WO2012096416A1 - 나노소재용 역학-전기 복합센서 - Google Patents

나노소재용 역학-전기 복합센서 Download PDF

Info

Publication number
WO2012096416A1
WO2012096416A1 PCT/KR2011/000145 KR2011000145W WO2012096416A1 WO 2012096416 A1 WO2012096416 A1 WO 2012096416A1 KR 2011000145 W KR2011000145 W KR 2011000145W WO 2012096416 A1 WO2012096416 A1 WO 2012096416A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
nano material
film
nanomaterial
nano
Prior art date
Application number
PCT/KR2011/000145
Other languages
English (en)
French (fr)
Inventor
남승훈
장훈식
전상구
김민석
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to PCT/KR2011/000145 priority Critical patent/WO2012096416A1/ko
Priority to US13/821,708 priority patent/US8621661B2/en
Publication of WO2012096416A1 publication Critical patent/WO2012096416A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/04Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
    • G01L1/044Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs of leaf springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/095Magnetoresistive devices extraordinary magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • G01N2203/0623Electrical or magnetic indicating, recording or sensing means using piezoelectric gauges

Definitions

  • the present invention relates to a dynamic-electrical composite sensor for a nanomaterial, and more particularly, to a dynamic-electrical composite sensor for a nanomaterial capable of simultaneously measuring mechanical-electrical properties.
  • nanomaterials are those having diameters of less than 10 nm, nanowires of several hundred nm in diameter, and nanorods.
  • the mechanical property measuring apparatus for the nanomaterial includes an electron microscope 100 for observing and controlling the nanomaterial 35, a nanomaterial 35 mounted inside the electron microscope 100, And a force sensor 1 having a cantilever shape and controlled by a nano manipulator 60.
  • the force sensor 1 for mechanical property testing is composed of a nano- , And the results are digitized in a computer.
  • a feed through is provided for receiving data between the inside and the outside of the vacuum chamber to maintain a vacuum.
  • the nano-operating unit 60 can realize three-axis resolution with a resolution of at least 10 nm. Since each axis of the nano-operating unit 60 requires precise driving, Is a motor that can be fine-tuned without a piezo-electric nano-motor.
  • the nano manipulator 60 is configured such that the X, Y, and Z axes are linearly moved, and the sensor holder 2 connected to the Z axis is provided with a force sensor 1 and a tungsten tip Replaceable.
  • the mounting position of the nano manipulator 60 is mounted on the upper part of the interior of the chamber of the electron microscope 100.
  • the body or attachment of the nano manipulator 60 affects the image by covering the detector responsible for the image of the electron microscope 100 It is mounted so that it does not go crazy.
  • the nano manipulator 60 is controlled by a keyboard or a joystick of a computer through a control box called a network control (NWC / Net Work Control).
  • NWC network control
  • the maximum moving distance of each axis of the nanomechanical actuator 60 is 20 mm.
  • the force sensor 1 measures a load applied to the nano material 35 when a bending or a tensile load is applied to the nano material 35 to measure the mechanical properties of the nano material 35.
  • the force sensor 1 is a cantilever type having a shape similar to that of the AFM tip.
  • the nano material 35 is bonded to the body of the sensor using the electron beam of the electron microscope 100 It is easy to do.
  • the body of the force sensor 1 is made of SiO 2 , and a piezoelectric material such as ZnO is coated on the surface of SiO 2.
  • a piezoelectric material such as ZnO is coated on the surface of SiO 2.
  • the force sensor (1) is the resolution of the sensor according to the K value also hear a difference, average resolution 100nN below , Up to several mN.
  • FIG. 9 is a flowchart showing a nanomaterial property test method according to a generally known mechanical property test procedure.
  • the nanomaterial 35 in a powder state is dispersed and subjected to a mechanical property test using a tungsten tip or a force sensor 1 And the position of the nano material 35 is controlled.
  • the nano material 35 to be tested is determined, the nano material 35 is gripped between the tungsten tip and the force sensor 1, and a tensile or bending test is performed.
  • An electron beam of the electron microscope 100 is used to grip the nano material 35 between the tungsten tip and the force sensor 1.
  • the degree of gripping of the nano material 35 is evaluated. If it is judged normal, tensile and bending tests are performed.
  • FIG. 10 is a photograph showing an example of a tensile and bending test of a nano material.
  • the nano material 35 is gripped in a vertical direction to a tungsten tip or a rigid body and then the holder 2 of the electron microscope 100 is rotated to perform a tensile test on the nano material 35, To be horizontal with the end portion of the force sensor 1.
  • the force sensor 1 and the nano material 35 are horizontally placed for accurate measurement in the tensile test and then the ends of the force sensor 1 and the nano material 35 are irradiated with electron beams of the electron microscope 100 Gripping is performed, and a tensile test is performed on the nano material (35).
  • the force sensor 1 When the force sensor 1 is pulled by using the nano manipulation device 60, the nano material 60 is gripped at the end of the force sensor 1, ), And the force sensor 1 converts the amount of electrical change due to the tensile acting on the piezoelectric material into a mechanical value.
  • the force sensor 1 is placed on the right side of the nano material 35 and the force sensor 1 and the nano material 35 are placed vertically for accurate measurement .
  • the nano material 35 and the force sensor 1 are not gripped, but the position of the force sensor is determined and then the bending test is performed.
  • the nano manipulator 60 is adjusted using a joystick, and the force sensor 1 is moved using the nano manipulator 60 to bend the nano material 35.
  • the bending test is performed until the non-linear section is not generated due to the sliding of the force sensor 1 and the nano material 35, not until the nano material 35 is broken.
  • a graph of displacement-load as shown in Fig. 11 is obtained, -
  • the stress graph can be drawn, and the elastic modulus of the nano material (35) can be obtained from the strain-strain graph, and the tensile strength and elongation at break can be obtained in some cases.
  • the present invention has been made in view of the above points, and it is an object of the present invention to measure the mechanical-electrical properties of a nanomaterial simultaneously when a load is applied to a nanomaterial such as a carbon nanotube, And to provide an epidemiological-electrical hybrid sensor for a nanomaterial which can evaluate the reliability of the nanomaterial and evaluate the reliability of the nanomaterial.
  • the sensing part is formed of a laminated structure of SiO 2 / Au layer / piezoelectric film (ZnO) / Au layer / SiO 2 , and the first sensing film formed at the end of the sensing part contacts the nano material to apply a bending load,
  • the load applied to the nanomaterial is measured by using the piezoelectric phenomenon of the piezoelectric film when applying the tensile load by grinding,
  • the second sensing film formed on the end of the fifth electrode is electrically connected to the first sensing film through the carbon nanotube fibers so that the end of the first sensing film
  • the present invention provides a dynamic-electrical composite sensor for a nanomaterial capable of measuring electrical properties that change at the same time when a bending load is applied to the additional nanomaterial or when a tensile load is applied by grinding the nanomaterial.
  • the first sensing film formed at the end of the sensing part and the second sensing film formed at the end of the electrode for measuring electrical characteristics of the supporting part are connected to each other through the carbon nanotube fibers and the end of the sensing part is contacted or gripped by the nano material, It is expected to measure and evaluate the correlation between mechanical and electrical properties by simultaneously measuring electrical properties and mechanical properties while applying a tensile load. It is expected to be a measurement technology that can improve the evaluation of reliability of nanomaterials.
  • FIG. 1 is a plan view showing a mechanical-electrical hybrid sensor according to an embodiment of the present invention
  • Figure 2 is a partial excerpt of Figure 1;
  • Fig. 3 is a partial exploded perspective view of Fig. 1
  • FIG. 4 is a schematic view showing a dynamo-electric composite sensor for a nanomaterial according to an embodiment of the present invention.
  • Fig. 5 is a graph showing resistance changes due to displacement of a nano material
  • FIG. 7 is a photograph showing a measurement system for measuring a mechanical property of a nano material
  • Support part 11 First electrode
  • sensing part 21 sensing film
  • stage 60 nano manipulator
  • FIG. 2 is a partial view of FIG. 1
  • FIG. 3 is a partially exploded perspective view of FIG. 1
  • FIG. 4 is a cross-sectional view of an embodiment of the present invention
  • FIG. 2 is a schematic view showing a dynamic-electrical composite sensor for a nanomaterial according to an embodiment of the present invention.
  • the present invention can simultaneously measure and evaluate the mechanical-electrical composite properties of the nano material (35) in real time, thereby measuring and evaluating the correlation between the mechanical characteristics and the electrical characteristics, and improving the reliability evaluation of the nano material (35).
  • the dynamo-electric composite sensor 40 for a nanomaterial is composed of a support part 10 and a sensing part 20.
  • At least five electrodes are formed on the upper surface of the support portion 10 and the first to fourth electrodes 11 to 14 are formed from the bottom of the support portion 10, Is used as a Wheatstone bridge circuit for measuring tensile and bending loads, which are mechanical properties, from the sensing unit 20, and one end of each of the first to fourth electrodes 11 to 14 is electrically connected to the sensing unit 20 And electrode terminals are formed at the other end of the four electrodes 11 to 14.
  • the electrode terminal is connected to an external voltage source 80 to receive power.
  • the sensing portion 20 is formed in a cantilever shape in which one end portion is supported by the supporting portion 10 and the sensing portion 20 is formed of a silicon oxide film 22 (SiO 2 ), an Au layer 23, 24 (ZnO), the Au layer 23, and the silicon oxide film 22 (SiO 2 ) are stacked in this order.
  • the sensing portion 20 of the cantilever is bent and tensile or compressive force acts on the piezoelectric film 24 to convert the electrical change amount into a mechanical value.
  • the remaining one of the fifth electrodes 15 is used as an electrode for measuring electrical characteristics.
  • a first sensing film 21a of Au is formed at the end of the sensing unit 20 and a second sensing film 21b of Au is formed at the fifth electrode 15 of the supporting unit 10
  • the electrical properties of the nanomaterial 35 can be measured by attaching both end portions of the carbon nanotube fibers 30 to the first and second sensing films 21a and 21b such that electric current can pass therethrough.
  • the first and second sensing films 21a and 21b, to which both ends of the carbon nanotube fibers 30 are attached (FIB) is deposited on the electrodes 21a and 21b, or carbon molecules or hydrocarbon molecules are deposited using an electron beam.
  • An omni probe or a tungsten tip 50 is used to attach or control the carbon nanotube fibers 30 and the omni probe or tungsten tip 50 is attached to the FIB or the electron microscope 100 Can be controlled using a nano-manipulator 60 (nano-manipulator).
  • the composite physical property measuring device using the mechanical-electrical hybrid sensor 40 includes a complex sensor 40, a tungsten tip 50, a nano manipulator 60, a computer 90, a multimeter 70 , A voltage source 80, and the like.
  • the composite sensor 40 simultaneously measures the mechanical characteristics and electrical characteristics of the nano material 35.
  • the tungsten tip 50 is formed by bonding the carbon nanotube fibers 30 to the first sensing film 21a formed at the end of the sensing portion 20 of the composite sensor 40 and the second sensing film 21b And controls the nano material 35 during the tensile and bending tests by gripping the nano material 35.
  • the nano material 35 is attached to or controlled from between the nano-
  • the tungsten tip 50 is configured to be movable up, down, left, and right on the stage 51.
  • the nano manipulator 60 is installed inside the scanning electron microscope 100 to control the complex sensor 40 and is driven in a vacuum state and has a feedthrough for data reception between the inside and the outside of the vacuum chamber Install and maintain vacuum.
  • the nano manipulator 60 is designed to linearly move the X, Y, and Z axes with a resolution of at least 10 nm for smooth testing of the nanomaterial 35.
  • Each axis of the nano manipulator 60 needs to be precisely driven and composed of a motor. At this time, the electromagnetic field generated by the driving motor should not affect the image of the electron microscope 100.
  • a piezoelectric nanomotor is mounted, and precise control such as micro-operation in the unit of nano can be performed.
  • the mounting position of the nano manipulator 60 is mounted on the upper part of the interior of the chamber of the electron microscope 100 so that the body or attachment of the nano manipulator 60 can detect the image In a range not exceeding the above range.
  • the nano manipulator 60 is configured to be precisely controlled by a keyboard or a joystick of a computer through a control box called a network control.
  • the voltage source 80 is electrically connected to the nano manipulator 60 and the stage 51 to apply the power required to measure the mechanical-electrical characteristics to the electrodes of the composite sensor 40.
  • the multimeter (70) measures the voltage, current, and resistance of the voltage source (80).
  • a method of measuring tensile and bending loads using the mechanical-electrical hybrid sensor 40 according to an embodiment of the present invention and measuring electrical characteristics (voltage, current, resistance) at the same time As follows.
  • a suitable nanomaterial 35 is first selected.
  • the nanomaterial 35 in the powder state is dispersed and the nanomaterial 35 dispersed for the mechanical property test is selected using the tungsten tip 50 or the composite sensor 40, and the nanomaterial 35 ).
  • the nano material 35 to be tested is determined, the nano material 35 is gripped.
  • the test is carried out at room temperature and a stabilization time of 6 hours or more is required for stabilization after the composite sensor 40 and the material are installed. And because it is manipulated by nano unit, it is affected by fine vibration. Therefore, it uses vibration pad to remove vibration and prohibits the use of equipment and action causing vibration.
  • An electron beam from the electron microscope 100 is used to grind the nano material 35.
  • the electron beam is injected into the nano material 35 and the contact point of the tungsten tip 50, carbon molecules or hydrocarbon molecules existing in the electron microscope 100 are deposited, and the nanomaterial 35 is attracted to the tungsten tip 50 It becomes possible to be ripped.
  • the tungsten tip 50 is electrically connected to the high-sensitivity nanomultimeter 70 through the feed screw in the electron microscope 100, And the tungsten tip 50.
  • the electron beam is irradiated to the contact portion in a vacuum atmosphere to measure the resistance value of the current flowing from the multimeter 70 to the nano material 35 and the tungsten tip 50 in the ripping step do.
  • the resistance value is lowered by the set ratio, it is determined that gripping is normal and the tension and bend test can be performed. Otherwise, it is determined that the resistance is bad and discarded.
  • the nanomanipulator 60 is adjusted to perform the tensile test so that the end of the composite sensor 40 is aligned with the nano material 35.
  • the nano manipulator 60 Since the nano manipulator 60 is adjusted by the joystick of the computer and can be moved and measured in three axes during measurement, it is placed on the right side of the nanomaterial 35, and the composite sensor 40 and the nano- The material 35 is horizontally arranged.
  • the first sensing film 21a of the composite sensor 40 and the end portion of the nano material 35 are gripped using the electron beam of the electron microscope 100, and a tensile test is performed on the nano material 35 .
  • the tensile load is measured through the sensing unit 20 of the composite sensor 40 by tensile load acting on the nano material 35 every 2 nm, do.
  • the electrical characteristics (voltage, current, and resistance) that are simultaneously changed when the tensile load is applied to the nano material 35 are detected by the first sensing film 21a of the sensing unit 20 through the carbon nanotube fibers 30, And is measured by the connected second sensing film 21b.
  • the computer 90 is powered on, and a voltage is applied to the electrodes of the nanomanipulator 60 and the composite sensor 40 so that a current can flow through the electrodes.
  • a voltage is applied to the first to fourth electrodes 11 to 14 constituting the Wheatstone bridge circuit, and the sensing part 20 and the sensing part 20 electrically connected to the first to fourth electrodes 11 to 14
  • the current of the first sensing film 21a is formed on the end of the fifth electrode 15 of the supporting portion 10 through the carbon nanotube fibers 30 while a voltage is applied to the first sensing film 21a at the end of the supporting portion 10, And can flow to the second sensing film 21b.
  • the piezoelectric film 24 of the sensing unit 20 when a voltage is applied to the piezoelectric film 24 of the sensing unit 20, the piezoelectric film 24 extends in a direction in which the voltage is applied, and depending on the characteristics of the piezoelectric material contracting in a direction perpendicular to the application of the voltage, When a tensile load is applied to the nano material 35, the applied tensile load can be calculated by converting the electrical change amount into a mechanical value using the piezoelectric phenomenon.
  • the electrical characteristics of the nanomaterial 35 change as the bending load and the tensile load are applied to the nanomaterial 35, the current applied to the first sensing film 21a of the sensing unit 20 is changed to carbon
  • the electrical characteristics of the nano material 35 before the tensile load is applied to the second sensing film 21b of the fifth electrode 15 through the nanotube fibers 30 and the tensile load of the nano material 35
  • the electrical characteristics of the nanomaterial 35 can be determined by measuring the difference of electrical signals flowing through the fifth electrode 15 due to the difference in electrical characteristics.
  • the composite sensor 40 is placed on the right side of the nanomaterial 35 and the composite sensor 40 and the nanomaterial 35 are placed vertically for accurate measurement.
  • the nano material 35 and the composite sensor 40 do not grip, but determine the position of the composite sensor 40 and perform a bend test.
  • the bending test is performed until the non-linear section is not generated due to the sliding of the composite sensor 40 and the nano material 35, not until the breakage occurs.
  • the method of measuring the bending load and electrical characteristics in the bending test is the same as the tensile test.
  • FIG. 5 is a graph showing a change in resistance due to the displacement of the nano material 35
  • FIG. 6 is a graph showing a change in force (load) according to displacement of the nano material 35.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

본 발명은 나노소재의 역학적인 물성 측정에만 치중되어왔던 기존의 힘센서에 비해서, 역학적-전기적 복합물성을 동시에 측정할 수 있는 나노소재용 역학-전기 복합센서에 관한 것이다. 본 발명은 압전막(ZnO)이 내장된 감지부의 끝단에 제1감지막(Au층)이 형성되고, 지지부에 전기적 물성을 측정하기 위해 끝단에 제2감지막(Au층)이 형성된 제5전극이 포함되고, 상기 제1감지막과 제2감지막이 탄소나노튜브 섬유를 통해 전기적으로 연결되며, 상기 제1감지막이 나노소재에 접촉하여 굽힘하중을 가하거나 나노소재를 그리핑하여 인장하중을 가할 때 압전막의 압전현상을 이용하여 나노소재에 가해진 하중을 측정하고, 동시에 변화되는 전기적 물성을 측정함으로써, 역학적 물성과 전기적 물성 간의 상관관계를 측정 및 평가하여 나노소재의 신뢰성에 대한 평가를 향상시킬 수 있는 나노소재용 역학-전기 복합센서를 제공한다.

Description

나노소재용 역학-전기 복합센서
본 발명은 나노소재용 역학-전기 복합센서에 관한 것으로서, 더욱 상세하게는 역학적-전기적 물성을 동시에 측정할 수 있는 나노소재용 역학-전기 복합센서에 관한 것이다.
21세기는 나노과학기술의 시대라고 하여도 무방하다고 할 수 있다. 지난 십 수 년간 나노과학기술에 대한 연구는 괄목할 정도의 성과를 이루어 왔으며, 앞으로도 더 많은 연구 결과와 발전이 기대 된다.
일반적으로 나노소재는 10nm 미만의 지름을 갖는 것에서부터 수백 nm 지름의 나노와이어 및 나노 막대 등의 구조로 되어 있는 것을 말한다.
상기 나노소재에 대한 신뢰성 평가방법 및 기술은 나노과학기술의 응용측면에서 반드시 요구되고 있으며, 이를 위해 나노소재에 대한 체계적인 기계적 물성 측정 및 분석 기술의 개발이 필요하다.
상기 나노소재에 대한 기계적 물성 측정장치는 도 7에 도시한 바와 같이 나노소재(35)를 관찰하고 제어하기 위한 전자현미경(100)과, 상기 전자현미경(100) 내부에 장착되어 나노소재(35)를 제어하고 기계적 물성시험을 수행하는 나노조작기(60)와, 외팔보(cantilever) 형태를 가지며 나노조작기(60)에 의해 제어되는 힘센서(1)로 구성되어, 기계적 물성 시험 시 힘센서(1)를 이용하여 하중 값을 얻을 수 있으며, 그 결과는 컴퓨터에서 수치화된다.
상기 나노조작기(60)는 주사전자현미경(100) 내부에 설치되어 진공상태에서 구동되어야 하므로 진공챔버 내부와 외부 간의 데이터 수신을 위하여 피드스루(feed through)를 설치하여 진공을 유지한다.
그리고, 상기 나노조작기(60)는 나노소재(35)에 대한 원활한 실험을 위해 최소 10nm의 분해능으로 3축 구현이 가능하도록 되어 있고, 나노조작기(60)의 각 축은 정밀구동을 요하므로 전자기장의 발생이 없으면서 미세구동이 가능한 모터로서 압전형태의 나노모터가 장착되어 나노단위의 미세조작과 같은 정밀제어를 한다.
도 7에 도시한 바와 같이 나노조작기(60)는 X,Y,Z 각 축이 직선 운동을 하도록 구성되어 있으며, Z축과 연결되어 있는 센서홀더(2)에는 힘센서(1)와 텅스텐 팁의 교체가 가능하다.
나노조작기(60)의 장착위치는 전자현미경(100)의 챔버 내부 상부에 장착하여 사용하되, 나노조작기(60) 본체 혹은 부착물이 전자현미경(100)의 영상을 담당하는 검출기를 가려 영상에 영향을 미치지 않도록 장착되어 있다.
또한, 상기 나노조작기(60)는 네트워크 컨트롤(NWC/Net Work Control) 이라는 제어박스를 통하여 컴퓨터의 키보드나 조이스틱에 의해 제어된다.
이때, 나노조작기(60)의 각 축의 최대 이동거리는 20mm이다.
상기 힘센서(1)는 나노소재(35)의 기계적 물성을 측정하기 위해 나노소재(35)에 굽힘이나 인장하중을 가하였을 때, 나노소재(35)에 가해진 하중을 측정하는 역할을 수행한다.
도 7에 도시한 바와 같이, 힘센서(1)는 AFM 팁과 유사한 형상을 하고 있는 외팔보 타입이며, 인장시험 시 전자현미경(100)의 전자빔을 이용하여 센서의 몸체에 나노소재(35)를 접합하는 것이 용이하다.
상기 힘센서(1)의 몸체는 SiO2로 이루어져 있고, SiO2 표면에 ZnO와 같은 압전소재가 도포되어 있어, 외부로부터 미소량의 힘이 작용하면, 외팔보가 휘게 되면서 박막에 작용하는 압축 혹은 인장으로 인한 전기적인 변화량을 기계적인 값으로 환산한다.
이때, SiO2의 고유 스프링 상수인 K 값을 입력하여 교정을 수행하면 나노소재(35)에 대한 기계적 물성시험 시 정확한 하중 값을 얻을 수 있다.
상기 SiO2 의 고유 스프링 상수는 도 8에 도시한 바와 같이 SiO2 의 두께에 따라 그 값이 다르고, 힘센서(1)는 K 값에 따라서 센서의 분해능 또한 차이가 나며, 평균 분해능은 100nN 이하이며, 최대 수mN 까지 측정이 가능하다.
도 9는 일반적으로 알려진 기계적 물성 시험 절차를 따라서 나노물성 시험 방법을 나타내는 순서도로서, 먼저 파우더 상태의 나노소재(35)를 분산처리를 하고, 텅스텐 팁 또는 힘센서(1)를 이용하여 기계적 물성 시험을 위해 분산되어진 나노소재(35)를 선택하고, 나노소재(35)의 위치를 제어한다.
상기 시험할 나노소재(35)가 정해지면, 나노소재(35)를 텅스텐 팁과 힘센서(1) 사이에 그리핑(Gripping)한 후 인장 또는 굽힘 시험을 수행한다.
상기 나노소재(35)를 텅스텐 팁과 힘센서(1) 사이에 그립핑하기 위해 전자현미경(100)의 전자빔을 이용한다.
상기 전자빔을 나노소재(35)와 텅스텐 팁의 접점부위에 주사하면 전자현미경(100) 내부에 존재하고 있는 탄소 분자나 탄화수소 분자들이 증착되어 나노소재(35)가 텅스텐 팁에 그리핑된다.
이때, 나노소재(35)의 그리핑 정도를 평가하여 정상이라고 판단되면 인장 및 굽힙시험을 행하고, 불량이라고 판단되면 폐기한다.
도 10은 나노소재의 인장 및 굽힘시험예를 나타내는 사진이다.
상기 나노소재(35)에 대한 인장시험을 수행하기 위해, 나노소재(35)를 텅스텐 팁이나 강체 등에 수직방향으로 그리핑한 후 전자현미경(100)의 홀더(2)를 회전시켜 나노소재(35)가 힘센서(1)의 끝부분과 수평을 이루도록 한다.
상기 인장시험시 정확한 측정을 위해 힘센서(1)와 나노소재(35)를 수평으로 놓은 다음, 힘센서(1)와 나노소재(35)의 끝부분을 전자현미경(100)의 전자빔을 이용하여 그리핑을 하고, 나노소재(35)에 대한 인장시험을 수행한다.
상기 인장시험방법을 살펴보면, 조이스틱을 이용하여 나노조작기(60)를 조정하고, 나노조작기(60)를 이용하여 힘센서(1)를 당기면 힘센서(1)의 끝단에 그리핑된 나노소재(35)에 인장력이 작용하고, 힘센서(1)는 압전소재에 작용하는 인장으로 인한 전기적인 변화량을 기계적인 값으로 환산한다.
그리고, 상기 힘센서(1)의 스프링상수 K값을 이용하여 기계적 물성 평가를 수행한다.
상기 나노소재(35)에 대한 굽힘시험을 수행하기 위해, 힘센서(1)를 나노소재(35)의 오른쪽에 놓고, 정확한 측정을 위해 힘센서(1)와 나노소재(35)를 수직으로 놓는다.
이때, 나노소재(35)와 힘센서(1)는 그리핑을 하지 않고, 힘센서의 위치를 결정한 후 굽힘시험을 수행한다.
상기 굽힘시험방법을 살펴보면, 조이스틱을 이용하여 나노조작기(60)를 조정하고, 나노조작기(60)를 이용하여 힘센서(1)를 이동시켜 나노소재(35)가 휘게 한다.
상기 굽힘시험은 나노소재(35)가 파단될 때까지가 아닌 힘센서(1)와 나노소재(35)의 미끌림에 의해 비선형적인 구간이 발생하지 않는 범위까지 수행한다.
이와 같이 나노조작기(60)와 힘센서(1)를 이용하여 나노소재(35)에 대해 기계적 물성 즉, 인장 및 굽힘 시험 등을 실시하면, 도 11과 같은 변위-하중 그래프를 얻고, 이로부터 변형율-응력 그래프를 그릴 수 있으며, 변형율-응력 그래프로부터 나노소재(35)의 탄성계수를 구할 수 있고, 경우에 따라 인장강도 및 파단연신률 등을 구할 수 있다.
따라서, 나노조작기(40)와 힘센서(1)를 이용한 기계적 물성시험을 통하여 나노소재(35)의 특성을 이해하고, 그 나노소재(35)에 대한 기계적 물성 시험결과를 데이터베이스화 함으로써, 나노소재(35)에 대한 신뢰성 평가와, 나아가 나노소재(35)를 이용한 나노 및 마이크로 소재에 대한 신뢰도 등의 예측이 가능하며, 앞으로 각종 나노소재(35)들에 대한 기계적 물성시험 서비스가 가능할 것이다.
그러나, 종래의 힘센서(1)의 경우 나노소재(35)의 역학적인 물성 측정에만 치중되어왔기때문에 역학적 물성과 전기적인 물성을 동시에 측정할 수 있는 센서가 필요하다.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 탄소나노튜브와 같은 나노소재에 하중이 가해질 때 나노소재의 역학적-전기적 물성을 실시간으로 동시에 측정함으로써, 역학적 특성과 전기적 특성 간의 상관관계를 측정 및 평가하여 나노소재의 신뢰성에 대한 평가를 향상시킬 수 있는 나노소재용 역학-전기 복합센서를 제공하는데 그 목적이 있다.

본 발명은 나노소재의 역학적인 물성 측정에만 치중되어왔던 기존의 힘센서에 비해서, 역학적-전기적 복합물성을 동시에 측정하기 위해,
감지부가 SiO2/Au층/압전막(ZnO)/Au층/SiO2 의 적층구조로 이루어지고, 상기 감지부의 끝단부에 형성된 제1감지막이 나노소재에 접촉하여 굽힘하중을 가하거나 나노소재를 그리핑하여 인장하중을 가할 때 압전막의 압전현상을 이용하여 나노소재에 가해진 하중을 측정하고,
지지부가 전기적 특성을 측정하기 위한 제5전극을 더 포함하고, 상기 제5전극의 끝단에 형성된 제2감지막이 탄소나노튜브 섬유를 통해 제1감지막과 전기적으로 연결되어, 상기 제1감지막의 끝단부가 나노소재에 접촉하여 굽힘하중을 가하거나 나노소재를 그리핑하여 인장하중을 가할 때, 동시에 변화되는 전기적 물성을 측정할 수 있는 나노소재용 역학-전기 복합센서를 제공한다.

본 발명에 따른 나노소재용 역학-전기 복합센서의 장점을 설명하면 다음과 같다.
1. 감지부의 끝단에 형성된 제1감지막과 지지부의 전기적 특성 측정용 전극의 끝단에 형성된 제2감지막이 탄소나노튜브 섬유를 통해 연결되고, 감지부의 끝단부가 나노소재에 접촉 또는 그리핑되어 굽힘 또는 인장하중을 가하면서 전기적 물성 및 역학적 물성을 동시에 측정함으로써, 역학적 특성과 전기적 특성 간의 상관관계를 측정 및 평가가 가능하며, 나노소재의 신뢰성에 대한 평가를 향상시킬 수 있는 측정기술로 기대된다.

도 1은 본 발명의 일실시예에 따른 역학-전기 복합센서를 나타내는 평면도
도 2는 도 1의 일부발췌도
도 3은 도 1의 일부발췌사시도
도 4는 본 발명의 일실시예에 따른 나노소재용 역학-전기 복합센서를 나타내는 개략도
도 5는 나노소재의 변위에 따른 저항변화를 나타내는 그래프
도 6은 나노소재의 변위에 따른 힘(하중)변화를 나타내는 그래프
도 7은 나노소재 기계적 물성 시험 측정시스템을 나타내는 사진
도 8은 종래의 힘센서의 두께에 따른 스프링상수의 관계를 나타내는 그래프
도 9는 나노소재의 기계적 물성 시험의 순서도
도 10은 나노소재의 인장 및 굽힘시험예를 나타내는 사진
도 11은 나노소재의 기계적 물성 시험의 견본 데이터를 나타내는 사진
<도면의 주요부분에 대한 부호의 설명>
10 : 지지부11 : 제1전극
12 : 제2전극13 : 제3전극
14 : 제4전극15 : 제5전극
20 : 감지부21 : 감지막
22 : 실리콘산화막(SiO2)23 : Au층
24 : 압전막(ZnO)25 : Pt
30 : 탄소나노튜브 섬유35 : 나노소재
40 : 복합센서50 : 텅스텐 팁
51 : 스테이지60 : 나노조작기
70 : 멀티미터80 : 전압 소스
90 : 컴퓨터100 : 전자현미경

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.
첨부한 도 1은 본 발명의 일실시예에 따른 역학-전기 복합센서를 나타내는 평면도이고, 도 2는 도 1의 일부발췌도이고, 도 3은 도 1의 일부발췌사시도이고, 도 4는 본 발명의 일실시예에 따른 나노소재용 역학-전기 복합센서를 나타내는 개략도이다.
본 발명은 나노소재(35)의 역학적-전기적 복합물성을 실시간으로 동시에 측정함으로써, 역학적 특성과 전기적 특성의 상관관계를 측정 및 평가할 수 있고, 나노소재(35)의 신뢰성 평가를 향상시킬 수 있다.
본 발명의 일실시예에 따른 나노소재용 역학-전기 복합센서(40)는 지지부(10)와 감지부(20)로 구성되어 있다.
상기 지지부(10)는 외팔보형태의 감지부(20)를 지지하고, 지지부(10)의 상면에는 적어도 5개의 전극이 형성되어 있고, 이들 전극 중 아래쪽부터 제1 내지 제4전극(11~14)은 감지부(20)로부터 역학적 물성인 인장 및 굽힘하중을 측정하기 위해 휘스톤브리지 회로로 사용되며, 4개의 제1 내지 제4전극(11~14)의 일단부는 감지부(20)와 전기적으로 연결되어 있고, 4개의 전극(11~14)의 타단부에는 전극단자가 형성되어 있다.
이때, 상기 전극단자는 외부의 전압소스(80)와 연결되어 전원을 공급받는다.
상기 감지부(20)는 일단부가 지지부(10)에 의해 지지되는 외팔보 형태로 이루어져 있고, 감지부(20)는 하부에서부터 실리콘산화막(22)(SiO2), Au층(23), 압전막(24)(ZnO), Au층(23), 실리콘산화막(22)(SiO2) 순으로 적층되어 있다.
이때, 외부로부터 미소량의 힘이 작용하면, 외팔보의 감지부(20)가 휘게 되면서 압전막(24)에 인장 또는 압축력이 작용하여 전기적인 변화량을 기계적인 값으로 환산한다.
이때, 실리콘산화막(22)(SiO2)의 스프링상수인 K값을 입력하여 교정을 수행함으로써 나노소재(35)의 기계적 물성 시험 시 정확한 하중값을 얻을 수 있다.
여기서, 상기 전극 중 나머지 한개의 제5전극(15)은 전기적 특성을 측정하기 위한 전극으로 사용된다.
상기 감지부(20)의 끝단에는 Au 재질의 제1감지막(21a)이 형성되어 있고, 지지부(10)의 제5전극(15)에도 Au 재질의 제2감지막(21b)이 형성되어 있고, 탄소나노튜브 섬유(30)의 양단부를 제1감지막(21a)과 제2감지막(21b)에 서로 전류가 통할 수 있도록 부착함으로써, 나노소재(35)의 전기적 물성을 측정할 수 있다.
이때, 상기 탄소나노튜브 섬유(30)와 제1 및 제2감지막(21a,21b) 사이의 전기전도도를 증가시키기 위해 탄소나노튜브 섬유(30)의 양단부가 부착되는 제1 및 제2감지막(21a,21b)에 이온빔(FIB;Focused Ion Beam)을 이용하여 Pt(25)를 증착하거나, 전자빔을 이용하여 탄소분자 또는 탄화수소 계열의 분자들을 증착한다.
상기 전자빔을 탄소나노튜브 섬유(30)와 제1감지막(21a), 그리고 탄소나노튜브 섬유(30)와 제2감지막(21b)의 접점부분에 주사를 하면 전자현미경(100)의 내부에 존재하고 있는 탄소분자 또는 탄화수소 계열의 분자(carbon/hydro-carbon)들이 증착하게 되어 상기 탄소나노튜브 섬유(30)가 제1 및 제2감지막(21a,21b)에 각각 그리핑된다.
상기 탄소나노튜브 섬유(30)를 부착하거나 제어하기 위해 옴니 프로브(omni probe)나 텅스텐 팁(50)을 이용하고, 상기 옴니 프로브나 텅스텐 팁(50)은 FIB나 전자현미경(100) 내에 부착되어 있는 나노조작기(60)(nano-manipulator)를 이용하여 제어될 수 있다.
본 발명의 일실시예에 따른 역학-전기 복합센서(40)를 이용한 복합물성 측정장치는 복합센서(40), 텅스텐 팁(50), 나노조작기(60), 컴퓨터(90), 멀티미터(70), 전압소스(80) 등을 포함한다.
상기 복합센서(40)는 나노소재(35)의 역학적 특성 및 전기적 특성을 동시에 측정하는 역할을 한다.
상기 텅스텐 팁(50)은 탄소나노튜브 섬유(30)를 복합센서(40)의 감지부(20) 끝단에 형성된 제1감지막(21a)과 제5전극(15)의 제2감지막(21b) 사이에 부착하거나 제어하고, 나노소재(35)를 그리핑하여 인장 및 굽힘 시험시 나노소재(35)를 제어하는 역할을 한다.
이때, 상기 텅스텐 팁(50)은 스테이지(51)에서 상하좌우로 이동가능하도록 구성되어 있다.
상기 나노조작기(60)는 주사전자현미경(100) 내부에 장착되어 복합센서(40)를 제어하는 역할을 수행하고, 진공상태에서 구동되며, 진공챔버의 내부와 외부 간의 데이터 수신을 위하여 피드스루를 설치하여 진공상태를 유지한다.
상기 나노조작기(60)는 나노소재(35)에 대한 원활한 시험을 위해 최소 10nm의 분해능으로 X,Y,Z 각 축이 직선운동을 하도록 되어 있다.
상기 나노조작기(60)의 각 축은 정밀구동을 요하고 모터로 구성되어야 하는데, 이때 구동모터에서 발생하는 전자기장이 전자현미경(100) 이미지에 영향을 주지 말아야 한다.
따라서, 본 발명에서는 전자기장의 발생이 없으면서 미세구동이 가능한 모터로서 압전형태의 나노모터가 장착되어 나노단위의 미세조작과 같은 정밀제어를 할 수 있다.
상기 나노조작기(60)의 장착위치는 전자현미경(100)의 챔버 내부 상부에 장착되어 사용하되, 나노조작기(60) 본체 또는 부착물이 전자현미경(100)의 영상을 담당하는 검출기를 가려 영상에 영향을 미치지 않는 범위 내에 장착된다.
또한, 상기 나노조작기(60)는 네트워크컨트롤이라는 제어박스를 통해 컴퓨터의 키보드나 조이스틱에 의해 정밀제어되도록 구성되어 있다.
상기 전압소스(80)는 역학적-전기적 특성을 측정하는데 필요한 전원을 복합센서(40)의 전극에 인가하도록 나노조작기(60)와 스테이지(51)에 전기적으로 연결되어 있다.
상기 멀티미터(70)는 전압소스(80)의 전압, 전류, 저항을 측정한다.
이와 같은 구성에 의한 본 발명의 일실시예에 따른 역학-전기 복합센서(40)를 이용하여 인장 및 굽힘하중을 측정하고, 동시에 변화하는 전기적 특성(전압, 전류, 저항)을 측정하는 방법을 살펴보면 다음과 같다.
상기 나노소재(35)에 대한 역학적-전기적 물성 시험을 위해 먼저 적당한 나노소재(35)를 선택한다.
즉, 파우더 상태의 나노소재(35)를 분산처리를 하고, 텅스텐 팁(50) 또는 복합센서(40)를 이용하여 기계적 물성시험을 위해 분산된 나노소재(35)를 선택하고, 나노소재(35)의 위치를 제어한다.
시험할 나노소재(35)가 정해지면, 나노소재(35)를 그리핑한다.
상기 텅스텐 팁(50)과 복합센서(40) 사이에 나노소재(35)를 그리핑 한 후 인장 및 굽힘시험을 수행한다.
시험은 상온에서 실시되며, 복합센서(40)와 소재의 설치 후에는 안정화를 위해 6시간 이상의 안정화 시간이 필요하다. 그리고, 나노단위의 조작이므로 미세한 진동에도 영향을 받기 때문에, 방진패드를 이용하여 진동을 제거하고 진동을 유발시키는 행동이나 장비의 사용을 금지한다.
상기 나노소재(35)를 그리핑하기 위해 전자현미경(100)의 전자빔을 이용한다. 전자빔을 나노소재(35)와 텅스텐 팁(50) 접점부분에 주사하면 전자현미경(100) 내부에 존재하고 있는 탄소 분자나 탄화수소 분자들이 증착하게 되어 나노소재(35)가 텅스텐 팁(50)에 그리핑되는 것이 가능하게 된다.
이때, 나노소재(35)의 그리핑 정도를 평가하기 위해 텅스텐 팁(50)을 전자현미경(100) 내부의 피드스류를 통해 고감도 나노 멀티미터(70)를 전기적으로 연결하고, 나노소재(35)와 텅스텐 팁(50)에 접촉시켜 놓고 진공분위기에서 그 접촉부위에 전자빔을 조사하여 그리핑 단계에서 멀티미터(70)로부터 나노소재(35)와 텅스텐 팁(50)을 흐르는 전류의 저항값을 측정한다.
그리핑을 하면서 전기저항값 측정의 일정 경과시간 내에 최초 측정된 저항값에서 설정 비율만큼 저항값이 낮아지는가를 판단한다.
설정된 비율만큼 저항값이 낮아지면 그리핑이 정상이라고 판단하여 인장 및 굽힙시험을 수행할 수 있고, 그렇지 못할 경우 불량으로 판단하여 폐기한다.
다음, 인장시험을 수행한다.
인장시험을 수행하기 위해서 나노조작기(60)를 조정하여 복합센서(40)의 끝부분이 나노소재(35)와 수평을 이루도록 한다.
상기 나노조작기(60)는 컴퓨터의 조이스틱에 의해 조정되며, 측정 시에는 3축으로만 움직이며 측정할 수 있기 때문에 나노소재(35)의 오른쪽에 놓고, 정확한 측정을 위해 복합센서(40)와 나노소재(35)를 수평으로 배치한다.
그다음, 복합센서(40)의 제1감지막(21a)과 나노소재(35)의 끝부분을 전자현미경(100)의 전자빔을 이용하여 그리핑을 하고, 나노소재(35)에 대한 인장시험을 수행한다.
인장시험은 네트워크 컨트롤을 이용하여 변위제어 방식으로 수행되고, 인장속도는 10nm/s이며, 2nm 마다 나노소재(35)에 작용하는 인장하중을 복합센서(40)의 감지부(20)를 통해 측정한다.
또한, 상기 인장하중이 나노소재(35)에 가해질 때 동시에 변화되는 전기적 특성(전압, 전류, 저항)은 탄소나노튜브 섬유(30)를 통해 감지부(20)의 제1감지막(21a)과 연결된 제2감지막(21b)에 의해 측정된다.
보다 상세하게 설명하면, 컴퓨터(90)를 전원을 온시키고, 나노조작기(60)와 복합센서(40)의 전극에 전압을 인가하여 전류가 각 전극에 흐를 수 있도록 한다.
여기서, 휘스톤 브리지 회로를 구성하는 제1 내지 제4전극(11~14)에 전압이 인가되고, 제1 내지 제4전극(11~14)과 전기적으로 연결된 감지부(20)과 감지부(20) 끝단의 제1감지막(21a)에 전압이 인가되면서, 탄소나노튜브 섬유(30)를 통해 제1감지막(21a)의 전류가 지지부(10)의 제5전극(15) 끝단에 형성된 제2감지막(21b)으로 흐를 수 있게 된다.
이때, 상기 감지부(20)의 압전막(24)에 전압이 인가되면 전압이 인가된 방향으로 압전막(24)이 늘어나고, 전압의 인가와 수직된 방향으로 수축하는 압전물질의 특성에 따라, 상기 나노소재(35)에 인장하중이 가해지면 상기 압전현상을 이용하여 전기적인 변화량을 기계적인 값으로 환산하여 가해진 인장하중을 계산할 수 있다.
또한, 상기 나노소재(35)에 굽힘하중 및 인장하중이 가해짐에 따라 나노소재(35)의 전기적 특성이 변하므로, 감지부(20)의 제1감지막(21a)에 인가된 전류가 탄소나노튜브 섬유(30)를 통해 제5전극(15)의 제2감지막(21b)으로 흐르면서 인장하중이 가해지기 전의 나노소재(35)의 전기적 특성과 인장하중이 가해진 후의 나노소재(35)의 전기적 특성의 차이로 인해 제5전극(15)을 통해 흐르는 전기적 신호의 차이를 측정하여 나노소재(35)의 전기적 특성을 파악할 수 있다.
상기 나노소재(35)에 대한 굽힘시험의 경우 외팔보 굽힘시험을 수행한다.
상기 복합센서(40)를 나노소재(35)의 오른쪽에 놓고, 정확한 측정을 위하여 복합센서(40)와 나노소재(35)를 수직으로 놓는다.
나노소재(35)와 복합센서(40)는 그리핑하지 않고, 복합센서(40)의 위치를 결정한 후 굽힘시험을 수행한다.
굽힘시험은 파단할 때까지가 아닌, 복합센서(40)와 나노소재(35)의 미끌림에 의해 비선형적인 구간이 발생하지 않는 범위까지 수행한다. 굽힘시험 시 굽힘하중과 전기적 특성을 측정하는 방법은 인장시험과 동일하다.
여기서, 도 5는 나노소재(35)의 변위에 따른 저항변화를 나타내는 그래프이고, 도 6은 나노소재(35)의 변위에 따른 힘(하중)변화를 나타내는 그래프이다.
상기 나노소재(35)에 대해 인장 또는 굽힘 시험 등을 실시하면, 도 와 같은 변위-하중(역학적 물성) 또는 변위-저항(전기적 물성) 그래프를 얻을 수 있고, 역학적 특성과 전기적 특성의 상관관계를 측정 및 평가할 수 있고, 나노소재(35)의 신뢰성 평가를 향상시킬 수 있다.

Claims (5)

  1. 압전막이 내장되어 나노소재(35)에 굽힘 또는 인장하중을 가할 때 나노소재(35)의 역학적 물성을 측정하는 감지부(20);
    상기 감지부(20)의 끝단에 형성되며, 상기 나노소재(35)가 접촉될 때 상기 역학적 물성 측정과 동시에 전기적 물성을 실시간으로 측정하는 제1감지막(21a); 및
    상기 감지부(20)의 일단부가 일체로 연결되어 감지부(20)를 지지하는 지지부(10);
    를 포함하는 나노소재용 역학-전기 복합센서.

  2. 청구항 1에 있어서, 상기 감지부(20)는 실리콘산화막(22), Au층(23), 압전물질로 된 압전막(24), Au층(23), 실리콘산화막(22)이 적층된 구조로 이루어지고, 상기 압전막(24)의 압전현상을 이용하여 가해진 하중을 측정하는 것을 특징으로 하는 나노소재용 역학-전기 복합센서.

  3. 청구항 1에 있어서, 상기 지지부(10)는 나노소재(35)에 가해진 하중을 측정하기 위해 휘스톤 브리지 회로를 구성하도록 형성된 제1 내지 제4전극(11~14)과, 상기 나노소재(35)의 전기적 물성을 측정하기 위해 제1감지막(21a)과 연결되도록 끝단에 제2감지막(21b)이 형성된 제5전극(15)을 포함하는 것을 특징으로 하는 나노소재용 복합센서.

  4. 청구항 3에 있어서, 상기 제1감지막(21a)과 제2감지막(21b)은 탄소나노튜브 섬유(30)에 의해 전기적으로 연결되고, 상기 제1 및 제2감지막(21b)과 탄소나노튜브 섬유(30)의 접점부위에 전자빔을 주사하여 탄소분자 또는 탄화수소분자가 증착되는 것을 특징으로 하는 나노소재용 역학-전기 복합센서.

  5. 청구항 3에 있어서, 상기 제1감지막(21a)과 제2감지막(21b)은 탄소나노튜브 섬유(30)에 의해 전기적으로 연결되고, 상기 제1 및 제2감지막(21a,21b)과 탄소나노튜브 섬유(30)의 접점부위에 이온빔을 주사하여 백금이 증착되는 것을 특징으로 하는 나노소재용 역학-전기 복합센서.

PCT/KR2011/000145 2011-01-10 2011-01-10 나노소재용 역학-전기 복합센서 WO2012096416A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2011/000145 WO2012096416A1 (ko) 2011-01-10 2011-01-10 나노소재용 역학-전기 복합센서
US13/821,708 US8621661B2 (en) 2011-01-10 2011-01-10 Electrical-mechanical complex sensor for nanomaterials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/000145 WO2012096416A1 (ko) 2011-01-10 2011-01-10 나노소재용 역학-전기 복합센서

Publications (1)

Publication Number Publication Date
WO2012096416A1 true WO2012096416A1 (ko) 2012-07-19

Family

ID=46507289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000145 WO2012096416A1 (ko) 2011-01-10 2011-01-10 나노소재용 역학-전기 복합센서

Country Status (2)

Country Link
US (1) US8621661B2 (ko)
WO (1) WO2012096416A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3318863B1 (en) * 2016-11-07 2021-03-03 Airbus Operations S.L. Systems and method for testing bonded joints

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080011058A1 (en) * 2006-03-20 2008-01-17 The Regents Of The University Of California Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels
KR100891613B1 (ko) * 2007-05-29 2009-04-08 한국표준과학연구원 인장강도 시험을 위한 탄소나노튜브의 그립 검사 방법 및그 시스템
EP2101181A1 (en) * 2008-03-12 2009-09-16 Capres A/S Device including a contact detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250139B2 (en) * 2003-03-19 2007-07-31 Northwestern University Nanotipped device and method
WO2005064356A2 (en) * 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. High sensitivity magnetic built-in current sensor
EP1756835B1 (en) * 2004-04-14 2012-08-29 Veeco Instruments Inc. Method and apparatus for obtaining quantitative measurements using a probe based instrument
US7367237B2 (en) * 2004-08-12 2008-05-06 University Of Southern California MEMS vascular sensor
WO2006039561A2 (en) * 2004-09-30 2006-04-13 University Of Southern California Silicon inertial sensors formed using mems
US7082844B1 (en) * 2005-02-16 2006-08-01 Cts Corporation Strain sensor having improved accuracy
WO2006106490A2 (en) * 2005-04-08 2006-10-12 Nxp B.V. Multi-axis accelerometer with magnetic field detectors
US8264941B2 (en) * 2007-12-26 2012-09-11 Intel Corporation Arrangement and method to perform scanning readout of ferroelectric bit charges
EP2416495B1 (en) * 2010-08-05 2014-05-07 Nxp B.V. MEMS Oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080011058A1 (en) * 2006-03-20 2008-01-17 The Regents Of The University Of California Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels
KR100891613B1 (ko) * 2007-05-29 2009-04-08 한국표준과학연구원 인장강도 시험을 위한 탄소나노튜브의 그립 검사 방법 및그 시스템
EP2101181A1 (en) * 2008-03-12 2009-09-16 Capres A/S Device including a contact detector

Also Published As

Publication number Publication date
US8621661B2 (en) 2013-12-31
US20130167272A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
Yu et al. Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope
US20070278420A1 (en) Microfabricated cantilever chip
JPS63304103A (ja) 走査表面顕微鏡
CN1995962A (zh) 扫描电镜中单根纳米线原位力学综合性能测试装置及方法
US8438660B2 (en) Micro contact prober
US9279753B2 (en) Microelectromechanical device and system
Wang et al. Nanomeasurements in transmission electron microscopy
US20120079636A1 (en) Magnetic sensor and scanning microscope
KR101051890B1 (ko) 나노소재용 역학-전기 복합센서
Sam-Daliri et al. Condition monitoring of crack extension in the reinforced adhesive joint by carbon nanotubes
KR100907913B1 (ko) 탄소나노튜브를 이용한 인장변형률 측정방법
US20100058499A1 (en) Cantilever, cantilever system, and probe microscope and adsorption mass sensor including the cantilever system
WO2012096416A1 (ko) 나노소재용 역학-전기 복합센서
Suga et al. Nanomanipulation of single nanoparticle using a carbon nanotube probe in a scanning electron microscope
CN101221106A (zh) 压电陶瓷片驱动的扫描电镜中纳米材料拉伸装置
JP3319257B2 (ja) 薄膜引張試験方法および装置
CN113237733B (zh) 一种原位力热电多场耦合测试芯片及其制备方法
JP4431733B2 (ja) 超高真空走査型プローブ顕微鏡
CN201034883Y (zh) 扫描电镜中单根纳米线原位力学综合性能测试装置
Peng et al. A microelectromechanical system for nano-scale testing of one dimensional nanostructures
JP3240309B2 (ja) 原子間力顕微鏡用プローバ及び原子間力顕微鏡
CN113203758A (zh) 一种用于tem/sem电镜的原位多参数测试芯片结构及制备方法
JP4540065B2 (ja) 微小力測定装置及び生体分子観察方法
CN115683845B (zh) 原位力学测试用推-拉微器械
Kaul et al. Mechanical Behavior of Individual Micro/Nano-Fibers Using a Novel Characterization Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821708

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855891

Country of ref document: EP

Kind code of ref document: A1