JP5166736B2 - 高感度磁気内蔵電流センサ - Google Patents
高感度磁気内蔵電流センサ Download PDFInfo
- Publication number
- JP5166736B2 JP5166736B2 JP2006546454A JP2006546454A JP5166736B2 JP 5166736 B2 JP5166736 B2 JP 5166736B2 JP 2006546454 A JP2006546454 A JP 2006546454A JP 2006546454 A JP2006546454 A JP 2006546454A JP 5166736 B2 JP5166736 B2 JP 5166736B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- magnetic
- sensor
- conductor
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 322
- 230000035945 sensitivity Effects 0.000 title abstract description 37
- 239000004020 conductor Substances 0.000 claims abstract description 109
- 238000001514 detection method Methods 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 55
- 230000004907 flux Effects 0.000 claims abstract description 52
- 230000005415 magnetization Effects 0.000 claims description 45
- 239000004065 semiconductor Substances 0.000 claims description 34
- 230000005294 ferromagnetic effect Effects 0.000 claims description 27
- 238000005259 measurement Methods 0.000 claims description 24
- 230000008859 change Effects 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 22
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 14
- 230000004888 barrier function Effects 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 239000012777 electrically insulating material Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000001052 transient effect Effects 0.000 claims description 5
- 238000012360 testing method Methods 0.000 abstract description 29
- 230000008569 process Effects 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 8
- 230000010354 integration Effects 0.000 abstract description 4
- 238000012805 post-processing Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 182
- 230000006870 function Effects 0.000 description 11
- 230000008901 benefit Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 7
- 229910003321 CoFe Inorganic materials 0.000 description 5
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 125000000205 L-threonino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])[C@](C([H])([H])[H])([H])O[H] 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002902 ferrimagnetic material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/30—Marginal testing, e.g. by varying supply voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/30—Marginal testing, e.g. by varying supply voltage
- G01R31/3004—Current or voltage test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1673—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Bipolar Transistors (AREA)
- Measuring Magnetic Variables (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
HK=4π(t・M)(ηy−ηx)/w
ここで、(t・M)は、フリー層の厚さと飽和磁化との積であり、また、(ηy−ηx)は、アスペクト比l/wの単調増加関数であり、l/w=1(円)の場合に0の値をとり、l/w=∞の場合に1の値をとる。以下に与えられるような数において、HK=160Oeである。そして、センサ感度が信号に関連付けられる。一例として、例えば使用できるTMR信号が40%の磁気トンネル接合を挙げると、推定される感度は以下のとおりである。
感度=TMR[%]/(2.HK)
− 測定範囲が広い。これは、磁化対の回転によって範囲が限定されないからである。
− 測定範囲内で線形特性をもつ。これは、測定範囲内で出力がI2に比例し、また、I2もIxに完全に比例しているからである。
− ヒステリシスが無い。これは、磁化が大きく回転しないからである。
− 処理ステップが変わらず、したがって、余計なコストがかからない。
41 垂直ビア
42 L形状構造体
50 磁束集結体
51 切れ目
60 第2のビア
61 U形状構造体
70 ダブルリング磁束集結体
71 切れ目
72,73 ダブルリング磁束集結体
74,75 磁束線群
80 フィードバック回路
90 第1の導体ライン
91 第2の導体ライン
100 上端接点
102 フリー磁性層
103 トンネルバリア
105 固定磁性層
107 ピニング層
220 人工反強磁性構造体
221 中間層
240 フォトレジスト
241 キャップ層
310 負荷抵抗器
320,350 オペアンプ
330 センサ
340 バイアストランジスタ
360 出力オペアンプ
400 センサ読み出し増幅器
402 コアブロック
404 センサユニット
700 中央タスクスケジューラ
Claims (23)
- 導体素子および電流センサを有する半導体デバイスであって、前記電流センサは、前記導体素子を通じて流れる直流、変動電流または交流を検出するための磁流検出デバイスであり、この電流センサは、前記半導体デバイス内に集積されるとともに、前記導体素子から電気的に絶縁され、前記電流センサは、MTJ積層体をMRAMデバイスと共有している、半導体デバイス。
- μAの分解能をもって電流を測定するのに適している、請求項1に記載の半導体デバイス。
- 前記電流センサが少なくとも1つのMTJ積層体を備えている、請求項1または2に記載の半導体デバイス。
- 前記MTJ積層体は、
− 磁気抵抗トンネルバリアを形成するように設計されている電気絶縁材料と、
− 前記電気絶縁材料の一方側に位置され、前記電気絶縁材料に隣接する磁気モーメントベクトルを有しているピン磁性領域と、
− 前記電気絶縁材料の反対側に位置され、ほぼバランスがとれたフリー磁性領域であって、前記電気絶縁材料に隣接し且つ前記ピン磁性領域の磁気モーメントベクトルと平行または逆平行な位置に方向付けられた磁気モーメントベクトルを有するとともに、反強磁性結合されたN個(Nは2以上の整数)の強磁性層を有する人工反強磁性層材料を含んでいるフリー磁性領域と、
を備えている、請求項1に記載の半導体デバイス。 - 前記電流センサがフリー磁性領域を有し、該フリー磁性領域は、測定下で電流により引き起こされる磁場に対して略垂直となるように向けられる容易軸を有している、請求項3又は4に記載の半導体デバイス。
