Dが8.9ppm/K以下であることで、熱膨張による焦電基板20の変形をより抑制できることがわかった。なお、熱膨張係数差Dが8.9ppm/K超過(=第1基板36の熱膨張係数が8.1ppm/K未満)であるときに圧電ノイズが発生しやすいのは、第1基板36と焦電基板20との熱膨張係数差が大きくなりすぎ、第1基板36と焦電基板20との熱膨張係数差によって焦電基板20及び赤外線検出素子15に反りなどの変形が生じるためと考えられる。
 また、実験例21~23に比べて実験例1~5,11~15の方が圧電ノイズ発生数が少ないのは、以下のような理由によると考えられる。すなわち、実験例21~23では、赤外線検出素子315を第1基板36側から仮想的に透過したときに、導電性接着剤381,382はいずれも第1基板36と重ならないように位置している。そのため、導電性接着剤381,382の熱膨張により焦電基板20が押し上げられるときに、実験例1と比べて焦電基板20が変形して圧電ノイズが生じやすいと考えられる。実験例1~5,11~15では、導電性接着剤の真上に第1基板36が存在することで、導電性接着剤の熱膨張による焦電基板20の変形をより抑制できると考えられる。
Figure JPOXMLDOC01-appb-T000001
 なお、図10に示した変形例の赤外線検出モジュール210の構成において、第1基板36及び第2基板70の材質及び熱膨張係数を実験例1~20と同様にした赤外線検出モジュールを作製し、上記評価試験と同等の試験を実施したが、結果は表1の実験例1~20と同じであった。
 本出願は、2011年12月5日に出願された日本国特許出願第2011-265832号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、例えば人体検知センサーなどのセキュリティー用や、火災検知センサーなどのガス検知用に用いられる、赤外線検出装置に利用可能である。
 10,210,310 赤外線検出モジュール、15,215,315 赤外線検出素子,20,120 焦電基板、21,22,221 受光領域、36,136 第1基板、37,137,237 接着層、38 空洞、40,140,240 表面金属層、41,42,241 表面電極、46,246,257 表電極リード部、56,57,256 裏電極リード部、50,150,250 裏面金属層、51,52,251 裏面電極、61,62,261 受光部、70 第2基板、81,82,181,182,381,382 導電性接着剤、110,115 複合体、138 矩形穴、290 側面金属層。

Claims (7)

  1.  焦電基板と、
     前記焦電基板の表面に形成された表面電極と、
     前記表面電極と対向するように該焦電基板の裏面に形成された裏面電極と、
     前記焦電基板の表面側に接着され前記焦電基板と比べて熱膨張係数が小さい第1基板と、
     を備え、
     前記第1基板は、前記表面電極に対向する空洞が形成されており、前記焦電基板の熱膨張係数から該第1基板の熱膨張係数を引いた熱膨張係数差Dが8.9ppm/K以下である、
     赤外線検出素子。
  2.  前記焦電基板は、厚さが10μm以下である、
     請求項1に記載の赤外線検出素子。
  3.  前記焦電基板は、タンタル酸リチウムの単結晶を、前記電極の面に沿った方向と一致するX軸の回りにY軸からZ軸方向にカット角θ(0°<θ<90°,90°<θ<180°)だけ回転させた角度で切り出したYオフカット板である、
     請求項1又は2に記載の赤外線検出素子。
  4.  請求項1~3のいずれか1項に記載の赤外線検出素子と、
     前記焦電基板の裏面側に接着され、該焦電基板と比べて熱膨張係数が小さい第2基板と、
     を備えた赤外線検出モジュール。
  5.  請求項4に記載の赤外線検出モジュールであって、
     前記赤外線検出素子と前記第2基板とを接着して前記裏面電極と該第2基板とを電気的に導通し、前記赤外線検出素子を前記第1基板側から仮想的に透過したときに前記第1基板と少なくとも一部が重なるように位置している導電性接着剤、
     を備えた赤外線検出モジュール。
  6.  前記第2基板は、熱膨張係数が前記焦電基板及び前記第1基板の熱膨張係数よりも小さい、
     請求項4又は5に記載の赤外線検出モジュール。
  7.  焦電基板と、前記焦電基板の表面に形成された表面電極と、前記表面電極と対向するように該焦電基板の裏面に形成された裏面電極と、前記焦電基板の表面側に接着され前記表面電極に対向する空洞が形成されており、前記焦電基板と比べて熱膨張係数が小さく前記焦電基板の熱膨張係数から該第1基板の熱膨張係数を引いた熱膨張係数差Dが8.9ppm/K以下である第1基板と、を備えた赤外線検出素子を、導電性接着剤を介して第2基板に接着した赤外線検出モジュールの製造方法であって、
    (a)前記赤外線検出素子を用意する工程と、
    (b)前記赤外線検出素子と前記第2基板とを電気的に導通させるように前記焦電基板の裏面側に前記導電性接着剤を介して該第2基板を貼り合わせる工程と、
    (c)前記第1基板と前記第2基板との間に荷重を加えて、該第2基板に前記導電性接着剤を介して前記赤外線検出素子を接着する工程と、
     を含み、
     前記工程(b)では、前記赤外線検出素子を前記第1基板側から仮想的に透過したときに該第1基板と少なくとも一部が重なる位置に前記導電性接着剤が位置するように前記貼り合わせを行う、
     赤外線検出モジュールの製造方法。
PCT/JP2012/080926 2011-12-05 2012-11-29 赤外線検出素子,赤外線検出モジュール及びその製造方法 WO2013084787A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012005068.1T DE112012005068B4 (de) 2011-12-05 2012-11-29 Infraroterfassungselement, Infraroterfassungsmodul und Herstellungsverfahren derselben
JP2013548200A JP6186281B2 (ja) 2011-12-05 2012-11-29 赤外線検出素子,赤外線検出モジュール及びその製造方法
US14/295,820 US9267846B2 (en) 2011-12-05 2014-06-04 Infrared detection element, infrared detection module, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-265832 2011-12-05
JP2011265832 2011-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/295,820 Continuation US9267846B2 (en) 2011-12-05 2014-06-04 Infrared detection element, infrared detection module, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2013084787A1 true WO2013084787A1 (ja) 2013-06-13

Family

ID=48574157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080926 WO2013084787A1 (ja) 2011-12-05 2012-11-29 赤外線検出素子,赤外線検出モジュール及びその製造方法

Country Status (4)

Country Link
US (1) US9267846B2 (ja)
JP (1) JP6186281B2 (ja)
DE (1) DE112012005068B4 (ja)
WO (1) WO2013084787A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328295A (zh) * 2016-06-23 2019-02-12 株式会社村田制作所 红外线检测元件及红外线检测装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992470B1 (fr) * 2012-06-26 2014-08-08 Commissariat Energie Atomique Element photodetecteur pour une radiation lumineuse infrarouge et photodetecteur comprenant un tel element photodetecteur
JP6163900B2 (ja) * 2013-06-13 2017-07-19 セイコーエプソン株式会社 力検出装置およびロボット
JP6119703B2 (ja) * 2014-09-04 2017-04-26 横河電機株式会社 センサ装置、歪センサ装置、及び圧力センサ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246217A (ja) * 1985-08-24 1987-02-28 Matsushita Electric Ind Co Ltd 焦電型赤外撮像素子
JPS62285029A (ja) * 1986-06-03 1987-12-10 Matsushita Electric Ind Co Ltd 赤外検出器及びその製造法
JPH05235428A (ja) * 1992-02-21 1993-09-10 Murata Mfg Co Ltd 強誘電体薄膜素子及びその製造方法
JP2000164946A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd 焦電形素子
WO2012114579A1 (ja) * 2011-02-24 2012-08-30 日本碍子株式会社 焦電素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE376798B (ja) * 1970-05-07 1975-06-09 Western Electric Co
US3654466A (en) * 1970-05-07 1972-04-04 Bell Telephone Labor Inc Narrow band electromagnetic, pyroelectric radiation devices using piezoelectric detectors
DE2942242A1 (de) 1978-10-24 1980-05-08 Plessey Handel Investment Ag Pyroelektrischer detektor
JPH0298965A (ja) * 1988-10-05 1990-04-11 Fujitsu Ltd 多素子赤外線検知センサ
US5620740A (en) * 1994-04-18 1997-04-15 Servo Corporation Of America Spun cast IR detector arrays with integrated readout electronics and method of making the same
JPH1038679A (ja) 1996-07-18 1998-02-13 Shimadzu Corp 焦電型赤外線検出器
JPH10135370A (ja) * 1996-10-31 1998-05-22 Kyocera Corp 配線基板、半導体素子収納用パッケージおよびその実装構造
JP2006203009A (ja) 2005-01-21 2006-08-03 Yamajiyu Ceramics:Kk 焦電型赤外線検出素子および焦電型赤外線検出器
JP5506035B2 (ja) * 2010-02-23 2014-05-28 富士フイルム株式会社 アクチュエータの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246217A (ja) * 1985-08-24 1987-02-28 Matsushita Electric Ind Co Ltd 焦電型赤外撮像素子
JPS62285029A (ja) * 1986-06-03 1987-12-10 Matsushita Electric Ind Co Ltd 赤外検出器及びその製造法
JPH05235428A (ja) * 1992-02-21 1993-09-10 Murata Mfg Co Ltd 強誘電体薄膜素子及びその製造方法
JP2000164946A (ja) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd 焦電形素子
WO2012114579A1 (ja) * 2011-02-24 2012-08-30 日本碍子株式会社 焦電素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328295A (zh) * 2016-06-23 2019-02-12 株式会社村田制作所 红外线检测元件及红外线检测装置

Also Published As

Publication number Publication date
US20140284482A1 (en) 2014-09-25
US9267846B2 (en) 2016-02-23
JPWO2013084787A1 (ja) 2015-04-27
DE112012005068T5 (de) 2014-09-04
JP6186281B2 (ja) 2017-08-23
DE112012005068B4 (de) 2023-11-09

Similar Documents

Publication Publication Date Title
JP5730327B2 (ja) 焦電素子及びその製造方法
US8264303B2 (en) Composite substrate and elastic wave device using the same
JP5180889B2 (ja) 複合基板、それを用いた弾性波デバイス及び複合基板の製法
JP4751385B2 (ja) 圧電部品及びその製造方法
JP6186281B2 (ja) 赤外線検出素子,赤外線検出モジュール及びその製造方法
KR101661361B1 (ko) 복합 기판, 및 그것을 이용한 탄성 표면파 필터와 탄성 표면파 공진기
US8664837B2 (en) Piezoelectric device and method for fabricating the same
JP2012010054A (ja) 複合基板及びそれを用いた弾性波デバイス
US9236554B2 (en) Piezoelectric device and method for fabricating the same
US20130214645A1 (en) Piezoelectric device and method for fabricating the same
US11271542B2 (en) Acoustic wave device and method of fabricating the same
JP5933997B2 (ja) 焦電素子及びその製造方法
WO2024214367A1 (ja) 圧電振動子
JP2018196090A (ja) 弾性波装置および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548200

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120050681

Country of ref document: DE

Ref document number: 112012005068

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855220

Country of ref document: EP

Kind code of ref document: A1