JP5164333B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5164333B2
JP5164333B2 JP2006083269A JP2006083269A JP5164333B2 JP 5164333 B2 JP5164333 B2 JP 5164333B2 JP 2006083269 A JP2006083269 A JP 2006083269A JP 2006083269 A JP2006083269 A JP 2006083269A JP 5164333 B2 JP5164333 B2 JP 5164333B2
Authority
JP
Japan
Prior art keywords
semiconductor device
diffusion layer
layer
semiconductor
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006083269A
Other languages
English (en)
Other versions
JP2007201391A (ja
Inventor
安弘 武田
光章 森上
聡 嶋田
和広 吉武
修一 菊地
誠治 大竹
敏幸 大古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
On Semiconductor Trading Ltd
Original Assignee
On Semiconductor Trading Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by On Semiconductor Trading Ltd filed Critical On Semiconductor Trading Ltd
Priority to JP2006083269A priority Critical patent/JP5164333B2/ja
Priority to US11/617,517 priority patent/US7439578B2/en
Publication of JP2007201391A publication Critical patent/JP2007201391A/ja
Application granted granted Critical
Publication of JP5164333B2 publication Critical patent/JP5164333B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/781Inverted VDMOS transistors, i.e. Source-Down VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Description

本発明は半導体装置に関し、特に電力用トランジスタが複数併設された半導体装置においてその小型化や動作の安定性の向上に有益な構造を有する半導体装置に関する。
電子機器の小型化や低コスト化の進展に伴い、こうした電子機器に搭載される電力用トランジスタにおいてもその小型化が要求されている。特に、さらなる小型化が求められる携帯機器や家庭用機器などの100V以下の耐圧領域にある電子機器にあっては、制御回路や複数の電力用トランジスタを同一半導体基板上に集積するための技術が必須とされている。こうした複数の半導体素子の集積化を容易とするトランジスタ構造の一つとして、横方向二重拡散接合絶縁ゲート電界効果トランジスタ(Lateral Double Diffused Metal Oxide Semiconductor Field Effect Transistor:LDMOSFET)が知られており、広く実用化されている。
このLDMOSFETにおいては通常、耐圧向上の目的でドレイン側にドリフト領域が設けられている。このドリフト領域に必要とされる長さは一般に、約0.067μm/Vとされている。このため、例えば耐圧20VのLDMOSFETの製造にあたっては、サブミクロンの微細加工技術を用いて約1.34μmの長さのドリフト領域を設ける必要がある。このようにドレイン側にドリフト領域を設けることでLDMOSFETの耐圧向上が好適に図られるようになるものの、こうしたドリフト領域の存在により、LDMOSFETの小型化には自ずと限界があった。
近年、そうした問題を解決するためのトランジスタ構造として、例えば特許文献1あるいは特許文献2に記載のトランジスタ構造が知られている。これら特許文献1,2に記載のDMOSFETでは、基板表面からソース配線およびドレイン配線が取り出されるとともに、同基板の深さ方向にトレンチ溝が形成されている。そして、このトレンチ溝内に絶縁膜を介してゲート電極が設けられており、同トレンチ溝の側壁近傍の半導体基板側の領域をチャネル層およびドリフト層とすることにより、DMOSトランジスタの小型化が図られるようになっている。
特許第3348911号公報 特開2002−184980号公報
上記特許文献1あるいは上記特許文献2に記載のDMOSFET構造を採用することとすれば、上述のLDMOSFETの構造を採用した場合に比較して、半導体基板上に占める半導体素子一個当たりの占有面積を縮小することは可能である。通常、電力用半導体素子は大きな負荷を駆動するため、このような個々の半導体素子を複数個並列に接続して使用する。しかしながら、半導体素子における各半導体素子の占有面積の縮小に伴い、各半導体素子の間を接続したり、各半導体素子と外部回路との間を接続したりするための金属配線の形成領域も縮小することとなる。その結果、配線幅が縮小し配線抵抗が増大することとなるため、以下のような問題が生じるようになる。
すなわち、配線抵抗の影響により、本来は均一であるべき個々の半導体素子への印加電圧に不均一が生じる。これにより、半導体素子における特定の部分に電流が集中することとなるため、半導体素子の信頼性の劣化、配線の溶断寿命の劣化やエレクトロマイグレーション寿命の劣化といった問題が生じるおそれがある。このため、バイポーラトランジス
タと比較して2次降伏を起こし難いとされるDMOSFETにおいても、電流の局所集中による破壊の懸念がある。
本発明は、こうした実情に鑑みてなされたものであり、その目的は、複数の半導体素子が集積された半導体装置にあって、それら半導体素子における電流分布の偏りを好適に抑制することのできる半導体装置を提供することにある。
こうした目的を達成するため、請求項1に記載の発明では、半導体基板の上表面に延設されたトレンチ溝と、上記トレンチ溝の内部に埋め込まれた導電体と、上記トレンチ溝の側部における上記半導体基板の上表面に設けられた導電層と、を備えるとともに上記導電体および上記導電層の一方および他方をそれぞれソースおよびドレインとした半導体素子が複数併設された半導体装置において、上記半導体素子の形成領域全体の下方における上記半導体基板の内部に、上記半導体素子の形成領域の下方全体にわたる面状の配線層を上記導電体と接続された状態で埋込形成するようにした。
上記記構造では、半導体素子の形成領域の下方全体にわたる面状の配線層が、ソースあるいはドレインとされる導電体と接続された状態で半導体基板の内部に埋込形成されている。半導体装置を構成する各半導体素子に供給された電流は、導電層、配線層、および導電体といった経路、あるいは導電体、配線層、および導電層といった経路を通じて流れる。このとき、上記配線層が幅広の配線として機能するため、各半導体素子における配線抵抗が上述の従来の半導体装置に比較して低下することとなり、その配線抵抗のばらつきも好適に抑制されるようになる。このため、こうした配線抵抗のばらつきの抑制を通じて半導体素子における電流分布の偏りが抑制されるようになり、ひいては半導体装置の信頼性の向上が好適に図られるようになる。なお、「半導体素子の形成領域の下方全体にわたって」とは、上記配線層の形成範囲が半導体素子の形成領域に完全一致していることを意味するものではなく、上記配線層を、半導体素子の形成領域よりも狭い範囲内において、上記導電体と接続された状態で埋め込み形成するようにしても、半導体素子における電流分布の偏りを抑制することができる。また、配線層の一部に穴等が空いている状態であっても、同様に、半導体素子における電流分布の偏りを抑制することができる。
また、請求項1に記載の発明では、上記導電体および導電層をそれぞれ、上記半導体基板上に設けられた金属配線に接続し、且つ上記導電体の接続される金属配線を、上記導電層の接続される金属配線よりも配線幅が狭くなるように形成することが、半導体装置のさらなる小型化を図る点からも有効である。各半導体素子に供給された電流が上記配線層を通じて流れることから、各半導体素子の配線抵抗が低下する。この配線抵抗が低下した分だけ、各半導体素子の金属配線の配線幅を縮小して、同金属配線のピッチを狭くすることができる。これにより、半導体装置における半導体素子の集積度の向上を通じて半導体装置のさらなる小型化を図ることができるようになる。
また、請求項2に記載の発明では、半導体基板の上表面に延設されたトレンチ溝と、上記トレンチ溝の内部に埋め込まれたゲート電極と、さらにそのゲート電極の内側に埋め込まれた導電体と、上記トレンチ溝の側部における上記半導体基板の上表面に設けられた導電層と、を備えるとともに上記導電体および上記導電層の一方および他方をそれぞれソースおよびドレインとした半導体素子が複数併設された半導体装置において、上記半導体素子の形成領域全体の下方における上記半導体基板の内部に、上記半導体素子の形成領域の下方全体にわたる面状の配線層を上記導電体と接続された状態で埋込形成するようにした。
半導体装置としてこのような構造によっても、上記請求項1に記載の半導体装置と同様、各半導体素子に供給された電流が、幅広の配線として機能する上記配線層を通じて流れるため、半導体素子における電流分布の偏りを好適に抑制することができるようになる。しかも、上記構造の半導体装置では、半導体基板の上表面に延設されたトレンチ溝の内部にゲート電極が埋め込まれるとともに、導電体がそのゲート電極の内側に埋め込まれている。すなわち、請求項2に記載の半導体装置では、導電体あるいは導電層から供給された電流が半導体基板の深さ方向に沿って流れる構造となっている。このため、導電体あるいは導電層から供給された電流が半導体基板の表面に沿って流れる、上述のLDMOSFETに比較して半導体装置における各半導体素子の形成領域を縮小することができるようになり、半導体装置のさらなる小型化を図ることができるようになる。
また、請求項2に記載の発明では、請求項1に記載の発明と同様に、上記導電体および導電層をそれぞれ、上記半導体基板上に設けられた金属配線に接続し、且つ上記導電体の接続される金属配線を、上記導電層の接続される金属配線よりも配線幅が狭くなるように形成した。
ところで、半導体装置により多くの半導体素子を集積するために通常は、上記トレンチ溝の内部にその延伸方向に沿って複数の半導体素子が形成されることとなる。こうした構造を有する半導体装置にあっては、半導体素子における電流分布の偏りが上記トレンチ溝の延伸方向においてより顕著に現れるようになる。この点、上記半導体素子の配列方向における上記配線層の長さに対する上記トレンチ溝の延伸方向における上記配線層の長さの比を1以下とすれば、上記トレンチ溝の延伸方向における配線層の幅が広くなる。このため、トレンチ溝の延伸方向における配線抵抗がより低下することとなり、半導体素子における電流分布の偏りを好適に抑制することができるようになる。
なお、請求項1〜のいずれかに記載の半導体装置において、上記配線層を、上記半導体基板への不純物の拡散を通じて形成することが望ましい。このようにして配線層を形成すれば、半導体基板の熱膨張率と配線層の熱膨張率との差が縮小され、こうした熱膨張率の差に起因した欠陥等の発生が抑制されるようになる。これにより、半導体装置の製造にあたってその歩留りの向上が図られるようになる。
ちなみに、請求項2に記載の半導体装置は、例えば、半導体からなる支持基板の上表面に不純物拡散層を形成する工程と、上記不純物拡散層の形成された上記支持基板の上表面にエピタキシャル半導体層を形成する工程と、上記エピタキシャル半導体層の上表面にトレンチ溝を形成する工程と、上記トレンチ溝の内壁にゲート電極を埋込形成する工程と、上記ゲート電極の埋込形成された上記トレンチ溝の底面より上記不純物拡散層に達する溝を形成する工程と、上記トレンチ溝の上記ゲート電極の内側部分と上記形成された溝の内部とを通じて上記不純物拡散層に接続されるように導電体を埋込形成する工程と、上記トレンチ溝の側方における上記エピタキシャル半導体層の上表面に導電層を形成する工程と、上記導電体および導電層の一方および他方にソース電極およびドレイン電極を接続する工程と、を通じて製造することができる。
この製造方法では、まず半導体からなる支持基板の上表面に不純物拡散層が形成されるとともに、この支持基板の上表面に形成されたエピタキシャル半導体層が形成される。そして、このエピタキシャル半導体層の上表面に形成されたトレンチ溝の底面より上記不純物拡散層に達する溝の内部を通じて同不純物拡散層に接続されるように導電体が埋込形成される。これにより、上記支持基板および上記エピタキシャル半導体層からなる半導体基板の内部に上記配線層が形成される。また、上記トレンチ溝の内壁にゲート電極が埋込形成されるとともに、上記トレンチ溝の側方における上記エピタキシャル半導体層の上表面に形成された導電層および上記導電体の一方および他方にソース電極およびドレイン電極が接続される。
本発明の半導体装置によれば、複数の半導体素子が集積された半導体装置にあって、そ
れら半導体素子における電流分布の偏りを好適に抑制することのできる半導体装置を提供することができるようになる。
(第1の実施の形態)
以下、本発明にかかる半導体装置を具体化した第1の実施の形態について、図1〜13を参照して説明する。
はじめに、図1を参照して、この実施の形態にかかる半導体装置の構造について詳述する。図1は、この半導体装置の素子断面構造とその図中A−A線に沿った平面断面構造とを併せ示したものである。
図1に示すように、本実施の形態にかかる半導体装置は、複数の半導体素子が、矩形枠状の素子分離拡散層4,6によって素子分離された構造となっている。そして、この素子分離拡散層4,6によって囲繞された領域が半導体素子の形成領域Sとされるとともに、この形成領域S内に二重拡散接合絶縁ゲート電界効果トランジスタ(以下、「DMOSFET」と記載)が複数併設されている。なお、本実施の形態にかかるDMOSFETは、電力用トランジスタ(パワートランジスタ)として構成されている。こうした電力用トランジスタでは一般に、その総ゲート長が数ミリと長いことから、各電力用トランジスタにおける配線抵抗が問題となる。そこで、図1中の上図に示すように、こうした電力用のDMOSFETが複数集積された半導体装置にあっては通常、ソースおよびドレインが交互に併設される構造、いわゆるマルチフィンガー構造が採用されている。このマルチフィンガー構造においては、一組のソースおよびドレインにて構成されるフィンガーが、これらソースおよびドレインの併設方向に数百本も並んで形成されることもある。ここでは、説明の便宜上、これら数百本のフィンガーのうち、4つのフィンガーのみに焦点をあてて、本実施の形態にかかるDMOSFETの構造について詳細に説明することとする。
図1中の下図にその断面構造を示すように、本実施の形態にかかるDMOSFETは、P型シリコン基板1の上表面にN型埋込拡散層3が積層されるとともに、このN型埋込拡散層3の上表面にN型エピタキシャルシリコン層5が積層された構造を有している。本実施の形態では、P型シリコン基板1およびN型エピタキシャルシリコン層5によって半導体基板が構成されている。すなわち、上記N型埋込拡散層3は、形成領域Sの下方における半導体基板の内部において、同形成領域Sの下方全体にわたって面状に形成されている。また、図1中の上図に示すように、このN型埋込拡散層3は、DMOSFETの配列方向における長さに対する後述のトレンチ溝7A,7Bの延伸方向における長さの比が「1」より小さくなるように形成されている。すなわち、N型埋込拡散層3において、DMOSFETの配列方向における長さを「L」、トレンチ溝7A,7Bの延伸方向における長さを「W」としたとき、両者の関係は、

W/L < 1

となる。なお、このN型埋込拡散層3の不純物濃度は、上記N型エピタキシャルシリコン層5よりも高くなるように設定されている。
一方、図1中の下図に示すように、上記N型エピタキシャルシリコン層5の上表面には、P型のボディ用拡散層11およびN型のソース拡散層10が順に積層されている。また、このN型エピタキシャルシリコン層5の上表面には、トレンチ溝7A,7Bが並列に延設されるとともに、これらトレンチ溝7A,7Bの内壁には、二酸化シリコン等からなる絶縁膜を介してゲート電極9A,9Bがそれぞれ埋込形成されている。これらゲート電極9A,9Bは、図1中の上図に示すように、トレンチ溝7A,7Bのそれぞれの下端部に
て接合されるように形成されている。なお、図中に破線にて示すように、トレンチ溝7A,7Bの下端部において接合された上記ゲート電極9A,9Bの上方には、ゲート電極用の金属配線と接続された導電性のコンタクトプラグがそれぞれ配設されている。これらコンタクトプラグとゲート電極9A,9Bとは電気的に接続されており、ゲート電極用の金属配線とゲート電極9A,9Bとが電気的に接続されている。
また、図1中の下図に示すように、このN型エピタキシャルシリコン層5には、トレンチ溝7A,7Bの底面より上記N型埋込拡散層3に達する溝13A,13Bがそれぞれ形成されている。さらに、N型エピタキシャルシリコン層5には、これらトレンチ溝7A,7Bの上記ゲート電極9A,9Bの内側部分と上記溝13A,13Bの内部とを通じて上記N型埋込拡散層3に接続されるようにドレイン引出電極15A,15Bが埋め込み形成されている。
他方、上記N型エピタキシャルシリコン層5の上表面には、層間絶縁膜16が積層されている。そして、この層間絶縁膜16の内部には、上記ソース拡散層10に接続されるコンタクトプラグ17A,17C,17E、および上記ドレイン引出電極15A,15Bに接続されるコンタクトプラグ17B,17Dがそれぞれ埋め込み形成されている。層間絶縁膜16の上表面には、これらコンタクトプラグ17A〜17Eに接続される金属配線18A〜18Eがそれぞれ形成されている。
このような構造を有するDMOSFETでは、金属配線18B,18Dと金属配線18A,18C,18Eとの間に電圧を印加するとともに、ゲート電極9Aおよびゲート電極9Bの電圧制御を通じてトレンチ溝7A,7Bの側壁に沿ったボディ用拡散層11の内部にチャネルを形成すると、上記N型埋込拡散層3を通じて電流が流れるようになる。
詳しくは、金属配線18Aから注入されたキャリアは、ソース拡散層10、ボディ用拡散層11の内部においてトレンチ溝7Aの図中左側の側壁近傍に形成されたチャネル、N型埋込拡散層3、ドレイン引出電極15A、コンタクトプラグ17B、そして金属配線18Bといった経路を通じて流れるようになる。また、金属配線18Cから注入されたキャリアは、ソース拡散層10の内部を流れた後、ボディ用拡散層11の内部においてトレンチ溝7Aの図中右側の側壁近傍に形成されたチャネルおよびボディ用拡散層11の内部においてトレンチ溝7Bの図中左側の側壁近傍に形成されたチャネルのそれぞれを通じてN型埋込拡散層3に流れ込む。そして、この金属配線18Cから注入されたキャリアは、N型埋込拡散層3から、ドレイン引出電極15A、コンタクトプラグ17B、そして金属配線18Bへと流れるとともに、同N型埋込拡散層3から、ドレイン引出電極15B、コンタクトプラグ17D、そして金属配線18Dへと流れる。このように、ソース拡散層10に電気的に接続された金属配線18A,18C,18Eから注入されたキャリアは、全て上記N型埋込拡散層3を通じて流れるようになる。このN型埋込拡散層3は、上述のように、DMOSFETの形成領域Sの下方全体にわたって面状に形成されている。このため、各DMOSFETにおける配線抵抗が従来の半導体装置に比較して低下することとなり、その配線抵抗のばらつきも好適に抑制されるようになる。その結果、DMOSFETにおける電流分布の偏りが抑制され、半導体装置における特定の部分への電流集中が好適に抑制されるようになる。
次に図2〜12を参照して、この実施の形態にかかる半導体装置の製造工程について説明する。図2〜12は、この実施の形態にかかる半導体装置の断面構造を、その製造プロセスにしたがって模式的に示したものである。
1.まず、図2に示すように、P型のシリコン基板1を用意する。そして、このP型シリコン基板1の上面に熱酸化を施すことによって6000Å程度の熱酸化膜2を形成する
。その後、フォトリソグラフィおよびウェットエッチングを通じて、上記長さ「L」×上記長さ「W」の表面積の熱酸化膜2を除去する。具体的には、まず、P型シリコン基板1の上面に感光性樹脂(フォトレジスト)を塗布する。続いて、上記フォトレジストとしてポジ型レジストを用いる場合には、上記長さ「L」×上記長さ「W」の領域のみが開口されたフォトマスクをP型シリコン基板1の上方に載置するとともに、同P型シリコン基板1の上方からこのフォトマスクを通じて紫外線やエキシマレーザ光線を照射して同フォトマスクのパターンを上記フォトレジストに転写する。そしてその後、現像を行なってP型シリコン基板1の上面にレジストパターンを形成する。さらに、P型シリコン基板1の上方から上記レジストパターンを介してエッチング液を吹き付けることにより、いわゆるウェットエッチングを行なう。これにより、熱酸化膜2のうち、同図2に破線にて示す領域のみが除去される。
2.次いで、図3に示すように、図中の矢印にて示す方向からアンチモンソース(Sb)を、上記1.の工程において除去された領域、すなわち熱酸化膜2によって囲繞されたP型シリコン基板1の上面にスピン塗布した後、1250℃程度の熱処理を施すことにより、シート抵抗が「20Ω/□」程度となるN型埋込拡散層3を形成する。なお、このN型埋込拡散層3のシート抵抗の値は、熱処理の温度と時間によって決定される。
3.次いで、上記熱酸化膜2を除去した後、図4中に破線にて示すように、フォトリソグラフィを通じて、上記N型埋込拡散層3の上面を被覆するマスクを形成する。そして、同図4に示すように、図中の矢印の方向からP型シリコン基板1の上面にボロン(B)をイオン注入するとともに、熱処理による活性化を行なう。これにより、上記N型埋込拡散層3を囲繞する素子分離拡散層4が形成される。
4.次いで、図5に示すように、「1〜2Ω・cm」程度の比抵抗のN型エピタキシャルシリコン層5を「2μm」程度の膜厚で形成した後、上記3.の工程と同様、フォトリソグラフィを通じて上記N型埋込拡散層3の上方を被覆するマスクを形成する。そして、N型エピタキシャルシリコン層5の上面にボロン(B)をイオン注入するとともに、熱処理による活性化を行なう。これにより、上記素子分離拡散層4に達する素子分離拡散層6が形成されるとともに、これら素子分離拡散層4および素子分離拡散層6によって上記N型エピタキシャルシリコン層5が区画形成される。なおここでは、上記N型エピタキシャルシリコン層5の厚さが「2μm」程度もあることから、素子分離拡散層4のみでは素子分離が不完全となるおそれがあることに鑑みて、N型エピタキシャルシリコン層5の上面から下方に延伸するように素子分離拡散層6をさらに形成するようにしている。
5.次いで、図6に示すように、N型エピタキシャルシリコン層5の上表面に、フォトリソグラフィおよびエッチングを通じて、幅「1.5μm」、深さ「1μm」程度のトレンチ溝7A,7Bを形成する。その後、N型エピタキシャルシリコン層5の上面に熱酸化を施して「150Å」程度のゲート絶縁膜8を形成する。なお本実施の形態では、上述のようにマルチフィンガー構造を採用しているため、実際にはフィンガーの数に相当する分だけのトレンチ溝を形成する必要がある。ただし、全てのトレンチ溝を図示すると説明が煩雑になることから、ここではそれらトレンチ溝のうちの2本のみを図示している。
6.次いで、「2000Å」程度のポリシリコンをトレンチ溝7A,7Bの内部に堆積させた後、POCL3(オキシ塩化リン)等を用いた熱処理によってポリシリコンへ燐(P)のドーピングを行う。そしてその後、図7に示すように、RIE(反応性イオンエッチング)による異方性エッチングを施すことによって、トレンチ溝7Aの内壁にサイドウォール状のゲート電極9Aを形成するとともに、トレンチ溝7Bの内壁に同じくサイドウォール状のゲート電極9Bを形成する。
7.次いで、ソース拡散層10の上表面に形成した上記ゲート絶縁膜8を除去した後、図8に破線にて示すように、フォトリソグラフィを通じてトレンチ溝7A,7Bの開口部を閉塞するレジストパターンを形成する。そして、同図8に示すように、このレジストパターンを介してN型エピタキシャルシリコン層5の上面に砒素(As)をイオン注入するとともに、この砒素(As)の注入された層よりも深い位置にボロン(B)をイオン注入する。その後、熱処理による活性化を行う。これにより、N型エピタキシャルシリコン層5には、N型のソース拡散層10と同ソース拡散層10の下層としてP型のボディ用拡散層11がそれぞれ形成される。
8.次いで、図9に示すように、TEOS(テトラエトキシシラン)を用いたLP−CVD法などにより、N型エピタキシャルシリコン層5の上方から「1000Å」程度の層間絶縁膜12を堆積させる。すなわち、ソース拡散層10の上面、ゲート電極9A,9Bの表面、およびトレンチ溝7A,7Bの底面に形成されたゲート絶縁膜8の上面にそれぞれ層間絶縁膜12を形成する。その後、同図9中に破線にて示すように、フォトリソグラフィを通じて、トレンチ溝7Aの内部においてゲート電極9Aにより挟まれた領域、およびトレンチ溝7Bの内部においてゲート電極9Bにより挟まれた領域のそれぞれが外部に露出するレジストパターンを形成する。そして、このレジストパターンを介してエッチングを行うことにより、トレンチ溝7A,7Bの底面をそれぞれ開口するとともに、これらトレンチ溝7A,7Bの底面から上記N型埋込拡散層3に達する溝13A,13Bを「1μm」程度の深さで形成する。これにより、ゲート電極9A,9Bの埋込形成された上記トレンチ溝7A,7Bの底面より上記N型埋込拡散層3に達する溝13A,13Bが形成される。
9.次いで、図10に示すように、同じくTEOSを用いたLP−CVD法などにより、N型エピタキシャルシリコン層5の上方から「1000Å」程度の層間絶縁膜14を堆積させる。すなわち、層間絶縁膜12の上面、溝13A,13Bの内壁、およびこれら溝13A,13Bの底面にそれぞれ層間絶縁膜12を形成する。その後、フォトリソグラフィを通じて溝13A,13Bの底面のみが外部に露出するレジストパターンを形成するとともに、このレジストパターンを介したエッチングを行い、溝13A,13Bの底面の上記層間絶縁膜14をそれぞれ除去する。
10.次いで、図11に示すように、窒化チタン(TiN)等のバリアメタルを形成した後、六フッ化タングステン(WF6)ガスを用いたCVD法を用いて、トレンチ溝7A,7Bの内部および溝13A,13Bの内部にそれぞれタングステン(W)を堆積させる。そして、フォトリソグラフィおよびエッチングを通じて、トレンチ溝7Aのゲート電極9Aの内側部分と溝13Aの内部にドレイン引出電極15Aを形成するとともに、トレンチ溝7Bのゲート電極9Bの内側部分と溝13Bの内部にドレイン引出電極15Bを形成する。これにより、トレンチ溝7A,7Bのゲート電極9A,9Bの内側部分と上記形成された溝13A,13Bの内部とを通じて上記N型埋込拡散層3に接続されるドレイン引出電極15A,15Bがそれぞれ形成されることとなる。
11.次いで、図12に示すように、HDP−CVDなどの方法により、N型エピタキシャルシリコン層5の上方に層間絶縁膜16を形成する。その後、この層間絶縁膜16に、ソース拡散層10およびドレイン引出電極15A,15Bにそれぞれ達するコンタクトホールを形成する。そして、六フッ化タングステン(WF6)ガスを用いたCVD法を用いてこれらコンタクトホールの内部にタングステン(W)を堆積させるとともに、エッチバックを行ない、それぞれのコンタクトホールの内部にコンタクトプラグ17A〜17Eを形成する。また、図中に破線にて示すように、スパッタ法を用いてトータル膜厚「5000Å」程度のTiN/Al−Cu/TiNの積層膜を堆積させた後、フォトリソグラフィおよびエッチングを施すことによって、上記コンタクトプラグ17A〜17Eにそれぞ
れ電気的に接続される金属配線18A〜18Eを形成する。この金属配線18A〜18Eの材料としては、本実施の形態にかかる半導体装置ではアルミニウム(Al)を採用している。以上の各工程を経ることによって、本実施の形態にかかる半導体装置の主要構造が完成する。
さて、このような構造を有する半導体装置において、例えば総ゲート幅を「1000μm」とし、「100本」のフィンガーを有するマルチフィンガー構造を採用した場合、DMOSFET単位当たりのゲート幅は、「100μm」(総ゲート幅1000μm/100本)となる。ここで、ソースおよびドレインの金属配線18A〜18Eの幅を「0.5μm」、アルミニウム(Al)のシート抵抗を「0.1Ω/□」とすると、各金属配線18A〜18Eの配線抵抗は、「20Ω」(Alのシート抵抗0.1Ω/□×DMOSFET単位当たりのゲート幅100μm/金属配線の幅0.5μm)となる。この各金属配線18A〜18Eの配線抵抗は、上記N型埋込拡散層3を正方形に形成した場合、すなわち、半導体素子の配列方向における長さ「L」とトレンチ溝7A,7Bの延伸方向における長さ「W」とが等しくなるように上記N型埋込拡散層3を形成した場合のその抵抗値とほぼ等しくなる。
その点、本実施の形態にかかる半導体装置では、上記N型埋込拡散層3が、上記長さ「L」と上記長さ「W」との関係が「W/L<1」となるように形成されていることから、トレンチ溝7A,7Bの延伸方向に対しては上記N型埋込拡散層3が幅広の配線として機能することとなる。このため、トレンチ溝7A,7Bの延伸方向における抵抗値がより低くなり、各DMOSFETにおける電流分布の偏りがより好適に抑制されるようになっている。
また、半導体装置として以上の構造を採用することにより、次のような優位性を得ることができるようになる。すなわち、図13(a)に示すように、従来の半導体装置にあっては、金属配線の幅を「1.0μm」、これら金属配線の最小スペースルールを「0.5μm」とした場合、トランジスタの金属配線間のピッチは、「1.5μm」となる。これに対して、本実施の形態にかかる半導体装置によれば配線抵抗が低下するため、例えば金属配線の幅を「0.5μm」とすることも可能となり、金属配線間のピッチを「1.25μm」とすることができるようにもなる。また、金属配線間のピッチを従来と同様にした場合には、ソース側の金属配線の幅を「1.25μm」、ドレイン側の金属配線の幅を「0.75μm」と拡大することで、電流分布の偏りをより抑制して半導体装置の信頼性のさらなる向上を図ることも可能となる。
なお、本実施の形態においては、ドレイン引出電極15A,15Bが「導電体」に、ソース拡散層10が「導電層」に、N型埋込拡散層3が「配線層」にそれぞれ相当する構成となっている。また、本実施の形態では、N型エピタキシャルシリコン層5が「エピタキシャル半導体層」に、金属配線18B,18Dが「ドレイン電極」に、金属配線18A,18C,18Eが「ソース電極」にそれぞれ相当する構成ともなっている。
以上説明したように、本実施の形態にかかる半導体装置によれば、以下のような効果を得ることができるようになる。
(1)P型シリコン基板1の上表面にN型埋込拡散層3を形成するとともにこのN型埋込拡散層3の上方にN型エピタキシャルシリコン層5を形成することにより、DMOSFETの形成される形成領域Sの下方における半導体基板の内部に面状のN型埋込拡散層3を形成するようにした。そして、こうして形成されたN型埋込拡散層3に接続されるかたちで、N型エピタキシャルシリコン層5に形成したトレンチ溝7A,7Bおよびこれらトレンチ溝7A,7Bの底面と上記N型埋込拡散層3とを連通する溝13A,13Bの内部に、ドレイン引出電極15A,15Bをそれぞれ埋め込み形成するようにした。このよう
な構造のもとでは、ソース拡散層10に電気的に接続された金属配線18A,18C,18Eから注入されたキャリアは、全て上記N型埋込拡散層3を通じて流れるようになる。このため、各DMOSFETにおける配線抵抗が従来の半導体装置に比較して低下することとなり、その配線抵抗のばらつきも好適に抑制されるようになる。その結果、DMOSFETにおける電流分布の偏りが抑制され、半導体装置における特定の部分への電流集中が好適に抑制されるようになるため、半導体装置の信頼性の向上が好適に図られるようになる。
(2)半導体基板の内部にN型埋込拡散層3を、DMOSFETの配列方向における長さを「L」、トレンチ溝7A,7Bの延伸方向における長さを「W」としたとき、両者の関係が「W/L<1」となるように埋込形成した。これにより、トレンチ溝7A,7Bの延伸方向に対しては上記N型埋込拡散層3が幅広の配線として機能するようになる。このため、トレンチ溝7A,7Bの延伸方向における抵抗値がより低下することとなり、各DMOSFETにおける電流分布の偏りがより好適に抑制されるようになる。
(3)ソース拡散層10と金属配線18A,18C,18Eとをそれぞれ接続するコンタクトプラグ17A,17C,17E、およびドレイン引出電極15A,15Bと金属配線18B,18Dとをそれぞれ接続するコンタクトプラグ17B,17Dを、金属であるタングステンにて形成するようにした。このため、半導体基板における配線抵抗がより低下することとなり、各DMOSFETにおける電流分布の偏りがより好適に抑制されるようになる。
(第2の実施の形態)
次に、この発明にかかる半導体装置を具体化した第2の実施の形態について説明する。この実施の形態にかかる半導体装置も、その基本的な構造は先の第1の実施の形態の半導体装置に準じたものとなっている。ただし、本実施の形態にかかる半導体装置では、各DMOSFETのトレンチ溝の内部に、N型埋込拡散層に接続されるソース用の引出電極を埋込形成するようにしている。こうした半導体装置について、図14〜25を参照しつつ説明する。なお、先の第1の実施の形態と同様あるいはそれに準じた構造については、その詳細な説明を割愛する。
本実施の形態にかかる半導体装置も、その一部断面構造を図14に示すように、複数のDMOSFETが、矩形枠状の素子分離拡散層24,26によって素子分離された構造となっている。そして、この素子分離拡散層24,26によって囲繞された領域がDMOSFETの形成領域Sとなっており、この形成領域S内に、DMOSFETが複数併設されている。なお、本実施の形態にかかる半導体装置においても、ソースおよびドレインが交互に併設される構造であるマルチフィンガー構造が採用されている。以下、先の第1の実施の形態と同様、こうしたマルチフィンガー構造における数百本のフィンガーのうち、4つのフィンガーに焦点をあてて、本実施の形態にかかるDMOSFETの構造について詳細に説明する。
図14にその断面構造を示すように、このDMOSFETは、P型シリコン基板21の上表面にボディ用拡散層31、N型埋込拡散層23、およびボディ用拡散層31が順に積層されるとともに、このボディ用拡散層31の上表面にN型エピタキシャルシリコン層25が積層された構造を有している。本実施の形態においても、P型シリコン基板21およびN型エピタキシャルシリコン層25によって半導体基板が構成されている。そして、このDMOSFETにおいても、N型埋込拡散層23は、各DMOSFETの形成領域Sの下方における半導体基板の内部において、同形成領域Sの下方全体にわたって面状に形成されている。また、このN型埋込拡散層23は、DMOSFETの配列方向における長さに対する後述のトレンチ溝27A,27Bの延伸方向における長さの比が「1」より小さ
くなるように形成されている。すなわち、N型埋込拡散層23において、DMOSFETの配列方向における長さを「L」、トレンチ溝7A,7Bの延伸方向における長さを「W」としたとき、両者の関係は、「W/L<1」となる。なお、このN型埋込拡散層23の不純物濃度は、上記N型エピタキシャルシリコン層25よりも高くなるように設定されている。
一方、上記N型エピタキシャルシリコン層25の上表面には、N型のドレイン拡散層30が形成されている。また、このN型エピタキシャルシリコン層25の上表面には、上記N型埋込拡散層23に達するトレンチ溝27A,27Bが並列に延設されるとともに、これらトレンチ溝27A,27Bの内壁には、二酸化シリコン等からなる絶縁膜を介してゲート電極29A,29Bがそれぞれ埋込形成されている。また、このトレンチ溝27A,27Bの底面には、上記N型埋込拡散層23を貫通しない程度の深さで溝33A,33Bがそれぞれ形成されている。さらに、この半導体基板には、これらトレンチ溝27A,27Bの上記ゲート電極29A,29Bの内側部分と上記溝33A,33Bの内部とを通じて上記N型埋込拡散層23に接続されるようにソース引出電極35A,35Bが埋め込み形成されている。
他方、上記N型エピタキシャルシリコン層25の上表面には、層間絶縁膜36が積層されている。そして、この層間絶縁膜36の内部には、上記ドレイン拡散層30に接続されるコンタクトプラグ37A,37C,37E、および上記ソース引出電極35A,35Bに接続されるコンタクトプラグ37B,37Dがそれぞれ埋め込み形成されている。層間絶縁膜36の上表面には、これらコンタクトプラグ37A〜37Eに接続される金属配線38A〜38Eがそれぞれ形成されている。
このような構造を有するDMOSFETにあっても、金属配線38B,38Dと金属配線38A,38C,38Eとの間に電圧を印加するとともに、ゲート電極29A,29Bの電圧制御を通じてトレンチ溝27A,27Bの側壁に沿ったボディ用拡散層31の内部にチャネルを形成すると、上記N型埋込拡散層23を通じて電流が流れるようになる。
詳しくは、金属配線38Bから注入されたキャリアは、ソース引出電極35A、N型埋込拡散層23、ボディ用拡散層31の内部においてトレンチ溝27Aの図中左側の側壁近傍に形成されたチャネル、N型エピタキシャルシリコン層25、ドレイン拡散層30、コンタクトプラグ37A、そして金属配線38Aといった経路を通じて流れる。そして、この金属配線38Bから注入されたキャリアは、N型埋込拡散層23から、ボディ用拡散層31の内部においてトレンチ溝27Aの図中右側の側壁近傍に形成されたチャネル、N型エピタキシャルシリコン層25、ドレイン拡散層30、コンタクトプラグ37C、そして金属配線38Cといった経路を通じても流れる。また同様に、金属配線38Dから注入されたキャリアは、ソース引出電極35B、N型埋込拡散層23、ボディ用拡散層31の内部においてトレンチ溝27Bの図中左側の側壁近傍に形成されたチャネル、N型エピタキシャルシリコン層25、ドレイン拡散層30、コンタクトプラグ37C、そして金属配線38Cといった経路を通じて流れる。そして、この金属配線38Dから注入されたキャリアは、N型埋込拡散層23から、ボディ用拡散層31の内部においてトレンチ溝27Bの図中右側の側壁近傍に形成されたチャネル、N型エピタキシャルシリコン層25、ドレイン拡散層30、コンタクトプラグ37E、そして金属配線38Eといった経路を通じても流れる。
このように、ソース引出電極35A,35Bに電気的に接続された金属配線38B,38Dから注入されたキャリアは、全て上記N型埋込拡散層23を通じて流れるようになる。このN型埋込拡散層23は、上述のように、DMOSFETの形成領域Sの下方全体にわたって面状に形成されている。このため、各DMOSFETにおける配線抵抗が従来の
半導体装置に比較して低下することとなり、その配線抵抗のばらつきも好適に抑制されるようになる。その結果、DMOSFETにおける電流分布の偏りが抑制され、半導体装置における特定の部分への電流集中が好適に抑制されるようになる。
次に図15〜24を参照して、この実施の形態にかかる半導体装置の製造工程について説明する。図15〜24は、この実施の形態にかかる半導体装置の断面構造を、その製造プロセスにしたがって模式的に示したものである。
1.まず、図15に示すように、P型のシリコン基板21を用意する。そして、このP型シリコン基板21の上面に熱酸化を施すことによって6000Å程度の熱酸化膜22を形成する。その後、同図2に破線にて示すように、フォトリソグラフィおよびウェットエッチングを通じて、上記長さ「L」×上記長さ「W」の表面積の熱酸化膜22を除去する。
2.次いで、図16に示すように、図中の矢印にて示す方向からアンチモンソース(Sb)を、上記1.の工程において除去された領域、すなわち熱酸化膜22によって囲繞されたP型シリコン基板21の上面にスピン塗布した後、1250℃程度の熱処理を施すことにより、シート抵抗が「20Ω/□」程度となるN型埋込拡散層23を形成する。なお、先の第1の実施の形態と同様、このN型埋込拡散層23のシート抵抗の値は、熱処理の温度と時間によって決定される。
3.次いで、上記熱酸化膜22を除去した後、フォトリソグラフィを通じて、上記N型埋込拡散層23の上面のみが開口するマスクを形成する。そして、図17中の矢印の方向からボロン(B)をイオン注入する。続いて、フォトリソグラフィを通じて、上記N型埋込拡散層23の上面を被覆するマスクを形成した後、P型シリコン基板21の上面に同じく図中の矢印の方向からボロン(B)をイオン注入する。その後、このP型シリコン基板21の内部に注入されたボロン(B)に対して熱処理による活性化を行なう。これにより、P型のボディ用拡散層31が形成されるとともに、上記N型埋込拡散層23を囲繞する素子分離拡散層24が形成される。
4.次いで、図18に示すように、「1〜2Ω・cm」程度の比抵抗のN型エピタキシャルシリコン層25を「2μm」程度の膜厚で形成した後、上記3.の工程と同様、フォトリソグラフィを通じて上記N型埋込拡散層23の上方を被覆するマスクを形成する。そして、N型エピタキシャルシリコン層25の上面にボロン(B)をイオン注入するとともに、熱処理による活性化を行なう。これにより、上記素子分離拡散層24に達する素子分離拡散層26が形成されるとともに、これら素子分離拡散層24および素子分離拡散層26によって上記N型エピタキシャルシリコン層25が区画形成される。
5.次いで、図19に示すように、N型エピタキシャルシリコン層25の上表面に、フォトリソグラフィおよびエッチングを通じて、上記N型埋込拡散層23に達する幅「2.0μm」、深さ「2.0μm」程度のトレンチ溝27A,27Bを形成する。その後、N型エピタキシャルシリコン層25の上面に熱酸化を施して「150Å」程度のゲート絶縁膜28を形成する。なお、先の第1の実施の形態と同様、実際にはフィンガー数に相当するだけのトレンチ溝を形成する必要があるが、全てのトレンチ溝を図示すると説明が煩雑になることから、ここでもそれらトレンチ溝のうちの2本のみを図示している。
6.次いで、「2000Å」程度のポリシリコンをトレンチ溝27A,27Bの内部に堆積させた後、POCL3(オキシ塩化リン)等を用いた熱処理によってポリシリコンへ燐(P)のドーピングを行う。そしてその後、図20に示すように、RIE(反応性イオンエッチング)による異方性エッチングを施すことによって、トレンチ溝27Aの内壁に
サイドウォール状のゲート電極29Aを形成するとともに、トレンチ溝27Bの内壁に同じくサイドウォール状のゲート電極29Bを形成する。
7.次いで、N型エピタキシャルシリコン層25の上表面に形成した上記ゲート絶縁膜28を除去した後、図21に破線にて示すように、フォトリソグラフィを通じてトレンチ溝27A,27Bの開口部を閉塞するレジストパターンを形成する。そして、このレジストパターンを介してN型エピタキシャルシリコン層25の上面に砒素(As)をイオン注入するとともに、熱処理による活性化を行う。これにより、N型エピタキシャルシリコン層25の上表面には、N型のドレイン拡散層30が形成される。
8.次いで、図22に示すように、TEOS(テトラエトキシシラン)を用いたLP−CVD法などにより、N型エピタキシャルシリコン層25の上方から「1000Å」程度の層間絶縁膜32を堆積させる。すなわち、ドレイン拡散層30の上面、ゲート電極29A,29Bの表面、およびトレンチ溝27A,27Bの底面に形成されたゲート絶縁膜28の上面にそれぞれ層間絶縁膜32を形成する。その後、同図22中に破線にて示すように、フォトリソグラフィを通じて、トレンチ溝27Aの内部においてゲート電極29Aにより挟まれた領域、およびトレンチ溝27Bの内部においてゲート電極29Bにより挟まれた領域のそれぞれが外部に露出するレジストパターンを形成する。そして、このレジストパターンを介してエッチングを行うことにより、トレンチ溝27A,27Bの底面をそれぞれ開口するとともに、これらトレンチ溝27A,27Bの底面から上記N型埋込拡散層23を貫通しない程度の深さで溝33A,33Bをそれぞれ形成する。これにより、ゲート電極29A,29Bの埋込形成された上記トレンチ溝27A,27Bの底面より上記N型埋込拡散層23に達する溝33A,33Bが形成される。
9.次いで、図23に示すように、窒化チタン(TiN)等のバリアメタルを形成した後、六フッ化タングステン(WF6)ガスを用いたCVD法を用いて、トレンチ溝27A,27Bの内部および溝33A,33Bの内部にそれぞれタングステン(W)を堆積させる。そして、フォトリソグラフィおよびエッチングを通じて、トレンチ溝27Aのゲート電極29Aの内側部分と溝33Aの内部にソース引出電極35Aを形成するとともに、トレンチ溝27Bのゲート電極29Bの内側部分と溝33Bの内部にソース引出電極35Bを形成する。これにより、トレンチ溝27A,27Bのゲート電極29A,29Bの内側部分と上記形成された溝33A,33Bの内部とを通じて上記N型埋込拡散層23に接続されるソース引出電極35A,35Bがそれぞれ形成される。
10.次いで、図24に示すように、HDP−CVDなどの方法により、N型エピタキシャルシリコン層25の上方に層間絶縁膜36を形成する。その後、この層間絶縁膜36に、ドレイン拡散層30およびソース引出電極35A,35Bにそれぞれ達するコンタクトホールを形成する。そして、六フッ化タングステン(WF6)ガスを用いたCVD法を用いてこれらコンタクトホールの内部にタングステン(W)を堆積させるとともに、エッチバックを行ない、それぞれのコンタクトホールの内部にコンタクトプラグ37A〜37Eを形成する。また、図中に破線にて示すように、スパッタ法を用いてトータル膜厚「5000Å」程度のTiN/Al−Cu/TiNの積層膜を堆積させた後、フォトリソグラフィおよびエッチングを施すことによって、上記コンタクトプラグ37A〜37Eにそれぞれ電気的に接続される金属配線38A〜38Eを形成する。この金属配線38A〜38Eの材料としては、本実施の形態にかかる半導体装置においてもアルミニウム(Al)を採用している。以上の各工程を経ることによって、本実施の形態にかかる半導体装置の主要構造が完成する。
ところで実使用上の問題として、上記構造を有するDMOSFETでは、N型エピタキシャルシリコン層25、P型のボディ用拡散層31、およびN型埋込拡散層23によって
寄生バイポーラトランジスタが形成される。このため、半導体装置周囲のノイズ環境等によっては、各DMOSFETの動作が不安定になるおそれがある。そこで、図25に示すように、N型埋込拡散層23の一部に連通口40(例えば5μm□)を形成することが望ましい。半導体装置としてこのような構造によれば、N型埋込拡散層23の上面のボディ用拡散層31が上記連通口40を通じてP型シリコン基板21に電気的に接続されるようになる。すなわち、上記寄生バイポーラトランジスタのベース電位がP型シリコン基板21の基板電位に固定される。このため、上記寄生バイポーラトランジスタのベース電位の変動が抑制されることとなり、その結果、DMOSFETの動作の安定化が図られるようになる。
以上説明したように、本実施の形態にかかる半導体装置によれば、以下のような効果が得られるようになる。
(4)P型シリコン基板21の上表面にボディ用拡散層31、N型埋込拡散層3、およびボディ用拡散層31を順に積層するとともにこのボディ用拡散層31の上方にN型エピタキシャルシリコン層25を形成することにより、DMOSFETの形成される形成領域Sの下方における半導体基板の内部に面状のN型埋込拡散層23を形成するようにした。そして、こうして形成されたN型埋込拡散層23に接続されるかたちで、N型エピタキシャルシリコン層25に形成したトレンチ溝27A,27Bおよびこれらトレンチ溝27A,27Bの底面と上記N型埋込拡散層3とを連通する溝33A,33Bの内部に、ソース引出電極35A,35Bをそれぞれ埋め込み形成するようにした。このような構造のもとでは、ソース引出電極35A,35Bに電気的に接続された金属配線38B,38Dから注入されたキャリアは、全て上記N型埋込拡散層23を通じて流れるようになる。すなわち、半導体装置としてこのような構造によっても、先の第1の実施の形態と同様、各DMOSFETにおける配線抵抗が従来の半導体装置に比較して低下することとなり、その配線抵抗のばらつきも好適に抑制されるようになる。その結果、DMOSFETにおける電流分布の偏りが抑制され、半導体装置における特定の部分への電流集中が好適に抑制されるようになるため、半導体装置の信頼性の向上が好適に図られるようになる。
(5)半導体装置周囲のノイズ環境等によって、各DMOSFETの動作が不安定になるおそれがある場合には、N型埋込拡散層23の一部に連通口40を形成することにより、各DMOSFETに発生する寄生バイポーラトランジスタのベース電位をP型シリコン基板21の基板電位に固定することができるようになる。これにより、上記寄生バイポーラトランジスタのベース電位の変動が抑制されるようになるため、DMOSFETの動作の安定化を図ることができるようになる。
(第3の実施の形態)
次に、この発明にかかる半導体装置を具体化した第3の実施の形態について、図26を参照しつつ説明する。この実施の形態にかかる半導体装置も、その基本的な構造は先の第2の実施の形態にかかる半導体装置の構造に準じたものとなっている。
図26に示すように、本実施の形態にかかる半導体装置では、図中左側の低耐圧のDMOSFETと図中右側の高耐圧のDMOSFETとが混在した状態で形成されている。このうち、低耐圧側のDMOSFETの構造は、先の第2の実施の形態にかかるDMOSFETの構造と基本的には同一であるため、ここではその詳細な説明を割愛する。以下、高耐圧側のDMOSFETについて説明する。
この半導体装置では、N型エピタキシャルシリコン層25の上面に、LOCOS(local oxidation of silicon)50が形成されている。そして、LOCOS50、素子分離拡散層24,26によって素子分離がなされている。
また、N型エピタキシャルシリコン層25において、高耐圧側のDMOSFETの形成される領域には、これらLOCOS50の間にLOCOS51AおよびLOCOS51Bが並列に延設されている。このうちLOCOS51Aの中央部分には、N型埋込拡散層23に達するトレンチ溝27Cが、同LOCOS51Aにより囲繞されるように形成されている。また、LOCOS51Bの中央部分には、同じくN型埋込拡散層23に達するトレンチ溝27Dが、同LOCOS51Bにより囲繞されるように形成されている。すなわち、高耐圧側のDMOSFETが形成されるN型エピタキシャルシリコン層25上には、トレンチ溝27C,27Dの開口部を囲繞するようにLOCOS51A,51Bがそれぞれ形成されている。
そして、先の第2の実施の形態と同様、これらトレンチ溝27C,27Dの内壁には、二酸化シリコン等からなる絶縁膜を介してゲート電極29C,29Dがそれぞれ埋込形成されている。また、これらトレンチ溝27C,27Dの底面には、上記N型埋込拡散層23を貫通しない程度の深さで溝33C,33Dがそれぞれ形成されている。さらに、この半導体基板には、これらトレンチ溝27C,27Dの上記ゲート電極29C,29Dの内側部分と上記溝33C,33Dの内部とを通じて上記N型埋込拡散層23に接続されるようにソース引出電極35C,35Dが埋め込み形成されている。
また、層間絶縁膜36の内部には、高耐圧側のDMOSFETの形成される領域のドレイン拡散層30に接続されるコンタクトプラグ37F,37H,37J、およびソース引出電極35C,35Dに接続されるコンタクトプラグ37G,37Iがそれぞれ埋め込み形成されている。この層間絶縁膜36の上表面には、これらコンタクトプラグ37F〜37Jに接続される金属配線38F〜38Jがそれぞれ形成されている。
このような構造を有する高耐圧側のDMOSFETにあっては、注入されたキャリアがLOCOS51AやLOCOS51Bの縁に沿って流れるようになるため、ボディ用拡散層31からドレイン拡散層30までのキャリア経路が、低耐圧側のDMOSFETに比較して長くなる。これにより、DMOSFETの高耐圧化が図られる。
さらに、こうした構造のDMOSFETによれば、LOCOS51A,51Bの半導体基板の表面に沿った長さ(幅)を変えることにより、ボディ用拡散層31からドレイン拡散層30までのキャリア経路の長さ、すなわち、ドリフト層の距離を変えることができる。このため、N型エピタキシャルシリコン層25の厚みが同一でありながらも、LOCOS51A,51Bの幅を変えることによって任意の耐圧のDMOSFETを形成することができるようになり、ひいては耐圧の異なるDMOSFETを同一半導体基板上に混載することができるようになる。
以上説明したように、本実施の形態にかかる半導体装置によれば、以下のような効果を得ることができるようになる。
(6)N型エピタキシャルシリコン層25の上表面にLOCOS51A,51Bを形成しておき、これらLOCOS51A,51Bの中央部分にそれぞれトレンチ溝27C,27Dを形成するようにした。そして、高耐圧側のDMOSFETの形成される領域にあっては、トレンチ溝27C,27Dの開口部がLOCOS51A,51Bによってそれぞれ囲繞されるようにした。このような構造により、注入されたキャリアがLOCOS51AやLOCOS51Bの縁に沿って流れるようになるため、ボディ用拡散層31からドレイン拡散層30までのキャリア経路が長くなり、DMOSFETの耐圧の向上が図られるようになる。また、このLOCOS51A,51Bの半導体基板の表面に沿った長さ(幅)を変えることにより、ドリフト層の距離を変えることができるようになる。このため、N型エピタキシャルシリコン層25の厚みが同一でありながらも、LOCOS51A,51Bの幅を変えることによって任意の耐圧のDMOSFETを形成することができるように
なり、ひいては耐圧の異なるDMOSFETを同一半導体基板上に混載することができるようになる。
(第4の実施の形態)
次に、この発明にかかる半導体装置を具体化した第4の実施の形態について説明する。この実施の形態にかかる半導体装置も、その基本的な構造は先の第1の実施の形態の半導体装置に準じたものとなっている。ただし、本実施の形態にかかる半導体装置では、N型エピタキシャルシリコン層5に対するソース拡散層10およびボディ用拡散層11の形成後にトレンチ溝7A,7Bを形成することにより、半導体装置としての信頼性の向上を図っている。こうした半導体装置について、図27〜30を参照しつつ説明する。なお、先の第1の実施の形態と同様あるいはそれに準じた構造については、その詳細な説明を割愛する。
先の第1の実施の形態において例示した半導体装置の製造プロセスでは、5.の工程においてトレンチ溝7A,7Bの形成およびゲート絶縁膜8の形成を行った後、7.の工程においてレジストパターンを介した砒素(As)およびボロン(B)のイオン注入を通じてソース拡散層10とボディ用拡散層11とをそれぞれ形成するようにした。こうした製造プロセスにより半導体装置を製造する場合には、上記7.の工程においてレジストパターンの位置合わせにずれが生じると、ゲート絶縁膜8にも砒素(As)やボロン(B)がイオン注入されることから、ゲート絶縁膜8の性能劣化に起因して半導体装置の信頼性の低下を招いてしまう懸念がある。そこで、ゲート絶縁膜8を完全に覆うような形状にレジストパターンを形成することも考えられるが、この場合、N型エピタキシャルシリコン層5とトレンチ溝7A,7Bとの境界近傍において砒素(As)やボロン(B)のイオン注入が不完全となってしまい、セルフアライメントが有効に機能しないおそれがある。
本実施の形態にかかる半導体装置は、半導体からなる支持基板の上表面に不純物拡散層を形成する工程と、上記不純物拡散層の形成された上記支持基板の上表面にエピタキシャル半導体層を形成する工程と、上記エピタキシャル半導体層へのイオン注入によりソース拡散層およびボディ用拡散層を形成する工程と、上記エピタキシャル半導体層の上表面にトレンチ溝を形成する工程と、上記トレンチ溝の内壁にゲート絶縁膜を形成する工程と、上記トレンチ溝の内壁にゲート電極を埋込形成する工程と、上記ゲート電極の埋込形成された上記トレンチ溝の底面より上記不純物拡散層に達する溝を形成する工程と、上記トレンチ溝の上記ゲート電極の内側部分と上記形成された溝の内部とを通じて上記不純物拡散層に接続されるように導電体を埋込形成する工程と、上記トレンチ溝の側方における上記エピタキシャル半導体層の上表面に導電層を形成する工程と、上記導電体および導電層の一方および他方にソース電極およびドレイン電極を接続する工程と、を通じて製造することができる。
この製造方法では、まず半導体からなる支持基板の上表面に不純物拡散層が形成されるとともに、この支持基板の上表面にエピタキシャル半導体層が形成される。その後、エピタキシャル半導体層にソース拡散層とボディ用拡散層とが形成され、さらにエピタキシャル半導体層の上表面にトレンチ溝が形成される。また、このトレンチ溝の内壁にゲート絶縁膜が形成される。すなわち、この製造方法によれば、エピタキシャル半導体層にソース拡散層とボディ用拡散層とを形成すべくイオン注入が行われた後、トレンチ溝の内壁にゲート絶縁膜が形成される。このため、ゲート絶縁膜に不純物イオンが注入されることはなく、半導体装置としての信頼性の向上が好適に図られるようになる。なお、その後、このエピタキシャル半導体層の上表面に形成されたトレンチ溝の底面より上記不純物拡散層に達する溝の内部を通じて同不純物拡散層に接続されるように導電体が埋込形成される。これにより、上記支持基板および上記エピタキシャル半導体層からなる半導体基板の内部に上記配線層が形成される。また、上記トレンチ溝の内壁にゲート電極が埋込形成されると
ともに、上記トレンチ溝の側方における上記エピタキシャル半導体層の上表面に形成された導電層および上記導電体の一方および他方にソース電極およびドレイン電極が接続される。
ここで、こうした半導体装置の具体的な製造工程について説明する。本実施の形態にかかる半導体装置は、先の第1の実施の形態にかかる半導体装置の製造プロセスとして例示した1.〜4.の各工程と、以下に示す5.〜7.の各工程と、さらに同製造プロセスとして例示した8.〜11.の各工程とを通じて製造される。すなわち、本実施の形態にかかる半導体装置は、先の第1の実施の形態にかかる半導体装置の製造プロセスのうちの5.〜7.の各工程を、以下に示す5.〜7.の各工程と入れ替えることにより製造することができる。ここでは、本実施の形態にかかる半導体装置の製造プロセスのうち、先の第1の実施の形態と同様の1.〜4.の各工程および8.〜11.の各工程についてはその詳細な説明を割愛することとし、5.〜7.の各工程についてのみ詳細に説明する。
5.先の第1の実施の形態にて示した1.〜4.の各工程を経た後、図27に示すように、TEOS(テトラエトキシシラン)を用いたLP−CVD法などで1000Å程度の層間絶縁膜12aを堆積させる。そして、この層間絶縁膜12aを介してN型エピタキシャルシリコン層5に砒素(As)をイオン注入するとともに、この砒素(As)の注入された層よりも深い位置にボロン(B)をイオン注入する。その後、熱処理による活性化を行う。これにより、図28に示すように、N型エピタキシャルシリコン層5には、N型のソース拡散層10と同ソース拡散層10の下層としてP型のボディ用拡散層11がそれぞれ形成される。
6.次いで、図29に示すように、N型エピタキシャルシリコン層5の上表面部分に、フォトリソグラフィおよびエッチングを通じて、幅「1.5μm」、深さ「1μm」程度のトレンチ溝7A,7Bを形成する。その後、P型シリコン基板1やN型エピタキシャルシリコン層5等からなるシリコン基板の表面に熱酸化を施して「150Å」程度のゲート絶縁膜8を形成する。なお、ゲート絶縁膜8の形成によりソース拡散層10の表面プロファイルが劣化するおそれがある場合には、ゲート絶縁膜8を形成する前に、ソース拡散層10の表面に酸化膜を別途、形成しておくことが望ましい。
7.次いで、「2000Å」程度のポリシリコンをトレンチ溝7A,7Bの内部に堆積させた後、POCL3(オキシ塩化リン)等を用いた熱処理によってポリシリコンへ燐(P)のドーピングを行う。そしてその後、図30に示すように、RIE(反応性イオンエッチング)による異方性エッチングを施すことによって、トレンチ溝7Aの内壁にサイドウォール状のゲート電極9Aを形成するとともに、トレンチ溝7Bの内壁に同じくサイドウォール状のゲート電極9Bを形成する。
なおその後、先の第1の実施の形態にかかる半導体装置の製造プロセスにおける8.〜11.の各工程を経ることによって本実施の形態にかかる半導体装置の主要構造が完成する。
以上説明したように、本実施の形態にかかる半導体装置によれば、以下のような効果を得ることができるようになる。
(7)N型エピタキシャルシリコン層5にソース拡散層10とボディ用拡散層11とを形成した後、N型エピタキシャルシリコン層5の上表面部分にトレンチ溝7A,7Bを形成するようにした。そして、このトレンチ溝7A,7Bの内壁にゲート絶縁膜8を形成するようにした。すなわち、N型エピタキシャルシリコン層5にソース拡散層10とボディ用拡散層11とを形成すべくイオン注入を行った後、トレンチ溝7A,7Bの内壁にゲート絶縁膜8を形成するようにした。このため、ゲート絶縁膜8に不純物イオンが注入され
ることはなく、ゲート絶縁膜8の性能劣化が防止されることとなり、ひいては半導体装置としての信頼性の向上が好適に図られるようになる。
(第5の実施の形態)
次に、この発明にかかる半導体装置を具体化した第5の実施の形態について説明する。この実施の形態にかかる半導体装置も、その基本的な構造は先の第1の実施の形態の半導体装置に準じたものとなっている。ただし、本実施の形態にかかる半導体装置では、その製造プロセスにおいてトレンチ溝7A,7Bの上部の層間絶縁膜14がより厚く形成されるようになっており、溝13A,13Bを形成する際のフォトリソグラフィ工程が割愛可能な構造とされている。これにより、本実施の形態にかかる半導体装置の製造方法によれば、半導体装置の製造コストの抑制が可能となる。こうした半導体装置について、図31〜36を参照しつつ説明する。なお、先の第1の実施の形態と同様あるいはそれに準じた構造については、その詳細な説明を割愛する。
本実施の形態にかかる半導体装置は、半導体からなる支持基板の上表面に不純物拡散層を形成する工程と、上記不純物拡散層の形成された上記支持基板の上表面にエピタキシャル半導体層を形成する工程と、上記エピタキシャル半導体層の上表面に第1の層間絶縁膜を形成する工程と、上記エピタキシャル半導体層の上表面にトレンチ溝を形成する工程と、上記トレンチ溝の内壁にゲート絶縁膜を形成する工程と、上記第1の層間絶縁膜の表面よりも上記トレンチ溝の底面側に近い位置に頭頂部が位置するように上記トレンチ溝の内壁にゲート電極を埋込形成する工程と、上記第1の層間絶縁膜および上記ゲート電極の表面に第2の層間絶縁膜を形成する工程と、上記ゲート電極の埋込形成された上記トレンチ溝の底面より上記不純物拡散層に達する溝を形成する工程と、上記トレンチ溝の上記ゲート電極の内側部分と上記形成された溝の内部とを通じて上記不純物拡散層に接続されるように導電体を埋込形成する工程と、上記トレンチ溝の側方における上記エピタキシャル半導体層の上表面に導電層を形成する工程と、上記導電体および導電層の一方および他方にソース電極およびドレイン電極を接続する工程と、を通じて製造することができる。
この製造方法では、まず半導体からなる支持基板の上表面に不純物拡散層が形成されるとともに、この支持基板の上表面にエピタキシャル半導体層が形成される。そして、このエピタキシャル半導体層の上表面には、第1の層間絶縁膜が形成された後にトレンチ溝が形成される。また、ゲート絶縁膜が形成されたトレンチ溝の内壁には、上記第1の層間絶縁膜の表面よりも同トレンチ溝の底面側に近い位置、すなわち上記第1の層間絶縁膜の表面よりも深い位置にその頭頂部が位置するようにゲート電極が埋込形成される。その後、上記第1の層間絶縁膜および上記ゲート電極の表面に第2の層間絶縁膜が形成される。これにより、エピタキシャル半導体層の表面には第1および第2の層間絶縁膜からなる厚い絶縁膜が形成されることとなる。このため、この厚い絶縁膜とゲート電極の表面に形成された上記第2の層間絶縁膜とをマスクパターンとして用いることで、上記トレンチ溝の底面より上記不純物拡散層に達する溝を形成することが可能となり、フォトリソグラフィ工程の割愛を通じて半導体装置の製造コストの抑制が図られるようになる。なお、その後、このトレンチ溝の底面より上記不純物拡散層に達する溝の内部には、同不純物拡散層に接続されるように導電体が埋込形成される。これにより、上記支持基板および上記エピタキシャル半導体層からなる半導体基板の内部に上記配線層が形成される。また、上記トレンチ溝の内壁にゲート電極が埋込形成されるとともに、上記トレンチ溝の側方における上記エピタキシャル半導体層の上表面に形成された導電層および上記導電体の一方および他方にソース電極およびドレイン電極が接続される。
ここで、こうした半導体装置の具体的な製造工程について説明する。本実施の形態にかかる半導体装置は、先の第1の実施の形態にかかる半導体装置の製造プロセスとして例示した1.〜4.の各工程と、以下に示す5.〜9.の各工程と、さらに同製造プロセスと
して例示した10.および11.の各工程とを通じて製造される。すなわち、本実施の形態にかかる半導体装置は、先の第1の実施の形態にかかる半導体装置の製造プロセスのうちの5.〜9.の各工程を、以下に示す5.〜9.の各工程と入れ替えることにより製造することができる。ここでは、本実施の形態にかかる半導体装置の製造プロセスのうち、先の第1の実施の形態と同様の1.〜4.、10.、および11.の各工程についてはその詳細な説明を割愛することとし、5.〜9.の各工程についてのみ詳細に説明する。
5.先の第1の実施の形態にて示した1.〜4.の各工程を経た後、図31に示すように、TEOS(テトラエトキシシラン)を用いたLP−CVD法などで1000Å程度の層間絶縁膜12aを堆積させる。そして、N型エピタキシャルシリコン層5の表面部分に、フォトリソグラフィおよびエッチングを通じて幅「1.5μm」、深さ「1μm」程度のトレンチ溝7A,7Bを形成する。その後、P型シリコン基板1やN型エピタキシャルシリコン層5等からなるシリコン基板の表面に熱酸化を施して「150Å」程度のゲート絶縁膜8を形成する。
6.次いで、「2000Å」程度のポリシリコンをトレンチ溝7A,7Bの内部に堆積させた後、POCL3(オキシ塩化リン)等を用いた熱処理によってポリシリコンへ燐(P)のドーピングを行う。そしてその後、図32に示すように、RIE(反応性イオンエッチング)による異方性エッチングを施すことによって、トレンチ溝7Aの内壁にサイドウォール状のゲート電極9Aを形成するとともに、トレンチ溝7Bの内壁に同じくサイドウォール状のゲート電極9Bを形成する。このとき、同図32に示すように、ゲート電極9A,9Bの頭頂部の位置が層間絶縁膜12aの表面よりも深さdだけ深い位置となるようにこれらゲート電極9A,9Bを形成する。
7.次いで、図33に破線にて示すように、フォトリソグラフィを通じてトレンチ溝7A,7Bの開口部を閉塞するレジストパターンを形成する。そして、このレジストパターンを介してN型エピタキシャルシリコン層5の上表面部分に砒素(As)をイオン注入するとともに、この砒素(As)の注入された層よりも深い位置にボロン(B)をイオン注入する。その後、熱処理による活性化を行う。これにより、N型エピタキシャルシリコン層5には、N型のソース拡散層10と同ソース拡散層10の下層としてP型のボディ用拡散層11がそれぞれ形成される。
8.次いで、図34に示すように、TEOSを用いたLP−CVD法などにより、「1000Å」程度の層間絶縁膜12を堆積させる。これにより、シリコン基板表面には、層間絶縁膜12aおよび層間絶縁膜12からなる厚い絶縁膜が形成される。その後、図35に示すように、異方性エッチングを施すことにより、トレンチ溝7A,7Bの底面の層間絶縁膜12を除去する。さらに、シリコン基板表面に形成された層間絶縁膜12,12aとゲート電極9A,9Bの表面に形成された層間絶縁膜12とをマスクパターンとして、トレンチ溝7A,7Bの底面からN型埋込拡散層3に達する溝13A,13Bを「1μm」程度の深さでそれぞれ形成する。これにより、ゲート電極9A,9Bの埋め込み形成された上記トレンチ溝7A,7Bの底面より上記N型埋込拡散層3に達する溝13A,13Bが形成される。
9.次いで、図36に示すように、同じくTEOSを用いたLP−CVD法などにより、「1000Å」程度の層間絶縁膜14を堆積させる。すなわち、層間絶縁膜12の上面、溝13A,13Bの内壁、および溝13A,13Bの底面にそれぞれ層間絶縁膜14を形成する。その後、異方性エッチングにより、溝13A,13Bの底面の上記層間絶縁膜14を除去する。
なおその後、先の第1の実施の形態にかかる半導体装置の製造プロセスにおける10.
および11.の各工程を経ることによって本実施の形態にかかる半導体装置の主要構造が完成する。
なお本実施の形態では、層間絶縁膜12aが「第1の層間絶縁膜」に、層間絶縁膜12が「第2の層間絶縁膜」にそれぞれ相当する構成となっている。
以上説明したように、本実施の形態にかかる半導体装置によれば、以下のような効果を得ることができるようになる。
(8)N型エピタキシャルシリコン層5の上表面に層間絶縁膜12aを形成した後、同N型エピタキシャルシリコン層5の上表面部分にトレンチ溝7A,7Bをそれぞれ形成するようにした。そして、ゲート絶縁膜8が形成されたトレンチ溝7A,7Bの内壁に、上記層間絶縁膜12aの表面よりも深さdだけ深い位置にその頭頂部が位置するようにゲート電極9A,9Bを埋込形成するようにした。また、上記層間絶縁膜12aおよび上記ゲート電極9A,9Bの表面に層間絶縁膜12を形成するようにした。これにより、N型エピタキシャルシリコン層5の表面には層間絶縁膜12a,12からなる厚い絶縁膜が形成されることとなる。このため、この厚い絶縁膜とゲート電極9A,9Bの表面に形成された上記層間絶縁膜12とをマスクパターンとして用いることで、上記トレンチ溝7A,7Bの底面より上記N型埋込拡散層3に達する溝13A,13Bを形成することが可能となり、フォトリソグラフィ工程の割愛を通じて半導体装置の製造コストの抑制を図ることができるようになる。
(その他の実施の形態)
なお、こうした半導体装置は、上記各実施の形態として示した構造に限らず、同実施の形態を適宜変更した例えば次のような形態として実施することもできる。
・上記第2の実施の形態にかかる半導体装置の構造は、同半導体装置が使用される状況に応じて適宜、改良することができる。例えば、モータ等の負荷を駆動する回路としては一般に、モータへの電流経路において同モータの上流側(電源側)および下流側(グランド側)にそれぞれ電力用トランジスタを接続する、いわゆるHブリッジが採用されている。こうしたHブリッジにおいては、電源側に入るハイサイドスイッチ用トランジスタと、グランド側に入るローサイドスイッチ用トランジスタとでは、ソースに印加される電圧態様に大きな違いがある。すなわち、ローサイドスイッチ用トランジスタのソースがグランド電位(ローレベル)に固定されるのに対して、ハイサイドスイッチ用トランジスタのソースは、ハイレベルの電位およびグランド電位のいずれかの電位となる。このため従来、こういった駆動回路にあっては、ハイサイドスイッチ用トランジスタとローサイドスイッチ用トランジスタとを別個の半導体基板に形成する必要があった。この点、本発明にかかる半導体装置によれば、ハイサイドスイッチ用トランジスタとローサイドスイッチ用トランジスタとを同一の半導体基板上に形成することが可能となる。すなわち、図37に示すように、上記第3の実施の形態にかかる半導体装置において、P型シリコン基板21を2層に分離してその間にN型埋込拡散層61を形成するとともに、このN型埋込拡散層61の両端部からN型エピタキシャルシリコン層25に達するように、素子分離拡散層62,63からなる素子分離層を形成するようにすればよい。このようにすれば、ハイサイドスイッチ用トランジスタとローサイドスイッチ用トランジスタとを同一の半導体基板上に集積化することが可能となり、ひいては半導体素子のさらなる小型化や低コスト化が好適に図られるようになる。
・上記各実施の形態においては、ドレイン引出電極15A,15Bの材料として、電気抵抗の低いタングステンを用いるようにしたが、半導体材料との親和性がより高いポリシリコンを採用するようにしてもよい。
・上記各実施の形態では、配線層を、不純物拡散層であるN型埋込拡散層3(23)として具体化した。こうした配線層は、導電性の材料によって形成されればよく、上述の不純物拡散層に限定されるものではない。例えば、P型シリコン基板1(21)の内部に金属の層を埋込形成することによって上記配線層を具体化するようにしてもよい。
・上記各実施の形態では、上記N型埋込拡散層3(23)を、半導体素子の配列方向における長さを「L」、トレンチ溝7A,7B(27A〜27D)の延伸方向における長さを「W」としたときの両者の関係が「W/L<1」となるように形成した。このような関係となるようにN型埋込拡散層3(23)を形成することにより、各DMOSFETにおける電流分布の偏りがより好適に抑制されるようになっている。しかしながら、長さ「L」と長さ「W」との関係が「W/L<1」とならなければ本発明の効果を享受することができないわけではない。両者の関係が「W/L=1」となるように上記N型埋込拡散層3(23)を形成するようにしても、従来の半導体装置に比較して、半導体素子における電流分布の偏りを十分に抑制することができる。
・本発明にかかる半導体装置の構造は、縦型DMOSFETへの適用に限定されるものではなく、横型DMOSFETにも適宜適用することができる。さらに、複数種類の半導体素子が集積された半導体装置にも適用可能である。
本発明にかかる半導体装置の第1の実施の形態について、その断面構造のうち一部分を模式的に示すとともに、図中のA−Aに沿った平面構造を併せ示す平面図および断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 (a),(b),(c)は、同実施の形態の半導体装置において、金属配線の配設態様例を模式的に示す平面図。 本発明にかかる半導体装置の第2の実施の形態についてその断面構造の一部分を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態にかかる半導体装置の断面構造の一部分を模式的に示す断面図。 本発明にかかる半導体装置の第3の実施の形態についてその断面構造の一部分を模式的に示す断面図。 本発明にかかる半導体装置の第4の実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 本発明にかかる半導体装置の第5の実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 同実施の形態の半導体装置の製造方法について、その製造工程における同半導体装置の断面構造を模式的に示す断面図。 本発明にかかる半導体装置の他の実施の形態についてその断面構造の一部分を模式的に示す断面図。
符号の説明
1,21…P型シリコン基板、3,23…N型埋込拡散層、4,6,24,26,62,63…素子分離拡散層、5,25…N型エピタキシャルシリコン層、7A,7B,27A〜27D…トレンチ溝、9A,9B,29A〜29D…ゲート電極、10…ソース拡散
層、11,31…ボディ用拡散層、15A,15B…ドレイン引出電極、17A〜17E,37A〜37J…コンタクトプラグ、18A〜18E,38A〜38J…金属配線、30…ドレイン拡散層、33A〜33D…溝、35A〜35D…ソース引出電極、S…形成領域。

Claims (3)

  1. 半導体基板の上表面に延設されたトレンチ溝と、前記トレンチ溝の内部に埋め込まれた導電体と、前記トレンチ溝の側部における前記半導体基板の上表面に設けられた導電層と、を備えるとともに前記導電体および前記導電層の一方および他方をそれぞれソースおよびドレインとした半導体素子が複数併設された半導体装置において、
    前記半導体素子の形成領域全体の下方における前記半導体基板の内部に、前記半導体素子の形成領域の下方全体にわたる面状の配線層が前記導電体と接続された状態で埋込形成されてなり、前記導電体および導電層はそれぞれ、前記半導体基板上に設けられた金属配線に接続され、且つ前記導電体の接続される金属配線は、前記導電層の接続される金属配線よりも配線幅が狭くされてなり、且つ前記半導体素子の配列方向における前記配線層の長さに対する前記トレンチ溝の延伸方向における前記配線層の長さの比が1以下とされてなることを特徴とする半導体装置。
  2. 半導体基板の上表面に延設されたトレンチ溝と、前記トレンチ溝の内部に埋め込まれたゲート電極と、さらにそのゲート電極の内側に埋め込まれた導電体と、前記トレンチ溝の側部における前記半導体基板の上表面に設けられた導電層と、を備えるとともに前記導電体および前記導電層の一方および他方をそれぞれソースおよびドレインとした半導体素子が複数併設された半導体装置において、
    前記半導体素子の形成領域全体の下方における前記半導体基板の内部に、前記半導体素子の形成領域の下方全体にわたる面状の配線層が前記導電体と接続された状態で埋込形成されてなり、前記導電体および導電層はそれぞれ、前記半導体基板上に設けられた金属配線に接続され、且つ前記導電体の接続される金属配線は、前記導電層の接続される金属配線よりも配線幅が狭くされてなり、且つ前記半導体素子の配列方向における前記配線層の長さに対する前記トレンチ溝の延伸方向における前記配線層の長さの比が1以下とされてなることを特徴とする半導体装置。
  3. 前記トレンチ溝は、前記半導体基板の上表面に形成された第1のトレンチ溝と、該第1のトレンチ溝の底面から前記配線層に達するように形成された第2のトレンチ溝を備え、前記ゲート電極は前記第1のトレンチ溝の内壁にサイドウォール状に形成され、
    前記第2のトレンチ溝は該ゲート電極が形成されていない前記第1のトレンチ溝の底面の領域から前記配線層に達するように形成されたことを特徴とする請求項2に記載の半導体装置。
JP2006083269A 2005-12-28 2006-03-24 半導体装置 Active JP5164333B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006083269A JP5164333B2 (ja) 2005-12-28 2006-03-24 半導体装置
US11/617,517 US7439578B2 (en) 2005-12-28 2006-12-28 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005376788 2005-12-28
JP2005376788 2005-12-28
JP2006083269A JP5164333B2 (ja) 2005-12-28 2006-03-24 半導体装置

Publications (2)

Publication Number Publication Date
JP2007201391A JP2007201391A (ja) 2007-08-09
JP5164333B2 true JP5164333B2 (ja) 2013-03-21

Family

ID=38263730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083269A Active JP5164333B2 (ja) 2005-12-28 2006-03-24 半導体装置

Country Status (2)

Country Link
US (1) US7439578B2 (ja)
JP (1) JP5164333B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206944A1 (en) * 2007-02-23 2008-08-28 Pan-Jit International Inc. Method for fabricating trench DMOS transistors and schottky elements
JP2009272453A (ja) 2008-05-08 2009-11-19 Sanyo Electric Co Ltd トランジスタ、半導体装置及びその製造方法
CN102403256B (zh) * 2010-09-08 2014-02-26 上海华虹宏力半导体制造有限公司 赝埋层及制造方法、深孔接触及三极管
US8569131B2 (en) 2010-11-19 2013-10-29 International Business Machines Corporation Source/drain-to-source/drain recessed strap and methods of manufacture of same
JP6300638B2 (ja) * 2014-05-26 2018-03-28 ルネサスエレクトロニクス株式会社 半導体装置
CN105845729B (zh) * 2015-01-15 2019-04-09 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
US10326013B2 (en) 2016-11-23 2019-06-18 Microchip Technology Incorporated Method of forming a field-effect transistor (FET) or other semiconductor device with front-side source and drain contacts
CN113764416B (zh) * 2020-06-02 2023-12-05 中国科学院微电子研究所 半导体结构及其形成方法、动态随机存储器、电子设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640034A (en) 1992-05-18 1997-06-17 Texas Instruments Incorporated Top-drain trench based resurf DMOS transistor structure
JP3303601B2 (ja) * 1995-05-19 2002-07-22 日産自動車株式会社 溝型半導体装置
JP2000188397A (ja) * 1998-12-22 2000-07-04 Nissan Motor Co Ltd 半導体装置及びその製造方法
JP2002184980A (ja) * 2000-10-05 2002-06-28 Fuji Electric Co Ltd トレンチ型ラテラルmosfetおよびその製造方法
US6455902B1 (en) * 2000-12-06 2002-09-24 International Business Machines Corporation BiCMOS ESD circuit with subcollector/trench-isolated body mosfet for mixed signal analog/digital RF applications
JP4228594B2 (ja) * 2001-05-30 2009-02-25 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
JP2003303960A (ja) * 2002-04-09 2003-10-24 Sanyo Electric Co Ltd 縦型mos半導体装置およびその製造方法
JP2003303959A (ja) 2002-04-09 2003-10-24 Sanyo Electric Co Ltd 縦型mos半導体装置およびその製造方法
KR100442881B1 (ko) * 2002-07-24 2004-08-02 삼성전자주식회사 고전압 종형 디모스 트랜지스터 및 그 제조방법
JP4326835B2 (ja) * 2003-05-20 2009-09-09 三菱電機株式会社 半導体装置、半導体装置の製造方法及び半導体装置の製造プロセス評価方法
JP2006041308A (ja) * 2004-07-29 2006-02-09 Fuji Electric Device Technology Co Ltd 半導体装置
JP2006049663A (ja) * 2004-08-06 2006-02-16 Sanyo Electric Co Ltd 半導体装置の製造方法
US7816728B2 (en) * 2005-04-12 2010-10-19 International Business Machines Corporation Structure and method of fabricating high-density trench-based non-volatile random access SONOS memory cells for SOC applications
US7535057B2 (en) * 2005-05-24 2009-05-19 Robert Kuo-Chang Yang DMOS transistor with a poly-filled deep trench for improved performance

Also Published As

Publication number Publication date
US20070166925A1 (en) 2007-07-19
JP2007201391A (ja) 2007-08-09
US7439578B2 (en) 2008-10-21

Similar Documents

Publication Publication Date Title
KR100974697B1 (ko) Ldmos 소자 및 ldmos 소자의 제조 방법
JP5164333B2 (ja) 半導体装置
TWI548086B (zh) 溝渠式橫向擴散金屬氧化半導體元件及其製造方法
JP4616856B2 (ja) 半導体装置、及び半導体装置の製造方法
CN1877858B (zh) 金属氧化物半导体场效应晶体管及其制造方法
US7601600B2 (en) Power semiconductor device and method for manufacturing the same
JP4241856B2 (ja) 半導体装置および半導体装置の製造方法
JP2008034649A (ja) 半導体装置
JP5159365B2 (ja) 半導体装置およびその製造方法
WO2015174197A1 (ja) 半導体装置および半導体装置の製造方法
JP2008084995A (ja) 高耐圧トレンチmosトランジスタ及びその製造方法
KR20100079573A (ko) 반도체 소자 및 그 제조 방법
US6921942B2 (en) Structure of a lateral diffusion MOS transistor in widespread use as a power control device
TWI384621B (zh) 高耐壓電晶體、及使用其之半導體裝置、以及高耐壓電晶體之製造方法
US8133788B2 (en) Method of manufacturing semiconductor device
JPH09213939A (ja) 半導体装置
JP2012216577A (ja) 絶縁ゲート型半導体装置
JP5378925B2 (ja) 半導体装置およびその製造方法
US8598651B2 (en) Semiconductor device with transistor having gate insulating film with various thicknesses and manufacturing method thereof
JP4849504B2 (ja) 半導体装置、その製造方法、出力回路および電子機器
JP2012142487A (ja) 半導体装置およびその製造方法
JP4887662B2 (ja) 半導体装置およびその製造方法
JP2010021221A (ja) 半導体装置およびその製造方法
JP2008140805A (ja) 半導体装置
WO2004114412A1 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250