- 前記電流センサが容易軸を有し、前記フリー磁性領域の容易軸が形状の延伸によって引き起こされる、請求項5に記載の半導体デバイス。
- 前記電流センサは、直流磁場、変動磁場または交流磁場となり得る更なる磁場に晒される、請求項4から6のいずれか一項に記載の半導体デバイス。
- 前記電流センサは、所定の磁化方向を有するピン磁性領域と、容易軸を有するフリー磁性領域とを有し、前記ピン磁性領域の磁化方向は、前記フリー磁性領域の容易軸と所定の角度を成して、好ましくは45°〜135°の角度を成して方向付けられ、更に好ましくは前記フリー磁性領域の容易軸に対して略垂直に向けられている、請求項1から7のいずれか一項に記載の半導体デバイス。
- 前記電流センサの第1の側に隣接して、測定される電流を運ぶための第1の導体を備えるとともに、前記電流センサの第2の側に隣接して、電流を導くための第2の導体を備え、前記第1の導体および前記第2の導体は交差するが電気的に接続されていない、請求項1に記載の半導体デバイス。
- 前記電流センサは容易軸を有するフリー磁性領域を有し、前記第1の導体および前記第2の導体はそれぞれ、前記電流センサの磁性領域の容易軸に対してほぼ30°〜90°の角度を成している、請求項9に記載の半導体デバイス。
- 前記電流センサにおけるMR変化を測定し且つ前記電流センサにおいてMR変化が観察されないように前記第2の導体の電流を制御するためのフィードバック回路を更に備えている、請求項9に記載の半導体デバイス。
- 前記電流フィードバック回路は、測定され且つ前記第1の導体によって運ばれる電流を示すフィードバック信号を生成するための手段を有している、請求項11に記載の半導体デバイス。
- 前記第1の導体および前記第2の導体のうちの少なくとも一方は、少なくとも1つの垂直導電構成要素と、少なくとも1つの水平導電構成要素とを備え、前記垂直導電構成要素と水平導電構成要素との間には角部が存在し、これにより、その角部が前記電流センサの近傍に配置される少なくともL形状部分を含む導体構造体が形成される、請求項9から12のいずれか一項に記載の半導体デバイス。
- 前記電流センサの場所で磁場を増大させるための磁束集結体を更に備えている、請求項13に記載の半導体デバイス。
- 前記磁束集結体は、前記少なくとも1つの垂直導電構成要素の周囲でパターン化されるダミーMTJ積層体を備えている、請求項14に記載の半導体デバイス。
- 前記磁束集結体は、リング形状を成しているとともに、柱間に切れ目を備え、前記電流センサが前記切れ目内に配置されている、請求項14に記載の半導体デバイス。
- センサデバイスがCMOSまたはMOS処理に適合する、請求項1から16のいずれか一項に記載の半導体デバイス。
- 半導体デバイスが集積回路である、請求項1から17のいずれか一項に記載の半導体デバイス。
- 1または複数の前記電流センサは、零入力電流(IDDQ)または過渡電流(IDDT)を検出するようになっている、請求項18に記載の半導体デバイス。
- 請求項3に記載の半導体デバイスを製造するための方法であって、前記MTJ積層体を設けるステップを含んでいる方法。
- MTJ積層体を設ける前記ステップは、フリー領域を堆積させるステップを含んでいる、請求項20に記載の方法。
- フリー領域を堆積させる前記ステップは、複数の反強磁性結合された強磁性層を備える人工強磁性フリー領域を堆積させることを含んでいる、請求項21に記載の方法。
- 前記人工強磁性フリー領域がほぼゼロの正味磁気モーメントを有し、方法は、前記フリー領域の正味磁気モーメントをそれがゼロにならないように変更することを更に含んでいる、請求項22に記載の方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03104937 | 2003-12-23 | ||
EP03104937.2 | 2003-12-23 | ||
EP04105805 | 2004-11-16 | ||
EP04105805.8 | 2004-11-16 | ||
PCT/IB2004/052857 WO2005064356A2 (en) | 2003-12-23 | 2004-12-20 | High sensitivity magnetic built-in current sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007520057A JP2007520057A (ja) | 2007-07-19 |
JP5166736B2 true JP5166736B2 (ja) | 2013-03-21 |
Family
ID=34740663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006546454A Expired - Fee Related JP5166736B2 (ja) | 2003-12-23 | 2004-12-20 | 高感度磁気内蔵電流センサ |
Country Status (9)
Country | Link |
---|---|
US (1) | US7619431B2 (ja) |
EP (1) | EP1706751B1 (ja) |
JP (1) | JP5166736B2 (ja) |
KR (1) | KR101154607B1 (ja) |
CN (1) | CN1898574B (ja) |
AT (1) | ATE386949T1 (ja) |
DE (1) | DE602004011995T2 (ja) |
TW (1) | TWI365989B (ja) |
WO (1) | WO2005064356A2 (ja) |
Families Citing this family (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7541804B2 (en) * | 2005-07-29 | 2009-06-02 | Everspin Technologies, Inc. | Magnetic tunnel junction sensor |
KR100727486B1 (ko) * | 2005-08-16 | 2007-06-13 | 삼성전자주식회사 | 자기 기억 소자 및 그 형성 방법 |
US7239543B2 (en) * | 2005-10-28 | 2007-07-03 | Freescale Semiconductor, Inc. | Magnetic tunnel junction current sensors |
TWI300225B (en) * | 2006-04-28 | 2008-08-21 | Ind Tech Res Inst | Method for accessing data on magnetic memory |
GB2446146B (en) * | 2007-01-31 | 2009-11-18 | Gm Global Tech Operations Inc | Arrangement of a two stage turbocharger system for an internal combustion engine |
US7483295B2 (en) * | 2007-04-23 | 2009-01-27 | Mag Ic Technologies, Inc. | MTJ sensor including domain stable free layer |
US7800389B2 (en) * | 2007-07-13 | 2010-09-21 | Allegro Microsystems, Inc. | Integrated circuit having built-in self-test features |
US7919967B2 (en) * | 2007-12-27 | 2011-04-05 | Hitachi Global Storage Technologies Netherlands, B.V. | Verification of a fabrication process used to form read elements in magnetic heads |
US7863911B2 (en) * | 2007-12-31 | 2011-01-04 | Hitachi Global Storage Technologies, Netherlands, B.V. | Test device and method for measurement of tunneling magnetoresistance properties of a manufacturable wafer by the current-in-plane-tunneling technique |
US8058871B2 (en) * | 2008-07-08 | 2011-11-15 | Magic Technologies, Inc. | MTJ based magnetic field sensor with ESD shunt trace |
US8269486B2 (en) * | 2008-11-12 | 2012-09-18 | Infineon Technologies Ag | Magnetic sensor system and method |
