JP5141957B2 - 電磁流量計 - Google Patents

電磁流量計 Download PDF

Info

Publication number
JP5141957B2
JP5141957B2 JP2007334186A JP2007334186A JP5141957B2 JP 5141957 B2 JP5141957 B2 JP 5141957B2 JP 2007334186 A JP2007334186 A JP 2007334186A JP 2007334186 A JP2007334186 A JP 2007334186A JP 5141957 B2 JP5141957 B2 JP 5141957B2
Authority
JP
Japan
Prior art keywords
excitation
voltage
power supply
signal
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007334186A
Other languages
English (en)
Other versions
JP2009156681A (ja
Inventor
徹 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2007334186A priority Critical patent/JP5141957B2/ja
Publication of JP2009156681A publication Critical patent/JP2009156681A/ja
Application granted granted Critical
Publication of JP5141957B2 publication Critical patent/JP5141957B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電磁流量計に関し、特に、電源電圧が低下したときに消費電力を小さくする電磁流量計に関するものである。
電磁流量計は、プロセス制御(流量制御)などにおいて被測定流体の流量を測定するものである。図9は電磁流量計30の構成図であり、電磁流量計30の構成および動作についてこれを用いて説明する。
図9において、検出器4の励磁コイル1は、測定管13を流れる被測定流体に磁界を加える。電極2、3は、磁界によって発生した起電力を検出する。増幅回路8は、起電力を増幅して増幅信号をAD変換部9へ出力する。AD変換部9は、増幅信号をAD変換してAD変換データを絶縁回路10を介して演算制御部20へ出力する。
演算制御部20は、AD変換データに基づいて被測定流体の流量を演算し、流量に対応した出力電流設定信号S4を電流出力部23へ出力する。電流出力部23は、出力電流設定信号S4に基づいて流量に対応した出力電流Ioを外部へ出力する。そして、プロセス制御を行うコントローラ(図示しない)などは、抵抗41に発生する電圧に基づいて出力電流Ioおよび流量を算出してプロセス制御(流量制御)を行う。
また、演算制御部20は、励磁コイル1に励磁電流IEXを供給するための制御信号(励磁クロック信号S1、励磁電流設定信号S2)を励磁部21へ出力する。励磁部21は、励磁クロック信号S1および励磁電流設定信号S2に基づいて、励磁コイル1への接続線C1およびC2を介して励磁電流IEXを励磁コイル1に供給する。
特開2002−340638号公報
ところで、電磁流量計30は、外部に接続された直流電源40から電力の供給を受けて動作している。直流電源40からの供給電圧(第1電源ラインL1の電圧)が低下したとき、電磁流量計30内部の消費電力が直流電源40からの供給電力を超えてしまい、電磁流量計30の動作が不安定または不能になる可能性がある。
このため、電源電圧検出部22は、第1電源ラインL1と第1コモンラインL2との間の電圧(以下、「L1電圧」という)を監視し、L1電圧が所定電圧以下になったことを検出して、電源電圧検出信号S3を演算制御部20へ出力する。
そして、演算制御部20は、電源電圧検出信号S3を受け取った後、特許文献1の図9に示すように励磁電流IEXを小さくするように励磁部21を制御する。ここで、励磁電流IEXは、電磁流量計30の消費電流の25〜80%を占める。このため、電磁流量計30内部の消費電力は小さくなり、直流電源40からの供給電力以下となって、電磁流量計30の動作が安定となり正常な動作をすることができる。
しかし、演算制御部20がCPUから構成され、プログラム(ソフトウエア)を読み込んで命令を解読してから動作する場合、CPUが電源電圧検出信号S3を受け取ってから、励磁電流IEXを小さくするように制御するまで、処理時間を要する。このため、励磁電流IEXが小さくなるまでの間、L1電圧が低下を続け、各部の動作可能電圧以下となることによって、電磁流量計30の動作が不能となり正常な動作に復帰しない可能性がある。
本発明の目的は、電源電圧が低下したときに、迅速かつ所定時間の間消費電力を小さくして、正常動作可能な電磁流量計を提供することである。
このような目的を達成するために、請求項1の発明は、
励磁クロック信号に同期して励磁コイルへ励磁電流を供給する励磁部と、前記励磁コイルから生じる磁界によって被測定流体に発生する電気信号に基づいて流量を演算する演算制御部と、前記励磁部に供給される励磁部電源電圧が所定電圧以下になったことを検出して電源電圧検出信号を出力する電源電圧検出部とを有する電磁流量計において、
前記電源電圧検出信号の変化に同期して、前記励磁クロック信号の1周期以上前記励磁電流を停止する励磁電流停止制御部を備えた、
ことを特徴とする。
請求項2の発明は、請求項1に記載の発明において、
前記演算制御部は、前記励磁電流の停止が解除された後、前記励磁クロック信号に同期して前記流量を演算する、
ことを特徴とする。
請求項3の発明は、請求項1または2に記載の発明において、
前記演算制御部は、前記電源電圧検出信号の変化の回数が所定値以上になったときに警報信号を出力する、
ことを特徴とする。
請求項4の発明は、請求項1または2に記載の発明において、
前記演算制御部は、前記電源電圧検出信号の変化の回数が所定値以上になったときに前記励磁電流を小さくする、
ことを特徴とする。
請求項5の発明は、請求項1から4のいずれか一項に記載の発明において、
前記励磁部電源電圧を昇圧または降圧した電圧を前記演算制御部に電源電圧として供給する電圧変換部を備えた、
ことを特徴とする。
本発明によれば、電源電圧が低下したときに、迅速かつ励磁クロック信号の1周期以上の間励磁電流を停止して、消費電力を小さくすることによって、電源電圧が復帰して正常動作可能な電磁流量計を実現できる。
[第1の実施例]
第1の実施例を図1を用いて説明する。図1は、本発明を適用した電磁流量計60の構成図であり、図9と同一のものは同一符号を付し説明を省略する。本実施例は、L1電圧(励磁部電源電圧)が低下したときに、励磁電流停止制御部51が、迅速かつ励磁クロック信号S1の1周期以上の間励磁電流IEXを停止するものである。
図1において、電磁流量計60は、被測定流体に発生する起電力(電気信号)を検出する検出器4、起電力を増幅する増幅回路8、増幅信号をAD変換(アナログ−デジタル変換)するAD変換部9、AD変換データを絶縁して演算制御部50へ送る絶縁回路10、AD変換部9などに電力を供給するDC−DC変換回路12、被測定流体の流量を演算する演算制御部50、励磁電流停止制御部51、励磁コイル1へ励磁電流IEXを供給する励磁部52、流量に対応した出力電流Ioを出力する電流出力部23およびL1電圧を監視し検出する電源電圧検出部22などから構成される。
検出器4は、被測定流体が流れる測定管13、被測定流体に磁界を加える励磁コイル1および被測定流体に発生する起電力を検出する電極2、3を備えている。
例えば、電磁流量計60が2線式フィールド機器の場合、電磁流量計60は外部に接続された直流電源40から電力の供給を受けて動作する。
直流電源40の正極端子(+)は、電磁流量計60の一方の出力端子TM1および第1電源ラインL1に接続される。負極端子(−)は、抵抗41を介して他方の出力端子TM2、出力電流検出抵抗24の一端および接続線L5を介して電流出力部23に接続される。また、出力電流検出抵抗24の他端は第1コモンラインL2に接続される。
SW制御回路11、電源電圧検出部22、電流出力部23、演算制御部50、励磁電流停止制御部51および励磁部52の各部の電源とコモンは、第1電源ラインL1と第1コモンラインL2に接続されており、各部はL1電圧によって電源電圧を供給される。
また、DC−DC変換回路12は、トランスによって絶縁されており、SW制御回路11およびトランスによって、L1電圧を昇圧または降圧した電圧(以下、「L3電圧」という)を第2電源ラインL3と第2コモンラインL4との間に発生させる。
増幅回路8を構成するバッファ5、6、差動増幅器7のほか、AD変換部9および絶縁回路10の各部の電源とコモンは、第2電源ラインL3と第2コモンラインL4に接続されており、各部はL3電圧によって電源電圧を供給される。
励磁部52は、接続線C1およびC2を介して励磁コイル1と接続されており、励磁コイル1へ励磁電流IEXを供給する。そして、励磁コイル1から磁界が生じ、被測定流体に磁界が加わって、電極2、3は、磁界によって被測定流体に発生した起電力を検出する。
バッファ(ボルテージフォロワ)5、6は起電力をバッファして、差動増幅器7はこれらの差電圧を増幅した信号をAD変換部9へ出力する。AD変換部9は、増幅信号をAD変換して、AD変換データを絶縁回路10を介して演算制御部50へ出力する。
演算制御部50は、受け取ったAD変換データに基づいて被測定流体の流速および流量を演算し、流量に対応した出力電流設定信号S4を電流出力部23へ出力する。出力電流設定信号S4は、流量に対応したデューティ比を有するPWM信号であり、電流出力部23は、出力電流検出抵抗24によって検出された出力電流Ioに対応した電圧をL5を介して帰還して、デューティ比(流量)に対応した出力電流Io(例えば4〜20mA)を外部へ出力する。
つぎに、図1に示している電源電圧検出部22、励磁電流停止制御部51および励磁部52の構成について演算制御部50も交え、図2を用いて詳細に説明する。図2は、本発明を適用した励磁電流停止制御部51などの回路図である。
図2において、電源電圧検出部22はつぎの構成を有する。直列接続された抵抗R3とツェナーダイオードZD1が、直列接続された抵抗R1と抵抗R2に並列接続される。抵抗R1と抵抗R3との接続点は、第1電源ラインL1に接続されており、抵抗R2とツェナーダイオードZD1(アノード)との接続点は、第1コモンラインL2に接続されている。演算増幅器IC1の反転入力端子(−)は、抵抗R3とツェナーダイオードZD1(カソード)との接続点に接続されており、非反転入力端子(+)は、抵抗R1と抵抗R2との接続点に接続されている。演算増幅器IC1の出力信号(電源電圧検出信号S3)は、励磁電流停止制御部51に入力される。
励磁電流停止制御部51において、電源電圧検出信号S3は、単安定マルチバイブレータ回路MVと論理積回路(AND回路)IC10の一方の入力に入力される。単安定マルチバイブレータ回路MVの出力は、論理積回路IC10の他方の入力に入力され、論理積回路IC10の出力信号(励磁電流停止制御信号S10)は、励磁部52に入力される。単安定マルチバイブレータ回路MVと論理積回路IC10の電源とコモンは、第1電源ラインL1と第1コモンラインL2に接続される。
励磁部52において、直列接続されたトランジスタTr1とトランジスタTr3が、直列接続されたトランジスタTr2とトランジスタTr4に並列接続される。トランジスタTr1とトランジスタTr2との接続点は第1電源ラインL1に接続され、トランジスタTr3とトランジスタTr4との接続点は定電流回路CCの一方に接続される。また、定電流回路CCの他方は第1コモンラインL2に接続される。なお、トランジスタTr1〜Tr4はFET(電界効果トランジスタ)であってもよい。
トランジスタTr1とトランジスタTr3との接続点は、接続線C1を介して励磁コイル1(図示しない)に接続され、トランジスタTr2とトランジスタTr4との接続点は、接続線C2を介して励磁コイル1に接続される。
トランジスタTr1とトランジスタTr4のベース(ゲート)端子は励磁タイミング信号発生回路TGの一方の出力に接続され、トランジスタTr2とトランジスタTr3のベース(ゲート)端子は励磁タイミング信号発生回路TGの他方の出力に接続される。また、励磁タイミング信号発生回路TGは、演算制御部50から励磁クロック信号S1を入力される。
論理積回路IC20の一方の入力は、演算制御部50から励磁電流設定信号S2を入力され、他方の入力は、励磁電流停止制御部51の論理積回路IC10から励磁電流停止制御信号S10を入力される。なお、励磁電流停止制御信号S10は演算制御部50にも入力される。
論理積回路IC20の出力はローパスフィルタLPFに入力され、ローパスフィルタLPFの出力は定電流回路CCに入力される。
つぎに、図2の構成において、励磁電流IEXが流れるまたは停止するタイミングについて図3を用いて説明する。
図3(a)は励磁クロック信号S1、(b)はL1電圧、(c)は電源電圧検出信号S3、(d)は励磁電流停止制御信号S10の動作波形を表すタイミングチャート図である。なお、縦軸の単位はいずれもボルト(電圧)である。
図3(a)において、励磁クロック信号S1は、時間T1からT2までの間はハイレベル電圧(以下「H電圧」という)であり、時間T2からT3までの間はローレベル電圧(以下「L電圧」という)であり、以後H電圧とL電圧を繰り返す。時間T1からT3までの時間Tclkは励磁クロック信号S1の1周期を表し、例えば26.6msである。
励磁電流IEXは次の動作によって流れる。励磁クロック信号S1が、L電圧からH電圧へ変化したことに同期して(例えば時間T1において)、トランジスタTr1とトランジスタTr4は、励磁タイミング信号発生回路TGの一方の出力信号によって導通(以下「ON」という)する。そして、励磁クロック信号S1(a)がH電圧になっている間(例えば時間T1からT2までの間)においてON状態が継続して、第1電源ラインL1、トランジスタTr1、接続線C1、励磁コイル1、接続線C2、トランジスタTr4、定電流回路CCおよび第1コモンラインL2の経路で励磁電流IEXが流れ、励磁部52が励磁コイル1に励磁電流IEXを供給する。
一方、励磁クロック信号S1(a)がL電圧になっている間(例えば時間T2からT3までの間)において、トランジスタTr1とトランジスタTr4は、励磁タイミング信号発生回路TGの一方の出力信号によって導通せず(以下「OFF」という)、励磁電流IEXは流れない。
なお、トランジスタTr1とトランジスタTr4がONになる代わりに、トランジスタTr2とトランジスタTr3が励磁タイミング信号発生回路TGの他方の出力信号によってONになってもよい。このとき、第1電源ラインL1、トランジスタTr2、接続線C2、励磁コイル1、接続線C1、トランジスタTr3、定電流回路CCおよび第1コモンラインL2の経路で、励磁電流IEXが流れる。
ここで、励磁電流IEXは、つぎのように一定電流となる。図2において、励磁電流設定信号S2はPWM信号であり、励磁電流停止制御信号S10がH電圧の場合、論理積回路IC20は、励磁電流設定信号S2と同じタイミングの信号をローパスフィルタLPFへ出力する。ローパスフィルタLPFは、論理積回路IC20の出力信号のデューティ比に対応した電圧を定電流回路CCへ出力する。そして、定電流回路CCによって、この電圧に対応した一定電流が励磁電流IEXとして流れる。演算制御部50は、励磁電流設定信号S2のデューティ比を変えることによって、励磁電流IEXの大きさを変えることができる。
図3に戻り、励磁電流IEXの停止動作について説明する。図3(b)の時間T5aにおいて、直流電源40からの供給電圧が低下するに伴って、L1電圧(b)も低下し始める。時間T5bにおいて、L1電圧(b)がL1det(所定電圧)になったとき、電源電圧検出信号S3(c)がH電圧からL電圧に変化する。電源電圧検出部22は、L1電圧(b)がL1det以下になったことを検出して、この間(時間T5bからT5cまで)電源電圧検出信号S3(c)をL電圧にする。なお、L1det=(R1+R2)x VZD1/R2となる。ここで、VZD1は、ツェナーダイオードZD1のツェナー電圧である。
図3(d)の時間T5bにおいて、電源電圧検出信号S3(c)がH電圧からL電圧に変化することに同期して、励磁電流停止制御信号S10(d)がH電圧からL電圧に変化する。単安定マルチバイブレータ回路MVは、時間T5bから励磁クロック信号S1の1周期Tclkの間L電圧を出力するため(ワンショットパルス)、励磁電流停止制御信号S10(d)は、時間T5bからT7aまでL電圧となる。
そして、励磁電流停止制御信号S10(d)がL電圧となることによって、図2の論理積回路IC20の出力はL電圧となり、ローパスフィルタLPFの出力電圧はゼロボルトになって、低電流回路CCは電流を流さず、励磁電流IEXは停止する。なお、単安定マルチバイブレータ回路MVは、時間T5bから1周期Tclk以上の間、L電圧を出力してもよく、この場合には励磁電流IEXは1周期Tclk以上の間停止する。
図3に戻り、励磁電流停止制御信号S10(d)によって、L1電圧(b)がL1detになった後迅速に(時間T5b)励磁電流IEXは停止するため、電磁流量計60の消費電流は小さくなる。
このため、L1電圧(b)は、低下から上昇に転じて、時間T5cにおいてL1detになって、その後通常時の電圧に復帰する。この動作に伴い、電源電圧検出信号S3(c)は、時間T5cにおいてL電圧からH電圧に変化する。
つぎに、図4は、励磁電流停止制御信号S10によって、励磁電流IEXを停止する他の回路例であり、これを用いて他の回路例を説明する。なお、図2との相違点を中心に説明し、図2と同一のものは同一符号を付し説明を省略する。図4は、図2の論理積回路IC20の代わりに論理積回路IC30を用いたものである。
図4において、励磁部52aの論理積回路IC30の一方の入力には、励磁クロック信号S1が入力され、他方の入力には、励磁電流停止制御信号S10が入力される。論理積回路IC30の出力は、励磁タイミング信号発生回路TGに入力される。
図3(d)において、励磁電流停止制御信号S10がL電圧になっている間(時間T5bからT7aまでの間)、論理積回路IC30の出力はL電圧となり、励磁タイミング信号発生回路TGはトランジスタTr1〜Tr4をOFFにして、励磁電流IEXは停止する。
本実施例によれば、L1電圧が低下したとき迅速に励磁電流IEXは停止し、電磁流量計60の消費電流が小さくなることによって、L1電圧が通常時の電圧に復帰して正常動作可能な電磁流量計を実現できる。
また、L1電圧は、励磁クロック信号S1とは非同期に低下するため、励磁クロック信号S1の1周期Tclk以上の間励磁電流IEXを停止することによって、少なくとも1周期の間は励磁電流IEXを停止できるので、L1電圧が通常時の電圧に復帰することを可能にし、正常動作可能な電磁流量計を実現できる。
つぎに、励磁電流IEXの停止が解除された後の動作について図3を用いて説明する。
図3(d)において、励磁電流停止制御信号S10が、時間T7aにおいてL電圧からH電圧に変化して、励磁電流IEXの停止が解除される。その後、図3(a)において、時間T7aからT8までの間、励磁電流IEXは流れる。
ここで、励磁コイル1のインダクタンスに発生する逆起電力によって、時間T7aからT8までの間に規定された励磁電流IEXが流れない場合がある。すなわち、時間T7aからT8までの時間が短いため、励磁電流IEXが規定値まで立ち上がらない場合がある。この場合に、演算制御部50が、時間T7aからT8までの間に取得されたAD変換データに基づいて流量を演算すると、この流量値は誤差を含むことになる。
このため、演算制御部50は、励磁電流IEXの停止が解除された後(時間T7a)、図3(a)の励磁クロック信号S1のL電圧からH電圧への変化に同期(時間T9)して、AD変換データを取得し流量を演算することによって、正確な流量を演算することができる。なお、この同期のタイミングは、時間T9以後のL電圧からH電圧へ変化するタイミング(例えばT11)であってもよい。
この演算制御部50の動作によれば、励磁電流IEXの停止が解除された後、正確な流量が得られて、流量出力が異常な遥動(ハンチング)を起こすことを防止できる。
さらに、演算制御部50が同様な動作を可能とする他の例について、図5を用いて説明する。図5は、励磁クロック信号S1に同期して励磁電流IEXの停止を解除する回路図の例である。なお、図2との相違点を中心に説明し、図2と同一のものは同一符号を付し説明を省略する。図5の励磁電流停止制御部51aの構成の一部が、図2の励磁電流停止制御部51と相違する。
図5において、論理積回路IC10の出力S10は、D型フリップフリップIC11のD入力および論理積回路IC12の一方の入力に入力される。D型フリップフリップIC11のクロック入力には、励磁クロック信号S1が入力され、出力Qは、論理積回路IC12の他方の入力に接続される。そして、論理積回路IC12の出力は、励磁電流停止制御信号S10aとして、励磁部52の論理積回路IC20の他方の入力および演算制御部50に入力される(論理積回路IC20には、図2では信号S10が入力されるが、図5では、その代わりに信号S10aが入力される)。
図5の動作について図6を用いて説明する。図6は、図3と同様のタイミングチャートである。図6(a)〜(d)は、図3(a)〜(d)と同様である。図6は、図3に対して、励磁電流停止制御信号S10aのタイミングチャート(図6(e))を追加したものであり、図3との相違点を中心に説明する。
図5のD型フリップフリップIC11は、論理積回路IC10の出力信号S10を励磁クロック信号S1によって同期をとる。これによって、図6(e)の励磁電流停止制御信号S10aは、時間T5bにおいてL電圧になった後、励磁クロック信号S1(a)のL電圧からH電圧への変化に同期(時間T9)してH電圧になり、励磁電流IEXの停止が解除される。
そして、演算制御部50は、励磁電流IEXの停止が解除された後、励磁電流停止制御信号S10aの電圧の変化に同期(時間T9)して、AD変換データを取得し流量を演算することによって正確な流量を演算することができ、流量出力が異常な遥動(ハンチング)を起こすことを防止できる。この演算のタイミングは、時間T9以後の励磁クロック信号S1がL電圧からH電圧へ変化するタイミング(例えばT11)であってもよい。なお、図5の励磁電流停止制御部51aは、図4の励磁電流停止制御部51にも同様に適用できる。
[第2の実施例]
第2の実施例を図7を用いて説明する。図7は、本発明を適用した電磁流量計80の他の構成図であり、図1との相違点を中心に説明し、図1と同一のものは同一符号を付し説明を省略する。本実施例は、計数部70と判定部71を備えたものである。
図7において、電源電圧検出信号S3は計数部70に入力され、計数部70の出力は判定部71に入力される。判定部71の出力信号(判定結果信号S20)は演算制御部50に入力される。
ここで、励磁コイル1が短絡する異常が発生したとき、非常に大きな励磁電流IEXが流れる。このため、図3において、図3(b)のようにL1電圧が低下する。そして、図3(c)の電源電圧検出信号S3がL電圧になり、図3(d)の励磁電流停止制御信号S10がL電圧になることによって、時間T5bからT7aまで励磁電流IEXは停止して、L1電圧(b)は復帰する。しかし、時間T7a後に再び非常に大きな励磁電流IEXが流れるため、上述した動作の繰り返しが起こって、電磁流量計80は正常な動作に復帰しない。
図7に戻り、計数部70が、電源電圧検出信号S3の電圧変化の回数(H電圧からL電圧に変化する回数)を計数し、計数値を判定部71へ送る。判定部71は、計数値が所定値以上になったかどうかを判定し、判定結果信号S20を演算制御部50へ送る。そして、演算制御部50は、計数値が所定値以上になったことを表す判定結果信号S20を受け取ったとき、警報信号S21を電流出力部23へ出力する。
なお、この警報信号S21は、電流出力部23を介して、出力電流Ioを所定の範囲外の電流値(例えば、21.6mAまたは3.6mA)にしたり、警報を表す通信データを通信信号として外部へ出力することによって、ユーザーはコントローラなどで警報(アラーム)を知ることができる。
また、このような場合、励磁電流停止制御信号S10の電圧も同様に繰り返し変化するため、計数部70は、励磁電流停止制御信号S10の電圧変化の回数(H電圧からL電圧に変化する回数)を計数してもよい。
本実施例によれば、励磁コイル1が短絡する異常などが発生して、電磁流量計が正常な動作に復帰しない場合、警報を外部へ知らせることができる。
また、周囲温度の変化に伴って励磁コイル1の抵抗が増加し、励磁コイル1の消費電力が増加することによって、L1電圧が低下する場合がある。この場合、上述した励磁コイル1の短絡異常と同様に、電源電圧検出信号S3および励磁電流停止制御信号S10の電圧が繰り返して変化する。
そこで、演算制御部50は、計数値が所定値以上になったことを表す判定結果信号S20を受け取ったとき、励磁電流設定信号S2のデューティ比を小さくする。このため、励磁電流IEXが小さくなり、励磁コイル1の消費電力が減少することによって、L1電圧の低下および上述した繰り返し変化が発生することを防止でき、正常動作可能な電磁流量計を実現できる。
また、、励磁電流IEXを小さくしても上述した繰り返し変化が発生する場合には、演算制御部50は、繰り返し変化が所定回数発生した後に警報信号S21を出力してもよい。
なお、計数部70と判定部71の動作は、演算制御部50で行うこともできる。また上述した励磁電流停止制御信号S10は、図5の励磁電流停止制御信号S10aであってもよい。
[第3の実施例]
第3の実施例を図8を用いて説明する。図8は、本発明を適用した電磁流量計100の他の構成図であり、図1との相違点を中心に説明し、図1と同一のものは同一符号を付し説明を省略する。本実施例は、電圧変換部90を備えたものである。
図8において、L1電圧が電圧変換部90に入力され、電圧変換部90はL1電圧を昇圧または降圧し、この電圧L10を出力する。電圧L10は、演算制御部50へ電源電圧として供給される。なお、電圧変換部90は、図7においても同様に適用することができる。
本実施例によれば、第1および第2の実施例に加え、L1電圧に変化が生じた場合でも、電圧変換部90は安定な電圧L10を出力できるため、演算制御部50は安定した動作が可能となる。
また、第1〜第3の実施例において、電磁流量計は4線式電磁流量計であってもよく、電磁流量計の出力はフィールドバス通信を行う電磁流量計でもよい。
なお、本発明は、前述の実施例に限定されることなく、その本質を逸脱しない範囲で、さらに多くの変更および変形を含むほか、上述した各部の組み合わせ以外の組み合わせを含むことができる。
本発明を適用した電磁流量計60の構成図の例である。 本発明を適用した電源電圧検出部22、励磁電流停止制御部51および励磁部52の回路図の例である。 (a)は励磁クロック信号S1、(b)はL1電圧、(c)は電源電圧検出信号S3、(d)は励磁電流停止制御信号S10の動作波形を表すタイミングチャート図の例である。 本発明を適用した電源電圧検出部22、励磁電流停止制御部51および励磁部52aの回路図の例である。 本発明を適用した電源電圧検出部22、励磁電流停止制御部51aおよび励磁部52の回路図の例である。 (a)は励磁クロック信号S1、(b)はL1電圧、(c)は電源電圧検出信号S3、(d)は論理積回路IC10の出力信号S10、(e)励磁電流停止制御信号S10aの動作波形を表すタイミングチャート図の例である。 本発明を適用した電磁流量計80の構成図の他の例である。 本発明を適用した電磁流量計100の構成図の他の例である。 背景技術における電磁流量計30の構成図の例である。
符号の説明
1 励磁コイル
2、3 電極
4 検出器
22 電源電圧検出部
23 電流出力部
50 演算制御部
51、51a 励磁電流停止制御部
52、52a 励磁部
60、80、100 電磁流量計
70 計数部
71 判定部
90 電圧変換部
IEX 励磁電流
L1 第1電源ライン
L2 第1コモンライン
S1 励磁クロック信号
S3 電源電圧検出信号
S10、S10a 励磁電流停止制御信号

Claims (5)

  1. 励磁クロック信号に同期して励磁コイルへ励磁電流を供給する励磁部と、前記励磁コイルから生じる磁界によって被測定流体に発生する電気信号に基づいて流量を演算する演算制御部と、前記励磁部に供給される励磁部電源電圧が所定電圧以下になったことを検出して電源電圧検出信号を出力する電源電圧検出部とを有する電磁流量計において、
    前記電源電圧検出信号の変化に同期して、前記励磁クロック信号の1周期以上前記励磁電流を停止する励磁電流停止制御部を備えた、
    ことを特徴とする電磁流量計。
  2. 前記演算制御部は、前記励磁電流の停止が解除された後、前記励磁クロック信号に同期して前記流量を演算することを特徴とする請求項1に記載の電磁流量計。
  3. 前記演算制御部は、前記電源電圧検出信号の変化の回数が所定値以上になったときに警報信号を出力することを特徴とする請求項1または2に記載の電磁流量計。
  4. 前記演算制御部は、前記電源電圧検出信号の変化の回数が所定値以上になったときに前記励磁電流を小さくすることを特徴とする請求項1または2に記載の電磁流量計。
  5. 前記励磁部電源電圧を昇圧または降圧した電圧を前記演算制御部に電源電圧として供給する電圧変換部を備えたことを特徴とする請求項1から4のいずれか一項に記載の電磁流量計。
JP2007334186A 2007-12-26 2007-12-26 電磁流量計 Active JP5141957B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334186A JP5141957B2 (ja) 2007-12-26 2007-12-26 電磁流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007334186A JP5141957B2 (ja) 2007-12-26 2007-12-26 電磁流量計

Publications (2)

Publication Number Publication Date
JP2009156681A JP2009156681A (ja) 2009-07-16
JP5141957B2 true JP5141957B2 (ja) 2013-02-13

Family

ID=40960867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334186A Active JP5141957B2 (ja) 2007-12-26 2007-12-26 電磁流量計

Country Status (1)

Country Link
JP (1) JP5141957B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458784B2 (ja) * 2016-08-03 2019-01-30 横河電機株式会社 駆動回路および電磁流量計
JP6806532B2 (ja) * 2016-11-09 2021-01-06 アズビル株式会社 電磁流量計の励磁回路、および電磁流量計

Also Published As

Publication number Publication date
JP2009156681A (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
JP5163852B2 (ja) 電磁流量計とそのゼロ点測定方法
JP2568620B2 (ja) 電磁流量計
JP5141957B2 (ja) 電磁流量計
EP3015830B1 (en) Standard signal generator
US8032257B2 (en) Field equipment of two-wire
JP2002340638A (ja) 電磁流量計
JP6276678B2 (ja) 標準信号発生器
JP2011226974A (ja) 電磁流量計
JP6276677B2 (ja) 標準信号発生器
JP5196232B2 (ja) 電磁流量計
JP2016169962A (ja) 電磁流量計
JP6077843B2 (ja) 電磁流量計
JP2018169303A (ja) 電流センサ
JP5820303B2 (ja) 2線式電磁流量計
JP6457899B2 (ja) 標準信号発生器
JP3185950B2 (ja) 2線式伝送器
JP5509132B2 (ja) 電磁流量計
JP2018013425A (ja) 電圧検出回路
JP2009064313A (ja) 2線式伝送器
JP2002156393A (ja) 電池電圧測定回路
JP5251273B2 (ja) 電流出力回路
JP4228765B2 (ja) 電磁流量計
JP2530856Y2 (ja) 電磁流量計
JP2004061450A (ja) 2線式電磁流量計
CN201674396U (zh) 一种开关电源输出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250