JP5173699B2 - Organic EL device manufacturing equipment - Google Patents

Organic EL device manufacturing equipment Download PDF

Info

Publication number
JP5173699B2
JP5173699B2 JP2008246499A JP2008246499A JP5173699B2 JP 5173699 B2 JP5173699 B2 JP 5173699B2 JP 2008246499 A JP2008246499 A JP 2008246499A JP 2008246499 A JP2008246499 A JP 2008246499A JP 5173699 B2 JP5173699 B2 JP 5173699B2
Authority
JP
Japan
Prior art keywords
substrate
processing
chamber
unit
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008246499A
Other languages
Japanese (ja)
Other versions
JP2010077487A (en
Inventor
雅 若林
信広 韮沢
賢治 弓場
行雄 落合
幹夫 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008246499A priority Critical patent/JP5173699B2/en
Priority to TW102102345A priority patent/TW201330162A/en
Priority to TW098126365A priority patent/TW201023291A/en
Priority to KR1020090074026A priority patent/KR101119748B1/en
Priority to CN200910165275XA priority patent/CN101685848B/en
Priority to CN2012101858909A priority patent/CN102709491A/en
Publication of JP2010077487A publication Critical patent/JP2010077487A/en
Priority to KR1020110058475A priority patent/KR101090590B1/en
Application granted granted Critical
Publication of JP5173699B2 publication Critical patent/JP5173699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Robotics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、有機ELデバイス製造装置及び同製造方法並び成膜装置及び成膜方法に係わり、特に大型基板を搬送して蒸着法による製造に好適な有機ELデバイス製造装置及び同製造方法に関する。   The present invention relates to an organic EL device manufacturing apparatus, a manufacturing method thereof, a film forming apparatus, and a film forming method, and more particularly to an organic EL device manufacturing apparatus and a manufacturing method suitable for manufacturing by a vapor deposition method by transporting a large substrate.

表示デバイスとして有機ELデバイスが注目され、その製造する有力な方法として真空蒸着法がある。有機ELデバイス製造するには、単に発光材料層(EL層)を形成し電極で挟むだけの構造ではなく、陽極の上に正孔注入層や輸送層、陰極の上に電子注入層や輸送層をなど様々な材料が薄膜としてなる多層構造を形成すために、有機ELデバイス製造装置は処理チャンバを複数有するクラスタが複数連なる構成をとる。このような従来技術としては下記のものがある。   An organic EL device has attracted attention as a display device, and there is a vacuum deposition method as an effective method for manufacturing the device. In order to manufacture organic EL devices, it is not just a structure in which a light emitting material layer (EL layer) is formed and sandwiched between electrodes, but a hole injection layer or transport layer on the anode, and an electron injection layer or transport layer on the cathode In order to form a multilayer structure in which various materials such as a thin film are formed, the organic EL device manufacturing apparatus has a configuration in which a plurality of clusters each having a plurality of processing chambers are connected. Such conventional techniques include the following.

特開2003−027213号公報JP 2003-027213 A

しかしながら、クラスタ構造では、各処理部が放射状に配置されるために、かつ各クラスタ間の処理部が干渉しないように離間して配置されるために、各クラスタ間の距離を長くとる必要があり、ライン全体として長くなる課題がある。特に、昨今は表示デバイスに使用される基板サイズも1500mm×1850mmにも及び、ますますライン長が長くなる。また、放射状の配置は、クラスタ及び処理部間にデットスペースができスペース効率が悪い。   However, in the cluster structure, since the processing units are arranged radially, and the processing units between the clusters are arranged so as not to interfere with each other, it is necessary to increase the distance between the clusters. There is a problem that the entire line becomes longer. In particular, recently, the substrate size used for the display device is also 1500 mm × 1850 mm, and the line length becomes longer. Further, the radial arrangement has a dead space between the cluster and the processing unit, and is not space efficient.

なお、本発明おけるクラスタとは、基板を搬送する方向の少なくとも片側に設けられた複数の基板処理部と基板搬入出部を有するものをいう。   In addition, the cluster in the present invention refers to a cluster having a plurality of substrate processing units and substrate carry-in / out units provided on at least one side in the direction of transporting a substrate.

従って、本発明の第一の目的は、クラスタ構造を有し、ライン長を短くできる有機ELデバイス製造装置または同製造方法あるいは成膜装置または成膜方法を提供することである。
また、本発明の第二の目的は、クラスタ構造を有し、スペース効率のよい有機ELデバイス製造装置または及び同製造方法あるいは成膜装置または成膜方法を提供することである。
Accordingly, a first object of the present invention is to provide an organic EL device manufacturing apparatus or manufacturing method or film forming apparatus or film forming method that has a cluster structure and can shorten the line length.
A second object of the present invention is to provide an organic EL device manufacturing apparatus or a manufacturing method or a film forming apparatus or a film forming method having a cluster structure and high space efficiency.

本発明は、上記の目的を達成するために、蒸着材料を基板に蒸着する処理部を具備する真空処理チャンバと、前記基板を該真空処理チャンバに搬入または搬出する受渡室と、前記基板を前記受渡室と前記処理部との間で搬送する搬送手段を具備する搬送チャンバとを備えるクラスタを有する有機ELデバイス製造装置において、前記処理部を前記真空処理チャンバ内に複数設け、複数の前記処理部のうち少なくとも2つの前記処理部を前記搬送手段の片側に隣接させ、 前記クラスタを複数有し、複数の前記クラスタを直列に接続して配置し、前記受渡室とは別に、前記基板を搬入する搬入ロード室と前記基板を搬出する搬出ロード室を備え、かつ、前記搬入ロード室から前記搬出ロード室へ前記基板を搬送する搬送系を構成する搬送部において、該基板の搬送角度を補正する補正手段を有し、前記搬送部は前記搬入ロード室であって、前記補正手段は前記基板が前記搬入ロード室に予定の角度で設置する第1の補正手段であることを第1の特徴とする。 In order to achieve the above object, the present invention provides a vacuum processing chamber having a processing section for depositing a deposition material on a substrate, a delivery chamber for carrying the substrate in or out of the vacuum processing chamber, and the substrate as described above. in the organic EL device manufacturing apparatus having a cluster and a transfer chamber having a transport means for transporting between the delivery chamber and the front Kisho processing section, a plurality of the processing unit to the vacuum processing chamber, a plurality of the at least two of the processing units of the processing unit are adjacent to one side of said conveying means has a plurality of said clusters, arranged by connecting a plurality of the clusters in series, separately from the delivery chamber, the substrate In a transfer section that includes a load-in load chamber for loading and a load-out load chamber for unloading the substrate, and that constitutes a transfer system for transferring the substrate from the load-in load chamber to the load-out load chamber , Correction means for correcting the transport angle of the substrate, wherein the transport section is the loading load chamber, and the correction means is a first correction means for setting the substrate in the loading load chamber at a predetermined angle. This is the first feature.

また本発明は、上記の目的を達成するために、前記第1の特徴に加え、前記搬送部は前記受渡室、前記搬入ロード室及び前記処理部に設けられた基板の処理受渡部のうち少なくとも一ヶ所に更に設けられ、前記補正手段は前記第1の補正手段とは異なった第2の補正手段であることを第2の特徴とする。
さらに、本発明は、上記の目的を達成するために、前記第1の特徴に加え、前記搬送部は、前記クラスタ、前記搬入ロード室あるいは搬出ロード室に更に設けられ、該搬送部の前記補正手段は、前記クラスタに設けられた前記搬送手段である第1の搬送ロボット、あるいは前記搬出ロード室に設けられた第2の搬送ロボットの第3の補正手段であることを第3の特徴とする。
According to the present invention, in order to achieve the above object, in addition to the first feature, the transfer unit includes at least one of the delivery chamber, the loading / unloading chamber, and the substrate processing delivery unit provided in the processing unit. A second feature is that the correction means is further provided at one place, and the correction means is a second correction means different from the first correction means .
Furthermore, in order to achieve the above object, the present invention provides the transfer unit further provided in the cluster, the load-in load chamber or the load-out load chamber, in addition to the first feature, and the correction of the transfer unit The third feature is that the means is a first correction robot of the first transfer robot that is the transfer means provided in the cluster or a second transfer robot provided in the carry-out load chamber. .

また、本発明は、上記の目的を達成するために、前記第1の特徴に加え、前記処理部は4つ以上であり、かつ該処理部を前記搬送手段の基板搬送方向に対し上下左右に対象に設け、前記基板を第1の前記処理部で処理した後に、該第1の前記処理部と点対称の位置にある第2の前記処理部で処理する処理手段を有することを第4の特徴とする。
また、本発明は、上記の目的を達成するために、前記第4の特徴に加え、前記クラスタは、同一の処理を行なう前記処理部を複数設けた前記真空処理チャンバを2台具備したことを第4の特徴とする。
In order to achieve the above object, according to the present invention, in addition to the first feature, the number of the processing units is four or more, and the processing units are vertically and horizontally with respect to the substrate transport direction of the transport unit. And a processing unit that is provided on a target and that is processed by the second processing unit in a point-symmetrical position with respect to the first processing unit after the substrate is processed by the first processing unit . Features.
In order to achieve the above object, according to the present invention, in addition to the fourth feature, the cluster includes two vacuum processing chambers provided with a plurality of the processing units for performing the same processing. The fourth feature.

本発明によれば、クラスタ構造を有し、ライン長を短くできる有機ELデバイス製造装
置または同製造方法あるいは成膜装置または成膜方法を提供することができる。
また、本発明によれば、クラスタ構造を有し、スペース効率のよい有機ELデバイス製
造装置または同製造方法あるいは成膜装置または成膜方法を提供することができる。
According to the present invention, it is possible to provide an organic EL device manufacturing apparatus or manufacturing method, a film forming apparatus or a film forming method that has a cluster structure and can shorten the line length.
In addition, according to the present invention, it is possible to provide an organic EL device manufacturing apparatus or manufacturing method or a film forming apparatus or film forming method having a cluster structure and good space efficiency.

本発明の第1の実施形態を図1から図7を用いて説明する。有機ELデバイス製造装置は、単に発光材料層(EL層)を形成し電極で挟むだけの構造ではなく、陽極の上に正孔注入層や輸送層、陰極の上に電子注入層や輸送層をなど様々な材料が薄膜としてなる多層構造を形成したり、基板を洗浄したりする。図1はその製造装置の一例を示したものである。   A first embodiment of the present invention will be described with reference to FIGS. Organic EL device manufacturing equipment is not simply a structure in which a light emitting material layer (EL layer) is formed and sandwiched between electrodes, but a hole injection layer or transport layer on the anode, and an electron injection layer or transport layer on the cathode. A multilayer structure in which various materials are formed as a thin film is formed, and a substrate is cleaned. FIG. 1 shows an example of the manufacturing apparatus.

本実施形態における有機ELデバイス製造装置100は、大別して処理対象の基板6(以下、単に基板という)を搬入するロードクラスタ3、前記基板6を処理する4つのクラスタ(A〜D)、各クラスタ間又はクラスタとロードクラスタ3あるいは次工程(封止工程)との間の設置されたつの受渡室4から構成されている。次工程の後方には基板を搬出するために少なくとも後述するロード室31のようなアンロード室(図示せず)がある。 The organic EL device manufacturing apparatus 100 according to the present embodiment is roughly divided into a load cluster 3 that carries a substrate 6 to be processed (hereinafter simply referred to as a substrate), four clusters (A to D) that process the substrate 6, and each class. It is composed of five delivery chambers 4 installed between the two clusters or between the cluster and the load cluster 3 or the next process (sealing process). Behind the next process is an unload chamber (not shown) such as a load chamber 31 which will be described later in order to carry out the substrate.

ロードクラスタ3は、前後に真空を維持するためにゲート弁10を有するロード室31と前記ロード室31から基板6を受取り、旋回して受渡室4aに基板6を搬入する搬送ロボット5Rからなる。各ロード室31及び各受渡室4は前後にゲート弁10を有し、当該
ゲート弁10の開閉を制御し真空を維持しながらロードクラスタ3あるいは次のクラスタ
等へ基板を受渡する。
The load cluster 3 includes a load chamber 31 having a gate valve 10 in order to maintain a vacuum in the front-rear direction and a transfer robot 5R that receives the substrate 6 from the load chamber 31 and turns to carry the substrate 6 into the delivery chamber 4a. Each load chamber 31 and each delivery chamber 4 have gate valves 10 in the front and rear, and deliver the substrate to the load cluster 3 or the next cluster while controlling the opening and closing of the gate valve 10 and maintaining a vacuum.

有機ELデバイス製造装置100は、放射状形状ではなく長方形または正方形の形状を有するクラスタを、図1の矢印に示す搬送方向に対して直列に配置している。各クラスタ(A〜D)は、一台の搬送ロボット5を有する搬送チャンバ2と、搬送ロボット5から基板を受
取り、所定の処理をする図面上で上下に配置された2つの処理チャンバ1(第1の添え字a
〜dはクラスタを示し、第2の添え字u、dは上側下側を示す。以下英文字である添え字に
おいて、小文字は場所を、大文字は構成要素を示す)を有する。各処理チャンバには、矢
印に示す搬送方向に対して平行に配置された2つの処理部がある。例えば、後述するよう
に、真空蒸着チャンバである処理チャンバ1buには、処理部1buLと1buRがある。他の処理チャンバにおいても同様である。図1においては符号が煩雑になるために、処理チャンバ1buと1cdのみに添え字L(左側)、R(右側)を付している。搬送チャンバ2と処理チャンバ1の各処理部にはゲート弁10が設けてある。
In the organic EL device manufacturing apparatus 100, clusters having a rectangular or square shape instead of a radial shape are arranged in series with respect to the transport direction indicated by the arrow in FIG. Each cluster (A to D) includes a transfer chamber 2 having a single transfer robot 5 and two processing chambers 1 (first) arranged on the top and bottom of the drawing for receiving a substrate from the transfer robot 5 and performing a predetermined process. 1 subscript a
˜d indicates a cluster, and second subscripts u and d indicate upper and lower sides. In the following subscripts, which are English letters, lowercase letters indicate places, and uppercase letters indicate components). Each processing chamber has two processing units arranged in parallel to the transport direction indicated by the arrow. For example, as will be described later, the processing chamber 1bu, which is a vacuum deposition chamber, includes processing units 1buL and 1buR. The same applies to other processing chambers. In FIG. 1, since the reference numerals become complicated, the subscripts L (left side) and R (right side) are attached only to the processing chambers 1bu and 1cd. A gate valve 10 is provided in each processing section of the transfer chamber 2 and the processing chamber 1.

図2は、搬送チャンバ2と処理チャンバ1の構成の概要を示す。処理チャンバ1の構成
は処理内容によって異なるが、真空で発光材料を蒸着しEL層を形成する真空蒸着チャンバ
1buを例にとって説明する。図3は、そのとき搬送チャンバ2bと真空蒸着チャンバ1buの構成の模式図と動作説明図である。図2における搬送ロボット5は、全体を上下に移動可能(図3の矢印53参照)で、左右に旋回可能な3リンク構造のアーム51を有し、その先端には基板搬送用の櫛歯状ハンド52を上下二段に2本有する。上下二段にすることによって、上は搬入用、下は搬出用とし、一つの動作で搬入出処理を同時に行なうことができる。2本ハンドにするか1本ハンドにするかは処理内容によって決める。以後の説明では、説明を簡単にするために1本ハンドで説明する。
FIG. 2 shows an outline of the configuration of the transfer chamber 2 and the processing chamber 1. Although the configuration of the processing chamber 1 varies depending on the content of processing, a vacuum deposition chamber 1bu that deposits a luminescent material in vacuum to form an EL layer will be described as an example. FIG. 3 is a schematic diagram and an operation explanatory diagram of the configuration of the transfer chamber 2b and the vacuum deposition chamber 1bu at that time. The transfer robot 5 in FIG. 2 has a three-link structure arm 51 that can move up and down as a whole (see arrow 53 in FIG. 3) and can turn left and right. Two hands 52 are provided in two upper and lower stages. By making the upper and lower two stages, the upper part is for carrying in and the lower part is for carrying out, and the carrying-in / out process can be performed simultaneously by one operation. Whether to use two hands or one hand depends on the processing. In the following description, a single hand is used for the sake of simplicity.

一方、真空蒸着チャンバ1buは、大別して発光材料を蒸発させ基板6に蒸着させる蒸着部7と、基板6の必要な部分に蒸着させるアライメント部8と、及び搬送ロボット5と基板の受渡しを行い、蒸着部7へ基板6を移動させる処理受渡部9からなる。アライメント部8と処理受渡部9には、左側処理部にある8L、9Lと、右側処理部にある8R、9Rを設ける。処理受渡部9は、搬送ロボット5の櫛歯状ハンド52と干渉することなく基板6を受渡し可能で、基板6を固定する手段94を有する櫛歯状ハンド91と、前記櫛歯状ハンド91を旋回させて基板6を直立させて、アライメント部8あるいは蒸着部7に移動し対面させる基板面制御手段92を有する。前記固定する手段としては、真空中であることを考慮して電磁吸着やクリップする手段等を用いる。   On the other hand, the vacuum deposition chamber 1bu is broadly divided into a deposition unit 7 for evaporating a luminescent material and depositing it on the substrate 6, an alignment unit 8 for depositing on a necessary part of the substrate 6, and a transfer robot 5 and the substrate delivery. The process delivery part 9 which moves the board | substrate 6 to the vapor deposition part 7 consists of. The alignment unit 8 and the processing delivery unit 9 are provided with 8L and 9L in the left processing unit and 8R and 9R in the right processing unit. The processing delivery unit 9 can deliver the substrate 6 without interfering with the comb-like hand 52 of the transport robot 5, and has a comb-like hand 91 having means 94 for fixing the substrate 6, and the comb-like hand 91. A substrate surface control unit 92 is provided to turn the substrate 6 upright and move to the alignment unit 8 or the vapor deposition unit 7 so as to face each other. As the means for fixing, electromagnetic adsorption or clipping means is used in consideration of being in a vacuum.

アライメント8は、図に示すマスク81、フレーム81からなるシャドウマスク
81と基板上のアライメントマーク84によって基板6とシャドウマスク81と位置合せをするアライメント駆動部83とを有する。蒸着部7は、蒸発源71をレール76上に沿って上下方向に移動させる上下駆動手段72、蒸発源71レール75上に沿って左右の
アライメント部間を移動する左右駆動ベース74を有する。蒸発源71は、内部に蒸着材料である発光材料を有し、前記蒸着材料を加熱制御(図示せず)することによって安定した蒸発速度が得られ、図3の引出し図に示すように、ライン状に並んだ複数の噴射ノズル73から噴射される構造となっている。必要によっては、安定した蒸着が得られるように添加剤も同時に加熱して蒸着する。
The alignment 8 includes a shadow mask 81 composed of a mask 81 M and a frame 81 F shown in FIG. 8 and an alignment driving unit 83 that aligns the substrate 6 and the shadow mask 81 with an alignment mark 84 on the substrate. Deposition unit 7 includes a left and right drive base 74 to the upper and lower drive means 72 for moving up and down the evaporation source 71 along the top rail 76, the evaporation source 71 is moved between the alignment of the left and right along the rail 75 on. The evaporation source 71 has a light emitting material as an evaporation material inside, and a stable evaporation rate can be obtained by heating control (not shown) of the evaporation material. As shown in the drawing of FIG. It is the structure which injects from the some injection nozzle 73 arranged in a line. If necessary, the additive is also heated and vapor-deposited so that stable vapor deposition is obtained.

以上実施形態において、搬送ロボット5は、真空中に有する機構をなるべく簡単化する
ために、全体の上下移動と、ベース部の回転と、櫛歯状ハンド52を放射状に伸縮させる
3自由度で構成されている。そこで、図4に示すように受渡室4bに基板6が破線で示す
ように平行に搬入され、搬送ロボット5bが基板6をそのまま処理受渡部9buLに搬送すると、基板6は処理受渡部9buLに対してある角度αLを持った状態で斜めに設置される。これに対処するには、(1)図4の実線で示すように長方形の基板6が処理受渡部1buLに
対して平行に重なるように、前述した角度αLを搬送系で補正するか、(2)搬送ロボット5の自由度を増やすか、(3)蒸着部で補正するか、が必要である。
In the embodiment described above, the transfer robot 5 is configured with three degrees of freedom in order to simplify the mechanism in vacuum as much as possible, the entire vertical movement, the rotation of the base portion, and the comb-like hand 52 extending and contracting radially. Has been. Therefore, as shown in FIG. 4, when the substrate 6 is carried into the delivery chamber 4b in parallel as shown by the broken line and the transfer robot 5b transfers the substrate 6 to the processing delivery section 9buL as it is, the substrate 6 is transferred to the processing delivery section 9buL. It is installed diagonally with a certain angle αL. In order to cope with this, (1) the angle αL described above is corrected by the transport system so that the rectangular substrate 6 overlaps in parallel with the processing delivery section 1buL as indicated by the solid line in FIG. It is necessary to increase the degree of freedom of the transfer robot 5 or (3) correct the vapor deposition unit.

まず、(1)の本実施形態を説明する。そこで、上記した実施形態の説明に中で搬送系を構成するのは、ロードクラスタ3のロード室31、搬送ロボット5R、受渡室4、搬送チャンバ2の搬送ロボット5及び処理チャンバ1の処理受渡部9である。少なくともこのうちどこかで補正する必要がある。しかし、真空チャンバ内はなるべくシンプルな構造とする必要があり、ロード室31又は受渡室4で補正することが望ましい。ロード室31と受渡室4の構造は基本的には同じであるので、受渡室4を例に取る。   First, the present embodiment (1) will be described. Therefore, in the description of the embodiment described above, the transfer system is configured by the load chamber 31 of the load cluster 3, the transfer robot 5R, the delivery chamber 4, the transfer robot 5 of the transfer chamber 2, and the processing delivery unit of the processing chamber 1. Nine. It is necessary to correct at least somewhere. However, it is necessary to make the inside of the vacuum chamber as simple as possible, and it is desirable to correct in the load chamber 31 or the delivery chamber 4. Since the structures of the load chamber 31 and the delivery chamber 4 are basically the same, the delivery chamber 4 is taken as an example.

図5は、角度補正機構の第1の実施例として受渡室4における角度補正機構を示した図
である。図5(a)は搬送ロボット5の櫛歯状ハンド52を受渡室4に挿入した時を上から
見た鳥瞰図で、図5(b)は受渡室4の側面図を示した図である。
受渡室4は、両サイドの基板搬入出口に設けられたゲート弁10I、10Eと複数の支持
ピン4Pを有する載置台4Dと角度補正機構4Hとを有し、前記角度補正機構4Hは、載置台4Dを支持する載置台支持部4Sと、前記載置台支持部4Sを左右に回転させる回転駆モータ4KM、載置台支持部4Sをシールする磁気シール4Jから構成されている。
FIG. 5 is a view showing an angle correction mechanism in the delivery chamber 4 as a first embodiment of the angle correction mechanism. FIG. 5A is a bird's-eye view seen from above when the comb-like hand 52 of the transfer robot 5 is inserted into the delivery chamber 4, and FIG. 5B is a view showing a side view of the delivery chamber 4.
The delivery chamber 4 includes a mounting table 4D having gate valves 10I and 10E and a plurality of support pins 4P provided at both sides of the substrate loading / unloading port, and an angle correction mechanism 4H. The angle correction mechanism 4H is a mounting table. the mounting table supporting unit 4S supporting the 4D, is composed of the mounting table supporting unit 4S of the rotation drive motor 4KM rotate to the left and right, the magnetic seal 4J to seal the mounting table supporting section 4S.

このような機構において、図5(a)の破線で示すように、クラスタAの搬送ロボット5aが、基板6を無回転状態の載置台4Dに、その載置台に平行な状態で載置した後、搬送ロボット5bが、図4に示す処理受渡部1buLに重なるように搬送する場合を想定する。この場合、前述したように、処理受渡部9buLに搬送ロボット5bから見て、基板6を右にαL度の回転させた状態で搬送すればよい。   In such a mechanism, as shown by the broken line in FIG. 5A, after the transfer robot 5a of the cluster A places the substrate 6 on the non-rotating mounting table 4D in a state parallel to the mounting table. Assume that the transfer robot 5b transfers the transfer robot 5b so as to overlap the processing delivery unit 1buL shown in FIG. In this case, as described above, the substrate 6 may be transported to the processing delivery unit 9buL with the substrate 6 rotated to the right by αL degrees as viewed from the transport robot 5b.

その動作フローを見ると、先ず、ゲート弁10E閉じた状態でゲート弁10Iを開き、搬送ロボット5aの櫛歯状ハンド52aによりゲート弁の開口部10IKから基板を搬入し、載置台4Dに載置する。前記櫛歯状ハンド52aが退出後、弁体10IBを閉じるとともに、載置台4Dを前記角度補正機構4Hにより右にαL度回転させる。その後、ゲート弁10Eを開き、その開口部10EKから搬送ロボット5bの櫛歯状ハンド52bを挿入し、基板6を持ち上げて搬出する。搬送ロボット5bは、そのベースを処理受渡部1buLの方向に回転させてリンク長さを調節しながら処理受渡部9buLに基板6を載置する。 Looking at the operation flow, first, the gate valve 10I is opened with the gate valve 10E closed, the substrate is loaded from the opening 10IK of the gate valve by the comb-like hand 52a of the transfer robot 5a, and placed on the placing table 4D. To do. After the comb-like hand 52a has left, the valve body 10IB is closed and the mounting table 4D is rotated αL degrees to the right by the angle correction mechanism 4H. Thereafter, the gate valve 10E is opened, the comb-like hand 52b of the transfer robot 5b is inserted from the opening 10EK, and the substrate 6 is lifted and carried out. The transfer robot 5b places the substrate 6 on the processing delivery unit 9buL while adjusting the link length by rotating the base in the direction of the processing delivery unit 1buL.

以上の説明では、基板6を受渡室4に平行な状態で搬入し、載置台4Dに設置する場合
を説明したが、基板6が角度βを持って設置された場合は、基板6の櫛歯状ハンド52b
に対する角度がαLになるように載置台4Dの角度を制御する。
In the above description, the case where the substrate 6 is carried in parallel to the delivery chamber 4 and installed on the mounting table 4D has been described. However, when the substrate 6 is installed with an angle β, the comb teeth of the substrate 6 are provided. Shaped hand 52b
The angle of the mounting table 4D is controlled so that the angle with respect to is αL.

本実施例では、載置台4Dが角度補正をした後、搬送ロボット5bを支持ピン4Pと干渉
することなく、載置台4Dと基板6の間に挿入することができるように、支持ピン4Pの太
さ、間隔及び櫛歯状ハンド52の櫛歯の本数、幅等を決定する。図5(a)では、実線
度補正後の基板6とその時の支持ピン4Pの状態を示、破線が角度補正前の状態を示し
ている。
In this embodiment, after the mounting table 4D corrects the angle, the thickness of the support pin 4P is increased so that the transfer robot 5b can be inserted between the mounting table 4D and the substrate 6 without interfering with the support pin 4P. Then, the interval, the number of comb teeth of the comb-like hand 52, the width, and the like are determined. Figure 5 (a), the solid line shows the state of the support pin 4P at that time the substrate 6 after the corner <br/> degree correction, and the broken line shows a state before angle correction.

図6は、受渡室4における角度補正機構の第2の実施例を示した図である。
第1の実施例では、前述した支持ピンの大きさにより、搬送ロボット5bの搬入領域、即
ち搬入角度αL等が制限される。後述するように各クラスタの構成が同じで、搬送する基
板の大きさが一定の場合には、角度αL等を一定にすることが可能である。そのような場
合は、第1の実施例は機構が簡単で優れている。しかし、そうでない場合は第1の実施例
では多少の制約が出てくる。そこで、第2の実施例の角度補正機構4Hは、載置台4D
転させずに基板6のみを回転させる機構を有する。その結果、搬送ロボット5bの搬入ルートの形状は不変となり、如何なる角度にも対応でき、櫛歯状ハンド52bの櫛歯の幅を
値小さくでき対応できる基板サイズを広くすることができる。
FIG. 6 is a view showing a second embodiment of the angle correction mechanism in the delivery chamber 4.
In the first embodiment, the carry-in area of the transfer robot 5b, that is, the carry-in angle αL is limited by the size of the support pin described above. As will be described later, when the configuration of each cluster is the same and the size of the substrate to be transferred is constant, the angle αL and the like can be made constant. In such a case, the first embodiment has a simple mechanism and is excellent. However, if this is not the case, there are some restrictions in the first embodiment. Therefore, angle correction mechanism 4H of the second embodiment has a mechanism for rotating only the substrate 6 mounting table 4D without rotating <br/> rotation. As a result, the shape of the carry-in route of the transfer robot 5b is not changed, and can correspond to any angle, and the width of the comb teeth of the comb-like hand 52b can be reduced to increase the substrate size that can be handled.

図6において、角度補正機構は、支持ピン4Pと、前記支持ピンを固定した支持ピン回転台4KDと、前記支持ピン回転台4KDを回転台支持部4SJを介して、左右に回転させる回転駆動モータ4KMと、上下に移動させる上下駆動モータ4JMとで構成されている。なお、4Vは回転台支持部4SJの上下移動に対するシール用ベローである。一方、載置台4Dは固定であり、その横断面は図6(a)示すように、基板を6支持する凸部4DTを有する。また、載置台4Dには、支持ピン4Pを回転可能とする各支持ピン又は支持ピン群に対する可動溝4SKがある。 In FIG. 6, the angle correction mechanism includes a support pin 4P, a support pin rotating table 4KD to which the support pin is fixed, and a rotary drive motor that rotates the support pin rotating table 4KD left and right via a rotating table support 4SJ. It is composed of 4KM and a vertical drive motor 4JM that moves up and down. Incidentally, 4V are sealing bellows for vertical movement of the turntable support portion 4 SJ. On the other hand, the mounting table 4D is fixed, and the cross section thereof has a convex portion 4DT for supporting the substrate 6 as shown in FIG. 6 (a). Further, the mounting table 4D has a movable groove 4SK for each support pin or support pin group that allows the support pin 4P to rotate.

このような機構において、先ず、搬送ロボット5aが受渡室4bに搬入し、基板6を載
置台4Dの凸部4DTに載置する。このとき、支持ピン4Pは支持ピン回転台4KDとともに最下位位置にある。その後、支持ピン回転台4KDを上昇させ、支持ピン4Pで基板6を支持し、所望の角度、例えばαL、支持ピン回転台4KDを回転させ、その状態で支持ピン回転台4KDを降下させて、載置台4Dに基板6を載置する。次に、搬送ロボット5bを搬入させ、基板6を把持し受渡室4bから搬出する。
In such a mechanism, first, the transfer robot 5a carries into the delivery chamber 4b and places the substrate 6 on the convex portion 4DT of the placement table 4D. At this time, the support pin 4P is at the lowest position together with the support pin turntable 4KD. Thereafter, the support pin turntable 4KD is raised, the substrate 6 is supported by the support pins 4P, the support pin turntable 4KD is rotated at a desired angle, for example, αL degree , and the support pin turntable 4KD is lowered in this state. The substrate 6 is mounted on the mounting table 4D. Next, the transfer robot 5b is carried in, and the substrate 6 is gripped and carried out from the delivery chamber 4b.

以上のように、本実施例では、搬送ロボット5bにとって、どのような角度になっても
常に載置台4Dの凸部4DT間を搬出ルートすることができる。なお、本実施例では、細長い凸部4DTで基板6を載置したが、直線状に配置した支持ピンで載置してもよい。
As described above, in the present embodiment, taking the transfer robot 5b, what always placing table 4D even when the angle between the projecting portions 4DT may be out route. In the present embodiment, the substrate 6 is placed with the elongated protrusions 4DT, but it may be placed with support pins arranged in a straight line.

以上説明したように、本実施形態によれば、受渡室に、基板の搬送角度を変える角度補正機構を設けることで、長方形の処理チャンバ有するクラスタ構造を直列に連結することができ、全体のライン長を短くできる有機ELデバイス製造装置または同製造方法を提供できる。
また、本実施形態によれば、上記のクラスタ構造を有するライン構成を実現でき、スペース効率のよい有機ELデバイス製造装置または同製造方法を提供することができる。
As described above, according to this embodiment, by providing the delivery chamber with the angle correction mechanism that changes the substrate transport angle , the cluster structure having the rectangular processing chambers can be connected in series, and the entire line The organic EL device manufacturing apparatus or the manufacturing method capable of shortening the length can be provided.
In addition, according to the present embodiment, a line configuration having the above-described cluster structure can be realized, and a space-efficient organic EL device manufacturing apparatus or manufacturing method can be provided.

以上の説明において、例えば、αR、αLの関係を考慮せずに説明してきた。
従って、角度補正機構を各受渡部4に設ければ、各クラスタまたは各処理チャンバの寸法
あるいは基板サイズに対応できる。
In the above description, for example, the description has been made without considering the relationship between αR and αL.
Accordingly, if an angle correction mechanism is provided in each delivery unit 4, it is possible to cope with the size or substrate size of each cluster or each processing chamber.

一連の処理において、図1における各処理チャンバ同士、あるいは、一つの処理チャンバの中に図3に示すように複数の処理部同士を同一形状、同一配置にすることができる。
例えば、図1の実施形態において、クラスタA〜Dは同一形状、同一配置であり、しかも
各クラスタの上下に配置された2つの処理チャンバも搬送方向に対して線対称であり、し
かも一つの処理チャンバにおける2つの処理部も搬送方向に垂直線に対して線対称である。
搬送ロボット5は搬送チャンバ、強いて言えばクラスタの中心位置に配置される。
その結果、図4におけるαR、αLは、αR=−αL=αとなり、処理チャンバ1bdでは、処理チャンバ1buとクロスの関係にあるので、処理受渡部9bdRではαの値を、処理受渡部9bdLでは−αの値をとる。
In a series of processing, the processing chambers in FIG. 1 or a plurality of processing units in one processing chamber can have the same shape and the same arrangement as shown in FIG.
For example, in the embodiment of FIG. 1, the clusters A to D have the same shape and the same arrangement, and two processing chambers arranged above and below each cluster are also line symmetric with respect to the transfer direction, and one process is performed. The two processing units in the chamber are also line symmetric with respect to the vertical line in the transport direction.
The transfer robot 5 is arranged at the center of the transfer chamber, more specifically, the cluster.
As a result, [alpha] R in FIG. 4, .alpha.L is, αR = -αL = α becomes, the processing chamber 1bd, since the relationship of the processing chamber 1bu and cross, the value of alpha in the treatment delivery section 9BdR, the processing transfer part 9bdL Take the value of -α.

そこで、先ず第1に受渡室4の角度補正機構は、同一サイズ基板処理するのであれば、連続した値をとる必要がなく、一定の角度±αの2値の値をとればよい。この場合は、
第1実施形態の第1の実施例が有効になる。
この場合において、同一クラスタ内でαから−α或いは−αからαを持つ処理受渡部に基板6を搬送するときは、そのクラスタが接する受渡室4で角度補正を行なう必要がある。
Therefore, first, the angle correction mechanism of the delivery chamber 4 to the first as long to process the same size substrate, it is not necessary to take continuous values, take a binary value of constant angle ± alpha. in this case,
The first example of the first embodiment is effective.
In this case, when the substrate 6 is transported to the processing delivery section having α to −α or −α to α in the same cluster, it is necessary to correct the angle in the delivery chamber 4 in contact with the cluster.

図1に示す実施形態では、後述するように同一処理チャンバ内での2つの処理部の処理
は同一である。従って、同一クラスタ内では、αからα或いは−αから−αを持つ処理受渡部に搬送することなる。さらに、各クラスタの補正角度が±αで同一であるならば、ある基板は、すべて補正角度αで、次の基板はすべて補正角度−αで有機ELデバイス製造装置100の搬入口から搬出口まで処理され、搬送されることになる。この場合は、なるべく上流側で一度角度補正をすればよく、前記前提条件が変わらなければ下流で角度補正は不要である。勿論、前記前提条件が変わるところには角度補正機構を設ける必要がある。
In the embodiment shown in FIG. 1, the processing of two processing units in the same processing chamber is the same as will be described later. Thus, in the same cluster, it will be transported to the processing transfer unit having -α from alpha or -α from alpha. Further, if the correction angle of each cluster is the same as ± α, one substrate is all corrected angle α, and the next substrate is all corrected angle −α from the carry-in port to the carry-out port of the organic EL device manufacturing apparatus 100. Processed and transported. In this case, it is sufficient to correct the angle once on the upstream side as much as possible. If the precondition does not change, the angle correction on the downstream side is unnecessary. Of course, it is necessary to provide an angle correction mechanism where the precondition is changed.

本実施形態での候補としてはロード室31と受渡室4aである。ロード室31では、受渡室と同様な機構を設けてもよいが、ロード室31に基板6を搬入するときに予め±αの角度を待たせて搬入させてもよい。また、ロード室31には、基板毎に搬入するのではなく、複数枚収納されたカセット単位で搬入するのであれば、上側のロード室31にはαの角度を持つカセット、下側のロード室31には−αの角度を持つカセットを配置してもよい。   Candidates in this embodiment are the load chamber 31 and the delivery chamber 4a. The load chamber 31 may be provided with a mechanism similar to that of the delivery chamber. However, when the substrate 6 is loaded into the load chamber 31, the load chamber 31 may be loaded while waiting for an angle of ± α in advance. In addition, if the load chamber 31 is not loaded for each substrate but is loaded in units of cassettes that are stored in plural, the upper load chamber 31 has a cassette having an angle α, and the lower load chamber. A cassette having an angle of −α may be arranged at 31.

本実施形態によれば、2つの同一ラインを並列に持つことができるので、全体生産ライ
ンを見かけ上長くなることもあるが、生産量に対する単位長さにおいては従来に比べて短
くすることができる。
According to the present embodiment, since two identical lines can be provided in parallel, the overall production line may be apparently long, but the unit length with respect to the production amount can be shortened compared to the conventional case. .

次に(2)の搬送ロボットの自由度を増やす方法についての実施形態を説明する。図5に
示す搬送ロボット5の櫛歯状ハンド52を左右回転させる自由度を設ける。例えば櫛歯状
ハンド52のリンクとの接続部52Jにその自由度を設ける。真空チャンバ内に移動する
機構を新たに設けることは好ましくはないが、上記第1の実施形態と同様な効果を奏する
ことができる。
Next, an embodiment of the method (2) for increasing the degree of freedom of the transfer robot will be described. A degree of freedom for rotating the comb-like hand 52 of the transfer robot 5 shown in FIG. For example, the degree of freedom is provided in the connecting portion 52J with the link of the comb-like hand 52. Although it is not preferable to newly provide a mechanism for moving into the vacuum chamber, the same effects as in the first embodiment can be obtained.

(3)の蒸着部で補正する方法を説明する前に、図7を用いて、図1から図3に示した処
理チャンバ1が、受渡室4又はその上流で角度補正された基板6を処理受渡部9に搬入し、真空蒸着し、搬出するまで処理フローを説明する。本フロー処理後は、前述したように同一クラスタの対角線上にある処理部に搬送して同様な蒸着処理を行なう。
本実施形態での真空蒸着処理の基本的な考え方は、上面搬送された基板6を垂直にたてて、アライメント部8に搬送し、蒸着する。搬送時基板6の下面が蒸着面であるならば反
転する必要があるが、上面が蒸着面であるので垂直にたてるだけでよい。
Before explaining the correction method in the vapor deposition section of (3), the processing chamber 1 shown in FIGS. 1 to 3 uses the delivery chamber 4 or the substrate 6 whose angle is corrected upstream thereof with reference to FIG. A processing flow will be described from carrying into the delivery unit 9 to vacuum deposition and carrying out. After this flow process, as described above, the same vapor deposition process is performed by transporting to the processing unit on the diagonal of the same cluster.
The basic idea of the vacuum deposition process in this embodiment is that the substrate 6 transported from the upper surface is vertically set, transported to the alignment unit 8, and deposited. If the lower surface of the substrate 6 is a vapor deposition surface at the time of conveyance, it is necessary to invert it.

次に本実施形態に真空蒸着処理フローを図3を参照しながら図7を用いて詳細に説明する。図3において基板6が存在するところは実線で示す。
まず、Rラインにおいて、基板6Rを搬入し、基板6Rを垂直に立ててアライメント部8Rに移動し、基板6とシャドウマスク81とで位置合せを行なう(StepR1からStepR3)。このとき、基板は蒸着面を上にした上面搬送であるので、反転等することなく直ぐに位置合せを行なうことができる。位置合せは、図3の引出し図に示すように、CCDカメラ86で撮像し、基板6に設けられたアライメントマーク84がマスク81に設けられた窓85の中心にくるように、シャドウマスク81Rを前記アライメント駆動部83で制御することによって行なう。本蒸着が赤(R)を発光させる材料であるならば、図8に示すようにマスク81のRに対応する部分に窓があいており、その部分が蒸着されることになる。その窓の大きさは色によって異なるが平均して幅50μm、高さ150μm程度である。マスク81の厚さは40μmであり、今後さらに薄くなる傾向がある。
Next, the vacuum deposition process flow in this embodiment will be described in detail with reference to FIG. In FIG. 3, the place where the substrate 6 exists is indicated by a solid line.
First, in the R line, the substrate 6R is carried in, the substrate 6R is set up vertically and moved to the alignment unit 8R, and alignment between the substrate 6 and the shadow mask 81 is performed (Step R1 to Step R3). At this time, since the substrate is transported on the upper surface with the vapor deposition surface up, alignment can be performed immediately without inversion. Alignment, as shown in the drawer of FIG. 3, and picked up by the CCD camera 86, as an alignment mark 84 provided on the substrate 6 at the center of the window 85 provided in the mask 81 M, the shadow mask 81R Is controlled by the alignment driving unit 83. If the deposition is a material for emitting red (R), the window has met a portion corresponding to the R of the mask 81 M as shown in FIG. 8, so that the portion thereof is deposited. The size of the window varies depending on the color, but on average is about 50 μm in width and about 150 μm in height. The thickness of the mask 81 M is 40 [mu] m, they tend to be thinner in the future.

位置合せが終了したら、蒸発源71をRライン側に移動させ(StepL0)、その後ライン状の蒸発源71を上又は下に移動させて蒸着する(StepR4)。Rライン蒸着中に、Lラインでは
Rラインの同様にStepL1からStepL3の処理を行なう。すなわち、他の基板6Lを搬入し、
該基板6Lを垂直に立ててアライメント部8Lに移動し、シャドウマスク81Lとの位置合せを行なう。Rラインの基板6Rの蒸着を完了すると、蒸発源71はLラインに移動し(StepR5)、Lラインにある基板6Lを蒸着する(StepL4)。このとき蒸発源71がRラインの蒸着領域から完全に出る前に、基板6Rがアライメント部8Rから離れると、不必要に蒸着される可能性があるので、完全に出た後に、基板6Rの処理チャンバ1からの搬出動作を開始し、その後新たな基板6Rの準備に入る。前記不必要な蒸着を避けるためにラインの間に仕切り板11を設ける。なお、図3は、StepR4及びStepL1の状態を示している。即ち、Rラインでは蒸着を開始し、Lラインでは真空蒸着チャンバ1buに基板を搬入した状態である。
When the alignment is completed, the evaporation source 71 is moved to the R line side (Step L0 ), and then the evaporation source 71 is moved up or down to deposit (Step R4 ). During R line deposition, with L line
Similarly to the R line, StepL1 to StepL3 are processed. That is, carry in another board 6L,
The substrate 6L is erected vertically and moved to the alignment unit 8L to perform alignment with the shadow mask 81L. When the deposition of the substrate 6R on the R line is completed, the evaporation source 71 moves to the L line (Step R5 ) and deposits the substrate 6L on the L line (Step L4) . At this time, if the substrate 6R moves away from the alignment portion 8R before the evaporation source 71 completely exits the deposition area of the R line, there is a possibility that deposition may be unnecessary. The carrying-out operation from the chamber 1 is started, and then preparation for a new substrate 6R is started. In order to avoid the unnecessary deposition, a partition plate 11 is provided between the lines. FIG. 3 shows the states of StepR4 and StepL1. That is, vapor deposition is started on the R line, and the substrate is loaded into the vacuum vapor deposition chamber 1bu on the L line.

その後、上記フローを連続して行なうことにより、蒸発部7の移動時間を除いて無駄に
蒸着材料を使用することなく蒸着することができる。蒸着に必要な時間とその他処理時間
は略1分であり、蒸発源71の移動時間を5秒とすれば、従来は1分の無駄な蒸着時間が本実施形態では5秒に短縮できる。上記本実施形態によれば、図6に示すように真空蒸着チャンバ1buの処理基板1枚の処理サイクルは実質的に蒸着時間+蒸発源71の移動時間となり、生産性を向上させることができる。前述の条件で処理時間を評価すれば、従来の2分に対し、本発明では1分5秒となり、チャンバひとつあたりの生産性を約2倍に向上できる。
Thereafter, by continuously performing the above-described flow, it is possible to perform vapor deposition without wastefully using the vapor deposition material except for the moving time of the evaporation unit 7. The time required for vapor deposition and other processing time are approximately 1 minute. If the moving time of the evaporation source 71 is 5 seconds, the wasteful vapor deposition time of 1 minute can be reduced to 5 seconds in the present embodiment. According to the present embodiment, as shown in FIG. 6, the processing cycle of one processing substrate in the vacuum deposition chamber 1bu is substantially the deposition time + the movement time of the evaporation source 71, and productivity can be improved. If the processing time is evaluated under the above-mentioned conditions, it will be 1 minute 5 seconds in the present invention compared to the conventional 2 minutes, and the productivity per chamber can be improved about twice.

以上の(1)(2)実施形態は全て基板6の蒸着面を上にして搬送し、立っているシャドウ
マスクで蒸着できるように、基板を立てる場合について説明した。その他の蒸着方法では、基板、シャドウマスクとも水平にして行なう方法がある。その場合の多くは、図9に示すように蒸着面を下にし、蒸着処理を下方から行なう。このような場合は、(3)実施形態の蒸着部で補正する方法も有効である。
In all the above embodiments (1) and (2), the case where the substrate is erected so that the vapor deposition surface of the substrate 6 is conveyed and vapor deposition can be performed with a standing shadow mask has been described. As another deposition method, there is a method in which both the substrate and the shadow mask are horizontal. In many cases, as shown in FIG. 9, the deposition surface is down, and the deposition process is performed from below. In such a case, (3) the method of correcting by the vapor deposition section of the embodiment is also effective.

このような実施形態では、基板処理面を下面に搬送するために、基板6を専用のケースに入れて基板の両端を把持して搬送する。角度調節機構は上記の実施形態に示した方法を適用できる。   In such an embodiment, in order to transport the substrate processing surface to the lower surface, the substrate 6 is placed in a dedicated case and gripped at both ends of the substrate. The method shown in the above embodiment can be applied to the angle adjusting mechanism.

また、基板を垂直にして蒸着している場合には、シャドウマスクの位置合わせ機構などと複雑に絡んで、処理チャンバ1内の処理受渡部9を回転させることは難しいが、基板処理面が水平の場合、図5に示す機構を処理受渡部9に設けたり、補正角が一定であれば、図9に示すようにアライメント部7をその角度に合わせて設け、蒸発源71をその角度に合わせて走査させることにより実質的に角度補正することも可能である。 In addition, when vapor deposition is performed with the substrate vertical, it is difficult to rotate the processing delivery section 9 in the processing chamber 1 in a complicated manner with a shadow mask alignment mechanism and the like, but the substrate processing surface is horizontal. 5, if the mechanism shown in FIG. 5 is provided in the processing delivery unit 9 or if the correction angle is constant, the alignment unit 7 is provided according to the angle as shown in FIG. 9 and the evaporation source 71 is adjusted to the angle. It is also possible to substantially correct the angle by scanning.

本実施形態においても、先の実施形態と同様な効果を得ることができる。
従って、異なる蒸着面姿勢によるシャドウマスクの姿勢如何に関わらず本発明を適用できる。
Also in this embodiment, the same effect as the previous embodiment can be obtained.
Therefore, the present invention can be applied regardless of the posture of the shadow mask with different deposition surface postures.

また、上記説明では有機ELデバイスを例に説明したが、有機ELデバイスと同じ背景にある蒸着処理をする成膜装置および成膜方法にも適用できる。   In the above description, the organic EL device has been described as an example. However, the present invention can also be applied to a film forming apparatus and a film forming method that perform vapor deposition processing in the same background as the organic EL device.

本発明の実施形態である有機ELデバイス製造装置を示す図である。It is a figure which shows the organic EL device manufacturing apparatus which is embodiment of this invention. 本発明の実施形態である搬送チャンバ2と処理チャンバ1の構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the conveyance chamber 2 and the processing chamber 1 which are embodiment of this invention. 本発明の実施形態である搬送チャンバと処理チャンバの構成の模式図と動作説明図である。It is the schematic diagram and operation | movement explanatory drawing of a structure of the conveyance chamber and processing chamber which are embodiment of this invention. 角度補正機構の必要性を説明する図である。It is a figure explaining the necessity of an angle correction mechanism. 本発明の第1の実施形態における角度補正機構の第1の実施例を示す図である。It is a figure which shows the 1st Example of the angle correction mechanism in the 1st Embodiment of this invention. 本発明の第1の実施形態における角度補正機構の第2の実施例を示す図である。It is a figure which shows the 2nd Example of the angle correction mechanism in the 1st Embodiment of this invention. 本発明の第1の実施形態である処理チャンバ1の処理フローを示した図である。It is the figure which showed the processing flow of the processing chamber 1 which is the 1st Embodiment of this invention. シャドウマスクの一例を示す図である。It is a figure which shows an example of a shadow mask. 本発明の(3)の実施形態を説明する図である。It is a figure explaining embodiment of (3) of this invention.

1:処理チャンバ 1bu:真空蒸着チャンバ
2:搬送チャンバ
3:ロードクラスタ 4:受渡室
4H:角度補正機構 4D:受渡室の載置台
4P:受渡室の基板支持ピン 5:搬送ロボット
6:基板 7:蒸着部
8:アライメント部 9:処理受渡部
10:ゲート弁 11:仕切り板
31:ロード室 81:シャドウマスク
71:蒸発源 100:有機ELデバイスの製造装置
A〜D:クラスタ。
1: Processing chamber 1bu: Vacuum deposition chamber 2: Transfer chamber 3: Load cluster 4: Delivery chamber 4H: Angle correction mechanism 4D: Placement platform 4P: Delivery chamber substrate support pin 5: Transfer robot 6: Substrate 7: Deposition unit 8: Alignment unit 9: Processing delivery unit 10: Gate valve 11: Partition plate 31: Load chamber 81: Shadow mask 71: Evaporation source 100: Organic EL device manufacturing apparatus AD: Cluster.

Claims (7)

蒸着材料を基板に蒸着する処理部を具備する真空処理チャンバと、
前記基板を該真空処理チャンバに搬入または搬出する受渡室と、
前記基板を前記受渡室と前記処理部との間で搬送する搬送手段を具備する搬送チャンバとを備えるクラスタを有する有機ELデバイス製造装置において、
前記処理部を前記真空処理チャンバ内に複数設け、複数の前記処理部のうち少なくとも2つの前記処理部を前記搬送手段の片側に隣接させ、
前記クラスタを複数有し、複数の前記クラスタを直列に接続して配置し、
前記受渡室とは別に、前記基板を搬入する搬入ロード室と前記基板を搬出する搬出ロード室を備え、かつ
前記搬入ロード室から前記搬出ロード室へ前記基板を搬送する搬送系を構成する搬送部において、該基板の搬送角度を補正する補正手段を有し、
前記搬送部は前記搬入ロード室であって、前記補正手段は前記基板が前記搬入ロード室に予定の角度で設置する第1の補正手段であることを特徴とする有機ELデバイス製造装置。
A vacuum processing chamber having a processing unit for depositing a deposition material on a substrate;
A delivery chamber for carrying the substrate into or out of the vacuum processing chamber ;
In the organic EL device manufacturing apparatus having a cluster and a transfer chamber having a conveying means for conveying the substrate between said delivery chamber and the front Kisho processing section,
A plurality of the processing units are provided in the vacuum processing chamber, and at least two of the processing units are adjacent to one side of the transport unit,
Having a plurality of the clusters, arranging a plurality of the clusters connected in series,
Separately from the delivery chamber, a loading load chamber for loading the substrate and a loading load chamber for unloading the substrate, and
In a transfer unit constituting a transfer system for transferring the substrate from the carry-in load chamber to the carry-out load chamber, the correction unit corrects the transfer angle of the substrate,
The organic EL device manufacturing apparatus according to claim 1, wherein the transfer unit is the carry-in load chamber, and the correction unit is a first correction unit in which the substrate is installed in the carry-in load chamber at a predetermined angle .
記搬送部は前記受渡室、前記搬入ロード室及び前記処理部に設けられた基板の処理受渡部のうち少なくとも一ヶ所に更に設けられ、前記補正手段は前記第1の補正手段とは異なった第2の補正手段であることを特徴とする請求項1に記載の有機ELデバイス製造装置。 Before SL conveying section the delivery chamber, the carry load chamber and further provided in at least one location of the processing transfer part of the substrate provided in the processing unit, wherein the correction means is different from said first correction means The organic EL device manufacturing apparatus according to claim 1, wherein the organic EL device manufacturing apparatus is a second correction unit . 前記第2の補正手段は、前記搬送部に設けた前記基板を載置する載置台を回転する手段、あるいは前記載置台から離間して前記基板を回転する手段であることを特徴とする請求項に記載の有機ELデバイス製造装置。 The second correction means is means for rotating a mounting table for mounting the substrate provided in the transport section, or means for rotating the substrate apart from the mounting table. 2. The organic EL device manufacturing apparatus according to 2. 前記搬送部は、前記クラスタ、前記搬入ロード室あるいは搬出ロード室に更に設けられ、該搬送部の前記補正手段は、前記クラスタに設けられた前記搬送手段である第1の搬送ロボット、あるいは前記搬出ロード室に設けられた第2の搬送ロボットの第3の補正手段であることを特徴とする請求項1に記載の有機ELデバイス製造装置。 The transport unit is further provided in the cluster, the loading load chamber or the unloading load chamber, and the correction unit of the transport unit is a first transport robot that is the transport unit provided in the cluster, or the unloading unit. The organic EL device manufacturing apparatus according to claim 1, wherein the organic EL device manufacturing apparatus is a third correction unit of a second transfer robot provided in the load chamber . 前記第3の補正手段は、前記第1の搬送ロボット又は前記第2の搬送ロボットの前記基板を搬送するハンド部の角度を変える手段である特徴とする請求項に記載の有機ELデバイス製造装置。 5. The organic EL device manufacturing apparatus according to claim 4 , wherein the third correction unit is a unit that changes an angle of a hand unit that transports the substrate of the first transport robot or the second transport robot. . 前記処理部は4つ以上であり、かつ該処理部を前記搬送手段の基板搬送方向に対し上下左右に対象に設け、前記基板を第前記処理部で処理した後に、第1の前記処理部と点対称の位置にある第2の前記処理部で処理する処理手段を有することを特徴とする請求項1に記載の有機ELデバイス製造装置。 Wherein the processing unit is four or more, and the processing unit is provided to the subject in the vertical and horizontal directions relative to the substrate conveying direction of the conveying means, the substrate after processing in the first of said processing unit, said first of said 2. The organic EL device manufacturing apparatus according to claim 1, further comprising a processing unit configured to perform processing by the second processing unit at a point-symmetrical position with respect to the processing unit. 前記クラスタは、同一の処理を行なう前記処理部を複数設けた前記真空処理チャンバを2台具備したことを特徴とする請求項1に記載の有機ELデバイス製造装置。   The organic EL device manufacturing apparatus according to claim 1, wherein the cluster includes two vacuum processing chambers each provided with a plurality of the processing units that perform the same processing.
JP2008246499A 2008-09-25 2008-09-25 Organic EL device manufacturing equipment Expired - Fee Related JP5173699B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008246499A JP5173699B2 (en) 2008-09-25 2008-09-25 Organic EL device manufacturing equipment
TW102102345A TW201330162A (en) 2008-09-25 2009-08-05 Apparatus for manufacturing organic el device, and apparatus for forming film
TW098126365A TW201023291A (en) 2008-09-25 2009-08-05 Organic EL device manufacturing apparatus and method, film-forming apparatus and method
KR1020090074026A KR101119748B1 (en) 2008-09-25 2009-08-12 Apparatus and method for manufacturing organic el device, and apparatus and method for forming film
CN200910165275XA CN101685848B (en) 2008-09-25 2009-08-17 Organic el device manufacturing apparatus and method, film-forming apparatus and method
CN2012101858909A CN102709491A (en) 2008-09-25 2009-08-17 Organic EL device manufacturing apparatus
KR1020110058475A KR101090590B1 (en) 2008-09-25 2011-06-16 Apparatus for manufacturing organic el device, and apparatus for forming film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246499A JP5173699B2 (en) 2008-09-25 2008-09-25 Organic EL device manufacturing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012284367A Division JP2013110114A (en) 2012-12-27 2012-12-27 Apparatus for manufacturing organic el device and angle correction mechanism

Publications (2)

Publication Number Publication Date
JP2010077487A JP2010077487A (en) 2010-04-08
JP5173699B2 true JP5173699B2 (en) 2013-04-03

Family

ID=42048896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246499A Expired - Fee Related JP5173699B2 (en) 2008-09-25 2008-09-25 Organic EL device manufacturing equipment

Country Status (4)

Country Link
JP (1) JP5173699B2 (en)
KR (2) KR101119748B1 (en)
CN (2) CN102709491A (en)
TW (2) TW201330162A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140040312A (en) * 2012-09-24 2014-04-03 주식회사 원익아이피에스 Substrate processing apparatus
US8692806B2 (en) 2001-11-02 2014-04-08 Neonode Inc. On a substrate formed or resting display arrangement
US9710144B2 (en) 2012-11-27 2017-07-18 Neonode Inc. User interface for curved input device
US9778794B2 (en) 2001-11-02 2017-10-03 Neonode Inc. Light-based touch screen
US10007422B2 (en) 2009-02-15 2018-06-26 Neonode Inc. Light-based controls in a toroidal steering wheel

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506921B2 (en) * 2010-04-28 2014-05-28 株式会社アルバック Vacuum processing apparatus, substrate and alignment mask moving method, alignment method, and film forming method
JP5492027B2 (en) * 2010-08-31 2014-05-14 株式会社日立ハイテクノロジーズ Organic EL device manufacturing apparatus and manufacturing method
JP2013172015A (en) * 2012-02-21 2013-09-02 Hitachi High-Technologies Corp Deposition device, and substrate transfer mechanism therefor
KR101346071B1 (en) * 2012-03-27 2013-12-31 에스엔유 프리시젼 주식회사 organic matter evaporation system
JP2014070241A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Vapor deposition device and vapor deposition method
KR101990555B1 (en) * 2012-12-24 2019-06-19 삼성디스플레이 주식회사 Thin film encapsulation manufacturing device and manufacturing method of thin film encapsulation
JP2013110114A (en) * 2012-12-27 2013-06-06 Hitachi High-Technologies Corp Apparatus for manufacturing organic el device and angle correction mechanism
KR20160087953A (en) * 2015-01-14 2016-07-25 에스엔유 프리시젼 주식회사 Cluster type evaporation device for manufacturing of OLED
JP7202168B2 (en) * 2018-12-13 2023-01-11 キヤノントッキ株式会社 Film forming apparatus, organic EL panel manufacturing system, and film forming method
US20220293892A1 (en) * 2019-07-25 2022-09-15 Applied Materials, Inc. System and method to evaporate an oled layer stack in a vertical orientation

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW504941B (en) * 1999-07-23 2002-10-01 Semiconductor Energy Lab Method of fabricating an EL display device, and apparatus for forming a thin film
JP4078813B2 (en) * 2001-06-12 2008-04-23 ソニー株式会社 Film forming apparatus and film forming method
JP3811943B2 (en) * 2001-07-06 2006-08-23 日本精機株式会社 Manufacturing method of organic EL panel.
JP4027072B2 (en) * 2001-10-18 2007-12-26 松下電器産業株式会社 Low pressure plasma processing apparatus and method
TWI277363B (en) * 2002-08-30 2007-03-21 Semiconductor Energy Lab Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
JP2004241319A (en) * 2003-02-07 2004-08-26 Sony Corp Film forming device
US7211461B2 (en) * 2003-02-14 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
JP2004288463A (en) * 2003-03-20 2004-10-14 Semiconductor Energy Lab Co Ltd Manufacturing device
JP4493955B2 (en) * 2003-09-01 2010-06-30 東京エレクトロン株式会社 Substrate processing apparatus and transfer case
JP4538650B2 (en) * 2004-06-18 2010-09-08 京セラ株式会社 Vapor deposition equipment
JP4503384B2 (en) * 2004-07-28 2010-07-14 大日本スクリーン製造株式会社 Substrate processing equipment
KR100656182B1 (en) * 2004-08-16 2006-12-12 두산디앤디 주식회사 Inline cross substrate transfer apparatus of organic electro luminescence deposition apparatus
JP2006228598A (en) * 2005-02-18 2006-08-31 Nippon Seiki Co Ltd Manufacturing method of organic el panel
EP1715078A1 (en) * 2005-04-20 2006-10-25 Applied Films GmbH & Co. KG Continuous OLED coating apparatus
KR100727849B1 (en) * 2005-10-27 2007-06-14 세메스 주식회사 In-line deposition system of parallel type
KR100780042B1 (en) * 2006-03-06 2007-11-27 (주) 디오브이 Manufacturing device for preventing short betweenelectorde of OLED
JP5036290B2 (en) * 2006-12-12 2012-09-26 東京エレクトロン株式会社 Substrate processing apparatus, substrate transfer method, and computer program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692806B2 (en) 2001-11-02 2014-04-08 Neonode Inc. On a substrate formed or resting display arrangement
US9778794B2 (en) 2001-11-02 2017-10-03 Neonode Inc. Light-based touch screen
US10007422B2 (en) 2009-02-15 2018-06-26 Neonode Inc. Light-based controls in a toroidal steering wheel
KR20140040312A (en) * 2012-09-24 2014-04-03 주식회사 원익아이피에스 Substrate processing apparatus
US9710144B2 (en) 2012-11-27 2017-07-18 Neonode Inc. User interface for curved input device
US10254943B2 (en) 2012-11-27 2019-04-09 Neonode Inc. Autonomous drive user interface

Also Published As

Publication number Publication date
CN102709491A (en) 2012-10-03
KR101119748B1 (en) 2012-03-23
KR20100035099A (en) 2010-04-02
KR101090590B1 (en) 2011-12-08
CN101685848B (en) 2012-07-18
TW201330162A (en) 2013-07-16
TW201023291A (en) 2010-06-16
CN101685848A (en) 2010-03-31
KR20110081129A (en) 2011-07-13
JP2010077487A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5173699B2 (en) Organic EL device manufacturing equipment
KR101708420B1 (en) Depositing system for substrate and depositing method using the same
JP4934619B2 (en) Organic EL manufacturing apparatus and organic EL manufacturing method
TWI232242B (en) Substrate processing apparatus and processing method
KR101092163B1 (en) Manufacturing device of organic el device and method of manufacturing organic el device and layer forming device and layer forming method
JP6379318B1 (en) Film forming apparatus, film forming method, and solar cell manufacturing method
KR101760667B1 (en) The system for depositing a atomic layer
JP7190997B2 (en) Adsorption and alignment method, adsorption system, film formation method, film formation apparatus, and electronic device manufacturing method
JP4768001B2 (en) ORGANIC EL DEVICE MANUFACTURING APPARATUS, ITS MANUFACTURING METHOD, FILM-FORMING APPARATUS, AND FILM-FORMING METHOD
TW201230233A (en) Vacuum processing apparatus
JP7024044B2 (en) Film forming equipment, film forming method using this, and manufacturing method of electronic devices
JP7148587B2 (en) Film forming apparatus and method for manufacturing electronic device
KR101409808B1 (en) Substrate treatment system
JP5277015B2 (en) Organic EL device manufacturing apparatus, film forming apparatus, and shadow mask exchange apparatus
JP5260212B2 (en) Deposition equipment
WO2009130790A1 (en) Tray transfer type inline film forming apparatus
JP7069280B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
JP2013110114A (en) Apparatus for manufacturing organic el device and angle correction mechanism
JP5358697B2 (en) Deposition equipment
JP2020070490A (en) Adsorption and alignment method, adsorption system, film deposition method, film deposition device, and electronic device manufacturing method
KR101225212B1 (en) Oled manufacturing apparatus and method of the same
KR101175988B1 (en) Substrate treatment apparatus and method of the same
JP4951712B2 (en) ORGANIC EL DEVICE MANUFACTURING APPARATUS, ITS MANUFACTURING METHOD, FILM-FORMING APPARATUS, AND FILM-FORMING METHOD
JP2023103008A (en) Film deposition apparatus, film deposition method and manufacturing method of electronic device
JP2023038028A (en) Film deposition apparatus, substrate transportation device, substrate transportation method, and manufacturing method of electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

LAPS Cancellation because of no payment of annual fees