US9222992B2 (en) * | 2008-12-18 | 2015-12-29 | Infineon Technologies Ag | Magnetic field current sensors |
US8310225B2 (en) * | 2009-01-14 | 2012-11-13 | Qualcomm Incorporated | Current sensing mechanism |
KR101107155B1 (ko) * | 2009-04-17 | 2012-01-31 | 캐논 아네르바 가부시키가이샤 | 주파수 변환 장치 및 방법 |
EP2442117B1 (en) * | 2009-06-12 | 2021-11-17 | Alps Alpine Co., Ltd. | Magnetic balance current sensor |
JP5250109B2 (ja) * | 2009-06-12 | 2013-07-31 | アルプス・グリーンデバイス株式会社 | 磁気平衡式電流センサ |
US9041388B2 (en) * | 2009-07-27 | 2015-05-26 | Iii Holdings 3, Llc | Non-contact current sensor |
TWI434025B (zh) * | 2010-02-11 | 2014-04-11 | Geeng Jen Sheu | Non - contact sensing device |
US8717016B2 (en) | 2010-02-24 | 2014-05-06 | Infineon Technologies Ag | Current sensors and methods |
JP4936030B2 (ja) * | 2010-03-10 | 2012-05-23 | Tdk株式会社 | 磁気センサ |
US8760149B2 (en) | 2010-04-08 | 2014-06-24 | Infineon Technologies Ag | Magnetic field current sensors |
US8680843B2 (en) | 2010-06-10 | 2014-03-25 | Infineon Technologies Ag | Magnetic field current sensors |
KR101684915B1 (ko) | 2010-07-26 | 2016-12-12 | 삼성전자주식회사 | 자기 기억 소자 |
US8283742B2 (en) | 2010-08-31 | 2012-10-09 | Infineon Technologies, A.G. | Thin-wafer current sensors |
US20120068698A1 (en) * | 2010-09-17 | 2012-03-22 | Industrial Technology Research Institute | Structure of tmr and fabrication method of integrated 3-axis magnetic field sensor and sensing circuit |
US9645204B2 (en) | 2010-09-17 | 2017-05-09 | Industrial Technology Research Institute | Magnetic field sensors and sensng circuits |
WO2012096416A1 (ko) * | 2011-01-10 | 2012-07-19 | 한국표준과학연구원 | 나노소재용 역학-전기 복합센서 |
US8975889B2 (en) | 2011-01-24 | 2015-03-10 | Infineon Technologies Ag | Current difference sensors, systems and methods |
US8963536B2 (en) | 2011-04-14 | 2015-02-24 | Infineon Technologies Ag | Current sensors, systems and methods for sensing current in a conductor |
KR101191437B1 (ko) | 2011-10-26 | 2012-10-16 | 태성전장주식회사 | 2채널 전류센서 |
US8829901B2 (en) * | 2011-11-04 | 2014-09-09 | Honeywell International Inc. | Method of using a magnetoresistive sensor in second harmonic detection mode for sensing weak magnetic fields |
US9354257B2 (en) * | 2011-11-04 | 2016-05-31 | General Electric Company | Systems and methods for use in measuring current through a conductor |
US9739808B2 (en) * | 2011-11-29 | 2017-08-22 | Honeywell International Inc. | Devices, methods, and systems for sensing current |
CN103134970B (zh) * | 2011-11-29 | 2015-12-16 | 上海汽车集团股份有限公司 | 适于汽车应用的集成霍尔传感器和电流检测装置 |
US8957487B2 (en) * | 2012-01-04 | 2015-02-17 | Industrial Technology Research Institute | Tunneling magneto-resistor reference unit and magnetic field sensing circuit using the same |
JP5911065B2 (ja) * | 2012-06-12 | 2016-04-27 | 公立大学法人大阪市立大学 | 漏電検出装置 |
EP2712078B1 (en) * | 2012-09-25 | 2015-06-03 | Crocus Technology S.A. | Magnetic logic unit (MLU) cell and amplifier having a linear magnetic signal |
EP2741296B1 (en) * | 2012-12-07 | 2019-01-30 | Crocus Technology S.A. | Self-referenced magnetic random access memory (MRAM) and method for writing to the MRAM cell with increased reliability and reduced power consumption |
US8779824B2 (en) * | 2012-12-17 | 2014-07-15 | Qualcomm Incorporated | Clock distribution using MTJ sensing |
US9244134B2 (en) * | 2013-01-15 | 2016-01-26 | Infineon Technologies Ag | XMR-sensor and method for manufacturing the XMR-sensor |
CN104995682B (zh) * | 2013-03-14 | 2018-01-19 | 英特尔公司 | 具有自旋霍尔mtj器件的交叉点阵列mram |
CH708052B1 (de) * | 2013-05-07 | 2016-09-15 | Melexis Technologies Nv | Vorrichtung zur Strommessung. |
EP2995962A4 (en) * | 2013-05-10 | 2017-01-18 | Murata Manufacturing Co., Ltd. | Magnetic current sensor and current measurement method |
EP2827395A1 (en) * | 2013-07-16 | 2015-01-21 | Imec | Method for patterning a magnetic tunnel junction stack |
WO2015033541A1 (ja) * | 2013-09-05 | 2015-03-12 | 旭化成エレクトロニクス株式会社 | 電流センサ |
US9123879B2 (en) | 2013-09-09 | 2015-09-01 | Masahiko Nakayama | Magnetoresistive element and method of manufacturing the same |
US9368717B2 (en) | 2013-09-10 | 2016-06-14 | Kabushiki Kaisha Toshiba | Magnetoresistive element and method for manufacturing the same |
US9385304B2 (en) | 2013-09-10 | 2016-07-05 | Kabushiki Kaisha Toshiba | Magnetic memory and method of manufacturing the same |
US9231196B2 (en) | 2013-09-10 | 2016-01-05 | Kuniaki SUGIURA | Magnetoresistive element and method of manufacturing the same |
US9495899B2 (en) | 2013-09-25 | 2016-11-15 | Qualcomm Incorporated | Contactless data communication using in-plane magnetic fields, and related systems and methods |
US9141733B2 (en) | 2013-11-20 | 2015-09-22 | International Business Machines Corporation | Method, system, and computer program product for modeling resistance of a multi-layered conductive component |
TWI499791B (zh) | 2013-12-20 | 2015-09-11 | Ind Tech Res Inst | 應用於雙線電源線電流量測之非接觸式電流感測器安裝位置變動補償裝置 |
US9372208B2 (en) | 2014-01-02 | 2016-06-21 | International Business Machines Corporation | Signal monitoring of through-wafer vias using a multi-layer inductor |
CN105092930B (zh) * | 2014-05-06 | 2020-10-30 | 恩智浦美国有限公司 | 片上电流测试电路 |
WO2015171690A1 (en) * | 2014-05-06 | 2015-11-12 | Molex Incorporated | Module with integral sensor |
CN104301851B (zh) * | 2014-07-14 | 2018-01-26 | 江苏多维科技有限公司 | Tmr近场磁通信系统 |
US9263667B1 (en) | 2014-07-25 | 2016-02-16 | Spin Transfer Technologies, Inc. | Method for manufacturing MTJ memory device |
US9337412B2 (en) | 2014-09-22 | 2016-05-10 | Spin Transfer Technologies, Inc. | Magnetic tunnel junction structure for MRAM device |
DE102015100991B4 (de) | 2015-01-23 | 2019-08-14 | Infineon Technologies Ag | Sensoranordnung, Schaltungsanordnung und Verfahren zum Herstellen einer Sensoranordnung |
US9728712B2 (en) | 2015-04-21 | 2017-08-08 | Spin Transfer Technologies, Inc. | Spin transfer torque structure for MRAM devices having a spin current injection capping layer |
US10468590B2 (en) | 2015-04-21 | 2019-11-05 | Spin Memory, Inc. | High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory |
CN105093139B (zh) * | 2015-06-09 | 2017-11-24 | 江苏多维科技有限公司 | 一种推挽式x轴磁电阻传感器 |
US9853206B2 (en) | 2015-06-16 | 2017-12-26 | Spin Transfer Technologies, Inc. | Precessional spin current structure for MRAM |
US11422164B2 (en) | 2015-06-24 | 2022-08-23 | Currently, LLC | Contactless wideband magneto-resistive current sensor with low electromagnetic interference |
US9773974B2 (en) | 2015-07-30 | 2017-09-26 | Spin Transfer Technologies, Inc. | Polishing stop layer(s) for processing arrays of semiconductor elements |
US10163479B2 (en) | 2015-08-14 | 2018-12-25 | Spin Transfer Technologies, Inc. | Method and apparatus for bipolar memory write-verify |
US9810722B2 (en) * | 2015-09-23 | 2017-11-07 | Faraday & Future Inc. | Dual gap current sensor for multi phase conduction system |
US9541605B1 (en) * | 2015-12-15 | 2017-01-10 | International Business Machines Corporation | Magnetic tunnel junction loaded ring oscillators for MRAM characterization |
US9741926B1 (en) | 2016-01-28 | 2017-08-22 | Spin Transfer Technologies, Inc. | Memory cell having magnetic tunnel junction and thermal stability enhancement layer |
CN106018919B (zh) * | 2016-05-20 | 2018-10-19 | 清华大学 | 一种基于隧道磁阻效应的宽量程宽频带电流传感器 |
DE102016112008A1 (de) | 2016-06-30 | 2018-01-04 | Infineon Technologies Ag | Magnetsensorbauelement und magneterfassungsverfahren |
US10437491B2 (en) | 2016-09-27 | 2019-10-08 | Spin Memory, Inc. | Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register |
US10446210B2 (en) | 2016-09-27 | 2019-10-15 | Spin Memory, Inc. | Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers |
US11151042B2 (en) | 2016-09-27 | 2021-10-19 | Integrated Silicon Solution, (Cayman) Inc. | Error cache segmentation for power reduction |
US11119910B2 (en) | 2016-09-27 | 2021-09-14 | Spin Memory, Inc. | Heuristics for selecting subsegments for entry in and entry out operations in an error cache system with coarse and fine grain segments |
US10546625B2 (en) | 2016-09-27 | 2020-01-28 | Spin Memory, Inc. | Method of optimizing write voltage based on error buffer occupancy |
US10991410B2 (en) | 2016-09-27 | 2021-04-27 | Spin Memory, Inc. | Bi-polar write scheme |
US11119936B2 (en) | 2016-09-27 | 2021-09-14 | Spin Memory, Inc. | Error cache system with coarse and fine segments for power optimization |
US10628316B2 (en) | 2016-09-27 | 2020-04-21 | Spin Memory, Inc. | Memory device with a plurality of memory banks where each memory bank is associated with a corresponding memory instruction pipeline and a dynamic redundancy register |
US10360964B2 (en) | 2016-09-27 | 2019-07-23 | Spin Memory, Inc. | Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device |
US10818331B2 (en) | 2016-09-27 | 2020-10-27 | Spin Memory, Inc. | Multi-chip module for MRAM devices with levels of dynamic redundancy registers |
US10437723B2 (en) | 2016-09-27 | 2019-10-08 | Spin Memory, Inc. | Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device |
US10460781B2 (en) | 2016-09-27 | 2019-10-29 | Spin Memory, Inc. | Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank |
US10366774B2 (en) | 2016-09-27 | 2019-07-30 | Spin Memory, Inc. | Device with dynamic redundancy registers |
JP6897063B2 (ja) * | 2016-11-04 | 2021-06-30 | 日立金属株式会社 | 電流センサ |
WO2018102830A1 (en) * | 2016-12-02 | 2018-06-07 | Purdue Research Foundation | Vehicle battery current sensing system |
US10672976B2 (en) | 2017-02-28 | 2020-06-02 | Spin Memory, Inc. | Precessional spin current structure with high in-plane magnetization for MRAM |
US10665777B2 (en) | 2017-02-28 | 2020-05-26 | Spin Memory, Inc. | Precessional spin current structure with non-magnetic insertion layer for MRAM |
US10534047B2 (en) | 2017-03-30 | 2020-01-14 | Qualcomm Incorporated | Tunnel magneto-resistive (TMR) sensors employing TMR devices with different magnetic field sensitivities for increased detection sensitivity |
CN107091996B (zh) * | 2017-04-28 | 2023-06-06 | 黑龙江大学 | 一种复合磁场传感器及其制作工艺 |
US10032978B1 (en) | 2017-06-27 | 2018-07-24 | Spin Transfer Technologies, Inc. | MRAM with reduced stray magnetic fields |
US10529439B2 (en) | 2017-10-24 | 2020-01-07 | Spin Memory, Inc. | On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects |
US10489245B2 (en) | 2017-10-24 | 2019-11-26 | Spin Memory, Inc. | Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them |
US10656994B2 (en) | 2017-10-24 | 2020-05-19 | Spin Memory, Inc. | Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques |
US10481976B2 (en) | 2017-10-24 | 2019-11-19 | Spin Memory, Inc. | Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers |
US10788517B2 (en) | 2017-11-14 | 2020-09-29 | Analog Devices Global Unlimited Company | Current measuring apparatus and methods |
EP3757582B1 (en) * | 2017-11-30 | 2021-11-10 | INL - International Iberian Nanotechnology Laboratory | Frequency sensor and method of estimating a frequency |
US10679685B2 (en) | 2017-12-27 | 2020-06-09 | Spin Memory, Inc. | Shared bit line array architecture for magnetoresistive memory |
US10811594B2 (en) | 2017-12-28 | 2020-10-20 | Spin Memory, Inc. | Process for hard mask development for MRAM pillar formation using photolithography |
US10395712B2 (en) | 2017-12-28 | 2019-08-27 | Spin Memory, Inc. | Memory array with horizontal source line and sacrificial bitline per virtual source |
US10891997B2 (en) | 2017-12-28 | 2021-01-12 | Spin Memory, Inc. | Memory array with horizontal source line and a virtual source line |
US10424726B2 (en) | 2017-12-28 | 2019-09-24 | Spin Memory, Inc. | Process for improving photoresist pillar adhesion during MRAM fabrication |
US10395711B2 (en) | 2017-12-28 | 2019-08-27 | Spin Memory, Inc. | Perpendicular source and bit lines for an MRAM array |
US10360962B1 (en) | 2017-12-28 | 2019-07-23 | Spin Memory, Inc. | Memory array with individually trimmable sense amplifiers |
US10516094B2 (en) | 2017-12-28 | 2019-12-24 | Spin Memory, Inc. | Process for creating dense pillars using multiple exposures for MRAM fabrication |
US10424723B2 (en) | 2017-12-29 | 2019-09-24 | Spin Memory, Inc. | Magnetic tunnel junction devices including an optimization layer |
US10367139B2 (en) | 2017-12-29 | 2019-07-30 | Spin Memory, Inc. | Methods of manufacturing magnetic tunnel junction devices |
US10784439B2 (en) | 2017-12-29 | 2020-09-22 | Spin Memory, Inc. | Precessional spin current magnetic tunnel junction devices and methods of manufacture |
US10199083B1 (en) | 2017-12-29 | 2019-02-05 | Spin Transfer Technologies, Inc. | Three-terminal MRAM with ac write-assist for low read disturb |
US10886330B2 (en) | 2017-12-29 | 2021-01-05 | Spin Memory, Inc. | Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch |
US10236048B1 (en) | 2017-12-29 | 2019-03-19 | Spin Memory, Inc. | AC current write-assist in orthogonal STT-MRAM |
US10360961B1 (en) | 2017-12-29 | 2019-07-23 | Spin Memory, Inc. | AC current pre-charge write-assist in orthogonal STT-MRAM |
US10270027B1 (en) | 2017-12-29 | 2019-04-23 | Spin Memory, Inc. | Self-generating AC current assist in orthogonal STT-MRAM |
US10236047B1 (en) | 2017-12-29 | 2019-03-19 | Spin Memory, Inc. | Shared oscillator (STNO) for MRAM array write-assist in orthogonal STT-MRAM |
US10546624B2 (en) | 2017-12-29 | 2020-01-28 | Spin Memory, Inc. | Multi-port random access memory |
US10840439B2 (en) | 2017-12-29 | 2020-11-17 | Spin Memory, Inc. | Magnetic tunnel junction (MTJ) fabrication methods and systems |
US10840436B2 (en) | 2017-12-29 | 2020-11-17 | Spin Memory, Inc. | Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture |
US10141499B1 (en) | 2017-12-30 | 2018-11-27 | Spin Transfer Technologies, Inc. | Perpendicular magnetic tunnel junction device with offset precessional spin current layer |
US10255962B1 (en) | 2017-12-30 | 2019-04-09 | Spin Memory, Inc. | Microwave write-assist in orthogonal STT-MRAM |
US10229724B1 (en) | 2017-12-30 | 2019-03-12 | Spin Memory, Inc. | Microwave write-assist in series-interconnected orthogonal STT-MRAM devices |
US10339993B1 (en) | 2017-12-30 | 2019-07-02 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching |
US10236439B1 (en) | 2017-12-30 | 2019-03-19 | Spin Memory, Inc. | Switching and stability control for perpendicular magnetic tunnel junction device |
US10319900B1 (en) | 2017-12-30 | 2019-06-11 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density |
US10468588B2 (en) | 2018-01-05 | 2019-11-05 | Spin Memory, Inc. | Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer |
US10438995B2 (en) | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Devices including magnetic tunnel junctions integrated with selectors |
US10438996B2 (en) | 2018-01-08 | 2019-10-08 | Spin Memory, Inc. | Methods of fabricating magnetic tunnel junctions integrated with selectors |
CN108152556B (zh) * | 2018-01-18 | 2023-04-25 | 吉林大学 | 被动激励自供电无线非接触电流传感测量装置及测量方法 |
US10388861B1 (en) | 2018-03-08 | 2019-08-20 | Spin Memory, Inc. | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
US10446744B2 (en) | 2018-03-08 | 2019-10-15 | Spin Memory, Inc. | Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same |
US20190296220A1 (en) | 2018-03-23 | 2019-09-26 | Spin Transfer Technologies, Inc. | Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer |
US11107978B2 (en) | 2018-03-23 | 2021-08-31 | Spin Memory, Inc. | Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
US10712369B2 (en) | 2018-03-23 | 2020-07-14 | Analog Devices Global Unlimted Company | Current measurement using magnetic sensors and contour intervals |
US11107974B2 (en) | 2018-03-23 | 2021-08-31 | Spin Memory, Inc. | Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer |
US10784437B2 (en) | 2018-03-23 | 2020-09-22 | Spin Memory, Inc. | Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer |
TWI671630B (zh) * | 2018-05-16 | 2019-09-11 | 台灣積體電路製造股份有限公司 | 半導體製造機台的狀況監控方法及半導體製造系統 |
US10411185B1 (en) | 2018-05-30 | 2019-09-10 | Spin Memory, Inc. | Process for creating a high density magnetic tunnel junction array test platform |
CN108761171B (zh) * | 2018-06-05 | 2024-04-19 | 南方电网科学研究院有限责任公司 | 一种线路电流的测量方法及装置 |
US10559338B2 (en) | 2018-07-06 | 2020-02-11 | Spin Memory, Inc. | Multi-bit cell read-out techniques |
US10692569B2 (en) | 2018-07-06 | 2020-06-23 | Spin Memory, Inc. | Read-out techniques for multi-bit cells |
US10593396B2 (en) | 2018-07-06 | 2020-03-17 | Spin Memory, Inc. | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
US10600478B2 (en) | 2018-07-06 | 2020-03-24 | Spin Memory, Inc. | Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations |
US10650875B2 (en) | 2018-08-21 | 2020-05-12 | Spin Memory, Inc. | System for a wide temperature range nonvolatile memory |
US10699761B2 (en) | 2018-09-18 | 2020-06-30 | Spin Memory, Inc. | Word line decoder memory architecture |
US11621293B2 (en) | 2018-10-01 | 2023-04-04 | Integrated Silicon Solution, (Cayman) Inc. | Multi terminal device stack systems and methods |
US10971680B2 (en) | 2018-10-01 | 2021-04-06 | Spin Memory, Inc. | Multi terminal device stack formation methods |
US10580827B1 (en) | 2018-11-16 | 2020-03-03 | Spin Memory, Inc. | Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching |
US11107979B2 (en) | 2018-12-28 | 2021-08-31 | Spin Memory, Inc. | Patterned silicide structures and methods of manufacture |
US10852369B2 (en) | 2019-01-09 | 2020-12-01 | Infineon Technologies Ag | Stray field robust xMR sensor using perpendicular anisotropy |
US10803913B1 (en) * | 2019-06-11 | 2020-10-13 | Applied Materials, Inc. | Narrow range sense amplifier with immunity to noise and variation |
DE102019116331B4 (de) * | 2019-06-17 | 2021-02-25 | Lisa Dräxlmaier GmbH | Messvorrichtung und verfahren zum herstellen einer messvorrichtung |
US10830841B1 (en) | 2019-06-19 | 2020-11-10 | International Business Machines Corporation | Magnetic tunnel junction performance monitoring based on magnetic field coupling |
US11209505B2 (en) * | 2019-08-26 | 2021-12-28 | Western Digital Technologies, Inc. | Large field range TMR sensor using free layer exchange pinning |
US11616841B2 (en) | 2020-02-07 | 2023-03-28 | Taiwan Semiconductor Manufacturing Company Limited | Remote mapping of circuit speed variation due to process, voltage and temperature using a network of digital sensors |
JP7393319B2 (ja) * | 2020-12-03 | 2023-12-06 | 株式会社東芝 | 磁気センサ及び検査装置 |
US11791083B2 (en) * | 2021-05-26 | 2023-10-17 | Globalfoundries Singapore Pte. Ltd. | Tunnel magneto-resistive (TMR) sensor with perpendicular magnetic tunneling junction (p-MTJ) structures |
CN114252814A (zh) * | 2021-11-17 | 2022-03-29 | 华为数字能源技术有限公司 | 一种磁传感器和电子设备 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8900050A (nl) * | 1989-01-10 | 1990-08-01 | Philips Nv | Inrichting voor het meten van een ruststroom van een geintegreerde monolitische digitale schakeling, geintegreerde monolitische digitale schakeling voorzien van een dergelijke inrichting en testapparaat voorzien van een dergelijke inrichting. |
FR2710753B1 (fr) * | 1993-09-27 | 1995-10-27 | Commissariat Energie Atomique | Capteur de courant comprenant un ruban magnétorésistif et son procédé de réalisation. |
JPH07209336A (ja) * | 1994-01-13 | 1995-08-11 | Matsushita Electric Ind Co Ltd | 電流センサ |
US5561368A (en) * | 1994-11-04 | 1996-10-01 | International Business Machines Corporation | Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate |
JP3096413B2 (ja) * | 1995-11-02 | 2000-10-10 | キヤノン電子株式会社 | 磁気検出素子、磁気センサー、地磁気検出型方位センサー、及び姿勢制御用センサー |
JP2924741B2 (ja) * | 1995-10-31 | 1999-07-26 | 日本電気株式会社 | 電流検出器付き半導体装置 |
WO1997018481A1 (en) * | 1995-11-15 | 1997-05-22 | University Of South Florida | Method and apparatus for use in iddq integrated circuit testing |
US5963038A (en) * | 1996-06-06 | 1999-10-05 | U.S. Philips Corporation | Method of testing a connection which includes a conductor in an integrated circuit |
US5831426A (en) * | 1996-08-16 | 1998-11-03 | Nonvolatile Electronics, Incorporated | Magnetic current sensor |
JPH10293141A (ja) * | 1997-04-18 | 1998-11-04 | Yasusuke Yamamoto | 電流センサー |
US6134060A (en) * | 1997-06-10 | 2000-10-17 | Stmicroelectronics, Inc. | Current bias, current sense for magneto-resistive preamplifier, preamplifying integrated circuit, and related methods |
US5901018A (en) * | 1997-10-24 | 1999-05-04 | International Business Machines Corporation | Magnetic tunnel junction magnetoresistive read head with sensing layer as rear flux guide |
US6300617B1 (en) * | 1998-03-04 | 2001-10-09 | Nonvolatile Electronics, Incorporated | Magnetic digital signal coupler having selected/reversal directions of magnetization |
JP2003536267A (ja) * | 2000-06-21 | 2003-12-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 改善された磁場範囲を有する磁気多層構造 |
JP2002082136A (ja) * | 2000-06-23 | 2002-03-22 | Yazaki Corp | 電流センサ |
US6870716B2 (en) * | 2002-09-24 | 2005-03-22 | Hitachi Global Storage Technologies Netherland B.V. | Free layer and design for higher areal density |
KR20060125713A (ko) * | 2003-10-06 | 2006-12-06 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | 집적 회로 배치 및 그 제조 방법 |
WO2005114671A1 (en) * | 2004-05-18 | 2005-12-01 | Koninklijke Philips Electronics N.V. | Digital magnetic current sensor and logic |
US7324369B2 (en) * | 2005-06-30 | 2008-01-29 | Freescale Semiconductor, Inc. | MRAM embedded smart power integrated circuits |
US7547480B2 (en) * | 2005-10-28 | 2009-06-16 | Everspin Technologies, Inc. | Magnetic tunnel junction pressure sensors and methods |
US20080112214A1 (en) * | 2006-10-30 | 2008-05-15 | Young Sir Chung | Electronic assembly having magnetic tunnel junction voltage sensors and method for forming the same |
-
2004
- 2004-12-20 JP JP2006546454A patent/JP5166736B2/ja not_active Expired - Fee Related
- 2004-12-20 DE DE602004011995T patent/DE602004011995T2/de active Active
- 2004-12-20 US US10/596,644 patent/US7619431B2/en not_active Expired - Fee Related
- 2004-12-20 EP EP04806590A patent/EP1706751B1/en not_active Not-in-force
- 2004-12-20 WO PCT/IB2004/052857 patent/WO2005064356A2/en active IP Right Grant
- 2004-12-20 AT AT04806590T patent/ATE386949T1/de not_active IP Right Cessation
- 2004-12-20 TW TW093139705A patent/TWI365989B/zh not_active IP Right Cessation
- 2004-12-20 CN CN200480038530XA patent/CN1898574B/zh not_active Expired - Fee Related
-
2006
- 2006-06-22 KR KR1020067012418A patent/KR101154607B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US20070063690A1 (en) | 2007-03-22 |
TW200533928A (en) | 2005-10-16 |
KR20060118560A (ko) | 2006-11-23 |
CN1898574B (zh) | 2011-09-07 |
JP2007520057A (ja) | 2007-07-19 |
ATE386949T1 (de) | 2008-03-15 |
WO2005064356A2 (en) | 2005-07-14 |
TWI365989B (en) | 2012-06-11 |
US7619431B2 (en) | 2009-11-17 |
DE602004011995D1 (de) | 2008-04-03 |
KR101154607B1 (ko) | 2012-06-08 |
WO2005064356A3 (en) | 2005-10-20 |
DE602004011995T2 (de) | 2009-04-09 |
EP1706751B1 (en) | 2008-02-20 |
EP1706751A2 (en) | 2006-10-04 |
CN1898574A (zh) | 2007-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5166736B2 (ja) | 高感度磁気内蔵電流センサ | |
US7054114B2 (en) | Two-axis magnetic field sensor | |
US6404674B1 (en) | Cladded read-write conductor for a pinned-on-the-fly soft reference layer | |
JP5452006B2 (ja) | 磁気デバイスの製造方法および磁場角度センサの製造方法 | |
EP2823512B1 (en) | Magnetic logic units configured to measure magnetic field direction | |
JP6984792B2 (ja) | 磁気センサ、磁気センサアレイ、磁場分布測定装置、および位置特定装置 | |
US20080258721A1 (en) | MTJ sensor including domain stable free layer | |
JP7136340B2 (ja) | 磁気抵抗素子および磁気センサ | |
JP2014515470A (ja) | シングルチップ2軸ブリッジ型磁界センサ | |
JP2004186274A (ja) | スピン注入素子及びスピン注入素子を用いた磁気装置 | |
JP2005019561A (ja) | スピン注入素子及びそれを用いた磁気装置 | |
US7800941B2 (en) | Magnetic memory with magnetic tunnel junction cell sets | |
JP2017103378A (ja) | 磁気抵抗効果素子及び磁気センサ、並びに磁気抵抗効果素子の製造方法及び磁気センサの製造方法 | |
JP3558951B2 (ja) | 磁気メモリ素子及びそれを用いた磁気メモリ | |
JP5832363B2 (ja) | 磁気抵抗効果素子、磁界検出器、電流検出器、磁気抵抗効果素子の製造方法 | |
Le Phan et al. | Tunnel magnetoresistive current sensors for IC testing | |
WO2005064357A2 (en) | Flux guides for magnetic field sensors and memories | |
JP6116694B2 (ja) | 磁気抵抗効果素子を備えた磁界検出器、および電流検出器 | |
JP2004158766A (ja) | 磁気抵抗効果素子および磁気メモリ装置 | |
JP2005197364A (ja) | 磁界検出素子、磁界検出器、磁界検出方法および磁界検出素子の製造方法 | |
US12044755B2 (en) | Magnetic sensor chip and magnetic sensor device | |
Jander et al. | Two-axis magnetic field sensor | |
Pohm | High Speed Magnetoresistive Memories |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071218 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20110719 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20110726 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |