JP5158265B2 - プラズマディスプレイパネル - Google Patents

プラズマディスプレイパネル Download PDF

Info

Publication number
JP5158265B2
JP5158265B2 JP2011532454A JP2011532454A JP5158265B2 JP 5158265 B2 JP5158265 B2 JP 5158265B2 JP 2011532454 A JP2011532454 A JP 2011532454A JP 2011532454 A JP2011532454 A JP 2011532454A JP 5158265 B2 JP5158265 B2 JP 5158265B2
Authority
JP
Japan
Prior art keywords
discharge
protective layer
voltage
electrode
sustain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011532454A
Other languages
English (en)
Other versions
JPWO2011099265A1 (ja
Inventor
秀司 河原崎
敬司 堀河
千春 小塩
加奈子 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011532454A priority Critical patent/JP5158265B2/ja
Application granted granted Critical
Publication of JP5158265B2 publication Critical patent/JP5158265B2/ja
Publication of JPWO2011099265A1 publication Critical patent/JPWO2011099265A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/40Layers for protecting or enhancing the electron emission, e.g. MgO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

ここに開示された技術は、表示デバイスなどに用いられるプラズマディスプレイパネルに関する。
プラズマディスプレイパネル(以下、PDPと称する)は、前面板と背面板とで構成される。前面板は、ガラス基板と、ガラス基板の一方の主面上に形成された表示電極と、表示電極を覆ってコンデンサとしての働きをする誘電体層と、誘電体層上に形成された酸化マグネシウム(MgO)からなる保護層とで構成されている。一方、背面板は、ガラス基板と、ガラス基板の一方の主面上に形成されたデータ電極と、データ電極を覆う下地誘電体層と、下地誘電体層上に形成された隔壁と、各隔壁間に形成された赤色、緑色および青色それぞれに発光する蛍光体層とで構成されている。
保護層には、主に2つの機能がある。1つめは、放電によるイオン衝撃から誘電体層を保護することである。2つめは、アドレス放電を発生させるための初期電子を放出することである。イオン衝撃から誘電体層が保護されることにより、放電電圧の上昇が抑制される。初期電子放出数が増加することにより、画像のちらつきの原因となるアドレス放電ミスが低減される。初期電子放出数を増加させるために、MgOに不純物を添加する技術や、MgO粒子をMgO膜上に形成する技術が知られている(例えば、特許文献1、2、3、4、5など参照)。
特開2002−260535号公報 特開平11−339665号公報 特開2006−59779号公報 特開平8−236028号公報 特開平10−334809号公報
PDPは、前面板と、前面板と対向配置された背面板と、を備える。前面板は、表示電極と表示電極を覆う誘電体層と誘電体層を覆う保護層とを有する。保護層は、波長146nmの光の照射によって、350nm以上550nm以下の波長範囲におけるルミネッセンスのピークをもつ。さらに、保護層は、波長173nmの光の照射によって、350nm以上550nm以下の波長範囲におけるルミネッセンスのピークをもつ。波長146nmの光を照射したときのルミネッセンスのピーク強度と、波長173nmの光を照射したときのルミネッセンスのピーク強度との比は3.0より大きく、7.0以下である。
図1は実施の形態に係るPDPの構造を示す斜視図である。 図2は実施の形態に係るPDPの電極配列図である。 図3は実施の形態に係るプラズマディスプレイ装置のブロック回路図である。 図4は実施の形態に係るプラズマディスプレイ装置の駆動電圧波形図である。 図5は実施の形態に係る保護層のフォトルミネッセンススペクトルを示す図である。 図6はフォトルミネッセンススペクトル測定装置の概略図である。 図7は実施の形態に係るPDPの製造方法の一例を示すフローチャートである。 図8は実施の形態に係るPDPの製造に用いられる温度プロファイルの一例を示す図である。 図9は実施の形態に係るPDPの断面を示す概略図である。 図10は電子放出性能とVscn点灯電圧を示す図である。
[1.PDP1の構造]
PDPの基本構造は、一般的な交流面放電型PDPである。図1に示すように、PDP1は前面ガラス基板3などよりなる前面板2と、背面ガラス基板11などよりなる背面板10とが対向して配置されている。前面板2と背面板10とは、外周部がガラスフリットなどからなる封着材によって気密封着されている。封着されたPDP1内部の放電空間16には、ネオン(Ne)およびキセノン(Xe)などの放電ガスが53kPa(400Torr)〜80kPa(600Torr)の圧力で封入されている。
前面ガラス基板3上には、走査電極4および維持電極5よりなる一対の帯状の表示電極6とブラックストライプ7が互いに平行にそれぞれ複数列配置されている。前面ガラス基板3上には表示電極6とブラックストライプ7とを覆うようにコンデンサとしての働きをする誘電体層8が形成される。さらに誘電体層8の表面に酸化マグネシウム(MgO)などからなる保護層9が形成されている。なお、保護層9については、後に詳細に述べられる。
走査電極4および維持電極5は、それぞれインジウム錫酸化物(ITO)、酸化錫(SnO)、酸化亜鉛(ZnO)などの導電性金属酸化物からなる透明電極上にAgからなるバス電極が積層されている。
背面ガラス基板11上には、表示電極6と直交する方向に、銀(Ag)を主成分とする導電性材料からなる複数のデータ電極12が、互いに平行に配置されている。データ電極12は、下地誘電体層13に被覆されている。さらに、データ電極12間の下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14間の溝には、データ電極12毎に、紫外線によって赤色に発光する蛍光体層15、緑色に発光する蛍光体層15および青色に発光する蛍光体層15が順次塗布して形成されている。表示電極6とデータ電極12とが交差する位置に放電セルが形成されている。表示電極6方向に並んだ赤色、緑色、青色の蛍光体層15を有する放電セルがカラー表示のための画素になる。
なお、本実施の形態において、放電空間16に封入する放電ガスは、10体積%以上30%体積以下のXeを含む。
図2に示すように、PDP1は、行方向に延伸して配列されたn本の走査電極SC1、SC2、SC3・・・SCn(図1における4)を有する。PDP1は、行方向に延伸して配列されたn本の維持電極SU1、SU2、SU3・・・SUn(図1における5)を有する。PDP1は、列方向に延伸して配列されたm本のデータ電極D1・・・Dm(図1における12)を有する。そして、1対の走査電極SC1および維持電極SU1と1つのデータ電極D1とが交差した部分に放電セルが形成されている。放電セルは放電空間内にm×n個形成されている。走査電極および維持電極は、前面板の画像表示領域外の周辺端部に設けられた接続端子に接続されている。データ電極は、背面板の画像表示領域外の周辺端部に設けられた接続端子に接続されている。
[2.プラズマディスプレイ装置の構造]
図3に示すように、プラズマディスプレイ装置は、PDP1、画像信号処理回路21、データ電極駆動回路22、走査電極駆動回路23、維持電極駆動回路24、タイミング発生回路25および電源回路(図示せず)を備えている。
画像信号処理回路21は、画像信号sigをサブフィールド毎の画像データに変換する。データ電極駆動回路22は、サブフィールド毎の画像データを各データ電極D1〜Dmに対応する信号に変換し、各データ電極D1〜Dmを駆動する。タイミング発生回路25は、水平同期信号Hおよび垂直同期信号Vに基づいて各種のタイミング信号を発生し、各駆動回路ブロックに供給している。走査電極駆動回路23は、タイミング信号に基づいて走査電極SC1〜SCnに駆動電圧波形を供給している。維持電極駆動回路24は、タイミング信号に基づいて維持電極SU1〜SUnに駆動電圧波形を供給している。
[3.PDP1の駆動]
図4に示すように、プラズマディスプレイ装置は、1フィールドを複数のサブフィールドにより構成する。サブフィールドは、初期化期間と、書込み期間と、維持期間とを有する。初期化期間は放電セルにおいて初期化放電を発生させる期間である。書込み期間は、初期化期間のあと、発光させる放電セルを選択する書込み放電を発生させる期間である。維持期間は、書込み期間において選択された放電セルに維持放電を発生させる期間である。
[3−1.初期化期間]
第1サブフィールドの初期化期間では、データ電極D1〜Dmおよび維持電極SU1〜SUnが0(V)に保持される。また、走査電極SC1〜SCnに対して放電開始電圧以下となる電圧Vi1(V)から放電開始電圧を超える電圧Vi2(V)に向かって緩やかに上昇するランプ電圧が印加される。すると、全ての放電セルにおいて1回目の微弱な初期化放電が発生する。初期化放電によって、走査電極SC1〜SCn上に負の壁電圧が蓄えられる。維持電極SU1〜SUn上およびデータ電極D1〜Dm上に正の壁電圧が蓄えられる。壁電圧とは保護層9や蛍光体層15上などに蓄積した壁電荷により生じる電圧である。
その後、維持電極SU1〜SUnが正の電圧Ve1(V)に保たれ、走査電極SC1〜SCnに電圧Vi3(V)から電圧Vi4(V)に向かって緩やかに下降するランプ電圧が印加される。すると、すべての放電セルにおいて2回目の微弱な初期化放電が発生する。走査電極SC1〜SCn上と維持電極SU1〜SUn上との間の壁電圧が弱められる。データ電極D1〜Dm上の壁電圧が書込み動作に適した値に調整される。
[3−2.書込み期間]
続く書込み期間では、走査電極SC1〜SCnは、一旦Vc(V)に保持される。維持電極SU1〜SUnがVe2(V)に保持される。次に、1行目の走査電極SC1に負の走査パルス電圧Va(V)が印加されるとともに、データ電極D1〜Dmのうち1行目に表示すべき放電セルのデータ電極Dk(k=1〜m)に正の書込みパルス電圧Vd(V)が印加される。このときデータ電極Dkと走査電極SC1との交差部の電圧は、外部印加電圧(Vd−Va)(V)にデータ電極Dk上の壁電圧と走査電極SC1上の壁電圧とが加算されたものとなり、放電開始電圧を超える。そして、データ電極Dkと走査電極SC1との間および維持電極SU1と走査電極SC1との間に書込み放電が発生する。書込み放電が発生した放電セルの走査電極SC1上には正の壁電圧が蓄積される。書込み放電が発生した放電セルの維持電極SU1上には負の壁電圧が蓄積される。書込み放電が発生した放電セルのデータ電極Dk上には負の壁電圧が蓄積される。
一方、書込みパルス電圧Vd(V)が印加されなかったデータ電極D1〜Dmと走査電極SC1との交差部の電圧は放電開始電圧を超えない。よって、書込み放電は発生しない。以上の書込み動作がn行目の放電セルに至るまで順次行われる。書込み期間の終了は、n行目の放電セルの書込み動作が終了したときである。
[3−3.維持期間]
続く維持期間では、走査電極SC1〜SCnには第1の電圧として正の維持パルス電圧Vs(V)が印加される。維持電極SU1〜SUnには第2の電圧として接地電位、すなわち0(V)が印加される。このとき書込み放電が発生した放電セルにおいては、走査電極SCi上と維持電極SUi上との間の電圧は維持パルス電圧Vs(V)に走査電極SCi上の壁電圧と維持電極SUi上の壁電圧とが加算されたものとなり、放電開始電圧を超える。そして、走査電極SCiと維持電極SUiとの間に維持放電が発生する。維持放電により発生した紫外線により蛍光体層が励起されて発光する。そして走査電極SCi上に負の壁電圧が蓄積される。維持電極SUi上に正の壁電圧が蓄積される。データ電極Dk上には正の壁電圧が蓄積される。
書込み期間において書込み放電が発生しなかった放電セルでは、維持放電は発生しない。よって、初期化期間の終了時における壁電圧が保持される。続いて、走査電極SC1〜SCnには第2の電圧である0(V)が印加される。維持電極SU1〜SUnには第1の電圧である維持パルス電圧Vs(V)が印加される。すると、維持放電が発生した放電セルでは、維持電極SUi上と走査電極SCi上との間の電圧が放電開始電圧を超える。したがって、再び維持電極SUiと走査電極SCiとの間に維持放電が発生する。つまり、維持電極SUi上に負の壁電圧が蓄積される。走査電極SCi上に正の壁電圧が蓄積される。
以降同様に、走査電極SC1〜SCnと維持電極SU1〜SUnとに交互に輝度重みに応じた数の維持パルス電圧Vs(V)が印加されることにより、書込み期間において書込み放電が発生した放電セルで維持放電が継続して発生する。所定の数の維持パルス電圧Vs(V)の印加が完了すると維持期間における維持動作が終了する。
[3−4.第2サブフィールド以降]
続く第2サブフィールド以降における初期化期間、書込み期間、維持期間の動作も、第1サブフィールドにおける動作とほぼ同様である。よって、詳細な説明は省略される。なお、第2サブフィールド以降のサブフィールドにおいては、維持電極SU1〜SUnが正の電圧Ve1(V)に保たれる。走査電極SC1〜SCnには、電圧Vi3(V)から電圧Vi4(V)に向かって緩やかに下降するランプ電圧が印加される。すると、前のサブフィールドにおいて維持放電が発生した放電セルにおいてのみ微弱な初期化放電を発生させることができる。すなわち、第1サブフィールドにおいては、全ての放電セルで初期化放電を発生させる全セル初期化動作が行われる。第2サブフィールド以降においては、前のサブフィールドにおいて維持放電を起こした放電セルのみで選択的に初期化放電を発生させる選択初期化動作が行われる。なお、全セル初期化動作と選択初期化動作について、本実施の形態では、第1サブフィールドとその他のサブフィールドとの間で使い分けわれる。しかし、全セル初期化動作が第1サブフィールド以外のサブフィールドにおける初期化期間で行われてもよい。さらに、全セル初期化動作が、数フィールドに1回の頻度で行われてもよい。
また、書込み期間、維持期間における動作は、上述した第1サブフィールドにおける動作と同様である。しかし、維持期間における動作は、上述した第1サブフィールドにおける動作と必ずしも同様ではない。画像信号sigに対応した輝度が得られるような維持放電を発生させるために、維持放電パルスVs(V)の数が変化する。すなわち、維持期間は、サブフィールド毎の輝度を制御するように駆動される。
[4.フォトルミネッセンススペクトルと二次電子放出係数との関係]
ところで、保護層の二次電子放出能力を高めることにより、維持放電電圧を下げることができる。本発明者らは、保護層における二次電子放出能力を高めるためには、保護層の酸素欠損を形成すればよいとの推測の上で、実験と検討を繰り返し行った。その結果、保護層9のフォトルミネッセンス(PL)スペクトルと、二次電子放出能力との関係を見出した。本実施の形態において、真空紫外線である波長146nmの光を保護層9に照射したときの、350nm以上550nm以下の波長範囲におけるルミネッセンスピーク強度をAとする。さらに、真空紫外線である波長172nmの光を保護層9に照射したときの、350nm以上550nm以下の波長範囲におけるルミネッセンスピーク強度をBとする。本発明者らは、ピーク強度の比であるA/Bが3.0以上であれば、維持放電電圧を低下できることを確認した。
図5に示すように、本実施の形態における保護層9は、波長146nmの光の照射によって、波長440nm近傍にルミネッセンスのピークを有する。また、保護層9は、波長172nmの光の照射によって、波長440nm近傍にルミネッセンスのピークを有する。図の縦軸は、波長172nmの光の照射によるルミネッセンスのピーク強度を1としたときの、相対値である。図5に示すように、本実施の形態に係る保護層9は、A/Bが、約3.8であった。本実施の形態に係る保護層9を有するPDP1の維持放電電圧は、A/Bが約2以下の保護層を有する従来のPDPより、約10V低くすることができた。
さらに、本発明者らは、A/Bが異なる保護層を有する複数のPDPを作製した。具体的には、A/Bは、約3、約3.5および5から7である。A/Bが約3の保護層を有するPDPの維持放電電圧は、従来のPDPと比較して同様であった。A/Bが約3.5の保護層を有するPDPの維持放電電圧は、従来のPDPと比較して約10V低かった。A/Bが5から7の保護層を有するPDPの維持放電電圧は、従来のPDPと比較して15Vから25V低かった。したがって、A/Bは、3.0より大きく7.0以下が好ましい。
[5.PLスペクトル測定方法]
図6に示すように、真空チャンバー100に設置された試料101に対してランプシステム102(ウシオ電機株式会社製SUS07)から波長146nmの真空紫外線が垂直に照射される。なお、試料101は、保護層が形成された基板である。また、試料101からのルミネッセンスがレンズ、光ファイバーなどを含む光学系104を介して2次元高分解能タイプのCCD分光器105(スペクトラ・コープ株式会社製Solid Lambda CCD UV-NIR)に入射する。CCD分光器105は、入射したルミネッセンスの波長分散(PLスペクトル)を生成する。つまり、波長146nmの真空紫外線照射による、試料101のPLスペクトルが得られる。さらに、真空チャンバー100にはランプシステム103(ウシオ電機株式会社製SUS03)が併設されている。つまり、波長172nmの真空紫外線照射による、試料101のPLスペクトルが得られる。本実施の形態においては、図6に示す測定装置により、保護層のPLスペクトルの測定が行われた。
[6.PDP1の製造方法]
図7に示すように、本実施の形態に係るPDP1の製造方法は、前面板作製工程A1、背面板作製工程B1、フリット塗布工程B2、封着工程C1、還元性ガス導入工程C2、排気工程C3および放電ガス供給工程C4を有する。
[6−1.前面板作製工程A1]
前面板作製工程A1においては、フォトリソグラフィ法によって、前面ガラス基板3上に、走査電極4および維持電極5とブラックストライプ7とが形成される。走査電極4および維持電極5は、導電性を確保するための銀(Ag)を含む金属バス電極4b、5bを有する。また、走査電極4および維持電極5は、透明電極4a、5aを有する。金属バス電極4bは、透明電極4aに積層される。金属バス電極5bは、透明電極5aに積層される。
透明電極4a、5aの材料には、透明度と電気伝導度を確保するためインジウム錫酸化物(ITO)などが用いられる。まず、スパッタ法などによって、ITO薄膜が前面ガラス基板3に形成される。次にリソグラフィ法によって所定のパターンの透明電極4a、5aが形成される。
金属バス電極4b、5bの材料には、銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含む電極ペーストが用いられる。まず、スクリーン印刷法などによって、電極ペーストが、前面ガラス基板3に塗布される。次に、乾燥炉によって、電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、電極ペーストが露光される。
次に、電極ペーストが現像され、金属バス電極パターンが形成される。最後に、焼成炉によって、金属バス電極パターンが所定の温度で焼成される。つまり、金属バス電極パターン中の感光性樹脂が除去される。また、金属バス電極パターン中のガラスフリットが溶融する。溶融していたガラスフリットは、焼成後にガラス化する。以上の工程によって、金属バス電極4b、5bが形成される。
ブラックストライプ7は、黒色顔料を含む材料により、形成される。次に、誘電体層8が形成される。誘電体層8の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む誘電体ペーストが用いられる。まずダイコート法などによって、誘電体ペーストが所定の厚みで走査電極4、維持電極5およびブラックストライプ7を覆うように前面ガラス基板3上に塗布される。次に、乾燥炉によって、誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、誘電体ペーストが所定の温度で焼成される。つまり、誘電体ペースト中の樹脂が除去される。また、誘電体ガラスフリットが溶融する。溶融していた誘電体ガラスフリットは、焼成後にガラス化する。以上の工程によって、誘電体層8が形成される。ここで、誘電体ペーストをダイコートする方法以外にも、スクリーン印刷法、スピンコート法などを用いることができる。また、誘電体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、誘電体層8となる膜を形成することもできる。
誘電体層8の材料は、酸化ビスマス(Bi23)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種と、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)から選ばれる少なくとも1種とを含む。バインダ成分は、エチルセルロース、またはアクリル樹脂1重量%〜20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加してペーストとして印刷特性を向上させてもよい。
次に、誘電体層8上に保護層9が形成される。保護層9の詳細は、後述される。
以上の工程により前面ガラス基板3上に走査電極4、維持電極5、ブラックストライプ7、誘電体層8、保護層9が形成され、前面板2が完成する。
[6−2.背面板作製工程B1]
まず、フォトリソグラフィ法によって、背面ガラス基板11上に、データ電極12が形成される。データ電極12の材料には、導電性を確保するための銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含むデータ電極ペーストが用いられる。まず、スクリーン印刷法などによって、データ電極ペーストが所定の厚みで背面ガラス基板11上に塗布される。次に、乾燥炉によって、データ電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、データ電極ペーストが露光される。次に、データ電極ペーストが現像され、データ電極パターンが形成される。最後に、焼成炉によって、データ電極パターンが所定の温度で焼成される。つまり、データ電極パターン中の感光性樹脂が除去される。また、データ電極パターン中のガラスフリットが溶融する。溶融していたガラスフリットは、焼成後にガラス化する。以上の工程によって、データ電極12が形成される。ここで、データ電極ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などを用いることができる。
次に、下地誘電体層13が形成される。下地誘電体層13の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む下地誘電体ペーストが用いられる。まず、スクリーン印刷法などによって、下地誘電体ペーストが所定の厚みでデータ電極12が形成された背面ガラス基板11上にデータ電極12を覆うように塗布される。次に、乾燥炉によって、下地誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、下地誘電体ペーストが所定の温度で焼成される。つまり、下地誘電体ペースト中の樹脂が除去される。また、誘電体ガラスフリットが溶融する。溶融していた誘電体ガラスフリットは、焼成後にガラス化する。以上の工程によって、下地誘電体層13が形成される。ここで、下地誘電体ペーストをスクリーン印刷する方法以外にも、ダイコート法、スピンコート法などを用いることができる。また、下地誘電体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、下地誘電体層13となる膜を形成することもできる。
次に、フォトリソグラフィ法によって、隔壁14が形成される。隔壁14の材料には、フィラーと、フィラーを結着させるためのガラスフリットと、感光性樹脂と、溶剤などを含む隔壁ペーストが用いられる。まず、ダイコート法などによって、隔壁ペーストが所定の厚みで下地誘電体層13上に塗布される。次に、乾燥炉によって、隔壁ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、隔壁ペーストが露光される。次に、隔壁ペーストが現像され、隔壁パターンが形成される。最後に、焼成炉によって、隔壁パターンが所定の温度で焼成される。つまり、隔壁パターン中の感光性樹脂が除去される。また、隔壁パターン中のガラスフリットが溶融する。溶融していたガラスフリットは、焼成後にガラス化する。以上の工程によって、隔壁14が形成される。ここで、フォトリソグラフィ法以外にも、サンドブラスト法などを用いることができる。
次に、蛍光体層15が形成される。蛍光体層15の材料には、蛍光体粒子とバインダと溶剤などとを含む蛍光体ペーストが用いられる。まず、ディスペンス法などによって、蛍光体ペーストが所定の厚みで隣接する隔壁14間の下地誘電体層13上および隔壁14の側面に塗布される。次に、乾燥炉によって、蛍光体ペースト中の溶剤が除去される。最後に、焼成炉によって、蛍光体ペーストが所定の温度で焼成される。つまり、蛍光体ペースト中の樹脂が除去される。以上の工程によって、蛍光体層15が形成される。ここで、ディスペンス法以外にも、スクリーン印刷法などを用いることができる。
以上の工程により、背面ガラス基板11上に所定の構成部材を有する背面板10が完成する。
[6−3.フリット塗布工程B2]
次に、背面板作製工程B1により作製した背面板10の画像表示領域外に封着部材であるガラスフリットを塗布する。その後、ガラスフリットの樹脂成分等を除去するために350℃程度の温度で仮焼成するフリット塗布工程B2を行う。
ここで、封着部材としては、酸化ビスマスや酸化バナジウムを主成分としたフリットが望ましい。この酸化ビスマスを主成分とするフリットとしては、例えば、Bi23−B23−RO−MO系(ここでRは、Ba、Sr、Ca、Mgのいずれかであり、Mは、Cu、Sb、Feのいずれかである。)のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。また、酸化バナジウムを主成分とするフリットとしては、例えば、V25−BaO−TeO−WO系のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。
[6−4.封着工程C1から放電ガス供給工程C4まで]
次に、前面板2とフリット塗布工程B1を経た背面板10とが対向配置されて周辺部が封着部材により封着される。その後、放電空間に放電ガスが封入される。
本実施の形態に係る封着工程C1、還元性ガス導入工程C2、排気工程C3および放電ガス供給工程C4は、同一の装置において図8に示す温度プロファイルの処理を行う。
図8における封着温度とは、封着工程C1で前面板2と背面板10とが封着部材であるフリットにより封着される温度である。本実施の形態における封着温度は、例えば約490℃である。また、図8における排気温度とは、排気工程C3での温度である。本実施の形態における排気温度は、例えば約400℃である。
まず、封着工程C1において、温度は、室温から封着温度まで上昇する。次に、温度は、a−bの期間、封着温度に維持される。その後、温度は、b−cの期間に封着温度から排気温度に下降する。b−cの期間において、放電空間内が排気される。つまり、放電空間内は減圧状態になる。
次に、還元性ガス導入工程C2において、温度は、c−dの期間、排気温度に維持される。c−dの期間に放電空間内に還元性有機ガスを含むガスが導入される。c−dの期間に保護層9は、還元性有機ガスを含むガスに曝される。
その後、排気工程C3において、温度は所定の期間、排気温度に維持される。その後、温度は、室温程度まで下降する。d−eの期間において、放電空間内が排気されることにより、還元性有機ガスを含むガスが排出される。
次に、放電ガス供給工程C4において、放電空間内に放電ガスが導入される。つまり、温度が室温程度に下がったe以降の期間に放電ガスが導入される。
還元性有機ガスとしては、分子量が58以下の還元力の大きいCH系有機ガスが望ましい。種々の還元性有機ガスの中から選ばれる少なくとも一つが希ガスや窒素ガスなどに混合されることにより、還元性有機ガスを含むガスが製造される。
さらに、排気工程C3の後にも還元性有機ガスを含むガスの一部が放電空間内に残留する可能性がある。よって、還元性有機ガスは、分解しやすい特性を有することが望ましい。還元性有機ガスは、製造プロセス上での取扱い易さや、分解しやすい特性などの点を考慮して、アセチレン、エチレン、メチルアセチレン、プロパジエン、プロピレンおよびシクロプロパンの中から選ばれる酸素を含まない炭化水素系ガスが望ましい。これらの還元性有機ガスの中から選ばれる少なくとも一種を希ガスや窒素ガスに混合して用いればよい。
なお、希ガスや窒素ガスと還元性有機ガスの混合比率は、使用する還元性有機ガスの燃焼割合に応じて下限が決定される。上限は、数体積%程度である。還元性有機ガスの混合比率が高すぎると、有機成分が重合して高分子となりやすい。この場合、高分子が放電空間に残留し、PDPの特性に影響を与えてしまう。よって、使用する還元性有機ガスの成分に応じて、混合比率を適宜調整することが好ましい。
[7.保護層9の詳細]
図9に示すように、保護層9は、一例として、下地層である下地膜91と凝集粒子92とを含む。下地膜91は、MgO、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成してもよい。これらの金属酸化物は、下地膜91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在する。
凝集粒子92は、金属酸化物であるMgOの結晶粒子92aが複数凝集したものである。凝集粒子92は、下地膜91の全面に亘って、均一に分散配置させると好ましい。PDP1内における、放電電圧のばらつきが減少するからである。
なお、MgOの結晶粒子92aは、気相合成法または前駆体焼成法のいずれかによって、製造することができる。気相合成法では、まず、不活性ガスが満たされた雰囲気下で純度99.9%以上の金属マグネシウム材料が加熱される。さらに、雰囲気に酸素を少量導入することによって、金属マグネシウムが直接酸化する。このように、MgOの結晶粒子92aが作製される。
前駆体焼成法では、MgOの前駆体が700℃以上の高温で均一に焼成される。次に、徐冷することにより、MgOの結晶粒子92aが作製される。前駆体としては、例えば、マグネシウムアルコキシド(Mg(OR)2)、マグネシウムアセチルアセトン(Mg(acac)2)、水酸化マグネシウム(Mg(OH)2)、炭酸マグネシウム(MgCO2)、塩化マグネシウム(MgCl2)、硫酸マグネシウム(MgSO4)、硝酸マグネシウム(Mg(NO3)2)、シュウ酸マグネシウム(MgC24)の内のいずれか1種以上の化合物を選ぶことができる。なお選択した化合物によっては、通常、水和物の形態をとることもある。前駆体として、水和物を用いることもできる。前駆体である化合物は、焼成後に得られる酸化マグネシウム(MgO)の純度が99.95%以上、望ましくは99.98%以上になるように調整される。前駆体である化合物中に、各種アルカリ金属、B、Si、Fe、Alなどの不純物元素が一定量以上混じっていると、熱処理時に不要な粒子間癒着や焼結が生じる。その結果、高結晶性のMgOの結晶粒子が得にくくなる。よって、化合物から不純物元素を除去するなど、予め前駆体を調整することが好ましい。
上記いずれかの方法で得られたMgOの結晶粒子92aを、溶媒に分散させることにより分散液が作製される。次に、分散液がスプレー法やスクリーン印刷法、静電塗布法などによって下地膜91の表面に塗布される。その後、乾燥・焼成工程を経て溶媒が除去される。以上の工程によって、MgOの結晶粒子92aが下地膜91の表面に定着する。
[8.凝集粒子92の詳細]
凝集粒子92とは、所定の一次粒径の結晶粒子92aが凝集またはネッキングした状態のものである。すなわち、固体として大きな結合力を持って結合しているのではなく、静電気やファンデルワールス力などによって複数の一次粒子が集合体の体をなしているもので、超音波などの外的刺激により、その一部または全部が一次粒子の状態になる程度で結合しているものである。凝集粒子92の粒径としては、約1μm程度のもので、結晶粒子92aとしては、14面体や12面体などの7面以上の面を持つ多面体形状を有するのが望ましい。
また、結晶粒子92aの一次粒子の粒径は、結晶粒子92aの生成条件によって制御できる。例えば、炭酸マグネシウムや水酸化マグネシウムなどの前駆体を焼成して生成する場合、焼成温度や焼成雰囲気を制御することで粒径を制御できる。一般的に、焼成温度は700℃から1500℃の範囲で選択できる。焼成温度を比較的高い1000℃以上にすることで、粒径を0.3〜2μm程度に制御できる。さらに、前駆体を加熱することにより、生成過程において、複数個の一次粒子同士が凝集またはネッキングして凝集粒子92を得ることができる。
本発明者らの実験により、MgOの結晶粒子が複数凝集した凝集粒子92は、主として書込放電における「放電遅れ」を抑制する効果と、「放電遅れ」の温度依存性を改善する効果が確認されている。凝集粒子92は下地膜91に比べて初期電子放出特性に優れる。よって、本実施の形態においては、凝集粒子92が放電パルス立ち上がり時に必要な初期電子供給部として配設されている。
「放電遅れ」は、放電開始時において、トリガーとなる初期電子が下地膜91表面から放電空間16中に放出される量が不足することが主原因と考えられる。そこで、放電空間16に対する初期電子の安定供給に寄与するため、凝集粒子92を下地膜91の表面に分散配置する。これによって、放電パルスの立ち上がり時に放電空間16中に電子が豊富に存在し、放電遅れの解消が図られる。したがって、このような初期電子放出特性により、PDP1が高精細の場合などにおいても放電応答性の良い高速駆動ができるようになっている。なお下地膜91の表面に金属酸化物の凝集粒子92を配設する構成では、主として書込放電における「放電遅れ」を抑制する効果に加え、「放電遅れ」の温度依存性を改善する効果も得られる。
[9.実験結果]
次に、本実施の形態に係る保護層9の特性を確認するために行った実験結果が説明される。試作品1は、MgOによる保護層のみを形成したPDPである。試作品2は、Al,Siなどの不純物をドープしたMgOによる保護層を形成したPDPである。試作品3は、MgOによる下地膜上にMgOの結晶粒子の一次粒子を分散配置させたPDPである。試作品4は、MgOによる下地膜上に、MgOの結晶粒子92aが複数凝集した凝集粒子92を全面に亘って均一に分散配置させたPDPである。なお、試作品1〜試作品4におけるPDPは、上述の製造方法によって製造された。試作品1〜試作品4の違いは、保護層9の構造のみである。さらに、試作品1〜試作品4における保護層9のピーク強度の比A/Bは、3.0より大きく7.0以下であった。試作品1〜試作品4の維持電圧は、従来のPDPの維持電圧より10V〜20V低かった。
図10には、保護層の電子放出性能および電荷保持性能が示される。電子放出性能は、大きいほど電子放出量が多いことを示す数値である。電子放出性能は、放電の表面状態及びガス種とその状態によって定まる初期電子放出量として表現される。初期電子放出量は、表面にイオンあるいは電子ビームを照射して表面から放出される電子電流量を測定する方法で測定できる。しかし、非破壊で実施することが困難である。そこで、特開2007−48733号公報に記載されている方法が用いられた。つまり、放電時の遅れ時間のうち、統計遅れ時間と呼ばれる放電の発生しやすさの目安となる数値が測定された。統計遅れ時間の逆数を積分することにより、初期電子の放出量と線形対応する数値になる。放電時の遅れ時間とは、書込み放電パルスの立ち上がりから書込み放電が遅れて発生するまでの時間である。放電遅れは、書込み放電が発生する際のトリガーとなる初期電子が保護層表面から放電空間中に放出されにくいことが主要な要因として考えられている。
電荷保持性能は、PDPにおいて保護層から電荷が放出される現象を抑えるために必要とする走査電極に印加する電圧(以下Vscn点灯電圧と称する)である。Vscn点灯電圧の低い方が、電荷保持能力が高いことを示す。Vscn点灯電圧が低いと、PDPを低電圧で駆動できる。よって、電源や各電気部品として、耐圧および容量の小さい部品を使用することが可能となる。現状の製品において、走査電圧を順次パネルに印加するためのMOSFETなどの半導体スイッチング素子には、耐圧150V程度の素子が使用されている。Vscn点灯電圧としては、温度による変動を考慮し、120V以下に抑えることが望ましい。
一般的には保護層の電子放出能力と電荷保持能力は相反する。保護層の成膜条件の変更、あるいは、保護層中にAlやSi、Baなどの不純物をドーピングして成膜することにより、電子放出性能を向上することは可能である。しかし、副作用としてVscn点灯電圧も上昇してしまう。
図10から明らかなように、試作品3および試作品4の保護層の電子放出能力は、試作品1に比べて8倍以上の特性を有する。試作品3および試作品4の保護層の電荷保持能力は、Vscn点灯電圧が120V以下である。したがって、試作品3および試作品4のPDPは、高精細化により走査線数が増加し、かつセルサイズが小さいPDPに対してさらに有用である。つまり、試作品3および試作品4のPDPは、電子放出能力と電荷保持能力の両方を満足させることにより、より低電圧で良好な画像表示を実現することができる。
[10.まとめ]
本実施の形態に開示されたPDP1は、前面板2と、前面板2と対向配置された背面板10と、を備える。前面板2は、表示電極6と表示電極6を覆う誘電体層8と誘電体層8を覆う保護層9とを有する。保護層9は、波長146nmの光の照射によって、350nm以上550nm以下の波長範囲におけるルミネッセンスのピークをもつ。さらに、保護層9は、波長173nmの光の照射によって、350nm以上550nm以下の波長範囲におけるルミネッセンスのピークをもつ。波長146nmの光を照射したときのルミネッセンスのピーク強度と、波長173nmの光を照射したときのルミネッセンスのピーク強度との比であるA/Bが3.0より大きく、7.0以下である。
本実施の形態における保護層9を有するPDP1は、維持電圧を低減することができる。
さらに、保護層9は、誘電体層8上に形成された下地層である下地膜91と、下地膜91に分散配置された複数の金属酸化物の結晶粒子92aを含んでもよい。
さらに、保護層9は、誘電体層8上に形成された下地層である下地膜91と、下地膜91上に分散配置された複数の粒子を含み、粒子は、複数の金属酸化物の結晶粒子92aが凝集した凝集粒子92であってもよい。
保護層9が、下地膜91上に、金属酸化物の結晶粒子92aあるいは金属酸化物の結晶粒子92aが複数凝集した凝集粒子92を備える場合、高い電荷保持能力および高い電子放出能力を有する。したがって、PDP1全体として、高精細なPDPでも高速駆動を低電圧で実現できる。かつ、点灯不良を抑制した高品位な画像表示性能を実現できる。
なお、以上の説明では、下地層として、MgO膜を例に挙げた。しかし、下地層に要求される性能はあくまでイオン衝撃から誘電体を守るための高い耐スパッタ性能を有することである。すなわち、高い電荷保持能力や電子放出性能が高くなくてもよい。従来のPDPでは、一定以上の電子放出性能と耐スパッタ性能という二つを両立させるため、MgOを主成分とした保護層を形成する場合が非常に多かった。しかし、電子放出性能が金属酸化物の結晶粒子によって支配的に制御される構成を取る場合、下地膜はMgOである必要は全くない。下地膜に、Al等の耐衝撃性に優れる他の材料を用いても全く構わない。
また、本実施の形態では、金属酸化物の結晶粒子としてMgOが例示された。しかし、この他の単結晶粒子でも、MgO同様に高い電子放出性能を持つSr、Ca、Ba、Alなどの金属酸化物による結晶粒子を用いても同様の効果を得ることができる。よって、金属酸化物の結晶粒子としてはMgOに限定されるものではない。
以上のように本実施の形態に開示された技術は、高画質の表示性能を備え、かつ低消費電力のPDPを実現する上で有用である。
1 PDP
2 前面板
3 前面ガラス基板
4 走査電極
4a,5a 透明電極
4b,5b 金属バス電極
5 維持電極
6 表示電極
7 ブラックストライプ
8 誘電体層
9 保護層
10 背面板
11 背面ガラス基板
12 データ電極
13 下地誘電体層
14 隔壁
15 蛍光体層
16 放電空間
21 画像信号処理回路
22 データ電極駆動回路
23 走査電極駆動回路
24 維持電極駆動回路
25 タイミング発生回路
91 下地膜
92 凝集粒子
92a 結晶粒子
100 真空チャンバー
101 試料
102,103 ランプシステム
104 光学系
105 CCD分光器

Claims (3)

  1. 前面板と、
    前記前面板と対向配置された背面板と、を備え、
    前記前面板は、表示電極と前記表示電極を覆う誘電体層と前記誘電体層を覆う保護層とを有し、
    前記保護層は、波長146nmの光の照射によって、350nm以上550nm以下の波長範囲におけるルミネッセンスのピークをもち、
    さらに、前記保護層は、波長173nmの光の照射によって、350nm以上550nm以下の波長範囲におけるルミネッセンスのピークをもち、
    波長146nmの光を照射したときのルミネッセンスのピーク強度と、波長173nmの光を照射したときのルミネッセンスのピーク強度との比が3.0より大きく、7.0以下である、
    プラズマディスプレイパネル。
  2. 前記保護層は、前記誘電体層上に形成された下地層と、前記下地層に分散配置された複数の粒子を含み、
    前記粒子は、金属酸化物の結晶粒子である、
    請求項1に記載のプラズマディスプレイパネル。
  3. 前記保護層は、前記誘電体層上に形成された下地層と、前記下地層上に分散配置された複数の粒子を含み、
    前記粒子は、複数の金属酸化物の結晶粒子が凝集した凝集粒子である、
    請求項1に記載のプラズマディスプレイパネル。
JP2011532454A 2010-02-12 2011-02-08 プラズマディスプレイパネル Expired - Fee Related JP5158265B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011532454A JP5158265B2 (ja) 2010-02-12 2011-02-08 プラズマディスプレイパネル

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010028462 2010-02-12
JP2010028462 2010-02-12
JP2010028461 2010-02-12
JP2010028461 2010-02-12
PCT/JP2011/000677 WO2011099265A1 (ja) 2010-02-12 2011-02-08 プラズマディスプレイパネル
JP2011532454A JP5158265B2 (ja) 2010-02-12 2011-02-08 プラズマディスプレイパネル

Publications (2)

Publication Number Publication Date
JP5158265B2 true JP5158265B2 (ja) 2013-03-06
JPWO2011099265A1 JPWO2011099265A1 (ja) 2013-06-13

Family

ID=44367553

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011532454A Expired - Fee Related JP5158265B2 (ja) 2010-02-12 2011-02-08 プラズマディスプレイパネル
JP2011553751A Pending JPWO2011099266A1 (ja) 2010-02-12 2011-02-08 プラズマディスプレイパネルの製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011553751A Pending JPWO2011099266A1 (ja) 2010-02-12 2011-02-08 プラズマディスプレイパネルの製造方法

Country Status (5)

Country Link
US (2) US20120064795A1 (ja)
JP (2) JP5158265B2 (ja)
KR (2) KR101218883B1 (ja)
CN (2) CN102473567A (ja)
WO (2) WO2011099266A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298578B2 (ja) * 2008-03-10 2013-09-25 パナソニック株式会社 プラズマディスプレイパネル
CN102812532A (zh) * 2010-03-26 2012-12-05 松下电器产业株式会社 等离子显示面板的制造方法
KR101196916B1 (ko) * 2010-03-26 2012-11-05 파나소닉 주식회사 플라즈마 디스플레이 패널의 제조 방법
US20130017751A1 (en) * 2010-03-26 2013-01-17 Masashi Gotou Method for producing plasma display panel
WO2013018351A1 (ja) * 2011-08-03 2013-02-07 パナソニック株式会社 プラズマディスプレイパネルおよびその製造方法
JP2013037797A (ja) * 2011-08-04 2013-02-21 Panasonic Corp プラズマディスプレイパネルおよびその製造方法
EP3520904B1 (en) * 2016-09-30 2023-03-29 Musashi Engineering, Inc. Working apparatus and working method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353455A (ja) * 2004-06-11 2005-12-22 Nippon Hoso Kyokai <Nhk> プラズマディスプレイパネル
JP2008171751A (ja) * 2007-01-15 2008-07-24 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JP2008311203A (ja) * 2007-06-15 2008-12-25 Seoul National Univ Industry Foundation 特定の負極発光特性を有する酸化マグネシウムの微粒子を含むプラズマ素子
JP2009164098A (ja) * 2007-12-13 2009-07-23 Pioneer Electronic Corp プラズマディスプレイパネル

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US828386A (en) * 1904-03-10 1906-08-14 Gen Electric Automatic train-stop for block-signal systems.
JP2984014B2 (ja) * 1990-02-01 1999-11-29 富士通株式会社 プラズマディスプレイパネルの製造方法
JP3918879B2 (ja) 1995-02-27 2007-05-23 株式会社日立プラズマパテントライセンシング プラズマディスプレイ用二次電子放出材料及びプラズマディスプレイパネル
DE19515625C2 (de) * 1995-04-28 1998-02-19 Boehringer Ingelheim Kg Verfahren zur Herstellung von enantiomerenreinen Tropasäureestern
JP3247632B2 (ja) 1997-05-30 2002-01-21 富士通株式会社 プラズマディスプレイパネル及びプラズマ表示装置
JP3372835B2 (ja) * 1997-08-05 2003-02-04 キヤノン株式会社 電子源及び画像形成装置の製造方法
JPH11339665A (ja) 1998-05-27 1999-12-10 Mitsubishi Electric Corp 交流型プラズマディスプレイパネル、交流型プラズマディスプレイパネル用基板及び交流型プラズマディスプレイパネル用保護膜材料
JP2002260535A (ja) 2001-03-01 2002-09-13 Hitachi Ltd プラズマディスプレイパネル
JP4097480B2 (ja) * 2002-08-06 2008-06-11 株式会社日立製作所 ガス放電パネル用基板構体、その製造方法及びac型ガス放電パネル
JP2004146231A (ja) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルの製造方法
JP4056357B2 (ja) * 2002-10-31 2008-03-05 富士通日立プラズマディスプレイ株式会社 ガス放電パネル及びその製造方法
JP2004220968A (ja) * 2003-01-16 2004-08-05 Pioneer Electronic Corp ディスプレイパネルおよびその製造方法
JP3878635B2 (ja) 2003-09-26 2007-02-07 パイオニア株式会社 プラズマディスプレイパネルおよびその製造方法
JP2005158311A (ja) * 2003-11-20 2005-06-16 Pioneer Plasma Display Corp プラズマディスプレイパネルの製造方法、プラズマ表示装置の製造方法及びプラズマディスプレイパネル
JP4399344B2 (ja) * 2004-11-22 2010-01-13 パナソニック株式会社 プラズマディスプレイパネルおよびその製造方法
JP4516457B2 (ja) * 2005-03-17 2010-08-04 宇部マテリアルズ株式会社 酸化マグネシウム薄膜の改質方法
JP2007128824A (ja) * 2005-11-07 2007-05-24 Pioneer Electronic Corp 表示パネル、該表示パネルの製造方法及び製造装置
KR20090006155A (ko) * 2006-04-28 2009-01-14 파나소닉 주식회사 플라스마 디스플레이패널과 그 제조방법
EP1883092A3 (en) * 2006-07-28 2009-08-05 LG Electronics Inc. Plasma display panel and method for manufacturing the same
JP2008293772A (ja) * 2007-05-24 2008-12-04 Panasonic Corp プラズマディスプレイパネル及びその製造方法、並びにプラズマディスプレイパネル
WO2009128238A1 (ja) * 2008-04-16 2009-10-22 パナソニック株式会社 プラズマディスプレイ装置
US7977883B2 (en) * 2008-09-05 2011-07-12 Samsung Sdi Co., Ltd. Plasma display panel comprising magnesium oxide protective layer
KR101076802B1 (ko) * 2009-06-05 2011-10-25 삼성에스디아이 주식회사 보호층 재료 및 이를 이용하여 형성한 보호층을 구비하는 플라즈마 디스플레이 패널

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353455A (ja) * 2004-06-11 2005-12-22 Nippon Hoso Kyokai <Nhk> プラズマディスプレイパネル
JP2008171751A (ja) * 2007-01-15 2008-07-24 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JP2008311203A (ja) * 2007-06-15 2008-12-25 Seoul National Univ Industry Foundation 特定の負極発光特性を有する酸化マグネシウムの微粒子を含むプラズマ素子
JP2009164098A (ja) * 2007-12-13 2009-07-23 Pioneer Electronic Corp プラズマディスプレイパネル

Also Published As

Publication number Publication date
CN102365702A (zh) 2012-02-29
CN102473567A (zh) 2012-05-23
KR20110123787A (ko) 2011-11-15
KR101218883B1 (ko) 2013-03-19
KR20120023053A (ko) 2012-03-12
WO2011099266A1 (ja) 2011-08-18
WO2011099265A1 (ja) 2011-08-18
US20110298364A1 (en) 2011-12-08
JPWO2011099265A1 (ja) 2013-06-13
US20120064795A1 (en) 2012-03-15
JPWO2011099266A1 (ja) 2013-06-13
US8283864B2 (en) 2012-10-09

Similar Documents

Publication Publication Date Title
JP4129288B2 (ja) プラズマディスプレイパネルとその製造方法
JP5158265B2 (ja) プラズマディスプレイパネル
JP4476334B2 (ja) プラズマディスプレイパネルとその製造方法
JP2009146686A (ja) プラズマディスプレイパネル
JP5240401B2 (ja) プラズマディスプレイ装置
KR101189042B1 (ko) 플라즈마 디스플레이 장치
JP2012064424A (ja) プラズマディスプレイパネル
WO2011089680A1 (ja) プラズマディスプレイパネルの製造方法
JP5168422B2 (ja) プラズマディスプレイパネルおよびプラズマディスプレイ装置
JP2009301841A (ja) プラズマディスプレイパネル
WO2011089856A1 (ja) プラズマディスプレイパネルおよびプラズマディスプレイ装置
WO2011089855A1 (ja) プラズマディスプレイパネルおよびプラズマディスプレイ装置
WO2011089857A1 (ja) プラズマディスプレイパネルおよびプラズマディスプレイ装置
WO2011024445A1 (ja) プラズマディスプレイパネルおよびその製造方法およびプラズマディスプレイ装置
WO2009113291A1 (ja) プラズマディスプレイパネルの製造方法
JP2009301865A (ja) プラズマディスプレイパネル
JP2013030296A (ja) プラズマディスプレイパネルの製造方法
JP2011150908A (ja) プラズマディスプレイパネルおよびプラズマディスプレイ装置
WO2009113283A1 (ja) プラズマディスプレイパネルの製造方法
WO2009110194A1 (ja) プラズマディスプレイパネル
JP2011150907A (ja) プラズマディスプレイパネルおよびプラズマディスプレイ装置
JP2011150909A (ja) プラズマディスプレイパネルおよびプラズマディスプレイ装置
JP2013008507A (ja) プラズマディスプレイパネル

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees